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1. Abstract 

Congenital Hypothyroidism (CH) is commonly due to structural defects of 

thyroid gland, collectively known as thyroid dysgenesis. Defects in growth and/or 

differentiation of the thyroid primordium can result in an absent (athyreosis) or 

hypoplastic thyroid; an impaired migration of thyroid precursor cells causes an ectopic 

gland (Van Vliet G, 2003). The clinical picture of thyroid dysgenesis thus suggests that 

defects of the specification, survival and movement of thyroid precursor cells are the 

key aberrations in CH. Understanding the regulation of early thyroid morphogenesis is 

thus important to elucidate the pathogenesis of CH. Murine models with target 

inactivation of the transcription factors Nkx2.1, Pax8, Foxe1 and Hhex expressed in 

thyroid progenitor cells and in the adult gland have demonstrated their important 

functions in thyroid development (De Felice M and Di Lauro R, 2004). Even though the 

thyroid is specified in each of these models it later disappears suggesting a role of these 

transcription factors also in the survival and expansion of the thyroid progenitors cell 

population. However, very few germ-line mutations have been detected in the 

corresponding genes of human patients with thyroid dysgenesis (Al Taji et al., 2007) 

suggesting the importance of additional genes. The aim of this thesis has been to 

discovery these genes by an unbiased search for transcripts enriched in the early thyroid 

primordium.    

Mouse thyroid primordia at the bud stage (E10.5) were isolated by laser capture 

microdissection (LCM). In parallel, RNA from whole embryos was obtained. RNA was 

amplified and labelled; samples were hybridized to Affymetrix microarrays. 

Bioinformatic analysis tools identified over 3000 transcripts as significantly enriched in 

the thyroid bud as compared to expression in the whole embryo. Such an enrichment is 

expressed as Fold Change (FC), 450 transcripts out 3000 displayed a FC >5. High and 

restricted expression of several of these in the E10.5 thyroid bud was confirmed 

experimentally by in situ hybridization on mouse embryos. This preliminary analysis 

indicates that the list has a high degree of validity. By this approach I have identified a 

large number of transcripts enriched in the embryonic thyroid bud with currently 

unknown functions in its development.  

This list will be an important resource in further efforts to elucidate the genetic 

networks that govern thyroid morphogenesis and might underlie CH.    
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2. Introduction 

 The thyroid gland in mammals 

General aspects 

The thyroid gland, a component of the endocrine system, derives its name from 

the Greek words „thyreos‟ meaning „shield‟, and „eidos‟ meaning „form‟. In humans, 

the thyroid gland is located in front of the neck (Figure 1 A). In women, it is slightly 

heavier than in men and enlarges in pregnancy. 

The thyroid gland, in all vertebrates, is responsible for producing thyroid 

hormone, known for its role in regulating metabolism in adults and is also required for 

many developmental processes. 

The human thyroid gland is a brownish-red organ, in most cases having two 

lobes connected by an isthmus; normally weighs about 28 g and consists of cuboidal 

cells arranged to form epithelial follicles (Figure 1 B), supported by connective tissue 

that forms a framework for the entire gland. In the normal thyroid gland, the follicles 

are usually filled with a colloid substance containing the protein thyroglobulin 

enclosing the main thyroid hormone thyroxine (or tetra-idothyronine, T4). Another 

hormone, triiodothyronine (T3), is present in much lesser amounts in thyroglobulin even 

though it will be the main hormone peripherally, where it is produced by enzymatic de-

iodination of T4. Thyroid hormone production starts with the synthesis of thyroglobulin, 

which is then secreted into the colloidal lumen of the follicle with the iodination of 

tyrosine residues and where it is condensed to produce tri- (T3) and tetra-iodinated 

thyronine (T4, thyroxine) (Frieden and Lipner, 1971). T3 and T4 remain covalently 

bound to thyroglobulin as long as they are stored in the colloid. The bound forms of T3 

and T4 are eventually taken up by the follicular cells and proteolitically separated from 

the thyroglobulin. Free T3 and T4 are then released and act as thyroid hormones. 

Although the thyroid gland constitutes about 0.5 percent of the total human body 

weight, it holds about 25 percent of the total iodine in the body, obtained from food and 
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water in diet. Iodine usually circulates in the blood as an inorganic iodide and is 

concentrated in the thyroid to as much as 500 times the iodide level of the blood. 

The amounts of T3 and T4 secreted by the thyroid are controlled by the thyroid-

stimulating hormone (TSH) of the pituitary gland and TSH, in turn, is regulated by 

thyroid-stimulating hormone releasing factor (TRF), secreted by the hypothalamus. 

The functions of the thyroid gland include: regulation of normal body growth in 

infancy and childhood, regulation of metabolism, regulation of body temperature, 

maintenance of skeletal maturation and regulation of protein, fat and carbohydrate 

metabolism. These functions are dependent upon the serum levels of T4. 

 

Figure 1  The human thyroid gland. (A) Drawing showing the 

thyroid position and related structures in the neck region. (B) Cross 

section of the thyroid showing structure of the thyroid follicles. Ca: 

Carotid artery; Is: Isthmus; Lo: Lobes Tr: Trachea. 

 

    

     The development of the thyroid gland 

The adult thyroid gland in mammals is assembled from two different 

embryological structures. This composite origin reflects the dual endocrine function of 

the gland. The thyroglobulin-producing follicular cells (TFCs) are derived from a small 

group of endodermal cells of the primitive pharynx (the thyroid anlage) whereas the 

calcitonin-producing parafollicular cells are the neural crest-derived cells contained in 

the ultimobranchial bodies, the transient embryonic structures originated from the 

fourth pharyngeal pouch. The thyroid anlage and the ultimobranchial bodies migrate 

from their respective sites of origin, reaching their final position in front of the trachea 

and fuse to form the definitive thyroid gland and thus disappear as individual structures. 

Cells derived from the thyroid anlage begin to form thyroid follicles, whereas the C-
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cells scatter within the interfollicular space. After this early ontogenetic phase, the 

thyroid function commences but remains at basal level; the lateral differentiation of 

hypothalamic nuclei and the organization of the pituitary-portal vascular system 

guarantee the maturation of the thyroid-system function (Fisher et al., 1977). 

The morphogenesis and differentiation of the thyroid have been extensively 

studied in rodents. On the contrary, data on thyroid organogenesis in humans are scarce. 

However, the formation of the initial primordium, the differentiation of follicular cells 

and the folliculogenesis probably follow the same developmental pattern in all 

mammals. In addition recent studies on patients affected by congenital hypothyroidism 

with thyroid dysgenesis have confirmed that identical genetic mechanisms are involved 

in thyroid organogenesis both in humans and mice. The morphological and molecular 

aspects of thyroid development in mice are described in details as follows. 

 Morphological aspects of mouse thyroid development 

After the gastrulation, the endoderm layer forms the primitive gut tube that is a 

cylindrical cavity running along the antero-posterior axis of the embryo. The anterior 

and posterior portions of this tube are called foregut and hindgut respectively. In the 

beginning, the primitive gut appears as a homogeneous tube, which shortly, through the 

effects of signalling molecules and specific transcription factors, “regionalizes” in 

different districts, undergoes different developmental programs and gives rise to 

different organs (Shivdasani, 2002; Fukuda and Kikuchi, 2005; Grapin-Botton and 

Melton, 2000). For example, the epithelial components of thyroid, thymus, lungs, 

stomach, liver, pancreas, intestine and bladder derive from the endodermal cells of the 

gut (Hogan and Zaret, 2002). The thyroid is the anterior-most organ that derives from 

the foregut. Mechanisms responsible for thyroid specification, by which a group of 

endodermal cells are recruited to establish the thyroid anlage, are still unknown. 

Undifferentiated endodermal cells could be “specified” toward their thyroid fate as a 

result of inductive signals from the mesenchyme or from adjacent heart mesoderm. 

Factors such as Nodal, FGF and members of GATA or Sox family could be involved in 

thyroid specification. In mice, thyroid does not develop in the absence of Fgf10 (Ohuchi 

et al., 2000); whereas in zebrafish, Bon and Gata5, the two transcription factors 

downstream of Nodal signalling, seem to be specifically relevant to the early step of 

thyroid bud specification (Elsalini et al., 2003). 
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In the mouse (gestation period-19 days) the thyroid anlage is first visible at 

embryonic day (E) 8-8.5 as a midline endodermal thickening in the ventral wall of the 

primitive pharynx (Kaufman and Bard, 1999) (Figure 2 ). This thickened bud first 

forms a small endodermal pit and then an outpouching of the endoderm that is apposed 

to the distal part of the outflow tract of the developing heart. The close contact between 

thyroid anlage and developing heart suggests an inductive role of myocardial cells on 

thyroid morphogenesis.  There are no data proving a direct influence of the developing 

heart on thyroid organogenesis. However alterations in the foregut have been 

demonstrated as a consequence of an impaired heart development (Cai et al., 2003). 

Furthermore, cardiac malformations represent the most frequent birth defects associated 

with thyroid dysgenesis (Olivieri et al., 2002; Roberts et al., 1997). 

As soon as the thyroid anlage is visible as an endodermal thickening in the 

midline of the floor of the primitive pharynx, the precursors of TFCs acquire a specific 

molecular signature and can be distinguished by their co-expression of four 

transcription factors Hhex (Thomas et al., 1998), Titf1 (Lazzaro et al., 1991), Pax8 

(Lazzaro et al., 1991) and Foxe1 (Zannini et al., 1997). It is worth noting that each of 

these transcription factors is expressed also in other tissues but such a combination is a 

unique hallmark of both differentiated TFCs and their precursors (Damante et al., 

2001). Studies in animal models have shown the relevance of these factors for thyroid 

development. 

 

 

Figure 2  Early stages of thyroid development. CM: Cardiac 

Mesenchyme; H: Heart; LP: Liver Primordium; PP: Pancreatic 

Primordium; TA: Truncus Arteriosus; TP: Thyroid Primordium. 
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By E9 the thyroid anlage projects into the surrounding mesenchyme and forms 

the thyroid bud that rapidly becomes an endodermal-lined diverticulum. The thyroid 

primordium begins to descend towards its final position (Figure 2 ), a process that lasts 

for almost four days  (Kaufman and Bard, 1999). The molecular mechanisms involved 

in the translocation of the thyroid primordium are still matter of debate (Fagman et al., 

2003). Budding and translocation from the gut tube is a developmental process shared 

by many endoderm-derived organs (Hogan and Zaret, 2002). In the case of thyroid, the 

definitive location is rather distant from the site of primitive specification and any 

existing connection between the gland and the gut tube disappears. Whereas the 

development of other organs, such as the lung, involves a process of branching 

morphogenesis (Cardoso and Lu, 2006), thyroid development requires the migration of 

TFC precursors. Cell migration is a common phenomenon during embryogenesis. 

During many processes, such as gastrulation, neural crest migration and heart 

formation, the migrating cells lose epithelial phenotype and acquire mesenchymal 

features (Thiery and Sleeman, 2006). This epithelial-mesenchymal transition is a 

hallmark with an increased expression of N-cadherin and the down-regulation of E-

cadherin, a molecule relevant for cell-cell contacts. In contrast, TFC precursors seem to 

use a different and yet unidentified pathway to move because they maintain their 

epithelial phenotype through their “journey” towards the trachea (Fagman et al., 2003). 

The expression of transcription factors such as either Hhex or Pax8 or Titf1 is not 

sufficient for thyroid migration, while Foxe1 plays a crucial role because the presence 

of this factor in the thyroid bud is required to allow the cells to move (De Felice et al., 

1998; Parlato et al., 2004). Thus, in TFC precursors, Foxe1 controls the expression of 

key molecules required for migration, though it has been supported that the 

translocation of thyroid primordium towards the sublaryngeal position not only depends 

on cell autonomous events but could also be driven by the movements of other 

surrounding tissues of the neck region. (Hilfer and Brown, 1984). 

At E10.5, the thyroid primordium caudally migrates into the mesenchyme but is 

still connected to the floor of the pharynx by a narrow channel, the thyroglossal duct, 

which gradually undergoes atrophy and at E11.5 the thyroid primordium loses all 

connections with the pharyngeal floor. One day later the thyroid primordium starts 

expanding laterally and by E 13-14 reaches its destination - in front of the trachea, 

where it merges with the ultimobranchial body-derived cells, which have completed 

their ventro-caudal migration (Kaufman and Bard, 1999; Cordier et al., 1980). 
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Once the final location has been reached, the thyroid lobes expand considerably 

(E15-16) and the gland exhibits its definitive shape: two lobes connected by a narrow 

isthmus (Figure 3 ). The mechanisms controlling thyroid growth and formation of the 

lobes are unknown. It is worth noting that while TSH signalling is required for the 

growth of the adult thyroid cells, it is not relevant for the growth of the foetal gland.  

