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ABSTRACT 
This thesis summarizes a three years scientific research investigation on the design and 

fabrication of porous silicon based optical devices for applications in the field of 

biochemical sensing. Porous silicon is an ideal transducer material due to its sponge-like 

morphology, characterized by a specific surface area up to 500 m2 cm-3, which assures 

an effective interaction with gas and liquid substances. Moreover, porous silicon is a 

low cost material, completely compatible with standard microelectronic processes. 

In this work, different porous silicon structures such as Fabry-Perot interferometer, 

Bragg mirror, optical microcavity, Thue-Morse sequences and optical waveguide have 

been realized and characterized as optical transducers for the monitoring of chemical 

and biological interactions. The selectivity, reversibility and sensitivity of these devices 

as optical sensors have been discussed. 

The porous silicon surface has been modified in order to gain chemical stability, proper 

wettability, and specific features such as biomolecules immobilization. Standard 

chemical functionalizations, but also an innovative pure biological passivation method 

based on selfassembled biofilms of the Hydrophobins proteins, have been successfully 

experimented.  

Some standard micromachining techniques, such as HF wet etching and anodic 

bonding, have been optimized to integrate the porous silicon sensing element into a 

Lab-on-Chip prototype. The integrated devices have been characterized as fast sensors 

of chemical compounds and response times shorter than 100 ms have been 

demonstrated. The Direct-Laser-Writing of the porous silicon surface, as alternative 

process to the photolithographic patterning in the device miniaturization has been also 

exploited. 

Finally, a bottom-up approach in microoptics has been developed by using the silica 

shells of some marine Diatoms, microalgae which show impressive morphological and 

physical analogies with porous silicon. 
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CHAPTER 1  INTRODUCTION 

1.1  Optical Biochemical Sensors 

Fast, simple and cheap sensing of chemical and biological molecules is of great 

significance for environmental monitoring, food safety, and diagnostic applications. In 

recent years, different sensor platforms with remarkable detection properties, based on 

potentiometric, amperometric, magnetic and optical transducers have been developed.  

Among others, photonic sensing devices offer specific features which make them very 

attractive when not unique. Optical measurements are not invasive and can be used in 

harsh environments: they do not require electrical contacts that can cause explosions or 

fire. Opto-instrumentation is immune to electromagnetic interferences so that they are 

highly requested for applications where electrical currents could be harmful such as in 

vivo monitoring inside a patient body. Moreover, optical sensors are generally 

characterized by very short time analysis, compared to other measurements methods, 

and high sensitivity. The optical detection principles are based either on fluorescence-

labelled systems or on direct optical monitoring. Fluorescence detection has been the 

main approach in medical diagnostic, biotechnology and drug discovery for a long time. 

Recently, a new class of optical label-free sensors has been proposed, which uses direct 

optical methods (photoluminescence [1], surface plasmon resonance (SPR) [2, 3], 

reflectivity [4], interference [5]) and nonlabelled natural probes such as DNA sequences 

and proteins.  

Biosensor

Analyte

Signal 
transduction

Red-out

Biosensor

Analyte

Signal 
transduction

Red-out  
Figure 1.1. Scheme of the read-out method for a 
biosensor. The biosensor is constituted by a biological 
recognition element (specific to the target analyte) 
combinated with a physical transducer. The bio-
recognition induces a change on the properties of the 
transducer, measurable in an event such as an electrical 
signal, an optical emission or a mechanical motion. 
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In this case the detection signal is directly originated from probe target binding that 

causes a change in the optical properties of the transducer. In Figure 1.1 a scheme of the 

read-out method for a label-free biosensor is reported. The quality of the sensors 

depends on the sensitive material, the read-out electronics and also the data elaboration 

software. All these functions determine the main features of the sensing platform, i. e. 

the selectivity, the sensitivity and the limit of detection. 

1.2  Porous Silicon Optical Transducers 

The porous silicon (PSi) is an ideal material as optical transducer due to its sponge-like 

morpholgy characterized by a specific surface area of about 500 m2 cm-3 that assures an 

efficient and rapid interaction with the species to detect. It can be simply described as a 

network of air holes in a silicon matrix: the dielectric properties, and in particular the 

refractive index, of a PSi layer depend on the content of voids in the silicon and can be 

calculated by using an Effective Medium Approximation such as the Bruggemann 

model. Several good quality optical structures (Fabry Perot interferometer, Bragg 

mirror, optical microcavity, aperiodic multilayered sequences, optical waveguide) can 

be obtained by means the PSi technology. The fabrication process and the optical 

properties of these structures are described in the Chapter 2.  

