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Introduction

Within a few years another new window on the universe will open up, with

the first direct detection of gravitational waves. There is keen interest in

observing gravitational waves directly, in order to test Einsteins theory of

general relativity and to observe some of the most exotic objects in nature,

particularly black holes. But, in addition, the potential of gravitational wave

observations to produce more surprises is very high.

The gravitational wave spectrum is completely distinct from, and com-

plementary to, the electromagnetic spectrum. The primary emitters of elec-

tromagnetic radiation are charged elementary particles, mainly electrons;

because of overall charge neutrality, electromagnetic radiation is typically

emitted in small regions, with short wavelengths, and conveys direct infor-

mation about the physical conditions of small portions of the astronomical

sources. By contrast, gravitational waves are emitted by the cumulative mass

and momentum of entire systems, so they have long wavelengths and convey

direct information about large-scale regions. Electromagnetic waves couple

strongly to charges and so are easy to detect but are also easily scattered or

absorbed by material between us and the source; gravitational waves couple

extremely weakly to matter, making them very hard to detect but also al-

lowing them to travel to us substantially unaffected by intervening matter,

even from the earliest moments of the Big Bang.

These contrasts, and the history of serendipitous discovery in astronomy,

all suggest that electromagnetic observations may be poor predictors of the

phenomena that gravitational wave detectors will eventually discover. Given

that 96% of the mass-energy of the universe carries no charge, gravitational

waves provide us with our first opportunity to observe directly a major part

of the universe. It might turn out to be as complex and interesting as the

charged minor component, the part that we call “normal” matter.

Thus, one of the longstanding problems of modern gravitational physics
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is the detection of gravitational waves, for which the standard theoretical

analysis relies upon the split of the space-time metric gab into “background

plus perturbations”. However, the background needs not to be Minkowskian

in several cases of physical interest, nor it has to be always a solution of the

vacuum Einstein equations. As a consequence, we are therefore aiming to

investigate in more detail what happens if the background space-time has a

non-vanishing Riemann curvature.

This issue has to be seriously considered from an experimental point of

view since the gravitational wave detectors of new generation are designed

also to investigate strong-field regimes: this means that the physical situa-

tions, where only the standard Minkowski background is taken into account,

could be misleading in order to achieve self-consistent results.

In particular, several ground-based laser interferometers have been built

in the United States (LIGO) [1, 2], Europe (VIRGO and GEO) [3, 4], and

Japan (TAMA) [5] and are now in the data taking phase for frequency ranges

about 10−1kHz. However, new advanced optical configurations allow to reach

sensitivities slightly above and below the standard quantum limit for free

test-particles, hence we are now approaching the epoch of second [6] and

third [7] generation of gravitational wave detectors. This fact, in principle,

allows to investigate wide ranges of frequencies where strong field regimes or

alternative theories of gravity can be considered [8, 9, 10].

Besides, the laser interferometer space antenna (LISA) [11] (which is

mainly devoted to work in the range 10−4 ∼ 10−2Hz) should fly within

the next decade principally aimed at investigating the stochastic background

of gravitational waves. At much lower frequencies (10−17Hz), cosmic mi-

crowave background (CMB) probes, like the forthcoming PLANCK satellite,

are designed to detect also gravitational waves by measuring the CMB polar-

ization [12] while millisecond pulsar timing can set interesting upper limits in

the frequency range between 10−9 ∼ 10−8Hz [13]. At these frequencies, the

large number of millisecond pulsars detectable by the square kilometer array

would provide a natural ensemble of clocks which can be used as multiple

arms of a gravitational wave detector [14].

This forthcoming experimental situation is intriguing but deserves a se-

rious theoretical analysis which cannot leave aside the rigorous investigation

of strong-field regimes and the possibility that further polarization states of

gravitational waves could come out in such regimes. For example, if one

takes into account scalar-tensor theories of gravity [8] or higher-order the-
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ories [9], scalar-massive gravitons should be considered. This implies that

the standard approach where gravitational waves are assumed as small per-

turbations (coming only from Einsteins general relativity) on a Minkowski

background could be totally insufficient. On the other hand, the existence

of these further polarization modes could be a straightforward solution of

the dark matter problem since massive gravitons could be testable cold dark

matter candidates as discussed in [15, 16].

We want to face the issue of the rigorous formulation of gravitational

wave problem in curved backgrounds. In particular, we want to perform a

analysis of gravitational waves in the de Sitter space-time. Achieving solu-

tions in this maximally symmetric background could constitute the paradigm

to investigate any curved space-time by the same techniques and could have

interesting cosmological applications if a conformal analysis is undertaken

as, for example in [10], where it is shown how the amplitude of cosmological

gravitational waves strictly depends on the cosmological background.

Some important progress in the astronomical observations of the last ten

years [17, 18] have led in a progressively convincing way to the surprising

conclusion that the recent universe is dominated by an almost spatially ho-

mogeneous exotic form of energy density to which there corresponds an effec-

tive negative pressure. Such negative pressure acts repulsively at large scales,

opposing itself to the gravitational attraction. It has become customary to

characterize such energy density by the term “dark”.

The simplest and best known candidate for the “dark energy” is the cos-

mological constant. As of today, the ΛCDM (Cold Dark Matter) model,

which is obtained by adding a cosmological constant to the standard model,

is the one which is in better agreement with the cosmological observations,

the latter being progressively more precise. Recent data show that dark

energy behaves as a cosmological constant within a few percent error. In

addition, if the description provided by the ΛCDM model is correct, Fried-

mann’s equation shows that the remaining energy components must in the

future progressively thin out and eventually vanish thus letting the cosmo-

logical constant term alone survive.

In the above scenario the de Sitter geometry, which is the homogeneous

and isotropic solution of the vacuum Einstein equations with cosmological

term, appears to take the double role of reference geometry of the universe,

namely the geometry of space-time deprived of its matter and radiation con-

tent and of geometry that the universe approaches asymptotically.
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It is by now well known that the problem of solving vector and tensor wave

equations in curved spacetime, motivated by physical problems such as those

occurring in gravitational wave theory and relativistic astrophysics, is in

general a challenge even for the modern computational resources. Within this

framework, a striking problem is the coupled nature of the set of hyperbolic

equations one arrives at.

The Maxwell equations for the electromagnetic potential, supplemented

by the Lorenz gauge condition, are decoupled and solved exactly in de Sitter

spacetime studied in static spherical coordinates. There is no source besides

the background. One component of the vector field is expressed, in its radial

part, through the solution of a fourth-order ordinary differential equation

obeying given initial conditions. The other components of the vector field are

then found by acting with lower-order differential operators on the solution of

the fourth-order equation (while the transverse part is decoupled and solved

exactly from the beginning). The whole four-vector potential is eventually

expressed through hypergeometric functions and spherical harmonics. Its

radial part is plotted for given choices of initial conditions.

We have thus completely succeeded in solving the homogeneous vector

wave equation for Maxwell theory in the Lorenz gauge when a de Sitter

spacetime is considered. The decoupling technique, analytic formulae and

plots are completely original [19].

Thus, we have extended this method to the wave equation of metric

perturbations on a de Sitter background. It is possible to show that, in

a covariant formulation, the supplementary condition for gravitational waves

can be described by a functional Φa acting on the space of symmetric rank-

two tensors hab (metric perturbations). For any choice of Φa, one gets a

different realization of the invertible operator P cd
ab (Lichnerowicz operator)

on metric perturbations. The basic equations of the theory read therefore as

P cd
ab hcd = 0,

Φa(h) = 0,

where the Lichnerowicz operator P cd
ab results from the expansion of the

Einstein-Hilbert action to quadratic order in the metric perturbations, sub-

ject to Φa(h) = 0. Eventually, a numerical analysis of solutions is be per-

formed.

However, we want to solve explicitly the Einstein equations for metric

perturbations on a de Sitter background. Thus, one considers the vacuum
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Einstein equations with cosmological constant Λ

Rab − 1

2
Rgab + Λgab = 0. (1)

If one introduces gab = γab + εhab, where ε is a parameter which controls

the perturbation, one has a coupled system of differential equations to first-

order in the metric perturbation hab. At this stage, using the Regge-Wheeler

gauge, we solve this system exactly in terms of the Heun general functions

[20].
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Chapter 1

Gravitational waves in

de Sitter space-time

The non-linearity of the gravitational field in general relativity is one of

its most characteristic properties and it is likely that at least some of the

crucial properties of the field show themselves only through the non-linear

terms. Moreover, it is never entirely clear whether solutions derived by the

usual method of linear approximation necessarily correspond in every case

to exact solutions.

General relativity is a peculiarly complete theory and may not give sen-

sible solutions for situations too far removed from what is physically reason-

able. The simplest field due to a finite source is spherically symmetrical but

Birkhoff’s theorem shows that a spherically symmetrical empty-space field is

necessarily static.

Therefore there cannot be truly spherically symmetrical waves and thus

any description of radiation from a finite system must necessarily involve

three coordinates significantly. This enormously complicates the mathemat-

ical difficulties and thus one has to make use of methods of approximation.

The standard theoretical analysis relies upon the split of the space-time

metric gab into background plus perturbations, that is

gab = γab + hab, (1.1)

where γab is the background Lorentzian metric, often taken to be of the

Minkowski form ηab, while the symmetric tensor field hab describes perturba-

tions about γab. The background γab needs not to be Minkowskian in several

cases of physical interest, nor it has to be always a solution of the vacuum

11
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Einstein equations. As a consequence, we are therefore aiming to investigate

in more detail what happens if the background space-time (M, γab) has a

non-vanishing Riemann curvature.

In this work, we want to perform a analysis of gravitational waves in de

Sitter space-time.

1.1 Einstein’s equations and de Sitter space-

time

Any space-time metric satisfies Einstein’s field equations

Rab − 1

2
Rgab + Λgab = 8πTab, (1.2)

where Λ is the cosmological constant. We shall use c = 1 and units of mass in

which G = 1 (geometric units). Since both sides are symmetric, these form

a set of ten coupled non-linear partial differential equations in the metric

tensor components and its first and second-order derivatives. However, due to

the so-called Bianchi identity, the covariant divergence of each side vanishes

identically, that is,

∇b

(
Rab − 1

2
Rgab + Λgab

)
= 0 (1.3)

and

∇bT
ab = 0, (1.4)

hold independent of the field equations. Thus the field equations really pro-

vide only six independent differential equations for the metric. This is in fact

the correct number of equations needed to determine the space-time, since

four of ten components of the metric can be given arbitrary values by use of

the four degrees of freedom associated with a coordinate transformation.