Since mesenchymal signals have been proved to be necessary for the morphogenesis of 

several endoderm-derived organs (Zaret, 2002; Grapin-Botton and Melton, 2000; 

Lammert et al., 2001; Matsumoto et al., 2001), an inductive role of surrounding tissues 

can be hypothesized in thyroid development too, mainly the vessels located close to the 

thyroid tissue. This is observed in mice in which, when either Sonic hedgehog gene 

(Shh) (Fagman et al., 2004) or TBX1 (Fagman et al., 2006) has been disrupted, correct 

patterning of the vessels is disturbed; the lobulation process is impaired and the thyroid 

gland assumes the shape of a single midline mass located lateral to the trachea. In the 

same way, the localization of growing thyroid tissue along the antero-posterior axis in 

zebrafish is linked to the development of the ventral aorta; ectopic vascular cells 

influence the localization of the thyroid tissue non-autonomously, showing that vessels 

provide guidance cues in zebrafish thyroid morphogenesis (Alt and Elsalini et al., 

2006). 

 

 

 

Figure 3  Thyroid gland morphogenesis. In situ hybridization with 

Pax8 antisense probe reveals the location of the thyroid. 

 

Between E14.5 and E16.5 a series of events lead the thyroid primordium 

towards a functional thyroid gland able to produce and release hormones (Figure 4 ). 

The final differentiation of TFC is featured by the expression of a number of genes 

required for thyroid function such as thyroglobulin (Tg), thyroid peroxidase (TPO), 

TSH receptor (Tshr), sodium/iodide symporter (NIS), thyroid oxidase (Thox‟s) and 

pendrin (PDS). The final differentiation program of TFC requires almost three days. Tg 
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appears around E14 (Lazzaro et al., 1991) while thyroxine is first detected at E16.5 

(Meunier et al., 2003). The expression of TPO as well as NIS, the two key enzymes 

involved in the process of Tg iodination, is absolutely dependent on the pathway 

activated by the binding of TSH to its receptor Tshr (Postiglione et al., 2002). Notably, 

the normal final location of TFCs in front of the trachea is not an essential requirement 

for functional differentiation, since the sublingual thyroid expresses thyroglobulin in 

human patients (Hartzband et al., 1984) as well as in mutated mice (De Felice et al., 

1998).  

 

 

 

Figure 4  Onset of the functional differentiation in developing 

mouse thyroid. Serial sagittal sections of E14 (A-D) and E15 (E-H) 

reveal the hybridization with different antisense probes, as 

indicated. 

 

In the mouse, small thyroid follicles begin to appear by E15.5 and a day later the 

gland displays an evident follicular organization. However the regulation of the growth 

and function of the thyroid by the hypothalamic-pituitary axis is fully active only after 

birth. In humans, the establishment of the characteristic histological organization lasts 

several weeks and can be divided into three phases: the precolloid, the beginning of 

colloid and the follicular-growth, which occur at 7-10, 10-11 and after 11 weeks of 

gestation, respectively (Fisher et al., 1997). In the precolloid phase small intracellular 

canaliculi develop as an accumulation of colloid material. These small canaliculi 

enlarge and the colloid organizes itself into extracellular spaces. In the last phase 
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primary follicles are clearly visible and the foetal thyroid is able to concentrate iodide 

and synthesize thyroid hormones. In variation with mice, in humans at mid-gestation 

(18-20 weeks), the hypothalamic-pituitary thyroid axis begins to develop and hormone 

production increases. 

 

   Molecular genetics of thyroid development 

 

The discovery that Titf1, Foxe1, Pax8 and Hhex transcription factors, relevant 

for the expression of genes specific of mature TFCs, are also expressed in the thyroid 

primordium, offered a useful tool for the exploration of the genetic basis of the 

developmental process of the thyroid gland. These four factors remain expressed all life 

long as a hallmark of differentiated TFCs (Table I) and their expression can be down-

regulated only after transformation of the cells (Francis-Lang et al., 1992b). The 

hypothesis that the expression of these four factors is required at early stages of thyroid 

morphogenesis has been confirmed by studies on both animal models and patients 

affected by thyroid dysgenesis. Titf1 (Kimura et al., 1996; Kimura et al., 1999), Hhex 

(Martinez Barbera et al., 2000) and Pax8 (Mansouri et al., 1998) are required for the 

survival of the TFC precursors, whereas in the absence of Foxe1 the thyroid 

primordium either disappears or remains in a sub-lingual ectopic position (De Felice et 

al., 1998). These data indicate that Titf1, Hhex, Pax8 and Foxe1 play individual roles in 

the organogenesis of the gland; however functional interaction among these factors has 

been demonstrated in the developing thyroid (Figure 5 ). Actually, Titf1, Hhex and 

Pax8 are linked in a complex regulatory network because each of them controls the 

maintenance of expression of the other factors. The simultaneous presence of these 

three factors is required for the expression of Foxe1, suggesting that Foxe1 is located 

downstream in the thyroid regulatory network (Parlato et al., 2004). However, the 

presence of these genes is not sufficient to guarantee a correct organogenesis of the 

gland. Mutations in other genes too, both thyroid-enriched and ubiquitous, have been 

demonstrated to impair the development of the thyroid. 
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Figure 5  Functional interaction among Hhex, Titf1, Pax8 and 

Foxe1 in developing thyroid. The transcription factor and the 

functions controlled by it are indicated in different colours. Each 

factor regulates other transcription factors controlling the onset 

(arrow) or the maintenance (square) of their expression. (From 

Parlato et al., 2004) 

 

The present knowledge on the molecular genetics of thyroid development 

mainly as deduced from the phenotype of knock-out animals, is summarized below. It is 

worth noting that while we have sufficient information on genes expressed in the 

thyroid primordium after its specification and indispensability for the maintenance of 

the thyroid morphogenesis, the factors required for the initiation of anlage formation are 

still unknown. 

 

Embryonic 

Day 

Morphology Functional (terminal) 

differentiation 

Tg, TPO, Tshr        NIS 

Thyroid 

hormones 

Controller genes 

Titf1,Foxe1, 

Pax8,Hhex       Fgfr2 

E8 Undifferentiated 

endoderm 

-                           - - -                           - 

E8.5 Thyroid anlage -                           - - +                           - 

E9.5 Thyroid bud -                           - - +                           - 
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E11.5-13.5 Expansion of 

thyroid primordium 

-                           - - +                           + 

E14-15 Definitive bilobed 

shape 

      +                             - - +                           + 

E16 Folliculogenesis       +                            +       - +                           + 

E16.5 Completion of 

organogenesis 

+                           + + +                           + 

 

Table I  Summary of the different phases of thyroid development, 

indicating the morphological features, the expression of relevant genes and 

the capacity to produce thyroid hormones. +, Present; -, Absent. 

 

  

   Relevant genes in thyroid development 

Titf1 

Titf1 (formerly called TTF-1 for Thyroid Transcription Factor–1 or Nkx2-1 or 

T/EBP) is a transcription factor that recognizes and binds to specific DNA sequences 

via a 61 amino acid-long DNA binding domain called homeodomain, whose sequence 

is conserved from the fruitfly to humans with very few changes. Titf1 was initially 

identified in a rat thyroid cell line (Civitareale et al., 1989) as a nuclear protein able to 

bind to specific sequences in the Tg promoter. The corresponding cDNA was 

subsequently cloned and a comparative sequence analysis demonstrates that Titf1 has a 

considerable degree of homology to the Drosophila NK-2 class of homeodomain 

proteins (Kim and Niremberg, 1989).  

Titf1 is a member of the Nkx2 class of transcription factors and is encoded by a 

single gene whose official name is Titf1 in mice and TITF1 in humans, located on 

chromosome 12 and on chromosome 14q13 (Guazzi et al., 1990) respectively. The gene 

splits into at least 3 exons that express multiple transcripts (Lonigro et al., 1996; 

Hamdan et al., 1998). The most abundant is 2.3 Kb mRNA which encodes a 

phosphorylated (Francis-Lang et al., 1992b; Zannini et al., 1996) 42 kDa protein 371 

amino acids long in humans (Ikeda et al., 1996). Functional studies have addressed to 

the question of whether the homeodomain is responsible only for the binding to the 

DNA (Damante and Di Lauro, 1991), while the transactivating property resides in the 

two apparently redundant domains localized at two ends of the protein (De Felice et al., 

1995). 

The expression pattern of Titf1 has been exhaustively studied in rodents. Titf1 is 

expressed in both differentiated follicular cells and in their precursors. It is detected in 
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the thyroid primordium as soon as the thyroid anlage is visible.  In the thyroid gland, 

Titf1 expression is not restricted to the follicular cells; it is also present in parafollicular 

C-cells (Suzuki et al., 1998) and in the epithelial cells of the ultimobranchial body 

(Mansouri et al., 1998). In addition, Titf1 is expressed in selected areas of the forebrain, 

including the developing posterior pituitary, in the trachea and in the lung epithelium 

(Lazzaro et al., 1991).  

Gene targeting experiments have allowed the study of the role of this 

transcription factor during embryonic life. Mice, in which both Titf1 alleles have been 

disrupted, show a complex phenotype according to the wide expression domain of this 

gene.    

 

Figure 6  Sagittal sections of wild-type (A) and Titf1-/- (B) E15.5 

embryos stained with Pax8 antibody. In wild-type embryo, the 

developing thyroid (arrow) is positioned dorsal to the cricoid 

cartilage. In the mutated embryo the thyroid tissue is undetectable 

(arrowhead). Cr: Cricoid cartilage; ph: pharynx (Di Felice and De 

Lauro, 2004). 

 

In absence of Titf1, the newborn mice immediately die at birth and are 

characterized by impaired lung morphogenesis, lack of thyroid and pituitary and severe 

alterations in the ventral region of the forebrain (Kimura et al., 1996) (Figure 6 ).  

Analyses during development demonstrate that the thyroid anlage forms in its 

correct position but at an early stage, morphogenesis of the gland is impaired. The 

thyroid primordium by E10.5 appears much smaller in size in comparison to wild type 

and subsequently undergoes degeneration probably in consequence of an apoptotic 

process (Kimura et al., 1996). Hence, Titf1 is dispensable for the initial commitment of 

thyroid cells, but is required for the survival and subsequent differentiation of the cells. 

However we do not know which genes are controlled by this transcription factor in the 

thyroid primordium. A detailed analysis of the phenotype of the affected tissue reveals 

that in absence of Titf1, the expression of BMP4 (Minoo et al., 1999) and that of Fgf8 
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(Takuma et al., 1998) is abolished in the developing lung and in the posterior pituitary 

respectively. These data indicate that signalling molecules relevant for the 

morphogenesis of embryonic structures are controlled by this transcription factor. The 

finding that Fgfr2 is expressed in the thyroid bud (Parlato et al., 1999), suggests that 

Titf1 could regulate the survival of TFCs through a Fgf-dependent mechanism. 

 In adult thyroid cells Titf1 plays a different role and controls the expression of 

thyroid specific genes. In transient transfection assay, Titf1 is able to activate both Tg 

and TPO promoters in non-thyroid cells (De Felice et al., 1995). However the function 

of Titf1 in differentiated thyroid cells has been studied only in vitro at present. A 

conditional knock-out of the gene encoding Titf1 is necessary to extend these data to a 

whole organism. 

 

Pax8 

Pax8 (Paired Box gene 8) is a member of a family of transcription factors 

characterized by the presence of a 128 amino acid-long domain that can recognize and 

bind to specific DNA sequences (Frigerio et al., 1986). This DNA binding domain is 

called paired domain as it was identified for the first time in the Drosophila 

segmentation gene as paired. Pax8 was identified (Plachov et al., 1990) in the mouse as 

a protein expressed in the developing thyroid gland. It was successively demonstrated 

(Zannini et al., 1992) that Pax8 paired domain recognizes and binds to a single site 

present in Tg and in TPO promoters.  

The gene encoding Pax8 (called Pax8 in mice and PAX8 in humans) is located 

on chromosome 2 in both species (Plachov et al., 1990; Stapleton et al., 1993) and 

consists of 12 exons (Okladnova et al., 1997) that encode different alternative spliced 

transcripts (Poleev et al., 1995; Kozmik et al., 1993). All the isoforms generated, 

contain the paired domain located near the amino terminus and differ in their carboxy-

terminal regions.  Pax8a, the most abundant isoform, is a protein, 457 amino acids long 

in mice (Plachov et al., 1990) and 450 in humans (Poleev et al., 1992). 