The main application of the PSi optical structures is in the field of the biochemical 

sensing. The sensing mechanism is based on the change of the PSi refractive index on 

exposure to the substances to be detected, due to their infiltration or capillary 

condensation in the pores; the consequence of the refractive index variation is a change 

in the reflectivity/transmittivity spectrum of the devices. The first measurement so far 

has been reported by Lin et al. who measured the shift of PSi Fabry-Perot fringes to 

detect the DNA hybridization [6]. Since then, there has been a rapid growth of research 

activities in this area. In Chapter 3 several experiments of biochemical sensing based on 

PSi optical structures are reported. A key step in the fabrication of the PSi biosensor is 

the functionalization of its surface in order to make this material compatible with the 

organic molecules which act as highly specific bioprobe for some target analytes. 

Different techniques of PSi surface chemical modification have been exploited. A 

different way to modify the surface properties of the PSi structures has been 

investigated in Chapter 4: a biological passivation with amphiphilic proteins has been 

used. This technique allows to control, in particular, the wettability of the material with 

very interesting implications in microfluidic systems. 
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1.3  Porous Silicon Micromachining 

Another advange of the PSi is its complete compatibility with the standard integrated 

circuit fabrication process, circumstance which makes it an important material in 

microelectronics applications. It was for the first time investigated as insulating layer in 

1969 by the Nippon Telegraph and Thelephone Public Corporation (NTT) [7] and the 

Sony Corporation [8]. Subsequently, it was widely exploited as sacrificial material in 

micromachining technology to realize, for example, suspended membranes [9] and 

cantilevers [10] on silicon substrate. In Figure 1.2 examples of free-standing Si 

microstructures realized by using PSi technology are shown. In Chapter 5 some 

techniques of PSi micromachining for its integration into a Lab-on-Chip are reported. In 

particular, the Direct-Laser-Writing process is exploited as alternative approach to the 

traditional photolithography, since standard masking material, typically a polymeric 

photoresist, withstands the PSi fabrication process for only few minutes. 

 

 
 
Figure 1.2. SEM images of free-standing structures 
realized by PSi technology [7]. 

 

1.4  Bioinspired Micro‐optical Devices 

The diatoms are unicellular microalgae made of amorphus silica. More than 100000 

species of diatoms have been discovered and classified for the shape, morphology and 

size. One of the most interesting property of these natural structures is the 

morphological similarity with some man-made optical structures such as photonic 

crystals, realized by an expensive and complicated technological approach. In Figure 
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1.3, SEM images of a man-made PSi photonic crystal and a marine diatom are reported 

and compared; close analogies between the two structures can be easily recognized. 

 

(a) (b)(a) (b)  
Figure 1.3. Comparison between the SEM images of a 
man-made PSi photonic crystal (a) and a marine diatom 
(b). 

 

The optical properties of the porous silica wall of a centric diatom, the Coscinodiscus 

walesii, are investigated in the Appendix. 

 

Finally, the conclusions are presented in Chapter 6.  
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CHAPTER 2  POROUS SILICON OPTICAL DEVICES 
(Papers J5, J8, P4, P14, P15) 

Porous silicon (PSi) is really a very versatile material due to its peculiar morphological, 

physical, and chemical properties: evidence of this is the huge number of papers about 

PSi features and devices based on this nanostructured material, costituted by voids into 

a silicon matrix, that appear in the literature every year. One reason for this clear 

success is the easy fabrication of sophisticated optical multilayers, such as one-

dimensional photonic crystals, by a simple, but not trivial, computer-controlled 

electrochemical etching process. 

2.1  Porous Silicon Fabrication by Electrochemical Etching 

Porous silicon was discovered in 1956 by Uhlirs at Bell Labs, USA, during a study on 

the electropolishing of crystalline silicon in an HF-based solution. He observed the 

formation of a deposit “tentatively supposed to be a Si suboxide” [1]. The scientific 

community was not much interested in porous silicon until to 1990 when Leigh 

Canham, working at the Defence Research Energy in England, demonstrated an 

efficient tunable room temperature light output from the material [2]. In the years later, 

thousands of papers were published on porous silicon and its potential applications in 

microelectronics, optoelectronic devices, chemical and biological sensing. In most 

cases, the porous silicon structure is formed by electrochemical dissolution of 

crystalline silicon wafers in hydrofluoric acid (HF) based solution. The cell used for the 

electrochemical etching is shown in Figure 2.1. The silicon wafer is the anode; it is 

placed in back-side contact on an aluminum plate while the frontside is sealed with an 

O-ring and exposed to the anodising electrolyte. The chatode is made of platinum or any 

HF-resistant and conductive material. The electrolization cell is made of a highly-acid 

resistant polymer such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene 

(PTFE). For highly resistive silicon substrate (> few mΩ/cm) an evaporated metal 

backside contact is necessary to ensure the Schottky contact between the aluminum 

plate and the semiconductor. 
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Figure 2.1. Electrochemical etching setup 
 

Figure 2.2 shows the tipical I-V curves for n- and p-type silicon in aqueous HF in dark 

and under illumination [3]. The I-V curves show some basic similarities to the normal 

Schottky diode behavior expected from a semiconductor/electrolyte interface, including 

photogenerated currents at reverse bias, but there are some important anomalies. The I-

V curves can be divided into four distinct regions depending on the sign of the applied 

potential and whether n- or p-type material is used. When a potential is applied to 

silicon in an aqueous environment, a measurable external current is induced to flow 

through the system.  