The space-time metrics of constant curvature are locally characterized by

the condition

Rabcd =
1

12
R(gacgbd − gadgbc). (1.5)

and this equation is equivalent to

Rab − 1

4
Rgab = 0, (1.6)
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Thus, the Riemann tensor is determined by the Ricci scalar R alone and

the Einstein tensor becomes

Rab − 1

2
Rgab = −1

4
Rgab. (1.7)

One can therefore regard these spaces as solutions of the field equations

for an empty space with Λ = 1
4
R. The space of constant curvature with

R = 0 is Minkowski space-time. The space for R > 0 is de Sitter space-time,

which has the topology R1 × S3. It is easiest visualized as the hyperboloid

in five-dimensional Minkowski space given by

−(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x5)2 =
3

Λ
, (1.8)

where Λ is related to Hubble’s constant, H0, by

H2
0 =

Λ

3
. (1.9)

In the standard spherical coordinates, (t, r, θ, φ), one has

x1 = r sin θ cos φ,

x2 = r sin θ sin φ,

x3 = r cos θ,

x5 =

√
1

H2
0

− r2 cosh(Ht),

x0 =

√
1

H2
0

− r2 sinh(Ht). (1.10)

Thus, the metric becomes

ds2 = −fdt2 +
1

f
dr2 + r2(dθ2 + sin2 θdφ2), (1.11)

where

f ≡ 1−H2
0r

2. (1.12)

Now, consider de Sitter metric in Gaussian confomally flat umbilical co-

ordinates

ds2 = −dt2 + e2H0t[dx2 + dy2 + dz2] , (1.13)
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This metric satisfies matter-free Einstein’s equations with a non-vanishing

cosmological constant Λ such that H2
0 = Λ/3. Moreover, the timelike unit

normal vector field to the t =constant hypersurfaces

n = ∂t (1.14)

form a geodesic and irrotational congruence; the 3-metric induced on the

t =constant hypersurfaces results conformally flat:

gab = e2H0tδab, (a, b = 1, 2, 3); (1.15)

finally the extrinsic curvature of these hypersurfaces is

K(n)ab = −H0gab . (1.16)

An orthonormal frame associated with n is given by

n = ∂t, eâ = e−H0t∂a, (a = 1, 2, 3) (1.17)

For this metric the geodesic equations can be integrated exactly. In fact,

they reduce to:

dxi

dλ
= Cie−2H0t ,

(
dt

dλ

)2

= −ε + C2e−2H0t , (1.18)

where the parameter ε = 0, 1,−1 for null, spacelike (with proper length

parametrization, say λ = s) and timelike (with proper time parametrization,

say λ = τ) geodesics respectively, and Ci, i = 1, 2, 3 are constants with C2 =

δijC
iCj. The physical components of the tangent vector to the geodesics

with respect to the frame (1.17) result then in

U(ε) = Uα
(ε)∂α =

√
−ε + C2e−2H0t

[
n +

C ie−H0t

√−ε + C2e−2H0t
eî

]
. (1.19)

It is convenient to discuss the three cases ε = −1, 0, 1 separately, denoting

the three different tangent vectors by U(−1) = U , U(0) = P and U(1) = T ,

respectively. For timelike geodesics we have

U = γ(U, n) [n + ν(U, n)ν̂(U, n)]

= cosh α(t)n + sinh α(t)
Ci

C
eî,

cosh α(t) =
√

1 + C2e−2H0t, (1.20)



1.1. EINSTEIN’S EQUATIONS AND DE SITTER SPACE-TIME 15

identifying the speed

ν(U, n) = tanh α(t) =
Ce−H0t

√
1 + C2e−2H0t

, (1.21)

as well as its direction (unit spacelike vector)

ν̂(U, n)î =
Ci

C
. (1.22)

For null geodesics we have

P = E(P, n) [n + ν̂(P, n)] = Ce−H0t

[
n +

Ci

C
eî

]
, ν̂(P, n)î =

Ci

C
, (1.23)

identifying the relative energy

E(P, n) = Ce−H0t . (1.24)

1.1.1 Null geodesics

Let us consider first the null case. The general solution of Eq. (1.18) is given

by

eH0t = H0Cλ + c1 , xi = − Ci

H0C

1

H0Cλ + c1

+ ci
2 . (1.25)

The integration constants c1, c
i
2 can be chosen in such a way that xα(λ =

0) = xα
0 , whence

c1 = eH0t0 , ci
2 = xi

0 +
C i

H0C
e−H0t0 , (1.26)

so that the solution (1.25) becomes

t =
1

H0

ln[H0Cλ + eH0t0 ] , xi = − Ci

H0C

[
−e−H0t0 +

1

H0Cλ + eH0t0

]
+ xi

0 .

(1.27)

The latter equation can also be cast in the form

xi = xi
0 −

Ci

C
R(t, t0) , (1.28)

being

R(t, t0) =
1

H0

(e−H0t − e−H0t0) (1.29)
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1.1.2 Timelike geodesics

Let us consider now the timelike case. The general solution of Eq. (1.18) is

given by

eH0t = C sinh(H0τ − c1) , xi = − Ci

H0C2
coth(H0τ − c1) + ci

2 . (1.30)

The integration constants c1, c
i
2 can be chosen in such a way that xα(λ =

0) = xα
0 , whence

c1 = −arcsinh

(
eH0t0

C

)
, ci

2 = xi
0 +

Ci

H0C2

√
1 + C2e−2H0t0 , (1.31)

so that the solution (1.30) becomes

t =
1

H0

ln

[
C sinh

(
H0τ + arcsinh

(
eH0t0

C

)) ]
,

xi = − Ci

H0C2

[
coth

(
H0τ + arcsinh

(
eH0t0

C

))

−
√

1 + C2e−2H0t0

]
+ xi

0. (1.32)

The latter equation can also be written as

xi = xi
0 −

Ci

H0C2

(√
1 + C2e−2H0t −

√
1 + C2e−2H0t0

)
. (1.33)

1.2 Conformal form of de Sitter metric

It is well known that the de Sitter metric can be written as conformal to the

Minkowski metric

ds2 =

[
1 +

H2
0

4
(x2 + y2 + z2 − t2)

]−2

(−dt2 + dx2 + dy2 + dz2) . (1.34)

However, the explicit coordinate transformation allowing to cast the metric

(1.13) in the previous form is somehow hidden in the literature. First of all

introduce standard polar coordinates

x = ρ sin θ cos φ , y = ρ sin θ sin φ , z = ρ cos θ . (1.35)
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The line element (1.13) thus takes the form

ds2 = −dt2 + e2H0t[dρ2 + ρ2(dθ2 + sin2 θdφ2)] . (1.36)

Applying then the following coordinate transformation

t =
1

H0

ln

[
eH0τ

√
1−H2

0R
2

]
, ρ =

Re−H0τ

√
1−H2

0R
2

, θ = θ , φ = φ ,

(1.37)

gives

ds2 = −(1−H2
0R

2)dτ 2 +
dR2

1−H2
0R

2
+ R2(dθ2 + sin2 θdφ2) . (1.38)

The further transformation

τ =
1

2H0

ln

[
H2

0 ρ̄
2 − (H0t̄− 2)2

H2
0 ρ̄

2 − (H0t̄ + 2)2

]
, R =

ρ̄

1 +
H2

0

4
(ρ̄2 − t̄2)

, θ = θ , φ = φ ,

(1.39)

finally gets

ds2 =

[
1 +

H2
0

4
(ρ̄2 − t̄2)

]−2

[−dt̄2 + dρ̄2 + ρ̄2(dθ2 + sin2 θdφ2)] , (1.40)

which reduces to the line element (1.34) once the cartesian coordinates are

restored by using standard relations as in Eq. (1.35).

By combining the transformations (1.37) and (1.39) we get

t =
1

2H0

ln

[
H2

0 ρ̄
2 − (H0t̄− 2)2

H2
0 ρ̄

2 − (H0t̄ + 2)2

(
1− H2

0 ρ̄
2

[1 +
H2

0

4
(ρ̄2 − t̄2)]2

)]
,

ρ =
ρ̄

1 +
H2

0

4
(ρ̄2 − t̄2)

[
H2

0 ρ̄
2 − (H0t̄− 2)2

H2
0 ρ̄

2 − (H0t̄ + 2)2

(
1− H2

0 ρ̄
2

[1 +
H2

0

4
(ρ̄2 − t̄2)]2

)]−1/2

,

θ = θ,

φ = φ, (1.41)

which allows to pass directly from the metric (1.36) to the conformal one

(1.40).
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1.3 Preservation of the de Donder supple-

mentary condition

In classical gauge theory with space-time metric of Lorentzian signature, the

gauge-fixing (also called “supplementary” condition) leads to a convenient

form of the field equation for the potential. For example, for classical elec-

trodynamics in the Lorenz gauge1, the wave equation reduces to equation

(see Chapter 2)

Ab −R c
b Ac = 0.

However, while Maxwell Lagrangian

LEM = −1

4
FabF

ab, (1.42)

is invariant under gauge transformations

Af
b ≡ Ab +∇bf, (1.43)

where f is a freely specifiable function of class C1, the Lorenz gauge

Φ(A) = ∇bAb = 0,

as well as any other admissible gauge, is not invariant under (1.43). Never-

theless, to achieve the desired wave equation on Ab, it is rather important

to make sure that both Ab and the gauge-transformed potential Af
b obey the

same gauge-fixing condition, i.e. [21]

Φ(A) = 0, Φ(Af ) = 0. (1.44)

A more general situation, here not considered, is instead the case when

only the gauge-transformed potential obeys the gauge-fixing condition, i.e.

[22]

Φ(A) 6= 0, Φ(Af ) = 0. (1.45)

The counterpart of (1.44) for pure gravity is the well known problem of

imposing a gauge on metric perturbations and then requiring its invariance

1In [23], the author L. Lorenz, who was studying the identity of the vibrations of light
with electrical currents, built a set of retarded potentials for electrodynamics which, with
hindsight, can be said to satisfy the gauge condition ∇bAb = 0, which therefore should
not be ascribed to H. Lorentz.
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under infinitesimal diffeomorphisms. It is straightforward to show that, in a

covariant formulation, the supplementary condition for gravitational waves

can be described by a functional Φa acting on the space of symmetric rank-

two tensors hab occurring in Eq. (1.1). For any choice of Φa, one gets a

different realization of the invertible operator P cd
ab on metric perturbations.

The basic equations of the theory read therefore as

P cd
ab hcd = 0, (1.46)

Φa(h) = 0, (1.47)

where P cd
ab results from the expansion of the action functional to quadratic

order in the metric perturbations. In general relativity, if one wants to obtain

the standard covariant wave operator on metric perturbations, this is taken

to be of the de Donder type [24]

Φa(h) = ∇b

(
hab − 1

2
γabh

)
, (1.48)

where h ≡ γcdhcd and ∇b denotes covariant derivative with respect to the

background metric γab. Under infinitesimal space-time diffeomorphisms, the

metric perturbations suffer the variation (the round brackets denoting sym-

metrization)

δhab = ∇(a ϕb), (1.49)

where ϕb is a covector, with associated one-form ϕbdxb and vector field ϕa ∂
∂xa

(having set ϕa ≡ γabϕb, which results from the isomorphism between tangent

and cotangent space to the background space-time, that turns covectors into

vectors, or the other way around). The change suffered from the de Donder

gauge in (1.48) when metric perturbations are varied according to (1.49) is

then found to be

δΦa(h) = − (
δ b
a + R b

a

)
ϕb, (1.50)

where is the standard d’Alembert operator in curved space-time, i.e.

≡ γcd∇c∇d. (1.51)

By virtue of Eqs. (1.48) and (1.50), if the de Donder gauge was originally

satisfied, it is preserved under space-time diffeomorphisms if and only if ϕb

solves the equation δΦa(h) = 0, that is

− ϕa = R b
a ϕb. (1.52)
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At this stage, adding R b
a ϕb to both sides of (1.52), one has

P b
a ϕb = 2R b

a ϕb, (1.53)

where

P b
a ≡ −δ b

a + R b
a (1.54)

is the standard gauge-field operator in the Lorenz gauge (see Chapter 2).

Thus, we can solve Eq. (1.53) in the form

ϕc = ϕ(0)
c + 2P̃ a

c R b
a ϕb, (1.55)

where ϕ
(0)
c is a solution of the homogeneous wave equation [25]

P b
a ϕ

(0)
b = 0, (1.56)

while P̃ a
c is the inverse operator of P b

a , satisfying

P̃ a
c P b

a = δ b
c . (1.57)

The operator P̃ a
c is an integral operator with kernel given by the massless

spin-1 Green function Gab(x, x′) ≡ Gab′ . The latter can be chosen, for ex-

ample, to be of the Feynman type, i.e. that solution of the equation (see

Appendix A for the notation)

P b
a Gbc′ = gac′

δ(x, x′)√−γ
, (1.58)

having the asymptotic expansion as σ → 0 [26, 27]

Gab′ ∼ i

8π2

[√
4 gab′

(σ + iε)
+ Vab′ log(σ + iε) + Wab′

]
, (1.59)

where σ(x, x′) is the Ruse-Synge world function [28, 29, 30], equal to half the

square of the geodesic distance µ between the points x and x′.