Pax8 is expressed in adult and developing thyroid since the early stages of gland 

morphogenesis. In addition, Pax8 is initially but transiently expressed in the 

myelencephalon and through the entire length of the neural tube during embryonic life 

(Plachov et al., 1990) and is present in the developing kidneys, where it is maintained 

throughout adult life. 
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Analysis of Pax8 -/- 
mice (Mansouri et al., 1998) offers the possibility of 

studying the role of this transcription factor in embryonic life. Pax8 null pups show 

growth retardation and die within 2-3 weeks of their birth. The animals are affected by a 

severe hypothyroidism and present a rudimental gland composed almost completely of 

calcitonin-producing C cells while the TFCs are absent. In Pax8 null embryos the 

thyroid anlage forms, evaginates from the endoderm and begins to migrate into the 

mesenchyme. However by E11 the thyroid bud is smaller in comparison to that of wild 

type. In addition, other transcription factors, such as Foxe1 and Hhex, are down-

regulated in the precursors of thyroid cells in the absence of Pax8 (Parlato et al., 2000). 

Finally, by E12.5 TFC is not detectable (Mansouri et al., 1998) (Figure 7 ).  

 

 

 

Figure 7  Sagittal sections of wild-type (A) and Pax8 -/- (C) E15.5 

embryos stained with Titf1 antibody. In wild-type embryo, the 

developing thyroid (arrow) is positioned dorsal to the cricoid 

cartilage. In the mutated embryo the thyroid tissue is undetectable 

(arrowhead). Cr: Cricoid cartilage; ph: pharynx (Di Felice and De 

Lauro, 2004). 

 

Thus, during morphogenesis, Pax8 holds a specific upper role in the genetic 

regulatory cascade that controls thyroid development and it is required for the survival 

of the TFCs and to maintain the tissue-specific gene expression program.  

Like Titf1, Pax8 shows other functions in adult thyroid cells, which have been 

studied in cell culture systems. Transfection assays have demonstrated that Pax8 drives 

transcription from the TPO promoter and to a less extent, from the Tg promoter in non-

thyroid cells (Zannini et al., 1992). In addition, Pax8 was shown to activate 

transcription of thyroid-specific genes at their chromosomal locus (Pasca diMagliano et 

al., 2000). The co-expression of Pax8 and Titf1 only in thyroid cells has suggested that 

these factors can cooperate in the stimulation of thyroid genes (Miccadei et al., 2002). 
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This hypothesis is supported by the data demonstrating that Pax8 and Titf1 directly 

interact in vivo in thyroid cells (Di Palma et al., 2003). 

 

 

 

Foxe1 

Foxe1 (formerly called TTF-2 for Thyroid Transcription Factor–2) was 

originally identified as a thyroid specific nuclear protein that can bind to a sequence 

present on both Tg and TPO promoters under insulin, IGF-1 or TSH stimulation 

(Santisteban et al., 1992). Later on, rat Foxe1 cDNA was cloned and the features of this 

protein have been characterized (Zannini et al., 1997). 

 Foxe1 belongs to a winged helix/forkhead family of transcription factors 

characterized by a 100 amino acid long DNA binding domain whose structure has a 

winged-helix motif (Kaestner et al., 1993) homologous to that of Drosophila fork head 

gene (Lai et al., 1991). Foxe1 contains two nuclear localization sequences flanking the 

DNA binding domain (Romanelli et al., 2003). The official name for the genetic locus 

encoding this transcription factor is Foxe1 in mice located on chromosome 4 (Zannini 

et al., 1997)  and FOXE1 in humans located on chromosome 9q22 (De Felice et al., 

1998; Chadwick et al 1997) .  

Foxe1 is an intronless gene coding for a 42 kDa phosphorylated protein (Dathan 

et al., 2002). The protein contains an alanine stretch of variable length. In humans, the 

most frequent FOXE1 allele, with 14 residues, is 371 amino acids long (Macchia et al., 

1999). 

Like Titf1 and Pax8, Foxe1 is detected in the thyroid primordium and its 

expression is maintained in TFCs during all stages of development and in adulthood. 

However, during embryonic life, Foxe1 has a wide domain of expression. Indeed, at 

early stages of development, Foxe1 is detected in the endodermal epithelium lining the 

primitive pharynx, the arches and the foregut and transiently in the Rathke's pouch. 

Subsequently Foxe1 is expressed also in the tongue, in the secondary palate, in the 

definitive choanae, and in the whiskers and hair follicles (Dathan et al., 2002). In 

humans, in addition to thyroid and foregut, FOXE1 expression is also found in 

embryonic thymus (Trueba et al., 2004), outer follicular hair sheath and the 

seminiferous tubules of prepubertal testis (Sequeira et al., 2003). 
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Analysis of Foxe1 null mice (Figure 8 ) revealed the role of this transcription 

factor in thyroid development. Targeting inactivation of Foxe1 shows that homozygous 

Foxe1
-/-

 mice are born at the expected Mendelian ratio but die within 48 hours. These 

mice display a severe cleft palate, probably responsible for the prenatal death, no 

thyroid in its normal location, absence of thyroid hormones and elevated TSH levels in 

the bloodstream (De Felice et al., 1998). In Foxe1-/-
 embryos, at early stages of thyroid 

morphogenesis, the formation of the thyroid anlage is not affected. However, at E10 in 

Foxe1 null embryos, TFCs are still on the floor of the pharynx whereas in wild type 

embryos the thyroid primordium begins to descend towards its final location.  

 

 

Figure 8  Sagittal sections of wild-type (A) and Foxe1-/- (B) E 10 

embryos hybridized with Titf1 probe. Arrows point to the thyroid 

bud. In the mutated embryo, the thyroid bud is still on the floor of 

the primitive pharynx. 

 

At later stages of development, in the absence of Foxe1, TFCs either disappear 

or form a small thyroid remnant still attached to the pharyngeal floor. In this case, the 

cells are able to go on their differentiative program as tested by the synthesis of 

thyroglobulin. These data indicate that in embryonic life Foxe1 has a specific role in 

controlling the migration of TFC precursors, but is not relevant for the specification and 

differentiation of the thyroid anlage. In addition, Foxe1 could be involved in the 

survival of TFCs since in many Foxe1 null embryos the thyroid primordium disappears 

(De Felice et al., 1998; Parlato et al., 2004). Analysis of Foxe1 null embryos indicates 

that the migration of TFC precursors is a process promoted by Foxe1. However we do 

not know through which genes these programs are executed. In the adult gland the role 

of Foxe1 is not yet clear. Foxe1 null newborns die at birth, thus conditional knock-out 

mice are necessary to study the functions of this gene in the physiology of the gland. 

Functional studies in rat thyroid cells in culture have shown that Foxe1 can act as a 

promoter-specific transcriptional repressor via a repression domain located at the 
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carboxy terminus of the protein (Perrone et al., 2000). Foxe1 represses the activities of 

Tg and TPO promoters induced by Titf1 and Pax8 respectively. This repression requires 

neither a direct binding between Foxe1 and Titf1 or Pax8 nor the binding between 

Foxe1 and DNA (Perrone et al., 2000). It is possible that this domain interacts with 

some specific cofactor required for the transcriptional activities of Titf1 and Pax8. 

Furthermore, it has been demonstrated that in differentiated thyroid cell lines the 

transcription of Foxe1 mRNA is under TSH and insulin or IGF-1 control, which could 

suggest that Foxe1 plays a key role in the hormonal control of gene expression in 

thyroid cells (Ortiz et al., 1997, Zannini et al., 1997). However these controls do not 

seem to be effective in developing thyroid since in Pit-1 null mice, which lack TSH, GH 

and IGF-1, the expression of Foxe1 is not affected (Postiglione et al., 2002). Studies in 

mutant mice have shown that in absence of Pax8, the expression of Foxe1 is not 

detected in TFC precursors (Parlato et al., 2004) and Pax8 binding sites have recently 

been found in the 5‟ UTR of Foxe1 (D’Andrea et al., 2006). 

 

Hhex 

Hhex (formerly called Hex for Hematopoietically Expressed Homeobox or Prh 

for Proline-rich Homeobox) is a homeodomain-containing transcription factor that was 

first identified in a range of multipotent hematopoietic cells (Crompton et al., 1992; 

Bedford et al, 1993). It was successively demonstrated that Hhex is expressed in other 

tissues including the thyroid (Thomas et al., 1998). 

Hhex is encoded by a gene called Hhex in mice and HHEX in humans located on 

chromosome 19 (Ghosh et al., 1999) and chromosome 10q23.32 (Hromas et al., 1993) 

respectively. The gene is split into 4 exons and codes for a protein 270 amino acids 

long. Hhex is considered an orphan homeobox-containing gene because the sequence of 

its homeodomain, responsible for the binding to the DNA, shows some differences with 

with respect to other homeodomains. Outside the homeodomain, Hhex contains an N-

terminal proline rich region and a C-terminal acid region. These two regions are 

probably involved in repressing the transcription of the target genes (Tanaka et al., 

1999). 

During development Hhex is also expressed in the primordium of several organs 

derived from the foregut. Hhex is an early marker of thyroid cells, since it is present in 

the thyroid anlage at E 8-8.5 (Thomas et al., 1998) at the same stage in which Titf1, 
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Foxe1 and Pax8 are detected. In the adult, in addition to the thyroid, only liver and 

lungs maintain Hhex expression (Bogue et al., 2000). 

The analysis of Hhex -/- 
embryos has revealed that this factor is absolutely 

necessary for thyroid morphogenesis (Martinez-Barbera et al., 2000).  

In Hhex null embryos at E8.5 TFCs are present in the anterior wall of the 

pharynx (Parlato et al., 2000). One day later the thyroid primordium is absent or 

hypoplastic and the thyroid precursor cells do not express Titf1, Foxe1 and Pax8 

(Martinez-Barbera et al., 2000) (Figure 9 ). Hence at early stages of development, the 

presence of Hhex could be required to maintain the expression of Titf1, Foxe1 and Pax8 

in the thyroid primordium. As in the case of Titf1, Pax8 and Foxe1, a conditional 

knock-out mouse will be a useful tool in elucidating the role of Hhex in the adult 

thyroid gland. 

 

Figure 9  Development of the thyroid in E10 Hex
-/-

 embryos. The 

thyroid primordium is evident in a wild-type embryo (A, arrow) 

ventral to the pharynx (ph). It is hypoplastic and remains connected 

to the floor of the pharyngeal endoderm in a Hex
-/-

 embryo (B, 

arrow) (Parlato et al., 2004). 

 

Studies on differentiated thyroid cells suggest that the network between Hhex 

and the other thyroid specific transcription factors, seems to be rather complex. Indeed, 

it has been reported that Hhex is regulated by Titf1 (Puppin et al., 2003); furthermore 

the overexpression of Hhex partly inhibits Tg promoter activity (Pellizzari et al., 2000). 

These data are consistent with the hypothesis that Hhex could be a transcriptional 

repressor as reported in other systems (Tanaka et al., 1999; Brickman et al., 2000; Ho 

et al., 1999). 

Congenital hypothyroidism 

Congenital hypothyroidism (CH) is the most common neonatal endocrine 

disorder, found to occur once in 3000-4000 live births (Klett et al., 1997) and results in 

severe neurodevelopmental impairment, if treatment is delayed. CH is characterized by 
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elevated levels of TSH in response to the reduced thyroid hormone levels produced by 

the follicular cells of the thyroid gland.  

In 85% of the cases, CH is a consequence of thyroid dysgenesis (TD), which 

includes thyroid gland insufficiency due to abnormalities in gland development (Grant 

et al., 1992). In the remaining 15% of the cases, CH is caused by the thyroid hormone 

dyshormonogenesis (TDH) due to the defects in the biochemical mechanisms 

responsible for thyroid hormone biosynthesis. Mutations in the genes encoding for 

thyroglobulin and thyroperoxidase have been classically implicated in TDH (Medeiros-

Neto et al., 1994; de Vijderet al., 1997). The study on the molecular genetics of TD 

seems to be a useful tool in the elucidation of the mechanisms underlying thyroid 

development, since in many cases it has confirmed data obtained in animal models and 

has provided new insights into thyroid morphogenesis and differentiation (Van Vliet, 

2003; De Felice and Di Lauro, 2004; Grueters et al., 2004; Polak et al., 2004; Park 

and Chatterjee, 2005). 