 

 
Figure 2.2. Tipical I-V curves for n- and p-type silicon. 
The solid line is the dark response while the dashed line 
is the response under illumination [3].  

 

However, for any current to pass the silicon/electrolyte interface it must first change 

from electronic to ionic charge carriers. This conversion is always accomplished by 

means of a specific chemical redox reaction at the silicon interface. Application of a 



Porous Silicon Optical Devices 

 

 9

potential then induces a precise interfacial reaction, the nature of which is fundamental 

to the formation of porous silicon. Under cathodic polarizations for both n- and p-type 

material, silicon is normally stable, i.e., silicon does not dissolve.  

 
Figure 2.3. Anodic I-V curve for silicon in HF. In the 
region A pore formation occurs. In region C there is the 
silicon electropolishing. The region B is a transition zone 
where pore formation and electropolishing compete [3]. 

 

The only important cathodic charge transfer reaction in the silicon/HF system is the 

reduction of water with the subsequent liberation of hydrogen gas. It is only under 

anodic polarizations that silicon dissolution occurs. Figure 2.3 shows the anodic 

dissolution portion of a “typical” silicon I-V curve where the different dissolution 

regions are labeled A-C. Pore formation takes place in region A. At anodic 

overpotentials in excess of the current “peak,” region C, silicon electropolishes. At 

intermediate overpotentials, region B, a “transition” zone exists where pore formation 

and electropolishing compete for control over the surface morphology. The resulting 

structure within this region is generally porous in nature but the pore diameters increase 

rapidly as the electropolishing potential is approached. 

The exact dissolution chemistries of silicon are still in question, although it is generally 

accepted that holes are required in the initial steps for both electropolishing and pore 

formation. The Figure 2.4 illustrates the chemical dissolution mechanism suggested by 

Lehmann and Gösele [4], that has received great attention. If a hole of the silicon 

substrate has the sufficient energy to reach the surface, a nucleophilic attack on Si-H 

bond by fluoride ion can occur and a Si-F bond is formed (step 1 in Figure 2.4).  
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Figure 2.4. Dissolution mechanism of silicon in 
hydrofluoridric acid (HF) [4]. 

 

Due to the polarizing influence of the Si-F bond, another F– ion can attack and bond 

under generation of an H2 molecule and injection of one electron into the substrate 

(steps 2 and 3). The polarization induced by the Si-F groups reduces the electron density 

of the Si-Si backbonds; these weakened bonds will now be attacked by HF or H2O (step 

4) in a way that the silicon surface atoms remain bonded to hydrogen atoms (step 5). 

The silicon tetrafluoride molecule reacts with the HF to form the highly stable H2SiF6.  

In the case of n-type silicon, where holes are minority carriers, the electrochemical 

dissolution of the material strongly depends on the hole/electron pair generation by 

illumination. In fact, when lightly doped (majority carrier concentration below ~1018 

cm-3) n-type silicon is anodised in the dark, the formation of PSi is observed only at 

high voltages (>5 V). If the anodisation is perform under illumination, PSi is formed at 

lower potentials (<1 V). 

2.2  Porous Silicon Morphology 

The PSi is a versatile material that shows a great variety of morphologies dependent on 

the doping type and level of the silicon substrate and the electrochemical etching 

parameters. Usually for a given substrate and electrolyte, only one type of pore structure 

can be obtained.  

The IUPAC (International Union of Pure and Applied Chemistry) guidelines define 

ranges of pore sizes that exhibit characteristic absorption properties [5]: pores 
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characterized by a diameter ≤ 2nm define microporous silicon; for sizes in the range 2-

50 nm the PSi is mesoporous; pores diameters > 50 nm are typical of macroporous 

silicon. 

 

 
 

Figure 2.5. SEM images illustrating different PSi 
morphologies. A) p+ <100> silicon; the pores have an 
average width of 30 nm. B) p <100> silicon; the pores 
size is about 2 nm. C) n <100> silicon; the material 
consists of two parts, micro an macropores are found. 