1.4 Massless Green functions in de Sitter space-

time

This general scheme can be completely implemented in the relevant case [31]

of de Sitter space where, relying upon the work in [32], we know that the

massless spin-1 Green function reads as

Gab′ = α(µ)gab′ + β(µ)nanb′ , (1.60)
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where µ(x, x′) ≡
√

2σ(x, x′) is the geodesic distance between x and x′,
na(x, x′) and na′(x, x′) are the unit tangents to the geodesic at x and x′,
respectively, for which

na(x, x′) = ∇aµ(x, x′),

na′(x, x′) = ∇a′µ(x, x′), (1.61)

while, in terms of the new variable

z ≡ 1

2

(
1 + cos

µ

ρ

)
, (1.62)

the coefficient functions α and β are given by [32]

α(z) =
1

48π2ρ2

[
3

(1− z)
+

1

z
+

(
2

z
+

1

z2

)
log(1− z)

]
, (1.63)

β(z) =
1

24π2ρ2

[
1− 1

z
+

(
1

z
− 1

z2

)
log(1− z)

]
. (1.64)

Strictly speaking, the formulae (1.63)–(1.64) are first derived in the Euclidean

de Sitter space. In the Lorentzian de Sitter space-time M which is what we

are interested in, one can define the set [32]

Jx ≡ {x′ ∈ M : ∃ geodesic from x to x′} . (1.65)

Moreover, it is well-known that M can be viewed as an hyperboloid imbedded

in flat space, i.e. as the set of points Y a ∈ Rn+1 such that

Y aY bηab = ρ2, (1.66)

where ηab = diag(−1, 1, 1, 1), so that its induced metric reads as

ds2 = ηabdY adY b. (1.67)

As is stressed in Ref. [32], the relation

z(x, x′) =
1

2

[
1 +

ηabY
a(x)Y b(x′)

ρ2

]
(1.68)

is well defined both inside and outside Jx, and it is an analytic function of

the coordinates Y a. Thus, Eq. (1.68) makes it possible to define z(x, x′)
everywhere on de Sitter, and one can define the geodesic distance

µ(x, x′) ≡ 2ρ cos−1(
√

z) (1.69)

as the limiting value [32] above the standard branch cut of cos−1. Along

similar lines, the equations defining na, na′ and gab′ have right-hand sides

which are analytic functions of the coordinates Y a, and are hence well defined

everywhere on Lorentzian de Sitter space-time [32].
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1.5 Evaluation of the kernel

In a de Sitter background the Ricci tensor is proportional to the metric

through the cosmological constant: Rab = Λgab, and hence the formulae

(1.55), (1.60), (1.63) and (1.64) lead to the following explicit expression for

the solution of the inhomogeneous wave equation (1.53):

ϕc(x) = ϕ(0)
c (x) + 2Λ

∫ [
α(z(µ(x, x′)))g a′

c

+ β(z(µ(x, x′)))ncn
a′
]
ϕa′(x

′)
√
−γ(x′)d4x′, (1.70)

where, from Eq. (1.69),

µ(x, x′) = 2ρ cos−1

√
1

2

(
1 +

ηabY a(x)Y b(x′)
ρ2

)
, (1.71)

while Eqs. (1.63) and (1.64) should be exploited to express α and β, bearing

in mind Eq. (2.6) jointly with

z(x, x′) =
1

2

[
1 + cos

(
µ(x, x′)

ρ

)]
. (1.72)

Moreover, the bivector g a′
c in the integrand (1.70) is given by [32]

g b′
a = C−1(µ)∇an

b′ − nan
b′ ,

C(µ) = − 1

ρ sin(µ/ρ)
. (1.73)

The right-hand side of the formula expressing g b′
a is an analytic function

of the coordinates Y a and is therefore well defined everywhere on de Sitter

[32]. The integral on the right-hand side of Eq. (1.70) can be conveniently

expressed the form

fc(x) =

∫ [
α(z)C−1(µ)∇c∇a′µ

+ (β(z)− α(z))(∇cµ)(∇a′µ)
]
ϕa′(x

′)
√
−γ(x′)d4x′, (1.74)

with α and β − α given by (cf. (1.63) and (1.64))

α(z) =
(1 + 2z)

48π2ρ2

[
1

z(1− z)
+

1

z2
log(1− z)

]
, (1.75)
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β(z)− α(z) =
1

48π2ρ2

[
(−3 + 2z − 2z2)

z(1− z)
− 3

z2
log(1− z)

]
. (1.76)

Equation (1.70) is therefore an integral equation reading as

ϕc(x) = ϕ(0)
c (x) + Λ

∫
K a′

c ϕa′
√
−γ(x′)d4x′, (1.77)

with unbounded kernel given by

K a′
c ≡ 2

[
α(z)C−1(µ)∇c∇a′µ + (β(z)− α(z))(∇cµ)(∇a′µ)

]
. (1.78)

This kernel is indeed unbounded by virtue of the limits

48π2ρ2 lim
z→0

zα(z) =
1

2
, (1.79)

48π2ρ2 lim
z→1

(1− z)α(z) = 1, (1.80)

48π2ρ2 lim
z→0

z(β(z)− α(z)) = −3

2
, (1.81)

48π2ρ2 lim
z→1

(1− z)(β(z)− α(z)) = −3. (1.82)

At this stage, we can exploit (1.68) and (1.78) to re-express the kernel in the

form

K a′
c =

(∇cz)(∇a′z)

24π2ρ4(1− z)

[
2 +

(
−3 +

√
z

2
(1 + 2z)

) (
1

z(1− z)
+

1

z2
log(1− z)

)]

+
(∇c∇a′z)

6π2

√
z(1 + 2z)

[
1

z(1− z)
+

1

z2
log(1− z)

]
. (1.83)

Note now that ϕ
(0)
c (x) in Eq. (1.77), being a solution of the homogeneous

vector wave equation (1.56), admits the Huygens principle representation [26]

ϕ(0)
c (x) =

∫

Σ′

√
−γ(x′)

[
Gcb′ϕ

(0)b′
;m′ −Gcb′;m′ϕ(0)b′

]
gm′l′dΣ

′
l′ , (1.84)

where

Gcb′ = αgcb′ + βµ;cµ;b′ =
1

2
Kcb′ , (1.85)

Gcb′;m′ =
1

2
Kcb′;m′ . (1.86)

Unlike the work in [26], we here advocate the use of the Green function

(1.60) rather than the sum, over all distinct geodesics between x and x′, of
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the Hadamard functions. To lowest order in the cosmological constant Λ,

Eq. (1.84) may be used to approximate the desired solution of Eq. (1.77) in

the form

ϕc(x) = ϕ(0)
c (x) + Λ

∫
K a′

c ϕ
(0)
a′

√
−γ(x′)d4x′ + O(Λ2). (1.87)

Omitting indices for simplicity, the general algorithm for solving Eq. (1.77),

here re-written in the form

ϕ = ϕ(0) + Λ

∫
Kϕ, (1.88)

would be instead

ϕ1 = ϕ(0) + Λ

∫
Kϕ(0), (1.89)

ϕ2 = ϕ(0) + Λ

∫
Kϕ1 = ϕ(0) + Λ

∫
Kϕ(0) + Λ2

∫ ∫
KKϕ(0), (1.90)

ϕn = ϕ(0) +
n∑

j=1

Λj

∫
...

∫
Kjϕ(0), (1.91)

ϕ = lim
n→∞

ϕn. (1.92)

In this Chapter, we have seen that when the de Donder gauge is imposed,

its preservation under infinitesimal space-time diffeomorphisms is guaranteed

if and only if the associated covector is ruled by a second-order hyperbolic

operator which is the classical counterpart of the ghost operator in quantum

gravity and the vector wave equation (1.52) is be studied by using an integral

representation.

However, a different approach is viable, that is, through a solution by

factorization of a hyperbolic equation. In fact, in the equation (1.52) the Ricci

term has opposite sign with respect to the wave equation for Maxwell theory,

in the Lorenz gauge. Thus, we are interested in the following generalized wave

equation:

− Xa + εR b
a Xb = 0, (1.93)

where ε = ±1. In particular, ε = 1 corresponds to studying the Maxwell

vector wave equation, whereas ε = −1 provides our consistency equation

(1.52).

In the Chapter 2, by virtue of the spherical symmetry of de Sitter space-

time, these equations should be conveniently written by using the expansion
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of X in vector harmonics. In this way, we solve the Maxwell equation in de

Sitter space-time [19] and, at this stage, it is possible to relate the solutions

of the two problems [24].
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Chapter 2

The vector wave equation

It is by now well known that the problem of solving vector and tensor wave

equations in curved space-time is in general a challenge even for the modern

computational resources. Using the Maxwell action functional

S = −1

4

∫

M

FabF
ab
√−g d4x (2.1)

where Fab is the electromagnetic field tensor, one gets the wave operator P b
a ,

that is,

P b
a = −δ b

a + R b
a +∇a∇b, (2.2)

but jointly with the Lorenz gauge condition

∇bAb = 0, (2.3)

we have

P b
a Ab =

(−δ b
a + R b

a

)
Ab. (2.4)

Thus, in vacuum, the coupled equations for the electromagnetic potential are

(−δ b
a + R b

a

)
Ab = 0 (2.5)

and eventually

Ab −R c
b Ac = 0. (2.6)

We note that in the quantum case, one has, even using the Lorenz gauge

condition, the wave operator

P̃ b
a = −δ b

a + R b
a +

(
1− 1

α

)
∇a∇b, (2.7)

27
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but, following Feynman, we put α = 1 and one has

P̃ b
a = −δ b

a + R b
a , (2.8)

that is, at least formally, the same wave operator of the classical case.

A deep link exists between classical and quantum theory, since in the

latter, the one-loop analysis depends on the functional determinant of the

operator P b
a .

At this point, we want to study the vector wave equation in de Sitter

space-time with static spherical coordinates, so that the line element is (1.11).

The vector field X solving the vector wave equation can be expanded in

spherical harmonics according to [33]

X = Ỹlm(θ)e−i(ωt−mφ)
[
f0(r)dt + f1(r)dr

]

+ e−i(ωt−mφ)

[
− mr

sin θ
f2(r)Ỹlm(θ) + f3(r)

dỸlm

dθ

]
dθ

+ ie−i(ωt−mφ)

[
−r sin θf2(r)

dỸlm

dθ
+ mf3(r)Ỹlm(θ)

]
dφ, (2.9)

where Ỹlm(θ) is the θ-dependent part of the spherical harmonics Ylm(θ, φ),

solution of the equation

[
d2

dθ2
+ cot θ

d

dθ
+

(
− m2

sin2 θ
+ L

)]
Ỹlm(θ) = 0, (2.10)

with L ≡ l(l+1). As one has shown in [24], these equations lead to a system

of coupled ordinary differential equations for the functions f0, f1, f3, besides

a decoupled equation for f2 (f2 being related to the transverse part of X).

The equation for f2(r) can be easily integrated in terms of hypergeometric

functions. In fact, assuming

f2(r) = f−iω/(2H)ψ(r), (2.11)

the resulting equation for ψ reads as

d2ψ

dr2
= − 2i

rf

(
2iH2r2 − i + ωHr2

)dψ

dr
− 1

r2f 2

[
ω2r2 − L− 2H2r2 + 3iωHr2

]
.