Thyroid dysgenesis 

According to the definition by Fisher (Fisher and Klein, 1981), “… the term 

thyroid dysgenesis describes the abnormality in infants with ectopic or hypoplastic 

thyroid gland (or both) as well as those with total thyroid agenesis…”. The term 

“thyroid dysgenesis” brings together a heterogeneous group of thyroid malformations, 

due to defects occurring at different stages of development resulting from different 

pathogenic mechanisms. 

Ectopic thyroid, probably as a consequence of defects in thyroid bud migration, 

is the most common type (40-70% of cases) of TD. Ectopic thyroids can also be 

hypoplastic. The second most common variant, accounting for 20-40% of cases, is 

thyroid agenesis. Finally, hypoplastic eutopic thyroids account for 5-10% of cases. In 

addition, to these three types, thyroid hemiagenesis has also been included in the group 

of TD (Maiorana et al., 2003). However, the reported frequency of the different types 

of dysgenesis is influenced by the methods used for the diagnosis (Grueters et al., 

2002). 
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Ectopic thyroid 

Any disturbances during the process of thyroid bud translocation can lead to an 

ectopic thyroid that can be found at any point of the path followed by the developing 

gland towards its final location in front of the trachea. Though lingual thyroid is most 

frequent type, presence of thyroid tissue has been described in unexpected regions such 

as the submandibular region, heart or gut. Since it has been hypothesized that the cells 

of ultimobranchial bodies can differentiate into TFCs, thyroid tissue in submandibular 

region could be derived from cells of the utimobranchial bodies that did not merge with 

the thyroid bud (Feller et al., 2000). The aberrant presence of TFCs in other organs 

such as the gut could be explained by the differentiation of uncommitted endodermal 

cells. 

More than 50% of patients affected by CH show an ectopic thyroid, but up to 

now, no mutation in known genes has been associated to this dysgenesis. In some 

familial cases of CH, the affected members show either athyreosis or ectopy. This 

observation raises the possibility that athyreosis and thyroid ectopy have a common 

underlying mechanism. This hypothesis is consistent with the data that mice deprived of 

Foxe1 gene products show either ectopy with a very small thyroid or no thyroid at all 

(De Felice et al., 1998). 

 

Athyreosis and agenesis 

Both athyreosis and agenesis indicate the absence of thyroid tissue. However, 

agenesis should be used to define the absence of the gland as a consequence of a 

defective initiation of thyroid morphogenesis. The term athyreosis indicates a 

dysgenesis characterized by the disappearance of the thyroid due to alterations in any 

step following the specification of the thyroid anlage. 

At the moment, no animal model for bona fide agenesis has been identified. 

Indeed, gene targeting experiments have demonstrated that neither Titf1, nor Foxe1, nor 

Pax8 nor Hhex seems to play a role in the thyroid anlage specification that correctly 

forms in embryos deprived of any of these proteins. Agenesis could be due to defects in 

genes relevant in the early regionalization of the endoderm, including the genes 

controlling the onset of TITF1, FOXE1, PAX8 and HHEX. However the relevance of 

these genes in congenital hypothyroidism could be hard to demonstrate, since mutations 

in genes widely expressed in the endoderm at early stages of development could cause 

in embryo, lethal phenotypes and/or many additional defects. On the contrary, all knock 
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out mice described in the previous section seem good models of athyreosis. In these 

mutants morphogenesis of the gland begins but the thyroid bud disappears probably for 

a defective survival or proliferation of the precursors of the follicular cells. However, 

absence of the thyroid has been described in patients with CH associated with FOXE1 

defects and in one subject carrying a mutation in PAX8. 

 

Hypoplasia 

The term hypoplasia describes a gland containing a reduced number of TFCs. 

Thyroid hypoplasia is probably a genetically heterogeneous disorder since it could be a 

consequence of alterations in any of the steps controlling the expansion and/or survival 

of thyroid cells during organogenesis.   

Genes involved in early stages of development (TITF1, FOXE1, PAX8 and 

HHEX) as well as in the late steps (TSHR) could be reliable candidates for this 

dysgenesis. Indeed, mutations in either TITF1 or PAX8 or TSHR genes have been found 

in patients with CH associated with hypoplasia. 

Hemiagenesis 

In thyroid hemiagenesis only one lobe of thyroid is present. It is usually the left 

lobe that fails to develop. This malformation is very rarely associated wih CH and has a 

prevalence of 0.2-0.05% in normal population (Maiorana et al., 2003). Thyroid 

hemiageneis occurs more frequently among members of the same family (Castanet et 

al., 2000) and in the relatives of patients with classic forms of TD (Castanet et al., 

2005). 

Genes involved in the pathogenesis of TD 

Hence, the study of thyroid dysgenesis in humans can provide insights into the 

molecular mechanisms involved in thyroid development. Many evidences indicate that 

genetic factors are involved in the pathogenesis of TD. Here we will focus on genes 

known (or candidate) to be responsible for this affection (Table II).  

It is worth noting that the mutations thus far identified in patients with 

congenital hypothyroidism associated with TD account only for a very small number of 

cases. However, these cases could be much more frequent than hitherto identified ones 

because mutations which might arise in specific regulatory elements were not searched 

for, in the studies published so far.  
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Organogenesis Expected 

phenotype(a) 

Genetic lesion 

in human 

diseases 

Genetic lesion 

in mouse models 

 

Other candidate genes 

Budding agenesis unknown Unknown unknown genes 
responsible 

for budding (might include 

genes 

that induce the expression of 

TTITF1/NKX2-1, 

FOXE1/TITF2 , PAX8 and 

HHEX) 

 

Migration ectopic thyroid unknown FoxE1/Titf2 knock-

out 

FOXE1/TITF2 target genes 

expressed 

exclusively in thyroid 

precursors 

Survival of  

precursor cells 

athyreosis 

 

FOXE1/TITF2 

mutations 

Foxe1/Titf2 knock-

out 
Titf1 /Nkx2-1 

knock-out 

Pax8  knock-out 

Fgf10  knock-out 

Fgfr2  knock-out 

HHex knock-out 

TTITF1/NKX2-1, 

FOXE1/TITF2, 
PAX8 and HHEX target genes 

and 

cofactors  expressed 

exclusively 

in thyroid precursors 

 

 

Expansion of 

 cell population 

hypoplasia PAX8 

mutations (b) 

TITF1/NKX2-

1 

mutations(b) 

TSHR 

mutations 

TSH induced 

genes 

 

Tshr  knock-out 

Tshr hyt/hyt mouse 

Tshr dw/dw mouse 

 

 

TSH induced genes 

 

Interactions 

with 

neural crest-

derived cells 

hypoplasia  ET-1 knock out 

Hoxa3 knock-out 

Eya 1 knock-out 

Pax3 knock-

out(splotch ) 

Other  Hox genes 

Table II  Summary of known and potential genes involved in the 

pathogenesis of TD. 

 

TITF1 disease 

No TITF1 mutations are found in patients with non syndromic CH (Lapi et al., 

1997; Perna et al., 1997). On the contrary, inspired by the phenotype of Titf1 null mice, 

studies focussed on subjects with thyroid affections associated with respiratory distress 

and neurological problems, have reported heterozygous point mutations of 

chromosomal deletions in the TITF1 locus have been reported (Devriendt et al., 1998; 

Iwatani et al., 2000; Krude et al., 2002; Pohlenz et al., 2002; Moeller et al., 2003; 

Doyle et al., 2004; Moya et al., 2006). In these patients choreoatheosis is the most 

frequent neurological defect. In accordance with these findings numerous data point to 

the identification of TITF1 as the candidate gene in benign hereditary chorea, an 

autosomal dominant movement disorder (Breedveld et al., 2002). 
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Homozygous TITF1 mutations have not been reported in humans. While in 

humans loss of function of a single allele produces an overt phenotype, the Titf1+/-
 mice 

show mild neurological defects and a very slight hyperthyrotropinaemia (Moeller et al., 

2003). The mechanisms explaining the dominant effect of the TITF1 have not yet been 

addressed. Only in one case, in vitro assays demonstrated that the mutated gene is 

translated into an altered protein which acts as dominant negative and interferes with 

the activity of thyroid specific promoters (Moya et al., 2006). In other cases dominant 

negative effects have been excluded. Thus, the reduction of levels of functional TITF1 

protein remains the most likely mechanism that causes the disease. TITF1
+/-

 subjects 

display a highly variable thyroid phenotype. In many patients thyroid alterations have 

not been reported; in other cases patients show elevated TSH levels with mild or severe 

hypoplasia of the gland. There is no clear correlation between the phenotype severity 

and the type of mutations; in addition a variable phenotype has been reported also in the 

same familial cluster. Other modifier genes probably contribute to the phenotype, but at 

the moment this is only a working hypothesis. 

PAX8 disease 

In human, heterozygous mutations in PAX8 have been reported in both sporadic 

and familial cases of CH with TD. Eight different mutations, seven located in the paired 

domain (Macchia et al., 1998; Congdon et al., 2001; Komatsu et al., 2001; Vilain et al., 

2001; Meeus et al., 2004) and one in the C domain (de Sanctis et al., 2004) have been 

described. Patients show a variable phenotype ranging from mild to severe hypoplasia 

of the thyroid in presence of elevated levels of TSH in the bloodstream. The variable 

expression of the phenotype could be due to the influence of other modifier genes. 

Assays in vitro demonstrate that the ability of the mutated PAX8 proteins to bind to 

specific DNA target is either strongly reduced or absent; consistently, the transcriptional 

activity of proteins is lost. All affected individuals are heterozygous for the mutations 

and the familial cases show an autosomal dominant transmission of the disease. This 

data indicate that in humans, loss of function of a single allele is sufficient to produce 

the disease and a reduced dosage of the gene product (haploinsufficiency) causes 

dysgenesis; in contrast, in the murine model Pax8+/-
 mice display a normal phenotype 

(Mansouri et al., 1998). This discrepancy could be related to the genetic background of 

the mouse line used in generating the corresponding animal models. 
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FOXE1 disease 

Homozygous loss of function mutation in conserved residues within the FOXE1 

forkhead domain was first reported (Clifton-Bligh et al., 1998) in two siblings affected 

by syndromic congenital hypothyroidism, characterized by athyreosis, cleft palate, 

bilateral choanal atresia and spiky hair Bamforth-Lazarus syndrome (Bamforth et al., 

1989) . The phenotype is consistent with the expression domain of FOXE1 and 

partially overlaps that displayed by Foxe1 null mice. After this report, a different 

mutation in FOXE1 has been recorded in two siblings with athyreosis and a less severe 

extrathyroidal phenotype (Castanet et al., 2002). In this case the incomplete phenotype 

could be due to the residual functional activity of the mutant protein assessed in vitro. 

Recently a third loss of function mutation within the FOXE1 forkhead domain has been 

described (Baris et al., 2006) in a child displaying extrathyroidal defects (cleft palate, 

bilateral choanal atresia and spiky hair) and CH but not athyreosis; actually the patient 

presented eutopic thyroid tissue. The variable thyroid phenotype displayed by patients 

carrying FOXE1 mutations could be due to different effects of the various mutations. 

Another possibility is the rule of modifier genes in making the phenotype manifest. 

TSHR disease 

Several years ago Stanbury (Stanbury et al., 1968) reported a case of 

hypothyroidism in the absence of goiter and suggested that the phenotype could be due 

to an impaired response to TSH. This phenotype was described also in mutated mice 

(Tshrhyt/hyt
) (Stein et al., 1989), in which hypoplasia of thyroid was associated with high 

levels of TSH and reduced thyroid hormone. The cloning of cDNA for the TSH 

receptor (TSHR) has made it possible to study the molecular bases of the phenotype 

described by Stanbury. Indeed loss of function mutations in TSHR gene are responsible 

for a syndrome (resistance to TSH) (Refetoff, 2003) characterized by elevated thyroid 

hormone. TSHR mutations have been identified in a number of families. Individuals 

carrying heterozygous loss of function mutations are euthyroid even though most of 

them present borderline elevation of TSH. Subjects homozygous or compound 

heterozygous for mutations in TSHR are affected and the disease is transmitted as an 

autosomal recessive trait displaying variable expressivity. A group of patients are 

euthyroid and show hyperthyrotropinaemia associated with normal or hypoplastic (fully 

compensated resistance to TSH). In another group, patients manifest mild 

hypothyroidism (partially compensated resistance to TSH). The patients of the third 

group (severe uncompensated resistance to TSH) are affected by severe hypothyroidism 
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with hypoplastic gland (Park and Chatterjee, 2005). The amount of residual functional 

activity of the mutant TSHR could be responsible for the variable expressivity of the 

phenotype.  
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3. Aim of the present project 

The overall aim of the thesis was the discovery of novel genes that could be 

relevant to thyroid development and differentiation by an unbiased search for transcripts 

enriched in the early organ primordium.  

To address this issue, I compared the microarray transcriptome profiles of E10.5 

thyroid progenitor cells isolated by Laser Capture Microdissection (LCM) with that of 

the entire embryo of the corresponding stage.  

I could identify in this way a large number of transcripts in the embryonic 

thyroid bud which function in this organ development has never been described and 

thus providing insights to explain some of the cases of CH still unresolved. 
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4. Materials and methods 

   

   

  Embryo dissection and embedding  

 C57BL/6 mice (Jackson) were crossed to generate wild-type embryos. 

Embryonic age (E) was estimated by considering the morning when a vaginal plug 

was detected as 0.5 dpc. After cervical dislocation embryos were dissected on ice 

under aseptic conditions in cold DEPC treated PBS (PBS-DEPC).  

 For cryoprotection, embryos were immediately transferred to 30% sucrose in 

PBS-DEPC and incubated overnight at 4°C. After embedding in Tissue-Tec (Sakura) 

specimens were quick-frozen over dry-ice/ethanol slurry and stored at -80°C.  

 

  Preparation of frozen sections 

 For laser capture microdissection (LCM) and downstream applications the 

thyroid buds of 6 E10.5 embryos from different litters were isolated and pooled 

together as one sample. In this way three biological replicates were generated. 

During sectioning and the LCM procedure care was taken to minimize the time 

sections were exposed to room temperature. Blocks were mounted in a cryostat 

(Leica) and allowed to equilibrate for 5 min. Sagittal sections were cut and 

immediately inspected under a light microscope.  

 Once the central part of the lung-bud was visualized, indicating that the plane of 

sectioning was close to the midline, consecutive sections (8 sections per slide) were 

collected on Polylysine slides (Mentzel-Gläser). Each slide was immediately put on 

dry-ice and stored for a maximum of 90 min. Staining and LCM was performed once 

sections covering the thyroid rudiment of 3 embryos had been collected (see below).  

 

  Staining and LCM  

 For staining slides were sequentially incubated at room temperature for 30 s in 

70% ethanol (EtOH), 20 s in DEPC-treated water, 20 s in 70% EtOH, 20 s in 95% 

EtOH, 2 s in Eosin Y staining solution (Sigma), twice for 10 s in 95% EtOH, twice 

for 45 s in 100% EtOH, 5 min in xylene and thereafter allowed to dry for 5 min. 

 LCM of thyroid buds was performed immediately thereafter using the PixCell II 

system (Arcturus) under 20 x magnification with a laser spot size of 7.5 µm, laser 
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output power of 100 mW and pulse duration of  1.5 ms.  Thyroid primordial tissue 

from three embryos was captured on one CapSure HS thermoplastic cap (Arcturus). 

 

   

  RNA isolation and amplification 

 Total RNA from thyroid precursor cells dissected by LCM was isolated using 

the PicoPure RNA isolation kit (Arcturus) according to instructions from the 

manufacturer. Whole-embryo RNA from E10.5 littermates was isolated in triplicate 

using Trizol reagent (Invitrogen).  

 RNA quality and quantity was analyzed by an Agilent 2100 Bioanalyzer 

(Agilent Technologies) on RNA Pico Chips (Agilent). RNA integrity numbers (RIN) 

were generally >8 indicating good quality of RNA. Each biological replicate was 

diluted to a starting amount of 7.5 ng total RNA and labeled cRNA for chip 

hybridization was produced by two rounds of in vitro transcription-based linear 

amplification using the Two-Cycle Target Amplification and Labeling kit 

(Affymetrix) according to instructions from the manufacturer. cRNA quality, size-

distribution and quantity was analyzed by an Agilent 2100 Bioanalyzer. 

 

  Gene chip analysis 

 The biotinylated cRNA, obtained as above described, was fragmented and 

hybridized overnight at 45°C to the GeneChip
®

 Mouse Genome 430 2.0 Arrays, 

which includes over 39000 expressed sequences selected from mouse databases.  

Each experiment was performed in triplicate.  

 For each microarray, internal standards were established by hybridizing 

predetermined amounts of  biotinylated cRNA to the microarray as recommended by 

the microarray manufacturer together with the target cRNA. Chips were washed and 

scanned with the Affymetrix Complete GeneChip Instrument System, generating 

digitized image data (DAT) files.   

 DAT files were analyzed with AGCC (Affymetrix, Santa Clara, CA) producing 

CEL files. RMA (Benjamini Y, 1995) normalization and data analysis was 

performed using GeneSpring 10.0.2 (Agilent Technologies, Santa Clara, CA).  

 The expression values obtained were filtered for fold change greater than 1.5, 

only up-regulated probe sets in thyroid buds were selected and the resulting gene list 
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was subjected to t-test (p-value cutoff of 0.05) with Benjamini-Hochberg (B-H) FDR 

(Benjamini Y, 1995) correction. 

   

 

  Probe Generation and Labeling  

 For probe synthesis, clones were purchased from OPEN BIOSYSTEM or GENE 

SERVICE Company when available, or templates were synthesized by PCR using 

specific primers and cDNA from E10.5 mouse embryo. 

 Probes were generated by PCR-based method and the addition of sequence of 

the T7 or Sp6 universal promoters (T7: GAA TTT AAT ACG ACT CAC TAT AGG 

GAG A; Sp6: CGA TTT AGG TGA CAC TAT AGA) to the gene specific primers. 

For practical purposes, I always attached T7 primer to the reverse and the Sp6 to the 

forward primer. The annealing temperature at this point depends only on the 

sequence of the gene specific part of the primer. The T7 or Sp6 sequences play no 

role because there are no binding sequences for them in the cDNA. I determined the 

best annealing temperature by running an analytical (gradient) PCR with 4 tubes in a 

range of 52°C - 68°C. Designing primers in this manner avoids having to subclone 

(i.e. ligation, transformation, mini prep, digest, gel, etc.).  

 The first PCR product was loaded onto an agarose gel, the desired band was 

excised and DNA was purified with a gel extraction kit (QIAquick Gel Extraction 

Kit, QIAGEN). In order to prepare sufficient template to obtain the probe, a new PCR 

is prepared using the purified gel extract (from first PCR) as template. A part of the 

PCR product was thus analyzed on an agarose gel. If no unspecific bands are present 

and the desired band is of the correct size, the PCR product was purified using the 

Qiagen PCR purification kit (QIAquick PCR Purification Kit, QIAGEN). 

 0.5 µg of above purified DNA template was used in the in vitro transcription 

reaction for the synthesis of antisense RNA labelled with DIG using a DIG RNA 

labeling kit (Roche Diagnostics) according to the manufacturer‟s specifications. 

Briefly, 20 µl of master mix for each probe template was prepared to contain final 

concentrations of 1 mM ATP, CTP, GTP, 0.65 mM UTP, 1X transcription buffer, 1 

unit/µl RNase inhibitor, and 20 unit/µl T7 or Sp6 RNA polymerase, after which each 

of the samples was incubated at 37°C (2 h). Two microliters of 10 unit/Al RNase-free 

DNase I were added to each sample, which was then incubated at 37 °C (15 min) to 

remove the DNA template. RNA denaturing gel electrophoresis was used to confirm 
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that each product consisted of a single band and to check that a good quality of 

synthesized RNA was obtained. 

 The RNA was purified by G-25 Sephadex MiniQuick Spin Columns (Roche) 

and the yield estimation was performed by comparing the provided DIG-labelled 

control, following essentially the instructions of the labelling kits. Dilutions series of 

both are prepared and spotted on a piece of nylon membrane. Subsequently, the 

membrane is colorimetrically detected.  

 Direct comparison of the intensities of samples and control allow the estimation 

of labelling yield. RNA was diluted in RNA dilution buffer (DEPC-treated water, 

20xSSC and formaldehyde, mixed in a volume ratio of 5/3/2) for greater stability. 1 l 

of the diluted control and samples is spotted on a piece of nylon membrane, fixed to 

the membrane by cross-linking with UV-light. The membrane is incubated in 

blocking solution (maleic acid 100 mM, NaCl 150 mM, 1% blocking reagent) for 30 

min at room temperature (RT). Anti-DIG alkaline phosphatase is diluted (1: 5000) in 

blocking solution and incubated with the membrane for 30 min at RT. The membrane 

is washed twice, 15 min per wash, in washing buffer (maleic acid 100 mM, NaCl 150 

mM) at RT and incubated in colour substrate solution (i.e. BM Purple, Roche).  

 The colour is developed in the dark without shaking. The colour precipitate 

starts to form within a few minutes and continues for approx. 16 h. When the spots 

appear in sufficient intensity, the reaction is arrested by washing the membrane with 

sterile water for 5 min.   

   

 

  DIG-ISH 

The DIG-ISH was based on the work of Jing Yu Andy McMahon Laboratory, with 

some modification.  

 Briefly, sections were fixed in 4% PFA, washed in PBS and treated with 1 µg/ml 

of PK in PBS for 10 minutes at room temperature. After pre-treatment with PK, 

sections were subsequently washed in PBS and subjected to acetylation step using 

0.25% Acetic Anhydride in 1M Triethanolamine-HCL for 10 minutes. 

 Thereafter, slides were hybridized over night (50% Formamide; 5X SSC, Ph 4.5; 

50 µg/ml yeast tRNA; 1% SDS; 50 µg/ml Heparin) using a probe concentration of 

0.5-1 µg/ml at 68°C.  



Materials and methods 

35/77 

For the detection of hybridization, sections were incubated with anti-digoxigenin 

alkaline phosphatase-conjugated Fab fragments (ROCHE) at 1:4000 dilution. 

Staining was developed for 24/48 h, according to probe-signal, with BM Purple AP 

Substrate (ROCHE). Finally, slides were fixed in 4% PFA- 0.2% gluteraldehyde and 

mounted in glycerol. 

 The in situ reaction was controlled under an AXIOPLAN 2 microscope 

equipped with Axiocam digital camera (Zeiss), the images were processed using 

Axion Vision software and edited by Image J software. 

 

   
  Genotyping  

 Mutant embryos were identified by PCR analysis of embryonic DNA extracted 

from yolk sacs. The yolk sacs were incubated overnight at 60°C with lysis buffer (50 

mM Tris–HCl, 100 mM EDTA, 100 mM NaCl, 1% SDS, 0.5 mg/ ml proteinase K) 

and genomic DNA was extracted adding 0.3 volumes of 6 M NaCl and precipitated 

with isopropanol. Samples were amplified for 33 cycles (94°C for 30 s, 57°C for 60 s, 

72°C for 30 s). Pax8
cre/cre

 embryos were genotyped as described (Maxime Bouchard 

et al., 2004).  

 
 
  Immunofluorescence 
  
 Immediately after dissection in ice-cool PBS, embryos were immersion-fixed in 

4% paraformaldehyde in PBS.  Embryos were immersed after washing 2 x 15 min in 

PBS in 30% sucrose/PBS at 4°C with gentle rocking until they sink. (usually O/N). 

Embedding was done in O.C.T. compound (Sakura, Zoeterwoude, the Netherlands) 

and care was taken to obtain proper orientation of the embryos in the molds. 

 Freezing of embryos was done over an EtOH/Dry ice slurry. 10 µm thick 

sections were cut on a cryostat microtome (Microm HM 500M) and collected on 

polylysine glass slides (Menzel-Gläser, Braunschweig, Germany). Air-dried sections 

were permeabilized by incubation with 0.1% Triton X-100 for 20 min, incubated in 

PBS with 2% normal donkey serum (Jackson ImmunoResearch) for 1 hour at room 

temperature, and then incubated overnight at 4˚C with primary antibody diluted in 

blocking buffer.  

 Immunolabelled sections were incubated with secondary antibodies diluted in 

blocking buffer for 1 hour and thereafter with Streptavidin-FITC for 30 minutes at 
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room temperature. All incubation steps were followed by washing in 0.1% Triton X-

100 for 3 x 5 minutes. Microscopy and imaging were performed in a Zeiss AttoArc II 

epifluorescence microscope or a Bio Radiance 2000 Laser Scanning Microscope. 
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5. Results 

Analysis of critical gene expression in developing tissue progression, in a 

normal as well as in disease status, requires the microdissection and extraction of a 

microscopic homogeneous cellular subpopulation from its complex tissue environment. 