(2.12)
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Thus, the solution f2(r) is of the form

f2(r) = f−iΩ/2

[
U1r

lF

(
a−, a+;

3

2
+ l; H2r2

)
+U2r

−l−1F

(
a+, a−;

1

2
− l; H2r2

)]
,

(2.13)

where

Ω ≡ ω

H
, a± ≡ −1

4
(2iΩ− 3− 2l ± 1) . (2.14)

At this stage, however, the problem remained of solving explicitly also for

f0(r), f1(r), f3(r) in the expansion (2.9). For this purpose, we derive the

decoupling procedure for such modes in de Sitter and we write explicitly the

decoupled equations. Eventually, we solve explicitly for f0, f1, f3 in terms

of hypergeometric functions and we plot such solutions for suitable initial

conditions.

2.1 Coupled modes

Unlike f2, the functions f0, f1 and f3 obey instead a coupled set, given by

Eqs. (54), (55), (57) of [24], which are here written, more conveniently, in

matrix form as (we set ε = 1 in the Eqs. of [24], which corresponds to

studying the vector wave equation (2.6))




P0 α 0

f−2α P1 r−2f−1Lβ

0 β P3







f0

f1

f3


 = 0, (2.15)

having defined

α ≡ 2iωH2r

f
, (2.16)

β ≡ 2

r
, (2.17)

P0 ≡ d2

dr2
+ Q1

d

dr
+ Q2, (2.18)

P1 ≡ d2

dr2
+ Q3

d

dr
+ Q4, (2.19)

P3 ≡ d2

dr2
+ Q5

d

dr
+ Q6, (2.20)
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Q1 ≡ β =
2

r
, (2.21)

Q2 ≡ ω2

f 2
− L

r2f
, (2.22)

Q3 ≡ 6

r

(
1− 2

3

1

f

)
, (2.23)

Q4 ≡ ω2

f 2
−

(
4H2 +

(L + 2)

r2

)
1

f
, (2.24)

Q5 ≡ 2

r

(
1− 1

f

)
, (2.25)

Q6 ≡ ω2

f 2
− L

r2

1

f
. (2.26)

With our notation, the three equations resulting from (2.15) can be writ-

ten as

P0f0 = −αf1, (2.27)

P1f1 = − α

f 2
f0 − Lβ

r2f
f3, (2.28)

P3f3 = −βf1. (2.29)

2.2 Decoupled equations

We now express f1 from Eq. (2.27) and we insert it into Eq. (2.28), i.e.

P1

(
− 1

α
P0f0

)
= − α

f 2
f0 − Lβ

r2f
f3. (2.30)

Next, we exploit the Lorenz gauge condition (2.3), i.e. [24]

f3 =
r2f

L

d

dr

(
− 1

α
P0f0

)
− 2r(1− 2f)

L

(
− 1

α
P0f0

)
+ i

ΩHr2

Lf
f0, (2.31)

and from Eqs. (2.30) and (2.31) we obtain, on defining the new independent

variable x = rH, the following fourth-order equation for f0:
[

d4

dx4
+ κ3(x)

d3

dx3
+ κ2(x)

d2

dx2
+ κ1(x)

d

dx
+ κ0(x)

]
f0(x) = 0, (2.32)

where

κ0(x) ≡ κ(x)

x4(x2 − 1)4
, (2.33)
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κ(x) ≡ L(L−2)+2L(2−L−Ω2)x2+
[
Ω4+4Ω2+L(L+2(Ω2−1))

]
x4, (2.34)

κ1(x) ≡ 4(Ω2 + L− 2 + 6x2)

x(x2 − 1)2
, (2.35)

κ2(x) ≡
2
[
− L + (Ω2 + L− 14)x2 + 18x4

]

x2(x2 − 1)2
, (2.36)

κ3(x) ≡ 4(−1 + 3x2)

x(x2 − 1)
. (2.37)

Eventually, f1 and F3 ≡ Hf3 can be obtained from Eqs. (2.27) and (2.31),

i.e.

f1(x) =
i

2Ω

(1− x2)

x

(
d2

dx2
+

2

x

d

dx
+

Ω2

(1− x2)2
− L

x2(1− x2)

)
f0(x), (2.38)

F3(x) =

[
x2(1− x2)

L

d

dx
− 2x(2x2 − 1)

L

]
f1(x) + i

Ω

L

x2

(1− x2)
f0(x). (2.39)

Our f1 and f3 are purely imaginary, which means we are eventually going

to take their imaginary part only. Moreover, as a consistency check, Eqs.

(2.38) and (2.39) have been found to agree with Eq. (2.29), i.e. (2.29) is

then identically satisfied.

2.3 Exact solutions

Equation (2.32) has four linearly independent integrals, so that its general

solution involves four coefficients of linear combination C1, C2, C3, C4, accord-

ing to (hereafter, F is the hypergeometric function already used in (2.13))

f0(x) = C1x
−1−l(1− x2)−

i
2
ΩF

(
− i

2
Ω− l

2
,− i

2
Ω +

1

2
− l

2
;
1

2
− l; x2

)

+ C2x
−1−l(1− x2)−

i
2
ΩF

(
− i

2
Ω + 1− l

2
,− i

2
Ω− 1

2
− l

2
;
1

2
− l; x2

)

+ C3x
l(1− x2)−

i
2
ΩF

(
− i

2
Ω +

l

2
,− i

2
Ω +

3

2
+

l

2
;
3

2
+ l; x2

)

+ C4x
l(1− x2)−

i
2
ΩF

(
− i

2
Ω + 1 +

l

2
,− i

2
Ω +

1

2
+

l

2
;
3

2
+ l; x2

)
.(2.40)
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Regularity at the origin (recall that x = 0 should be included, since the event

horizon for an observer situated at x = 0 is given by x = 1 [34]) implies that

C1 = C2 = 0, and hence, on defining

a1 ≡ − i

2
Ω +

l

2
, b1 ≡ − i

2
Ω +

3

2
+

l

2
, d1 ≡ 3

2
+ l, (2.41)

we now re-express the regular solution in the form (the points x = 0,±1

being regular singular points of the equation (2.32) satisfied by f0)

f0(x) = xl(1−x2)−
i
2
Ω
[
C3F (a1, b1; d1; x

2)+C4F (a1+1, b1−1; d1; x
2)

]
, (2.42)

where the second term on the right-hand side of (2.42) can be obtained from

the first through the replacements

C3 → C4, a1 → a1 + 1, b1 → b1 − 1

and the series expressing the two hypergeometric functions are conditionally

convergent, because they satisfy Re(c− a− b) = iΩ, with

a = a1, a1 + 1; b = b1, b1 − 1; c = d1.

Last, we exploit the identity

d

dz
F (a, b; c; z) =

ab

c
F (a + 1, b + 1; c + 1; z) (2.43)

to find, in the formula (2.38) for f1(x),

d

dx
f0(x) = C3

{
xl−1(1− x2)−

i
2
Ω−1

[
l(1− x2) + iΩx2

]
F (a1, b1; d1; x

2)

+
2a1b1

d1

xl+1(1− x2)−
i
2
ΩF (a1 + 1, b1 + 1; d1 + 1; x2)

}

+
{

C3 → C4, a1 → a1 + 1, b1 → b1 − 1
}

. (2.44)

It is then straightforward, although tedious, to obtain the second derivative

of f0 (see Eq. (B.1) of the Appendix B) in the equation for f1 and the third

derivative of f0 in the formula (2.39) for Hf3. The results are exploited to

plot the solutions.

In general, for given initial conditions at x̄ ∈ [0, 1[, one can evaluate C3

and C4 from

f0(x̄) = ȳ, f ′0(x̄) = ȳ′,

i.e. C3 = C3(ȳ, ȳ′), C4 = C4(ȳ, ȳ′).
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Figure 2.1: Regular solution (2.42) for f0 with C3 = 0, C4 = 1, l = 2, . . . , 10

with Ω = 2 (left figure) and Ω = 4 (right figure). Increasing values of l

correspond to more peaked curves on the right part of the plots.
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Figure 2.2: Regular solution (2.42) for f0 with C3 = 1, C4 = 0, l = 2, . . . , 10

with Ω = 2 (left figure) and Ω = 4 (right figure). Increasing values of l

correspond to more peaked curves on the right part of the plots.

2.4 Plot of the solutions

To plot the solutions, we begin with f0 as given by (2.42), which is real-valued

despite the many i factors occurring therein. Figures (2.1) to (2.3) describe

the solutions for the two choices C3 = 0, C4 = 1 or the other way around and

various values of l and Ω.

We next plot f1/i and F3/i ≡ Hf3/i by relying upon (2.38) and (2.39).

As far as we can see, all solutions blow up at the event horizon, corresponding

to x = 1, since there are no static solutions of the wave equation which are

regular inside and on the event horizon other than the constant one [34].



34 CHAPTER 2. THE VECTOR WAVE EQUATION

–100000

0

100000

200000

300000

0.2 0.4 0.6 0.8 1

x

Figure 2.3: Regular solution (2.42) for f0 with C3 = 0, C4 = 1, l = 2 and

Ω = 10.
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Figure 2.4: Regular solution (2.38) for f1/i with C3 = 1, C4 = 0 (left figure)

and C3 = 0, C4 = 1 (right figure) for l = 2 . . . , 10 and Ω = 4.
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Figure 2.5: Regular solution (2.39) for F3/i with C3 = 1, C4 = 0 (left figure)

and C3 = 0, C4 = 1 (right figure) for l = 4 and Ω = 4.
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2.5 Special cases: l = 0 and l = 1

We list here the main equations for l = 0, 1 for completeness.

2.5.1 The case l = 0,m = 0

In this case we have Y (θ) = (4π)−1/2 = constant and the only surviving

functions are f0 and f1. The main equations reduce then to

d2f0

dx2
= −2

x

df0

dx
− Ω2 − 3ε + 3εx2 + 3− 3x2

(x2 − 1)2
f0 +

2iΩx

x2 − 1
f1 (2.45)

and the Lorenz gauge condition which now becomes

Ωf0 = i(x2 − 1)2df1

dx
+

2i(x2 − 1)(2x2 − 1)

x
f1. (2.46)

These equations can be easily separated and explicitly solved in terms of

hypergeometric functions.

2.5.2 The case l = 1,m = 0, 1

In this case we have

Y =

√
3

4π
cos θ l = 1,m = 0,

Y = −
√

3

8π
sin θ l = 1, m = 1. (2.47)

However, due to the spherical symmetry of the background the equations for

both cases l = 1,m = 0 and l = 1,m = 1 do coincide. We have

d2f0

dx2
= −2

x

df0

dx
− Ω2x2 + 3εx4 + 5x2 − 3x4 − 3εx2 − 2

x2(x2 − 1)2
f0 +

2iΩx

x2 − 1
f1,

d2f1

dx2
= −2(3x2 − 1)

x(x2 − 1)

df1

dx
− 3εx4 + x4 − 3εx2 + 3x2 + Ω2x2 − 4

x2(x2 − 1)2
f1 +

2iΩx

(x2 − 1)3
f0

+
4F3

x3(x2 − 1)
,

d2f2

dx2
= −2(2x2 − 1)

x(x2 − 1)

df2

dx
− Ω2x2 − x4 − 3εx2 − 2 + 3εx4 + 3x2

x2(x2 − 1)2
f2,

d2F3

dx2
= − 2x

x2 − 1

dF3

dx
− Ω2x2 + 3εx4 + 5x2 − 3x4 − 3εx2 − 2

x2(x2 − 1)2
F3 − 2

x
f1. (2.48)
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To this set one must add the Lorenz gauge condition, which now reads

Ωf0 = i(x2 − 1)2df1

dx
+

2i(x2 − 1)

x2
[F3 + f1x(2x2 − 1)]. (2.49)

Once more, the detailed discussion of this case can be performed repeating

exactly the same steps done in the general case.



Chapter 3

The tensor wave equation

3.1 Metric perturbations in de Sitter space-

time

One of the longstanding problems of modern gravitational physics is the

detection of gravitational waves, for which the standard theoretical analy-

sis relies upon the split of the space-time metric gab into “background plus

perturbations”, i.e.

gab = γab + hab (3.1)

where γab is the background Lorentzian metric, often taken to be of the

Minkowski form ηab, while the symmetric tensor field hab describes pertur-

bations about γab. However, the background γab need not be Minkowskian

in several cases of physical interest. As a consequence, we are therefore aim-

ing to investigate in more detail what happens if the background space-time

(M,γab) has a non-vanishing Riemann curvature. In particular, we perform

an analysis of gravitational waves on a de Sitter space-time.

It is straightforward to show that, in a covariant formulation, the supple-

mentary condition for gravitational waves can be described by a functional

Φa acting on the space of symmetric rank-two tensors hab occurring in Eq.

(3.1). For any choice of Φa, one gets a different realization of the invertible

operator P cd
ab (Lichnerowicz operator) on metric perturbations. The basic

equations of the theory read therefore as

P cd
ab hcd = 0,

Φa(h) = 0, (3.2)

37
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where the Lichnerowicz operator P cd
ab results from the expansion of the

Einstein-Hilbert action to quadratic order in the metric perturbations, sub-

ject to Φa(h) = 0.

Consider de Sitter metric in standard spherical coordinates (1.11). It sat-

isfies the vacuum Einstein equations with non-vanishing cosmological con-

stant Λ such that H2 = Λ
3
. Moreover, the time-like unit normal vector fields

n to the t = constant hypersurfaces,

n = ∂t, (3.3)

form a geodesic and irrotational congruence. The 3-metric induced on the

t = constant hypersurfaces turns out to be conformally flat and the mixed

form of the space-time Ricci tensor is simply given by

R b
a = 3H2δa

b. (3.4)

The aim of the present chapter consists in studying the invertible wave oper-

ator P cd
ab on metric perturbations. On considering the DeWitt supermetric

Eabcd ≡ γa(c γd)b − 1

2
γabγcd, (3.5)

the de Donder gauge in Eq. (3.5) can be re-expressed in the form

Φa(h) = Ea
bcd∇bhcd, (3.6)

and the resulting Lichnerowicz operator on metric perturbations, obtained

by expansion of the Einstein–Hilbert action to quadratic order in hab, subject

to Φa(h) = 0, reads as (see [35], [36], [37] and Appendix C)

P cd
ab ≡ E cd

ab (− + R)− 2E lf
ab Rc

lhfγ
dh − E ld

ab R c
l − E cl

ab R d
l . (3.7)

A wave equation for metric perturbations is therefore given by

Pab
cdhcd = 0. (3.8)

In de Sitter space-time the Lichnerowicz operator becomes [37]

Pab
cd = Eab

cd

(
− +

2

3
R

)
+

R

6
γabγ

cd, (3.9)

so that the wave equation then becomes

0 = Pab
cdhcd =

(
− +

2

3
R

)
h̄ab +

R

6
γabh, (3.10)
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or (
− +

2

3
R

)
h̄ab − R

6
γabh̄ = 0, (3.11)

implying also (
− +

2

3
R

)
h̄− 2

3
Rh̄ = − h̄ = 0, (3.12)

after contraction with γab.

3.1.1 Even metric perturbations

Metric perturbations of even parity can be written in the form

h00 = fe−i(ωt−mφ)H0(r)Y (θ),

h01 = e−i(ωt−mφ)H1(r)Y (θ),

h02 = e−i(ωt−mφ)h0(r)
dY

dθ
,

h03 = ime−i(ωt−mφ)h0(r)Y (θ),

h11 =
1

f
e−i(ωt−mφ)H2(r)Y (θ),

h12 = e−i(ωt−mφ)h1(r)
dY

dθ
,

h13 = ime−i(ωt−mφ)h1(r)Y (θ),

h22 = r2e−i(ωt−mφ)

[
K(r)Y (θ) + G(r)

d2Y

dθ2

]
,

h23 = imr2G(r)e−i(ωt−mφ)

[
dY

dθ
− cot θY (θ)

]
,

h33 = r2e−i(ωt−mφ)
{
K(r) sin2 θY (θ)

+G(r)

[
−m2Y (θ) + sin θ cos θ

dY

dθ

]}
(3.13)

and metric perturbations of odd parity are instead found to vanish identically.

It is convenient to introduce the notation

K(r) = W1(r), H0(r) = W2(r), H1(r) = W3(r), H2(r) = W4(r),

G(r) = W5(r), h0(r) = H−1W6(r), h1(r) = H−1W7(r), (3.14)

in place of standard Regge-Wheeler-Zerilli notation for metric perturbation

quantities. The wave equation (3.8), using the relations (3.13), (3.14) and
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(2.10), leads to the following system of coupled differential equations:

d2W1

dr2
=

2(1− 2f)

rf

dW1

dr
− 1

r2f 2
[ω2r2 − Lf − 2f(2− f)]W1 − 2L

r2
W5

− 2

r2f
W4 +

2H2

f
W2,

d2W2

dr2
=

2

rf
(2− 3f)

dW2

dr
− 1

r2f 2
[ω2r2 + 2(1− f)(1− 4f)− fL]W2

+
2H2r

f

dW4

dr
− 4H2r

f

dW1

dr
+

2H2rL

f

dW5

dr

+
2H2L

f
W5 − 4HL

rf
W7 − 2H2(1− 6f)

f 2
W4 − 4H2

f
W1,

d2W3

dr2
=

2

rf
(1− 2f)

dW3

dr
− 1

r2f 2
[ω2r2 − Lf − 2(2− f 2)]W3

− 2L

fr3

1

H
W6 − 2iωrH2

f 2
(W2 + W4),

d2W4

dr2
=

2(2− 3f)

rf

dW4

dr
− 1

r2f 2
[ω2r2 − Lf − 10 + 6f + 12(1− f)2]W4

+
2H2r

f

dW2

dr
− 4H2r

f

dW1

dr
+

2rLH2

f

dW5

dr

+
2L(3− 2f)

r2f
W5 − 4L

r3f

1

H
W7 − 4(3− 2f)

r2f
W1 − 2H2(1− 2f)

f 2
W2,

d2W5

dr2
=

2

rf
(1− 2f)

dW5

dr
− 1

r2f 2
[ω2r2 − Lf + 2f(3f − 2)]W5 − 4W7

Hr3
,

d2W6

dr2
= − 1

r2f 2
[ω2r2 − Lf − 4f(1− f)]W6 − 2iωrH2

f
W7 − 2H

r
W3,

d2W7

dr2
=

6rH2

f

dW7

dr
− 1

r2f 2
[ω2r2 − Lf + 10(1− f)2 − 6 + 2f ]W7

+
H

rf 2
[2− (1 + f)L]W5 − H(1 + f)

rf 2
W4 +

2H

rf
W1 +

H3r

f 2
W2.(3.15)
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To these equations one should add the de Donder gauge components

dW3

dr
=

iωL

2f
W5 +

L

Hr2f
W6 − iω

2f
W4 − iω

f

(
W1 +

W2

2

)
+

2(1− 2f)

rf
W3,

dW5

dr
=

2(1− 3f)

rf
W4 − dW2

dr
+ 2

dW1

dr
− L

dW5

dr
− 2L

r
W5

+
2L

Hr2
W7 +

4

r
W1 +

2H2r

f
W2 − 2iω

f
W3,

dW7

dr
=

2(1− 2f)

rf
W7 +

H(L− 2)

2f
W5 − iω

f 2
W6 +

H

2f
(W4 −W2). (3.16)

Solving these two systems of coupled differential equations is clearly a hard

task. A first progress can be done introducing a dimensionless radial variable

x = Hr, (3.17)

as well as a dimensionless frequency parameter

Ω = H−1ω. (3.18)

A second step consists in reducing the set of second order differential equa-

tions to the normal form, i.e. considering the following rescalings:

(W1,W2,W3,W4,W5) =
1

x
√

1− x2
(f1, f2, if3, f4, f5) ,

(W6,W7) =

(
if6,

f7

1− x2

)
. (3.19)

It turns out that the system (3.15) can be cast in the form

d2fi

dx2
= Ai

jfj, (3.20)

where first order derivatives have been eliminated and with the only non-
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vanishing coefficients listed below

A1
1 = −x2Ω2 + 3x2 + Lx2 − 2− L

x2(1− x2)2
, A1

2 =
2

1− x2
, A1

4 = − 2

x2(1− x2)
,

A1
5 = −2L

x2
.

A2
1 =

4

1− x2
, A2

2 = −2x4 + x2L− L + x2Ω2 − 3x2

x2(1− x2)2
, A2

3 =
4Ωx

(1− x2)2
,

A2
4 =

2

(1− x2)2
, A2

5 = − 2L

1− x2
.

A3
2 = − 2Ωx

(1− x2)2
, A3

3 = −−x2 + Ω2x2 + x2L− L− 2

x2(1− x2)2
, A3

4 = − 2Ωx

(1− x2)2
,

A3
6 = − 2L

x2(1− x2)1/2
.

A4
1 = − 4

x2(1− x2)
, A4

2 =
2

(1− x2)2
, A4

3 =
4Ωx

(1− x2)2
,

A4
4 = −−2x4 + x2L + x2Ω2 + 5x2 − 4− L

x2(1− x2)2
, A4

5 =
2L

x2(1− x2)
,

A4
7 = − 4L

x2(1− x2)1/2
.

A5
5 = −4x4 + x2L− 5x2 + x2Ω2 + 2− L

x2(1− x2)2
, A5

7 = − 4

x2(1− x2)1/2
.

A6
3 = − 2

x2(1− x2)1/2
, A6

6 = −4x4 − L + x2Ω2 + x2L− 4x2

x2(1− x2)2
,

A6
7 = − 2xΩ

(1− x2)2
.

A7
1 =

2

x2(1− x2)1/2
, A7

4 = − 2

x2(1− x2)1/2
, A7

5 = − 2(L− 1)

x2(1− x2)1/2
,

A7
6 =

2xΩ

(1− x2)2
, A7

7 = −−L + x2L + 4x2 + x2Ω2 − 4

x2(1− x2)2
. (3.21)

The rescaling (3.19) also implies for the gauge equation the following form:

df3

dx
= B3

jfj,

df5

dx
= B5

jfj +
2

L

df1

dx
− 1

L

df2

dx
− 1

L

df4

dx
,

df7

dx
= B7

jfj, (3.22)
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with the only non-vanishing coefficients listed below

B3
1 = − Ω

(1− x2)
, B3

2 = − Ω

2(1− x2)
, B3

3 =
2x2 − 1

x(1− x2)
,

B3
4 = − Ω

2(1− x2)
, B3

5 =
ΩL

2(1− x2)
, B3

6 =
L

x(1− x2)1/2
.

B5
1 =

2

Lx(1− x2)
, B5

2 =
1

Lx(1− x2)
, B5

3 =
2Ω

L(1− x2)
,

B5
4 =

4x2 − 3

xL(1− x2)
, B5

5 = − 1

x(1− x2)
, B5

7 =
2

x(1− x2)1/2
.