This subpopulation can then be compared with adjacent interacting, but distinct, 

subpopulations of cells in the same tissue. The method of harvesting pure cell 

populations from heterogeneous tissues should entirely preserve the state of the cell 

macromolecules, thus being suitable for analysis of their gene expression. Laser capture 

microdissection (LCM) (Figure 10) has been developed to provide a fast and 

dependable method of capturing and preserving specific cells from tissue, under direct 

microscopic visualization (Bonner R.F. et al, 1997). The use of an inverted microscope 

on slides without coverslips in LCM makes tissue recognition difficult; therefore, good 

tissue morphology is essential. However, while preserving tissue morphology, 

histochemical fixatives function by altering the structure of macromolecules (Auerbach 

C et al, 1977; Stanta G et al, 1991), which may affect the integrity of nucleic acids. 

Fixation can also affect the ability of the instrument to capture cells efficiently. For 

these reasons, the quality of nucleic acid and proteins from intact cells can be 

problematic, and it depends on the methods used to preserve the tissue specimen 

(Goldsworthy S.M. et al., 1999). LCM method is central to my purpose and therefore 

needs to be carefully optimized with respect to the E10.5 thyroid bud. The method has 

previously been established in the laboratory after initial optimization of conditions for 

embryo fixation (Parlato R. et al., 2002). This protocol has been applied in preliminary 

experiments to isolate the thyroid bud of E10.5 mouse embryos. 

In the following study, I attempted to address the problems of RNA degradation 

and tissue preservation as discussed above. 
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Figure 10 Laser Capture Micriodissection system. A thermolable polymer is placed on 

a tissue section on a slide. An infrared laser melts the polymer in the vicinity of the laser 

pulse. The resulting polymer-cell composite is removed from the tissue. 
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5.1 Effects of Fixation on Recovery of intact RNA 

 

 I first re-evaluated the effects of different fixation procedures on the quality of 

RNA extracted from embryonic E10.5 mouse embryos. Ideal fixation must provide 

acceptable morphology, allow proper laser capture of selected cells, and preserve the 

integrity of the RNA. 

 Embryos were treated for 12 h with methanol/30% sucrose, acetone/30% 

sucrose, Zinc Fix/30% sucrose or with 30% sucrose without any previous fixation. RNA 

was extracted using TRizol reagent (Sigma). Each RNA sample was evaluated for 

quality by inspection of 18S and 28S rRNA integrity. The absence of the rRNA bands 

observed after fixation of embryos with alcoholic solvents (Figure 11, lanes 5-8) 

indicates that these preparations have deleterious effects on the quality of RNA 

recovery. On the other hand, RNAs extracted from mouse embryos treated with 30% 

sucrose or Zinc Fix procedure show clear 18S and 28S bands (Figure 11, lanes 1-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Influence of different fixatives on RNA recovery. Ethidium bromide-stained 

agarose gel showing RNA extracted from E10.5 frozen embryos after incubation in 

30% sucrose (lanes 1-2), Zinc Fix/30% sucrose (lanes 3-4), acetone/30% sucrose (lanes 

5-6), and methanol/30% sucrose (lanes 7-8). 
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5.2 Tissue Morphology 

 

 In order to check whether our procedure was able to preserve tissue morphology, 

I analyzed histology quality from embryos treated in different ways. A number of E10.5 

embryos were placed over-night in 30% sucrose, embedded in OCT compound, without 

any fixation, and cryosectioned. Other embryos were incubated over night in Zinc Fix 

solution (and/or in Zinc Fix-30% sucrose) and cryosectioned. Figure 3 shows 10 µm 

frozen sections handled as above. Sections treated with 30% sucrose (Figure 12A) 

display a well preserved tissue structure thus allowing the identification of the cells of 

interest; in fact the developing thyroid can be seen in the midst of surrounding 

embryonic tissues (red circle in the picture). On the contrary, Zinc Fix procedure 

(Figure 12B) yields a poor retention of tissue morphology and makes it not suitable to 

identify the embryonic thyroid bud at E10.5, without contamination from surrounding 

tissues.  

 Therefore, the use of unfixed embryos, cryopreserved in sucrose provided the 

most satisfactory protection for RNA integrity and gave rise to good preservation of 

morphology, thus it was chosen for all subsequent experiments. 

 

Figure 12 Histology quality from embryos treated with two different fixation protocols. 

10 µm section from unfixed E10.5 mouse embryo incubated in 30% sucrose before 

freezing (A) or treated with Zinc Fixative solution (B). Red circle indicates the 

developing thyroid. 

 

 

 

 



Results 

41/77 

5.3 Sensitivity of sections to different pre-LCM treatments 

 

The LCM procedure could require a long time to be completed, especially if 

more than one section has to be collected from the same slide. It means that sections 

will be exposed to room temperature during LCM. In order to establish how long I can 

keep the slides at room temperature without destroying RNA, I checked RNA quality in 

samples kept at room temperature during sectioning or after sectioning. The experiment 

was done by scrape-off of sections from slides. RNA was extracted with the Arcturus 

Pico Pure RNA kit following manufacturer‟s protocol. RNAs were quality-checked 

with the Agilent Bioanalyzer.  

These tests showed that slides can be kept at room temperature for at least 90 

min, still obtaining a good quality RNA as assessed on Agilent Bioanalyzer, with a RIN 

(RNA Integrity Number) between 7 and 9.5 (data not shown) . A RNA integrity number 

of at least 7 will be considered sufficient for downstream applications. 

Frozen sections are highly recommended to maximize quantity and quality of 

RNA recovery (Krizman DB et al., 1996; Hiller T et al., 1996). However, the staining 

steps used for histological identification of cells of interest could damage mRNA in the 

cells, with the consequence of loss of representation of certain genes in microarray 

hybridization analysis. Thus, the influence of the staining method on RNA was assessed 

by comparing the quality of total RNA extracted from tissue scrapes after using 

different stains. No RNA degradation was observed when staining solutions containing 

hematoxylin or Eosin Y were used in comparison with not stained sections. 

 Moreover, satisfying results were obtained both for fresh embryo sections 

prepared and stained immediately and for embryo sections procured one day before and 

conserved at -80°C before staining steps (Figure 13). Finally, I chose the staining 

protocol in which only Eosin Y was included as stain, since this method gave more 

reproducible staining quality. 
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Figure 13 Analisys of RNA quality on Agilent 
Bioanalyzer system. Lanes 1 to 4 show fresh 
embryo sections prepared and immediately 
stained (1:not stained; 2:stained with Eosin Y; 
3: stained with hematoxylin; 4:stained with 

hematoxylin). Lanes 5 to 7 swhow embryo 
sections prepared 1 day before and conserved 
at -80°C (5: not stained; 6: Eosin Y; 7: 
hematoxylin).                          

 

 

 

5.4 Optimization of RNA Amplification 

  

 Microarray analysis coupled with LCM is a good way to analyze the gene 

expression profiles of a given cell population isolated on the basis of its morphology in 

heterogeneous tissues (Luzzi et al., 2001). However, intrinsic characteristics of LCM 

allow isolation of only small amounts of total RNA (generally a few nanograms for 

each sample), thus making an RNA amplification step necessary prior to microarray 

analysis (Upson et al.,2004; Luzzi et al., 2005; McClain et al., 2005;Schindler et al., 

2005). In fact, higher quantities are generally required to perform hybridization on 

arrays, starting from a few micrograms to many micrograms, depending on protocols 

and arrays. 

 The fidelity of the RNA amplification step is critical to the extraction of 

meaningful information from microarray experiments. To optimize the choice of the 

RNA amplification step, the performance of three different systems for RNA 

amplification has been evaluated by microarray analysis: the Genechip
® 

Expression 3ˈ 

Amplification Two-Cycle Target Labeling and Control Reagents Kit from Affymetrix, 

the RiboAMP
® 

and the RiboAMP HS
® 

Kits from Arcturus. 

 Table III shows that the Affymetrix Kit gives a best range of amplified RNA and 

provides enough amount of labeled RNA for microarray analysis. Moreover, to enhance 

kit efficiency I introduced the following modification to the protocol: I added the T4 

Gp32 gene protein (Rapley R. et al., 1994; Villalva C. Et al., 2001), a RNA-binding 

protein from bacteriophage T4 that provides better accessibility of the mRNA template 

to the reverse transcriptase and helps in reducing higher order structures of RNA 
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molecules, thus enhancing overall processivity of cDNA synthesis. This protein was 

added in both first strand cDNA synthesis reactions.  

 With this modification, 5, 10, and 15 ng of total RNA, subjected to double linear 

amplification using the Affymetrix Two-cycle amplification and labelling kit yield large 

amount of labelled amplified cRNA to hybridize to the array (data not shown). 

 

 

Table III Evaluation of different system for RNA amplification based on the amount 

and the size range of labelled amplified RNA.  

 

 

5.5 Effect of input RNA amount on the amplification 

 

 To investigate whether a different amount of RNA input could give different or 

ambiguous results after amplification and array hybridization, I performed microarray 

experiments comparing the array data generated from unamplified and amplified RNAs. 

I compared several parameters of hybridization quality among our samples. The ratios 

of the hybridization intensity from the 3ˈ and 5ˈ ends of the GADPH and Beta-actin 

transcripts were generally low, although higher in amplified samples compared with 

standard. This is consistent with the shorter aRNAs from amplified samples seen on the 

agarose gel, and is caused by the amplification creating targets that are skewed to the 

3ˈ end of the transcript. I examined overall signal and percent present call (% present) 

to evaluate whether the amplification samples procedure produces high-quality of array 

results.  

As seen in Table IV, these measures were similar among not amplified and amplified 

samples, and all indicated good hybridizations, even using 5 ng of total RNA as a 

starting material.  
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TableE IV The quality of the amplified samples was assessed by performing microarray 

experiments comparing the array data generated from unamplified (NA) and amplified 

RNA samples (5, 10 and 15 ng). 

 

 

 

  

 Then, a comparison between the three low amount RNA input samples and the 

Not Amplified sample showed that the linear amplification technique will anyway differ 

from the standard one in that I will have some underrepresented genes (possibly the 

ones with a very low expression level) and some overrepresented genes (possibly the 

ones with a very high expression level) (Figure 14).  

 The evidence that comparing the low amount RNA input samples between 

themselves I obtain a very good correlation suggests that these differences are irrelevant 

with respect to the overall experiment results, because we should avoid false positive 

values, obtaining a good quality information (Figure 15).  
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Figure 14 Line graph showing the gene expression between amplified and and Not 

Amplified samples. 

 

 

 

Figure 15 An example of scatter plot generated from data of microarray hybridization 

with two RNA amplified samples (10 and 5 ng) showing a very good correlation. 
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Preliminary conclusion 

 

 I have described a very good protocol that can be used to prepare tissues for 

LCM that preserves excellent tissue morphology and still permits extraction of high-

quality RNA. Additionally, gene profiling in mice using the Affymetrix system gives 

the opportunity to measure and compare gene expression levels using down to 5 ng of 

total RNA as starting material.  

 There is quite a good correlation comparing gene profiling expression using 

amplified RNA and not amplified RNA. Satisfactory results were observed on the chips 

when comparing two different amplified samples. 

 Encouraged by the high degree of reproducibility from the tests 

abovementioned, I established that the use of LCM technology is optimal for my 

purpose, making thus insights in identifying genes involved in the early stages of 

organogenesis of developing thyroid. 

 

 

5.6 Identification of genes enriched in the early thyroid 

primordium 

 

To elucidate the genetic networks that govern thyroid development and 

differentiation, it is important to identify genes abundantly expressed in the early organ 

primordium. To obtain this information, I took advantage of the LCM and Affymetrix 

microarray techniques. Following this approach, I compared the transcriptome profile of 

E10.5 thyroid progenitor cells with that of the entire embryo of the corresponding age.  

Using LCM, we dissected thyroid precursor cells from sagittal mouse 

criosections, stained with Eosin Y, independent of surrounding embryo structures, 

thereby generating a pure population of only developing thyroid cells (Figure 16). 

 

 

 

 

 



Results 

47/77 

 

 

 

 At this embryonic stage (E10.5), the thyroid bud of wild-type mice is composed 

of around 100-150 cells and it is, usually, present in 5 to 6 sections of 10 µm thickness. 