B7
2 = − 1

2x(1− x2)1/2
, B7

4 =
1

2x(1− x2)1/2
, B7

5 =
L− 2

2x(1− x2)1/2
,

B7
6 =

Ω

(1− x2)
, B7

7 = −2

x
. (3.23)

By differentiating Eqs. (3.22) and using into the new system Eqs. (3.20)

as well as Eqs. (3.22), gives a new system of first order equations

df2

dx
= B2

jfj + C2
df1

dx
+ D2f1,

df4

dx
= B4

jfj + C4
df1

dx
+ D4f1,

df6

dx
= B6

jfj + C6
df1

dx
+ D6f1 . (3.24)

We list here the non-vanishing coefficients of this system. It is convenient to

introduce the quantity

A = 2x2L− 2x2 + 2x2Ω2 + 2− L . (3.25)

We have then

B2
2 = − 1

x(1− x2)A
(4x4L− 2 + x4Ω2 + 3x2 − 2x2Ω2 − x4 − Ω2x2L + L− 5x2L),

B2
3 =

2Ω

(1− x2)A
(2 + 2x2Ω2 + 2x2L− L + 6x4 − 5x2),

B2
4 =

1

x(1− x2)A
(−4x2L + 5x4Ω2 + 4x4L− 2− 9x4 + 11x2 + L),

B2
5 = − xL

(1− x2)2A
(−2x2Ω2 + Ω4x2 − 3− 3x4 + 6x2 + 3x4Ω2),

B2
6 = −2ΩLx2(1 + Ω2)

(1− x2)3/2A
,

B2
7 =

6Lx(1− x2)(1− 2x2)

(1− x2)3/2A
. (3.26)
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B4
2 =

1

x(1− x2)A
(2x2L + x2 + L2 − 2L− x2L2 − x4 − Ω2x2L + x4L + x4Ω2),

B4
3 = − 6x2Ω

(1− x2)A
,

B4
4 = − 1

x(1− x2)A
(−3x2 − 2L− x4 + x4Ω2 + x4L + x2L + 2x2Ω2 + 4),

B4
5 =

L

x(1− x2)2A
(−4 + 9x2 − 2x2Ω2 − 6x4 − 5x2L + 2L + 4x4Ω2 + 4x4L

+ x4Ω2L + Ω4x4 − x6Ω2 − x6L− Ω2x2L + x6),

B4
6 =

2ΩL

(1− x2)3/2A
(−x2 + x2L + x2Ω2 + 2− L),

B4
7 =

6xL

(1− x2)1/2A
. (3.27)

B6
2 =

Ω

(1− x2)1/2A
(3x2 − 2 + L),

B6
3 =

1

Lx(1− x2)1/2A
(−L2 + 2L + 2x2L2 − 8x2L + 2Ω2x2L + 12x4L− 12x4 + 12x2),

B6
4 =

Ω

L(1− x2)1/2A
(2L + x2L− 4 + 4x2),

B6
5 = − Ω

(1− x2)3/2A
(−x2L− 2x2 + 3x4L− L + 2 + Ω2x2L),

B6
6 = − 2x

(1− x2)A
(−L + 2 + 2x2L + 2x2Ω2 − 2x2 − 2Ω2 + Ω2L),

B6
7 = − Ω

(1− x2)A
(−L + 12x4 + 2− 14x2 + 2x2Ω2 + 2x2L). (3.28)

C2 =
(2x2 − 1)(L− 2)

A
, C4 = −(L− 2)

A
,

C6 = −2(L− 2)Ωx(1− x2)1/2

LA
. (3.29)
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D2 =
x

(1− x2)2A
(2x4 − 2x2 + 2Ω2 − 4x4L + 7x2L− 6x2Ω2 + Ω2x2L

−Ω2L + 6x4Ω2 + 2Ω4x2 − 3L),

D4 = − 1

x(1− x2)2A
(−4 + 2x6 + 8x2 − 6x4 − x2L− 2x2Ω2 + 3x4L− 2x6Ω2

+ 6x4Ω2 + 2Ω4x4 − 3Ω2x2L− 2x2L2 + L2 + 3x4Ω2L + x4L2 − 2x6L),

D6 =
Ω

L(1− x2)3/2A
(2Ω2x2L + 10x4L + 2L− 10x2L + x2L2

−L2 − 8x4 + 8x2). (3.30)

The final set of first order equations is then the union of Eqs. (3.22) and

(3.24), implying for Eqs. (3.22) the final form

df3

dx
= B3

jfj,

df5

dx
= B̄5

jfj + C5
df1

dx
+ D5f1,

df7

dx
= B7

jfj, (3.31)

where

B̄5
2 = −3x2 + L− 2

xA
,

B̄5
3 =

12Ωx2

LA
,

B̄5
4 = −x(5L + 4Ω2)

LA
,

B̄5
5 = − 1

x(1− x2)A
(−x2L + 4Ω2x4 − 2 + x4L + 6x2 − Ω2x2L− 4x4 + L),

B̄5
6 = − 1

Lx(1− x2)3/2A
(−4Ωx3L + 4LΩx− 2L2Ωx + 2L2Ωx3),

B̄5
7 =

2

x(1− x2)1/2A
(6x4 + 2x2Ω2 + 2x2L− 8x2 − L + 2), (3.32)

C5 =
2x2(2Ω2 + L)

LA
(3.33)

and

D5 = − 1

xL(1− x2)A
(2 Ω2x2L + x2L2 − 8x4Ω2 + 2L− 6x2L + 2x4L− L2).

(3.34)
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Figure 3.1: Numerical solutions for f1(x) with f1(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.

Such a first-order set of equations, (3.24) and (3.31), with a second-order

equation for f1, that is

d2f1

dx2
=

1

x2(x2 − 1)2
{[L + 2− (Ω2 + L + 3)x2]f1 − 2x2(x2 − 1)f2

+2(x2 − 1)f4 − 2L(x2 − 1)2f5}, (3.35)

once used to replace derivatives into the system (3.20), implies that the latter

system is identically satisfied.

At this stage, a numerical analysis of solutions can be performed easily,

using the set of equations (3.24),(3.31) and (3.35).

3.2 Plot of the solutions

We plot the solutions f1(x) − f7(x), beginning with fi(0.1) = 1, where i =

1, ..., 7, and f ′1(0.1) = 10. Figures from (3.1) to (3.7) describe the solutions

for various values of l and Ω. Figures from (3.8) to (3.14) describe the

solutions for various values of l and Ω, when fi(0.1) = 1 with i = 1, ..., 7, and

f ′1(0.1) = 100.

As far as we can see, all solutions blow up (as the electromagnetic waves

in Chapter 2) at the event horizon, corresponding to x = 1, since there are

no static solutions of the wave equation which are regular inside and on the

event horizon other than the constant one [34].
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Figure 3.2: Numerical solutions for f2(x) with f2(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.3: Numerical solutions for f3(x) with f3(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.4: Numerical solutions for f4(x) with f4(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.5: Numerical solutions for f5(x) with f5(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.6: Numerical solutions for f6(x) with f6(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.7: Numerical solutions for f7(x) with f7(0.1) = 1, f ′1(0.1) = 10,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.8: Numerical solutions for f1(x) with f1(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.9: Numerical solutions for f2(x) with f2(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.10: Numerical solutions for f3(x) with f3(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.11: Numerical solutions for f4(x) with f4(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.12: Numerical solutions for f5(x) with f5(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.13: Numerical solutions for f6(x) with f6(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Figure 3.14: Numerical solutions for f7(x) with f7(0.1) = 1, f ′1(0.1) = 100,

l = 1, . . . , 7 and with Ω = 5 (left figure) and Ω = 10 (right figure). Increasing

values of l correspond to more peaked curves on the right part of the plots.
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Chapter 4

Exact solutions in a de Sitter

background

4.1 Metric perturbations using the Regge-

Wheeler gauge

In Chapter 3, we have used the Lichnerowicz operator to derive the cou-

pled system of differential equations for metric perturbations. However, it is

possible to proceed in a different way. One considers the vacuum Einstein

equations

Rab − 1

2
Rgab + Λgab = 0. (4.1)

If one introduces gab = γab + εhab, where ε is a parameter which controls

the perturbation, one has

G0
ab + εG1

ab + Λ(γab + εhab) = 0, (4.2)

where G0
ab is the Einstein tensor with respect to the background γab and G1

ab

takes the form

G1
ab = R1

ab −
1

2
(γabR

1 + habR
0), (4.3)

where R0 is the scalar curvature with respect to the metric γab, whereas R1
ab

and R1 are the Ricci tensor and the scalar curvature valuated to first-order

in the metric perturbation hab. Thus, one has

G0
ab + Λγab + ε(G1

ab + Λhab) = 0 (4.4)
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and, since the background metric γab satisfies the vacuum Einstein equations,

we must solve only the following equations:

R1
ab −

1

2
(γabR

1 + habR
0) + Λhab = 0. (4.5)

4.1.1 Regge-Wheeler gauge

Solving this system of coupled differential equations is clearly a hard task.

However, we can introduce the Regge-Wheeler gauge [38]. With the notation

used in (3.13), one has

H0(r) = W1(r), H1(r) = W2(r), H2(r) = W3(r),

K(r) = W4(r), G(r) = 0, h0(r) = 0, h1(r) = 0. (4.6)

Thus, on using the relations (2.10), (3.13), (3.17), (3.18) and (4.6), the

wave equation (4.5) leads to the following system of differential equations:

dW1(x)

dx
=

−2x4 + (L− 4) x2 + 2− L

2x3(x2 − 1)
W1(x) +

ı Ω

x2(x2 − 1)
W2(x)

+
(2− L− 2 Ω2) x2 − 2 + L

2x3(x2 − 1)
W4(x) (4.7)

dW2(x)

dx
=

ı Ω

x2 − 1
W1(x)− 2x

x2 − 1
W2(x) +

ı Ω

x2 − 1
W4(x) (4.8)

dW4(x)

dx
=

W1(x)

x
+

ı L

2 Ωx2
W2(x) +

W4(x)

x(x2 − 1)
(4.9)

W1(x) = W3(x) (4.10)

0 =
2− L

2x3
W1(x) +

ı(L + 2 Ω2)

2 Ωx2
W2(x)

+
(L + 2 Ω2) x2 + 2− L

2x3(x2 − 1)
W4(x) (4.11)

At this stage, we can solve this system exactly in terms of the Heun

general functions [20]. In fact, if we use the equation (4.11), we can isolate

W1(x) and, by using the equations (4.9) and (4.10), we obtain a second-order

differential equation for W4(x), that is

d2W4(x)

dx2
+ A(x)

dW4(x)

dx
+ B(x)W4(x) = 0 (4.12)
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where A(x) and B(x) take this form

A(x) =
4(L + 2 Ω2)x4 + 2L(L− 2)x2 − L(L− 2)

x(x2 − 1)[2(L + 2 Ω2)x2 + L(L− 2)]

B(x) =
2 Ω2(L + 2 Ω2)x4 + L(L− 2)(L + Ω2)x2 − L2(L− 2)

x2(x2 − 1)2[2(L + 2 Ω2)x2 + L(L− 2)]
(4.13)

Eventually, we have

W4(x) = (x2 − 1)
i
2
Ω[C1x

−1−lHeunG(a1, q1, α1, β1, γ1, δ1, x
2)

+ C2x
lHeunG(a2, q2, α2, β2, γ2, δ2, x

2)] (4.14)

where

a1 =
l(2 + l)(1− l2)

2(2 Ω2 + l2 + l)
,

q1 =
(l − iΩ)(l + 2)(l + 1)(iΩl2 − iΩl + 4iΩ + 3l + 2l2 − l3)

8(2 Ω2 + l2 + l)
,

α1 =
1

2
(iΩ− l),

β1 =
1

2
(iΩ− l − 1),

γ1 =
1

2
− l,

δ1 = iΩ + 1, (4.15)

and

a2 =
l(2 + l)(1− l2)

2(2 Ω2 + l2 + l)
,

q2 =
l(1− l)(1 + l + iΩ)(iΩl2 + 3iΩl + 6iΩ + 4l + 5l2 + l3)

8(2 Ω2 + l2 + l)
,

α2 =
1

2
(iΩ + l),

β2 =
1

2
(iΩ + l + 1),

γ2 =
3

2
+ l,

δ2 = iΩ + 1. (4.16)
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The decoupling technique and analytic formulae are completely original

[20]. However, other powerful techniques are available for solving a tensor

wave equation in curved space-time. The interested reader is referred, for

example, to Appendix D.



Chapter 5

Conclusions

Gravitational waves are be considered as metric perturbations about a curved

background, rather than the flat Minkowski metric, since several situations

of physical interest can be discussed by this generalization.

In Chapter 1, we have seen that, in this case, when the de Donder gauge

is imposed, its preservation under infinitesimal space-time diffeomorphisms

is guaranteed if and only if the associated covector is ruled by a second-order

hyperbolic operator and since in such a wave equation, the Ricci term has

opposite sign with respect to the wave equation for Maxwell theory (in the

Lorenz gauge), it is possible to relate the solutions of the two problems [24].

In Chapter 2, we have thus completely succeeded in solving the homo-

geneous vector wave equation for Maxwell theory in the Lorenz gauge when

a de Sitter spacetime is considered. One component of the vector field is

expressed, in its radial part, through the solution of a fourth-order ordinary

differential equation obeying given initial conditions. The other components

of the vector field are then found by acting with lower-order differential oper-

ators on the solution of the fourth-order equation. The whole four-vector po-

tential is eventually expressed through hypergeometric functions and spher-

ical harmonics. The decoupling technique, analytic formulae and plots are

completely original [19].

In Chapter 3, we have extended this method to the wave equation of

metric perturbations in the de Sitter space-time and we have written the

Lichnerowicz operator P cd
ab which results from the expansion of the action

functional to quadratic order in the metric perturbations.
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The basic equations of the theory read therefore as

P cd
ab hcd = 0,

Φa(h) = 0,

where Phia is the supplementary condition for gravitational waves. Eventu-

ally, a numerical analysis of solutions is be performed.

In Chapter 4, we have solved explicitly the Einstein equations for metric

perturbations on a de Sitter background. Using the Regge-Wheeler gauge,

the coupled system of differential equations to first-order in the metric per-

turbation hab is be solved in terms of the Heun general functions [20].
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Appendix A

Bivectors and biscalars

In Eq. (1.58), ga
c′ is the geodesic parallel displacement bivector (in general,

bitensors behave as a tensor both at x and at x′) which effects parallel dis-

placement of vectors along the geodesic from x′ to x. In general, it is defined

by the differential equations

σ;b ga
c′;b = σ;b′ ga

c′;b′ = 0, (A.1)

jointly with the coincidence limit

lim
x′→x

ga
c′ =

[
ga

c′

]
= δa

c. (A.2)

The bivector ga
c′ , when acting on a vector Bc′ at x′, gives therefore the vector

B
a

which is obtained by parallel transport of Bc′ to x along the geodesic

connecting x and x′, i.e.

B
a

= ga
c′ Bc′ . (A.3)

In Eq. (1.59), 4(x, x′) is a biscalar built from the Van Vleck–Morette

determinant

D(x, x′) ≡ det(σ;ab′) (A.4)

according to

4(x, x′) ≡ 1√
−γ(x)

D(x, x′)
1√
−γ(x′)

. (A.5)

The biscalar 4(x, x′) has unit coincidence limit: [4] = 1; as a function

of x (resp. x′), it becomes infinite on any caustic formed by the geodesics

emanating from x′ (resp. x). When 4 diverges in this way, x and x′ are said

to be conjugate points [39].
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Appendix B

Derivatives of f0

The higher-order derivatives of f0 in Chapter 2 get increasingly cumbersome,

but for completeness we write hereafter the result for f ′′0 (x), i.e.

d2

dx2
f0(x) = C3

{
4a1(a1 + 1)b1(b1 + 1)

d1(d1 + 1)
xl+1(1− x2)−

i
2
ΩF (a1 + 2, b1 + 2; d1 + 2; x2)

+ xl−1(1− x2)−
i
2
Ω−1 2a1b1

d1

x

× [(2l + 1)(1− x2) + 2iΩx2]F (a1 + 1, b1 + 1; d1 + 1; x2)

+ xl−2(1− x2)−
i
2
Ω−2

[
l(l − 1)(x2 − 1)2 − iΩ

2
(x2 − 1)(lx + 2(l + 1)x2)

+ (2iΩ− Ω2)x4

]
F (a1, b1; d1; x

2)

}

+

{
C3 → C4, a1 → a1 + 1, b1 → b1 − 1

}
. (B.1)
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Appendix C

Lichnerowicz operator

The Lichnerowicz operator on metric perturbations is obtained by expansion

of the Einstein-Hilbert action to quadratic order, i.e.

δ2S

δgµνδgρσ
δgρσ = 0, (C.1)

where

SEH =
1

16π

∫

M

d4x
√

g R (C.2)

and g = −det(gµν). The first functional derivative of the action is

δS

δgµν
=

∫
d4x

δ
√

g

δgµν
R +

∫
d4x

√
g

δgρσ

δgµν
Rρσ +

∫
d4x

√
g gρσ

δRρσ

δgµν
, (C.3)

where the first two integrals can be written as
∫

d4x
δ
√

g

δgµν
R +

∫
d4x

√
g

δgρσ

δgµν
Rρσ =

∫
d4x

√
g

[
Rµν − 1

2
gµνR

]
. (C.4)

Thus, the first functional derivative provides the vacuum Einstein equa-

tions. In fact, the integrand of the third integral of (C.3) is a total derivative,

that is

gρσ
δRρσ

δgµν
=

1

2
∇ρ[δ

ρ
µ∇νδ(x, x′) + δρ

ν∇µδ(x, x′)− gµν∇ρδ(x, x′)]. (C.5)

At this stage, it’s possible to write the second functional derivative of the

Einstein-Hilbert action, i.e.

δ2S

δgγεδgµν
=

∫
d4x

δ2√g

δgγεδgµν
R +

∫
d4x

δ
√

g

δgµν

δgρσ

δgγε
Rρσ +

∫
d4x

δ
√

g

δgµν
gρσ

δRρσ

δgγε

+

∫
d4x

δ
√

g

δgγε

δgρσ

δgµν
Rρσ +

∫
d4x

√
g

δ2gρσ

δgγεδgµν
Rρσ +

∫
d4x

√
g

δgρσ

δgµν

δRρσ

δgγε
(C.6)
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and if we note that

δ

δgγε

[
−1

2

√
g gµν

]
=

1

4

√
g gγεgµν − 1

4

√
g(gµγgνε + gµεgνγ), (C.7)

one has the expression for the first integral, i.e.

δ2√g

δgγεδgµν
R =

1

4

√
g(gµγgνε + gµεgνγ − gγεgµν)R, (C.8)

moreover, one has

δ
√

g

δgµν

δgρσ

δgγε
Rρσ = −1

4

√
g gµν(gργgσε + gρεgσγ)R

ρσ = −1

2

√
g gµνRγε (C.9)

and similarly, the fourth integral is

δ
√

g

δgγε

δgρσ

δgµν
Rρσ = −1

4

√
g gγε(gρµgσν + gρνgσµ)Rρσ = −1

2

√
g gγεRµν . (C.10)

At this stage, we note that the variation of the Ricci tensor respect to

the metric can be written as

δRρσ

δgγε
=

1

4
(δα

γ δσ
ε + δα

ε δσ
γ )∇α∇ρ +

1

4
(δα

γ δρ
ε + δα

ε δρ
γ)∇α∇σ

− 1

4
(δρ

γδ
σ
ε + δρ

εδ
σ
γ )∇α∇α − 1

2
gγε∇ρ∇σ. (C.11)

Thus, the third integral is

δ
√

g

δgµν
gρσ

δRρσ

δgγε
= −1

2

√
g

{
1

2
gµν(∇γ∇ε +∇ε∇γ)− gµνgγε∇α∇α

}
(C.12)

and for the fifth integral, if we note that

δ2gρσ

δgγεδgµν
=

1

2
gσν(gργgµε + gρεgµγ) +

1

2
gρµ(gσγgνε + gσεgνγ)

+
1

2
gσµ(gργgνε + gρεgνγ) +

1

2
gρν(gσγgµε + gσεgµγ), (C.13)

one has the expression

√
g

δ2gρσ

δgγεδgµν
Rρσ =

1

2

√
g [gµεRνγ + gµγRεν + gνεRγµ + gνγRµε]. (C.14)
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Moreover, for the last integral, one has

√
g

δgρσ

δgµν

δRρσ

δgγε
=

1

2

√
g (gµρgσν + gρνgσµ)

δRρσ

δgγε

=
1

4

√
g [gεµ∇γ∇ν + gνγ∇ε∇µ + gεν∇γ∇µ + gγµ∇ε∇ν

− (gγµgεν + gεµgγν)∇α∇α − gγε(∇µ∇ν +∇ν∇µ)]. (C.15)

At this point, adding the terms obtained, one has the following operator:

δ2S

δgγεδgµν
= Pµνγε = −1

4

√
g [(gγµgεν + gεµgγν − 2gµνgγε)∇α∇α

+ gµν(∇γ∇ε +∇ε∇γ) + gγε(∇µ∇ν +∇ν∇µ)

− gεµ∇γ∇ν − gνγ∇ε∇µ − gεν∇γ∇µ − gγµ∇ε∇ν

+ 2(gµνRγε + gγεRµν − gµεRνγ − gµγRεν − gνεRγµ − gνγRµε)

− (gµγgνε + gµεgνγ − gγεgµν)R]. (C.16)

However, Pµνγε is a singular operator. One has a supplementary condition

for the δgµν , that is

P µν
α δgµν = 0. (C.17)

Thus, using the supermetric Gµνρσ, one has

P µνα = −1

2
Gµνρσ(λ) Q α

ρσ , (C.18)

with

Q α
ρσ = −(δα

ρ∇σ + δα
σ∇ρ) (C.19)

and

Gµνρσ(λ) =
1

2
(gµρgνσ + gµσgνρ + λgµνgρσ), (C.20)

where, however, not all the values of λ ∈ R are acceptable. In fact, the

supermetric Gµνρσ(λ) must be invertible, that is

Gµνρσ(λ) Gρσετ (f(λ)) =
1

2
(δµ

τ δν
ε + δµ

ε δν
τ ), (C.21)

with

Gρσετ (f(λ)) =
1

2
[gρεgστ + gρτgσε + f(λ)gρσgτε]. (C.22)

Thus, using (C.20) and (C.22) into (C.21), one has

Gµνρσ(λ) Gρσετ (f(λ)) =
1

2
(δµ

τ δν
ε + δµ

ε δν
τ ) + gµνgετ

[
λ

2
+

f(λ)

2
+

nλf(λ)

4

]
,

(C.23)
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where n is the dimension of the space-time. Now, if we want that (C.23) is

equal to (C.21), we must impose that

[
λ

2
+

f(λ)

2
+

nλf(λ)

4

]
= 0. (C.24)

Thus, solving this equation for f(λ), one has

f(λ) = − 2λ

2 + nλ
, (C.25)

which is the coefficient of the inverse supermetric. Eventually, we note that

the supermetric is invertible if

λ 6= − 2

n
. (C.26)

At this stage, using (C.19) and (C.20), one has

−1

2
Gµνρσ(λ)Q α

ρσ =
1

4
[gµρgνσδα

ρ∇σ + gµσgνρδα
ρ∇σ + λgµνgρσδα

ρ∇σ]

+
1

4
[gµρgνσδα

σ∇ρ + gµσgνρδα
σ∇ρ + λgµνgρσδα

σ∇ρ](C.27)

and, eventually, the supplementary condition becomes

P µνα(λ) =
1

2
[gµα∇ν + gνα∇µ + λgµν∇α]. (C.28)

Now, we compute the supplementary condition applied on the metric

perturbations, i.e.

Φα(hµν , λ) = P µνα(λ)hµν , (C.29)

where hµν = δgµν . Thus, using (C.28), Φα becomes

Φα(hµν , λ) =
1

2
[gµα∇νhµν + gνα∇µhµν + λgµν∇αhµν ]

=
1

2
[∇νhα

ν +∇µhα
µ + λ∇αgµνhµν ] =

1

2
∇µ[2hα

µ + λgα
µgρσhρσ]

= ∇µ

(
hµα +

λ

2
gµαgρσhρσ

)
(C.30)

where if we put λ = −1, one has the de Donder’s gauge.