 In order to obtain enough RNA for downstream applications, I pooled cells 

microdissected from several wild-type embryos. Three independent pools were 

generated for wild type embryos. Total RNAs were extracted from E10.5 wild-type 

whole embryos or only from the captured sample cells, and were quality-checked with 

the Agilent Bioanalyzer 2100, for in vitro amplification and labelling.  

 Linear RNA amplification was done based on the method described by 

Eberwine J (1996), using the GeneChip
®

 Expression 3ˈAmplification Two-Cycle 

cDNA synthesis kit from Affimetrix
®

. Total RNA obtained from thyroid buds was 

subjected to double linear amplification using the Affymetrix  kit, whereas whole 

embryo RNAs were processed once with a standard labelling protocol (Affymetrix One-

Cycle kit) and another time with the Affymetrix Two-cycle amplification and labelling 

kit. In each case, around 20 µg of labelled amplified cRNA was obtained for each 

sample.  
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 Labelled cRNAs were hybridized onto the Affymetrix MOE 430 2.0 arrays, 

containing over 39000 expressed sequences selected from mouse databases. 

  Each experiment was performed in triplicate. A flow chart of the approach is 

contained in Figure 17. 

 

 

 

 

 Figure 17 Flow chart of the experimental design and the procedure used. 

 

 

 

 



Results 

49/77 

 

 

 

Expression Profiling experiments were performed by the Gene Expression Core Facility 

at BioGeM, Ariano Irpino, Italy.  

 Data were collected and extracted with the Affymetrix GeneChip Command 

Console software. Data were subsequently normalized using the RMA algorithm, and 

then filtered for FC greater than 1.5 (using the Whole embryo data as a baseline for the 

thyroid data).  

 I compared thyroid buds with whole embryo, both unamplified and amplified, 

obtaining different gene lists. I applied an Unpaired T-test with variances assumed 

equal; Table V shows the number of up-regulated genes with a FC greater than 50, 20, 

10, 5 and 1.5. 

 

 

 

 

 

 

 

 

 

Table V  Number of up-regulated genes in thyroid bud with a FC greater than 50, 20, 10 

and 1.5, identified by bioinformatic analysis comparing the thyroid bud transcriptome 

with that of the entire embryo, both unamplified and amplified.   

 

 

 Thus, bioinformatic analysis identified several transcripts as significantly 

enriched in the thyroid bud as compared to expression in the whole embryo. Such an 

enrichment is expressed as Fold Change (FC), a value that indicates how many folds 

each transcript is more abundant in the RNA of thyroid bud versus the RNA of the 

whole embryo. The fact that several of the genes enriched on array analysis of LCM 

material had been previously identified to be highly expressed in the thyroid bud, such 

as Hhex and Pax8, supports the reliability of my experimental approach.  

 Furthermore, I verified thyroid bud-specific expression of candidate genes by in 

situ hybridization (ISH). 
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5.7 Target validation 

 

 To confirm a sampling of array data and to search for genes having an effective 

(or unique) expression pattern in the developing thyroid primordium, I performed in situ 

hybridization (ISH) for a number of candidate genes, which were present in the Thyroid 

vs Whole embryo 2 cycle list, selected on the basis of their potential relevance in 

relation to known biological mechanism and relative enrichment. A list of selected 

genes is presented in Table VI. 

 

Table VI Candidate genes are listed by the difference in their relative enrichment   

expressed as Fold Change (Thyroid bud vs two cycle Whole Embryo genes list, FC≥10). 

Common gene names and functions are shown in this list.  
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 I directed our studies toward the identification of thyroid bud enriched genes 

using ISH. Thus, even though in situ hybridization may not be the most sensitive 

method of transcript detection, it shows a detailed picture of expression patterns which 

is typically lost when using other methods of detection, such as RT-PCR, that do not 

allow for the anatomical preservation of tissue sections of interest. 

 Cryostat sections of frozen tissue and paraffin embedded tissue sections have 

both been effectively used for ISH. In general, paraffin-embedded tissues show better 

morphology than frozen tissue. However, several works present in literature 

demonstrated that ISH using cryosections of freshly frozen material results in less 

artefactual labelling and in higher overall sensitivity, since paraffin embedding requires 

more tissue processing and can result in RNA loss and low ISH signal (Pintar and Lugo 

et al., 1985). The major advantages of cryosectioning over traditional paraffin wax 

sectioning are that tissue embedding and sectioning are carried out under frozen 

conditions, thus minimizing RNase activities, and allowing a better preservation of 

mRNA target in the tissue, which is essential to ISH (Didier Dècimo et al., 1990).  

 For these reasons, I established to perform validation of expression in mouse 

embryos by non-radioactive ISH using frozen sections. Digoxigenin-labeled RNA 

probes were generated by PCR amplification and the addition of RNA polymerase 

promoters to the specific primers (see materials and methods) and hybridization was 

performed essentially as previously described by Jing Yu and A. McMahon Laboratory, 

with some modifications. 

 In situ hybridization analysis confirmed that eleven of the selected genes 

displayed a strong expression in the E10.5 embryonic thyroid, whereas three have 

produced negative or ambiguous results at that time (Figure 18). Thus, eleven of the 

selected fourteen probes, gave a hybridization pattern in complete agreement with 

microarray readings (11/14 = 79%), the remaining three probes gave no hybridization 

signal or not explicable (or understandable) result (3/14 = 21%).  

 These results suggest that the overall rate of agreement between microarray 

readings and in situ hybridization is remarkably high. Moreover, it is worth noting that 

the number of false positives may be actually lower, since in the last cases the 

abundance level of the transcripts may be too low for the detection limit of the non-

isotopic method used or, simply, the in situ needed an optimization step. 
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Figure 18 In situ hybridization confirms clear expression of 11 of the selected 14 transcripts 

in the thyroid bud (outlined in red). Sagittal sections of E10.5 mouse embryo were 

hybridized with probes corresponding to the list shown in TABLE VI. Nkx2.1 (in red) is 

shown as positive control.    

 

 

 Then, I used the GenePaint http://www.genepaint.org database to assess the 

staining patterns of these genes in the E14.5 thyroid. Interestingly, many of the genes I 

confirmed as enriched in E10.5 thyroid bud showed agreeable correlation in the data 

present in the abovementioned database (Figure 19).  

 Thus, in addition to my microarray data, there is independent evidence from 

literature demonstrating the expression in developing thyroid of some genes I detected 

and suggesting that the LCM technique clearly holds the potential to correctly identify 

transcripts enriched in a given tissue. 
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Figure 19 In situ hybridization staining patterns for 8 genes present in TABLE VI on 

E14.5 whole embryo sagittal sections. Images were obtained from the GenePaint 

website and magnified to show the developing thyroid (encircled in red).   

 

 

 

5.8 Regulation of an enriched gene in a model of thyroid 
dysgenesis 
 
 The Bcl2 proto-oncogene suppresses apoptosis in a variety of cell types and is 

expressed in many tissues (Lu Q-L et al., 1993; LeBrun DP et al., 1993; Allsopp TE et 

al., 1993; Garcia I et al., 1992). Expression of Bcl2 is essential for normal renal 

development. Mice that are homozygously deficient in Bcl2 develop polycystic kidneys 

and die shortly after birth (Veis DJ et al., 1993; Nakayama K et al., 1994). 

 Pax8 is a member of the paired box class of transcription factors and is 

developmentally regulated (Gruss P and Walther C, 1992; Noll M, 1993). Pax8 is 

expressed in the developing kidney, thyroid gland and other tissues (Plachow D et al., 

1990). While the function of Pax8 has been well established in thyroid gland (Mansouri 

et al., 1998), its role in other structures expressing Pax8, such as the spinal cord, the 

midbrain/hindbrain boundary or the kidney, is less clear probably due to partially 

redundant functions provided by Pax2 and Pax5 in this organ (Dressler GR et al., 1990; 

Asano M & Gruss P, 1992; Urbank P et al., 1994). Interestingly, Bcl2 and Pax8 are 

both expressed in the kidney during development, demonstrating an identical temporal 

and spatial expression patterns and expression of both genes is reduced in cells 

undergoing apoptotic cell death during renal development (Chandler D et al., 1994; 
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Poleev A et al., 1992). In addition, Pax8 has been shown to transcriptionally activate 

Bcl2 expression (Hewitt et al., 1997). Thus, these data suggest that Pax8 may drive Bcl2 

expression in the kidney and other tissues in which they are co-expressed. 

 I have studied the possible functional relevance of the anti-apoptotic regulator 

Bcl2 that is among the transcripts I identified as enriched in the E10.5 thyroid 

primordium in a model of thyroid dysgenesis.   Pax8 knockout mice display an impaired 

thyroid development with a complete degeneration of follicular cells (Mansouri et al., 

1998). Consequently, Pax8 is an established key regulator of thyroid differentiation. 

However, little is known about Pax8 target genes that might be relevant in thyroid 

development. It is noteworthy that as the thyroid bud forms but later regresses in Pax8  

null embryos, possibly by an apoptotic process, the finding of the enrichment of the 

anti-apoptotic regulator Bcl2 is of potential interest.  

 Thus, the expression of Bcl2 has been investigated by ISH and 

immunofluorescence (IF) in Pax8 null embryos.  Interestingly, Bcl2 seems to be down 

regulated in Pax8 deficient thyroid precursor, at mRNA and protein levels (Figure 20 

and 21). 

 

Figure 20 DIG-ISH on E10.5 embryo frozen sections of Bcl2 transcript in the presence 

or absence of Pax8. Thyroid precursors lack the expression of Bcl2 in the absence of 

Pax8 (Pax8cre/cre
), as shown. 
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Figure 21 Distribution of Bcl2 protein in the thyroid precursor cells from control (Het) 

and Pax8 Knockout mice. E10.5 whole embryo sagittal sections were stained by 

immunofluorescence with antibodies anti-Bcl2, anti-E-cad and DAPI. The staining 

intensity of Bcl2 in the thyroid bud is reduced in Pax8 null mice with respect to control 

(Het), as shown. Anti-E-cad antibody is shown as marker of epithelial cells forming 

thyroid primordium, reduced in size, in adjacent section of Pax8 KO mice embryo.        
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6. Discussion and Conclusions 

During the last decade, gene expression profiling has had a vast impact on 

biological research. Microarray hybridization has been largely used to study the 

transcriptome of many different tissues and cell lines (Duggan et al., 1999).  

However, when the cells to be studied are located in heterogeneous tissue, and 

therefore, are surrounded by purposeless cells, gene expression of adjacent tissue 

structures can strongly affect or even conceal the specific signature of the particular cell 

type of interest. Laser-assisted microdissection could be a useful tool to overcome such 

obstacles. LCM makes possible the isolation of unique cells or group of cells from 

heterogeneous tissues and subsequent nucleic acids extraction and analysis (Emmert-

Buck et al., 1996; Suarez-Quian et al., 1999).  

LCM, therefore, makes cell specific expression profiling possible, which may be 

decisive in addressing the function and the specificity of each cell in a in vivo 

physiological or physiopathological setting (Bonner et al., 1997; Luo et al., 1999; Sgroi 

et al., 1999). The elegance of this technique is that no tissue is destroyed in the process. 

LCM operates by positive rather than negative selection. Direct visualization of the 

transferred tissue, with its histology intact, is also possible to ensure that the correct 

population of cells is obtained. However, RNA degradation constitutes the main 

drawback of this technique, considering that RNA quality has a major impact on the 

subsequent gene expression profiling results (Goldsworthy et al., 1999; Fleige and 

Plaffl, 2006; Copios et al., 2007).  

Carrying out LCM experiment for gene expression profiling requires (1) 

acceptable tissue morphology allowing histological selection of the desirable cell type, 

(2) preserved integrity, and (3) preserved biological accessibility to the RNA. Besides 

maintaining tissue morphology and high-quality RNA, another challenge to be dealt 

with is the low amount of RNA obtained from microdissected material. Standard 

protocols for microarray analysis are based on starting amounts of 1–5µg total RNA. 

Yet, LCM yields at best nanograms of RNA. To overcome this obstacle, it is necessary 

to employ RNA amplification methods to generate the required microgram amounts of 

RNA.  

In this work, I described a very good method to obtain frozen tissue sections that 

combine excellent tissue morphology with good preservation of RNA, suitable for 
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downstream applications. This makes these sections optimal substrates for LCM in 

order to obtain the harvesting of specific cell population for gene expression analysis.   

To optimize the fixation method required to preserve RNA molecular integrity, I 

have compared the effect of different histological fixatives. Although several authors 

have examined the use of various fixation procedures to preserve both molecular and 

morphological information in tissue specimens (Goldsworthy et al., 1999; Shibutani et 

al., 2000), I have found that only the treatment with 30% sucrose preserves both 

morphological features and RNA integrity. The brief Eosin Y stain provides essential 

cellular discrimination without significantly affecting the ability to perform subsequent 

molecular analysis. This represents an important advantage, particularly when tissue 

availability is limiting, because it makes possible the use of serial sections and 

molecular diagnosis. These findings, however, stand in contrast to previously published 

data by Ellis et al. 2002 where RNAlater-fixed and PBS-washed pancreas samples 

provided reasonably good tissue morphology.  

In addition to maintenance of RNA quality, standardization of RNA 

amplification and chip hybridization is of extreme importance. The generation of high-

quality amplified RNA that is representative of the original mRNA population is crucial 

for the interpretation of differential gene expression in quantitative transcriptome 

approaches. In principle, amplification of mRNA can be performed either exponentially 

using PCR-based methods, as described previously (G. M. Makrigiorgos et al., 2002; N. 

N. Iscove et al., 2002; Zhumabayeva B. et al., 2001) or linearly using T7 RNA 

polymerase-strategies. T7-based linear amplification of small amounts of total RNA is 

widely used to obtain complementary RNA (cRNA) quantities sufficient for microarray 

analysis (L. Luo et al., 1999; S.R. Lakhani et al., 2001; C. King et al., 2005; JJ Upson et 

al., 2004; O. Kabbarah et al., 2003). To avoid biases in amplification, PCR-based 

methods have not been used here for global transcriptome analysis of small amount of 

total RNA, although amplification from even traces of total RNA would be possible. 

Recently, optimized PCR methods that claim to result in a minimally biased amplified 

RNA population have been published (G. M. Makrigiorgos et al., 2002; N. N. Iscove et 

al., 2002). Due to sampling errors and reaction-intrinsic properties when amplifying 

over 30-35 cycles, however, faithful amplification of low-copy-number RNAs and 

saturation effects may still represent important issues. These issues can potentially be 

minimized by linear amplification strategies.                              
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To improve the accuracy of RNA amplification, I tested different commercial 

kits based on the T7 amplification strategy by microarray analysis. For our purpose, I 

have established the Affymetrix kit to be optimal in terms of amplification efficiency 

and reproducibility. Additionally, understanding that the reverse transcription (RT) is a 

crucial step in the procedure encouraged the development of different RT strategies 

aimed at increasing RT efficiency and minimizing reaction-intrinsic biases. I and others 

(M. Kenzelmann et al., 2004; L.R. Baugh et al., 2001) have shown that T4 Gp32 protein 

may essentially contribute to the quality and quantitative efficiency of the RT reaction. 

In order to enhance the reaction efficiency, this protein was added in both first strand 

cDNA synthesis reactions. With this modification, starting with as little as 5 nanograms 

of total RNA and using two rounds of linear amplification, a sufficient quantity of 

labeled target is generated for microarray hybridization. In addition, I obtained quite a 

good correlation comparing gene profiling expression using amplified RNA and not 

amplified RNA samples. Satisfactory results were observed on the chips when 

comparing two different amplified samples.  

Considering all the parameters analyzed in this study, a protocol for RNA 

isolation from laser microdissected samples with subsequent Affymetrix chip 

hybridization was established that was also successfully applied to thyroid precursor 

cells microdissected from E10.5 mouse embryos to study genes involved in the early 

stages of thyroid organogenesis.  

I compared the transcriptome profile of E10.5 thyroid progenitor cells with that 

of the entire embryo of the corresponding age. Mouse thyroid primordia at the bud stage 

(E10.5) were isolated by laser capture microdissection (LCM). Three biological 

replicates of ~10 nanograms RNA were acquired by pooling several buds. In parallel, 

RNA from whole embryos was obtained. RNA integrity was confirmed and after two 

rounds of IVT-based linear amplification and labelling, samples were hybridized to 

Affymetrix microarrays. Bioinformatic tools identified several transcripts as 

significantly enriched in the thyroid bud as compared to expression in the whole 

embryo. Among the transcripts thus identified, genes already known to be highly 

expressed in the thyroid bud, such as Hhex and Pax8, were found supporting the 

reliability of our experimental approach.  

From this list a number of genes have been selected for validation by in situ 

hybridization based on the abovementioned criteria. Of these, eleven have been 

confirmed as enriched in the thyroid bud whereas three have produced negative or 
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ambiguous results. This in situ hybridization analysis indicates that the list has a high 

degree of validity, and confirms that the LCM approach clearly holds the potential of 

correctly identify putatively enriched genes. Interestingly, some genes I detected as 

enriched in the thyroid primordium were in agreement with the data present in the 

GenePaint database, showing a similar staining pattern in E14.5 developing thyroid (see 

Results).  

Indeed, literature shows a strong involvement in thyroid development and 

functionality for many of the genes I identified with this approach, as discussed below. 

Among the genes validated by in situ, Bcl2 displayed effective expression in the 

thyroid bud, as previously described (Q-L Lu et al., 1993). The main biological function 

of Bcl2 is to inhibit apoptosis or, conversely, to promote cell survival. Mice 

homozygously deficient for Bcl2 display polycystic kidney with dilated renal tubules as 

a part of phenotype  (Veis DJ et al., 1993; Nakayama K et al., 1994) Other related 

biological functions concern the control of cell cycle. At the molecular level, inhibition 

of apoptosis as well as control of cell cycle and differentiation occurs through a 

complex process of protein-protein interaction. Bcl2 is expressed in all tissues that 

express Pax8, which is an established key regulator of thyroid gland differentiation 

(Mansouri et al., 1998), suggesting a direct interaction of both genes in the tissues 

where they are co-expressed. Indeed, it has been demonstrated that Bcl2 is 

transcriptionally activated by Pax8 (Hewitt et al., 1997). I demonstrated in vivo that 

Bcl2 is strongly down regulated in Pax8 null mice, at mRNA and protein level, 

indicating that the athyreosis occurring in these mice may be due to an aberrantly 

activated apoptotic mechanism that normally is prevented by Pax8 acting via Bcl-2. 

 These findings suggest that suppression of apoptosis is an important event in the 

development and maintenance of thyroid epithelial structures. To functionally test the 

relevance of this hypothesis the generation of a murine model where Bcl-2 is over-

expressed in Pax8 deficient thyroid progenitors has been initiated.                 

The Tle2 transcript, according to my data, was strongly expressed in the thyroid 

bud at E10.5. Tle2 belongs to the Gro/TLE family proteins that are required for many 

developmental processes, including lateral inhibition, segmentation, sex determination, 

dorsal/ventral pattern formation, terminal pattern formation, and eye development. It 

has been shown that Tle2 acts as transcriptional repressor and is expressed during 

neuronal development (D. Grbavec et al,. 1998). Additionally, it has been observed that 

Tle2 is expressed throughout pancreas development suggesting that it may act at 
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multiple stages of pancreas development. Interestingly, data from literature demonstrate 

that Tle2 is able to interact with Nkx2.2, Nkx2.6, Hes1 and Arx, which are key 

controllers of endocrine cell specification and maturation (Brad G Hoffman et al., 

2008). These interactions are thought to play roles in the transcriptional functions of 

these proteins, possibly by causing local chromatin remodeling effects that may 

interfere with the functions of transcriptional activators (Edmondson, D. G. et al., 

1996). These data allow us to hypothesize about the possible ability of Tle2 to interact 

with transcription factors important in the development of the thyroid gland that shares 

with pancreas the origin from gut tube. In this direction, the possible influence of Tle2 

on thyroid-specific transcription may be investigated. 

Prolactin receptor (Prlr) gene showed a robust expression in the thyroid 

primordium. Its expression was also detected in the thyroid gland at E15.5 (data not 

shown). At that stage, the developing thyroid is featured by the expression of a number 

of genes required for thyroid function such as thyroglobulin (Tg), TSH receptor (Tshr), 

and the onset of thyroid peroxidase (TPO), small thyroid follicles begin to appear and a 

day later the gland displays an evident follicular organization.   

Prlr belongs to a class I cytokine receptor superfamily (Boutin JM et al., 1988; 

Bazan JF et al., 1989; Kelly PA et al., 1991). Expression of Prlr mRNA in thyroid of 

mice, in both follicular cells and “C” cells, has been documented by Kedzia et al. 2005. 

The same authors reported mild hypothyroidism in Prlr knockout mice. Surprisingly, in 

Prlr null animals, the authors described medullary thyroid carcinoma (MTC) arising 

from parafollicular C cells producing calcitonin. The incidence of these carcinomas 

attained 41% in Prlr null mice, whereas this malignant tumor occurs sporadically or as a 

component of the familial cancer syndrome in humans. Additionally, P. Costa et al. 

2006 demonstrated an overexpression of Prlr in human medullary thyroid carcinomas 

by tissue microarray.   These observations suggest a possible link between Prolactin 

signaling via its receptor and thyroid function.  

Another gene I detected as enriched in the developing thyroid was Tbx3. Its 

expression in the epithelium of the pharynx at the thyroid diverticulum, and in the 

mesenchyme of the pharyngeal arches has been previously reported, confirming the 

reliability of our data (Deborah L. et al,. 1996). Tbx3 is a T-box transcription factor 

involved in developmental patterning, regulation of proliferation, senescence, cell cycle 

exit, and apoptosis (Naiche LA et al., 2005; Hoogaars WMH et al., 2007). Mutations in 

Tbx3 cause ulnar-mammary syndrome (UMS) in humans (Bamshad M et al., 1997). 



Discussion and Conclusions 

62/77 

Tbx3 deficient mice developed outflow tract malformations and ventricular septal 

defects (Martijn L. Bakker et al., 2008). Furthermore, Tbx3 physically interact with 

Nkx2.5 to activate or repress target genes (P. Barrett, unpublished data, 2007). Nkx2.5 

null embryos have cardiac malformations (Lyons et al., 1995), and it is noteworthy that 

in Nkx2.5 mutant embryos the thyroid bud is smaller than in wild type embryos (De 

Felice and Di Lauro 2004). Interestingly, structural aberrations in other organs are 

overrepresented among children with thyroid dysgenesis, indicating that CH should 

potentially be considered as a manifestation of a different syndrome. Among these 

associated defects, vascular anomalies are the most frequent (Devos et al., 1999). 

Additionally, it has been observed an altered Shh expression in Tbx3 null mice (K 

Mesbah et al., 2008). Importantly, genetic deletion of Shh causes hemiagenesis and 

ectopic development of the thyroid in mouse (H Fagman et al., 2004). These data 

suggest that endodermal signaling is also impaired in Tbx3 mutant embryos and the loss 

of Tbx3 thus alters the balance of signaling molecules in the caudal pharynx, revealing a 

pleiotropic role for Tbx3 in the control of pharyngeal development.   

Overall, these findings allow me to argue that Tbx3 may have an important role 

in the thyroid morphogenesis, but further researches in this direction are mandatory.     

Together with the genes discussed above, my study provides other novel targets 

which function in thyroid development has never been described, although in many 

cases their function was studied in other tissues. In vivo analysis on the possible 

influence of validated target genes on thyroid morphogenesis will be investigated by the 

generation of murine models of targeted inactivation.   

Importantly, I have specifically shown that specimen obtained by LCM and 

subjected to microarray analysis can uncover regionally enriched genes which are 

otherwise not identified, for example, by hand-dissection. Thus, I demonstrated that 

LCM not only permits the isolation of tissue that may be hard to dissect with more 

rudimentary tools, but also allows for the relative enrichment of specific transcripts that 

may be diluted out in larger, non homogeneous samples. Here, I have demonstrated that 

LCM permits sensitive recovery of high-quality RNA from a given cell population. 

mRNA obtained by LCM can be further analyzed for function-specific gene expression 

by microarray technology. Additionally, these observations on genes expressed in the 

thyroid bud provide an infrastructure for further studies aimed at the elucidation of the 

specific functional roles and interactions of these factors during thyroid morphogenesis. 

Moreover, to confirm the relevance of the obtained results, selected targets will be 
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investigated by analyzing orthologous genes in human patients with thyroid dysgenesis. 

In fact, this list will be an important resource in further efforts to elucidate the genetic 

networks that control thyroid morphogenesis and might underlie CH. 

While my energies were specifically aimed at understanding the molecular 

aspects of thyroid gland development, I strongly believe that this method represents a 

useful tool for the unbiased analysis og global gene expression in a wide range of 

specific cell types enmeshed in a complex tissue background. 
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