At this stage, we can to compute the invertible operator Fµνγε, that is

Fµνγε = Pµνγε − P α
µν gαβP β

γε . (C.31)
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Thus, if we note that

P α
µν =

1

2
(δα

µ∇ν + δα
ν∇µ + λgµν∇α), (C.32)

one has

P α
µν gαβP β

γε = −1

4
(gµγ∇ν∇ε + gµε∇ν∇γ + gνγ∇µ∇ε + gνε∇µ∇γ)

− 1

4
λgγε(∇ν∇µ +∇µ∇ν)− 1

4
λgµν(∇γ∇ε +∇ε∇γ)

− 1

4
λ2gµνgγε∇α∇α. (C.33)

Now, using (C.16) and (C.33), the operator Fµνγε becomes

Fµνγε(λ) = −1

4

√
g {[gγµgεν + gεµgγν − (2− λ2)gµνgγε]∇α∇α

+ (1 + λ)gµν(∇γ∇ε +∇ε∇γ) + (1 + λ)gγε(∇µ∇ν +∇ν∇µ)

− gµγ(∇ν∇ε −∇ε∇ν)− gµε(∇ν∇γ −∇γ∇ν)

− gνγ(∇µ∇ε −∇ε∇µ)− gνε(∇µ∇γ −∇γ∇µ)

+ 2(gµνRγε + gγεRµν − gµεRνγ − gµγRεν − gνεRγµ − gνγRµε)

− (gµγgνε + gµεgνγ − gγεgµν)R}. (C.34)

At this stage, we note the following relations:

−gµγ(∇ν∇ε −∇ε∇ν)− gµε(∇ν∇γ −∇γ∇ν)− gνγ(∇µ∇ε −∇ε∇µ)

−gνε(∇µ∇γ −∇γ∇µ) = gτγ(R
τ
µνε + Rτ

νµε) + gµτ (R
τ
γνε + Rτ

ενγ)

+gτε(R
τ
µνγ + Rτ

νµγ) + gντ (R
τ
γµε + Rτ

εµτ ) = 2Rµγνε + 2Rµενγ. (C.35)

Eventually, with λ = −1 and using (C.35), one has

Fµνγε = −1

4

√
g {[gγµgεν + gεµgγν − gµνgγε](∇α∇α −R) + 2Rµγνε + 2Rµενγ

+ 2(gµνRγε + gγεRµν − gµεRνγ − gµγRεν − gνεRγµ − gνγRµε)}.(C.36)
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Appendix D

Wald’s method on a de Sitter

background

Depending on the coordinate system used, there are many ways of viewing

de Sitter space. It is has been studied largely because of the central role

it plays in almost all inflationary scenarios of the early universe. Roughly

speaking, the expansion is driven by a large cosmological constant which

appears due to the energy density of a false vacuum. In this regard the

description of de Sitter space by Robertson-Walker (RW) coordinates has

tended to be the natural choice for most workers because of their obvious

cosmological significance. In this coordinate system, constant time surfaces

appear homogeneous and isotropic.

However, yet another picture of de Sitter space time is provided by static

coordinates. Here homogenity of constant time surfaces is lost but space-

time appears static within a horizon distance, a very different state of affairs

from that prevailing in the RW description. Gal’tsov and Núñez [40] have

studied gravitational field perturbations in a de Sitter background described

by static coordinates. To accomplish this its have employed the technique

of Debye potentials introduced by Wald [41]. This treatment is particularly

attractive because it reduces the problem of solving the sourceless equations

for fields of different spin s to that of solving a single differential equation

for the Debye potentials with free parameter s.

71
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D.1 Wald’s technique for the Debye poten-

tials

Wald has described [41] a remarkable technique for solving field equations.

This technique requires writing the differential equations in two ways, which

are related to obtain a third equation for the so-called Debye potential. The

solution of the original field equations are expressed as operators acting upon

this potential.

Explicitly, Wald’s method takes the field equations as its point of depar-

ture

|s|Eabϕ
b = 4π|s|ja, (D.1)

where s is the spin weight, |s|Eab are field operators, ϕb is the “middle”

potential and |s|ja is the source for the field. Next Teukolsky’s work [42],

which makes use of the Newman-Penrose formalism [43] to express the field

equations, is then incorporated and the field variables ψ are expressed as

operators sMa acting upon the middle potentials

sψ = sMaϕ
a. (D.2)

Wald went on to obtain a second way of writing the field equations

1

ρρ∗ s sMaϕ
a = 4πsτ

a
|s|ja, (D.3)

where ρ is a spinor coefficient, s is a Teukolsky operator, sτ
a is a source

projection operator and the other quantities are defined as in Eqs. (D.1) and

(D.2).

By operating on Eq. (D.1) with sτ
a, it is possible to equate the projected

left-hand side of Eq. (D.1) with that of Eq. (D.3)

sτ
a
|s|Eabϕ

b =
1

ρρ∗ s sMbϕ
b. (D.4)

From here Wald proceeds to the operator identity,

sτ
a
|s|Eab =

1

ρρ∗ s sMb. (D.5)

However, this step needs some justification. For example, in the case

of the scalar function, ∇µϕ = ∂µϕ does not imply the operator identity
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∇µ = ∂µ. The validity of equation Eq. (D.5) has, however, been established

for a wide class of space-time which includes the de Sitter space [44].

The adjoint tilde of the operator identity (D.5) is now taken. By making

use of the fact that the operator |s|Eab is self-adjoint for the fields of physical

interest, we obtain

|s|Eab sτ̃
a = sM̃b s

˜
(̃

1

ρρ∗

)
. (D.6)

If the function sΞ, satisfying

s
˜

(̃
1

ρρ∗

)
−sΞ = 0, (D.7)

is introduced, then on account of Eq. (D.6), sΞ also satisfy the equation

|s|Eab sτ̃
a −sΞ = 0, (D.8)

sΞ is known as the Debye potential. For integer spin fields, the operator |s|Eab

is real, in which case (sτ̃
a −sΞ)∗ also satisfies Eq. (D.8). For the spin 1

2
field,

however, this is not so.

In the integer spin case, we define

sϕ
a(±) =

1

2α
{sτ̃

a −sΞ± (sτ̃
a −sΞ)∗}, (D.9)

where α = 1 for (+) and α = i for (−). So

|s|Eab sϕ
a(±) = 0, (D.10)

that is, the function sϕ
a(±) satisfy the sourceless fields equations (D.1). For

the spin 1
2

field, the solutions are given by (D.9) without taking the complex-

conjugate. Thus, the problem of solving the field equations reduces simply

to solving Eq. (D.7), for the Debye potential.

D.2 Wald’s method in de Sitter space

In a cosmological context it is natural to describe de Sitter space in Robertson-

Walker (flat) coordinates

ds2 = dt2 − e2αt(dr2 + r2dθ2 + r2 sin2 θ dϕ2). (D.11)



74APPENDIX D. WALD’S METHOD ON A DE SITTER BACKGROUND

However, Wald’s method is most directly applied in static coordinates

(τ , χ, θ, ϕ), where formally de Sitter can be treated as a member of the Kerr

family. These are related by

τ = t− 1

2α
ln(1− α2r2e2αt); χ = reαt; θ = θ; ϕ = ϕ. (D.12)

In this coordinates the line element takes the form

ds2 =
∆

χ2
dτ 2 − χ2

∆
dχ2 − χ2(dθ2 + sin2 θ dϕ2), (D.13)

where

∆ = χ2(1− α2χ2) (D.14)

and α is related to the cosmological constant Λ by α2 = Λ
3
. The de Sitter

horizon is given by χ2
+ = α−2.

We now introduce the Kinnersley null tetrad given by

lµ =

(
χ2

∆
, 1, 0, 0

)
,

nµ = − ∆

2χ2

(
−χ2

∆
, 1, 0, 0

)
,

mµ =
1√
2χ

(0, 0, 1, i csc θ) . (D.15)

With respect to this choice of tetrad the nonzero spin coefficients are

ρ = − 1

χ
; µ =

∆

2χ2
ρ; γ = µ +

∆′

4χ2
(D.16)

and

β =
cot θ

2
√

2χ
; α = −β, (D.17)

where the prime represents differentiation whit respect to χ. We notice also

that the Weyl tensor vanishes; thus in the Petrov classification, de Sitter

space is a type N space (a particular case of type D space).

We work with the operators Dp, D+
p , Lq and L+

q , which where introduced

by Chandrasekhar [45] in the black hole context. In the case of de Sitter

space, they are related to the Newman-Penrose operators D, ∆, δ and δ∗, in

the following way

Dp = D + p
∆′

∆
; −∆ρ2

2
D+

p = ∆− 2p
∆′

4χ2
(D.18)
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and

− ρ√
2
L+

q = δ + 2qβ; − ρ√
2
Lq = δ∗ + 2qβ, (D.19)

or, more explicitly,

Dp = ∂χ + p
∆′

∆
+

χ2

∆
∂r,

D+
p = ∂χ + p

∆′

∆
− χ2

∆
∂r,

Lq = ∂θ + q cot θ − i csc θ ∂ϕ,

L+
q = L∗

q. (D.20)

With respect to the adjoint operation,

∇̃µ = −∇µ, (D.21)

so that the adjoint Chandrasekhar operators are

D̃p = −ρ2D−pρ
2,

D̃+
p = −ρ2D+

−pρ
2,

L̃q = −L+
1−q,

L̃+
q = −L1−q. (D.22)

The derivation of the Debye’s potential has been already done for a large

class of type D and type N space-times, which include the de Sitter space as

a particular case of type N space [46], so we give just the results for the field

perturbations in the absence of sources in terms of the corresponding Debye

potential ±sΞ.

For the gravitational case s = ±2, the field perturbations ±2h
µν are given

by

±2h
µν(±) =

1

2α
{±2τ̃

µν
∓2Ξ± c.c.}, (D.23)

where

+2τ̃
µν = lµlν

ρ2

2
L1L2 + l(µm∗ν)

√
2ρ−1L2D0ρ

2

+ m∗µm∗νρD0ρ
−4D0ρ

3,

−2τ̃
µν = nµnν ρ−2

2
L+

1 L+
2 − n(µmν) ∆ρ−3

√
2

L+
2 D+

2 ρ2

+ mµmν ρ∆2

4
D+

2 ρ−4D+
2 ρ3. (D.24)
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For the electromagnetic case s = ±1, the vector potential ±1A
µ is given

by

±1A
µ(±) =

1

2α
{±1τ̃

µ
±1Ξ± c.c.}, (D.25)

where

+1τ̃
µ = −lµ

ρ√
2
L1 −m∗µρ−1D0ρ,

−1τ̃
µ = nµ ρ−1

√
2
L+

1 −mµ ∆ρ−1

2
D+

1 ρ. (D.26)

The Debye potentials for each field satisfy a second-order differential equa-

tion, which leaving the spin projection s as a parameter can be written as a

single master equation, obtained from the Teukolsky equation

s
∗

sΞ = 0, (D.27)

on account of the identity

s ρ̃2 = ρ2 −s
∗, (D.28)

where the Teukolsky operator, s , is given, for s > 0, by

s = ∆D1D
+
s + L+

1−sLs − 2(2s− 1)χ∂r − 2(2s− 1)(s− 1)α2χ2 (D.29)

and, for s < 0, by

s = ∆D+
1+sD0 + L1+sL

+
−s − 2(2s + 1)χ∂r − 2(2s + 1)α2χ2. (D.30)

The explicit form of the operators sτ
a and sMa, needed in these derivations,

are given in [40].
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