 

Highly doped (1019 cm-3) p- or n- silicon anodized in aqueous HF solution usually forms 

mesoporos with pore sizes from 20 nm to 50 nm (Figure 2.5 (a)). Several groups have 

(a)

(b)

(c)
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demonstrated that complex optical devices can be designed with mesoporous silicon [6]. 

In the case of lightly doped (below ~1018 cm-3) p-type silicon, the porous size 

distribution is normally found in the range 1 – 5 nm, in the lower limit for mesopores 

(Figure 2.5 (b)). The influence of the HF concentration has been studied [7]: it is found 

that the pore size distribution broadens and the mean pore radius increases when the HF 

concentration in the etching solution is decreased from 55 to 37 %, but no significant 

changes are observed for lower HF concentrations. The electrochemical etching of 

lightly doped n-type substrates in the dark results in the formation of a macroporous 

material with radii in the micrometer range. Under sample illumination mesopores 

and/or micropores are formed, whereas macropores are still found (Figure 2.5 (c)).  

2.3  Porosity and Refractive Index Determination 

The most important parameter of the PSi is the porosity, defined as the fraction of void 

within the porous layer. The easiest way to determine the porosity is by weight 

measurements. The wafer is weighed before the anodic reaction (m1), after the anodic 

reaction (m2) and finally after dissolution of the porous material in a molar NaOH 

aqueous solution (m3). The porosity is given by the equation: 

31

21

mm
mmP

−
−

=           (2.1) 

After the removal of the porous layer, it is also possible to determine its thickness by 

profilometric analysis. Another interesting technique, that allows to determine 

simultaneously both the thickness and the porosity of a PSi layer without destroying the 

material is the spectroscopic ellipsometry (SE) [8]. The method is based on the 

measurement of the change in the polarization state of the light over the spectral range 

after the reflection from the sample surface. Ellipsometry measures the complex 

reflectance ratio (ρ) defined by: 

∆== i

s

p e
R
R

ψρ tan          (2.2) 

where Rp and Rs are the complex reflection coefficients of the light polarized parallel 

and perpendicular to the plane of incidence. Thus, ψ and ∆ are, respectively, the 

amplitude ratio and the phase shift between s and p components of polarized light. From 

experimentally determined ρ, it is possible to obtain informations about the properties of 

the material by performing proper model calculations. The use of SE in the near IR-UV 

spectral range for studying PSi has been largely reported in literature [9, 10]. The PSi 
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can be modeled using a sequence of sublayers, each one constituted by air and 

crystalline silicon, in order to take into account the inhomogeneity along the layer 

normal [11] and adopting the Bruggeman effective medium approximation (EMA) [12] 

given in the Eq. 2.3 

( ) 0
22

1 =⎟⎟
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⎞
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⎝

⎛
+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
PSivoid

PSivoid

PSiSi

PSiSi PP
εε
εε

εε
εε

      (2.3) 

where P, εsi, εPSi, and εvoid are the layer porosity, the dielectric constants of silicon, 

porous silicon and void, respectively. This approximation is acceptable because the size 

of the PSi pores is much smaller than the wavelengths of incidence light in the near IR-

UV regions; in this range, the electromagnetic radiation does not distinguish between 

silicon and void, and it is possible to treat the PSi as a homogeneous medium. The root 

square of the dielectric constant is the complex refractive index, iknn +=
_

. The Figure 

2.6 shows the dependence of the real part of the complex refractive index of the PSi on 

porosity given by the Bruggeman model. 
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Figure 2.6. Dependence of real part of the PSi refractive 
index (real part) on the porosity given by the Bruggeman 
effective medium approximation. 

 



Porous Silicon Optical Devices 

 

 14

40 60 80 100 120 140 160 180
58

60

62

64

66

68

70

72

74

76

 

 

P
or

os
ity

 (
%

)

Current Density (mA/cm2)

 
Figure 2.7. Dependence of the porosity on the current 
density for p+ <100> silicon using a solution of 15% 
hydrofluoric acid in ethanol. 
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Figure 2.8. Dependence of the etch rate on the current 
density for p+ <100> silicon using a solution of 15% 
hydrofluoric acid in ethanol. 

 

In this work, highly doped p+-silicon, <100> oriented, 0.01 Ω·cm resistivity, 400 µm 

thick was used as substrate in the PSi structures fabrication. The electrochemical 

etching of crystalline silicon was performed in dark and at room temperature using a 

solution of 15% hydrofluoric acid in ethanol. This electrolyte concentration has been 
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chosen because it allows the fabrication of PSi with porosities in a large range. Several 

PSi samples have been realized so to determine the dependence of the porosity and the 

etch rate of a layer on the etching current density. In Figure 2.7 and 2.8 are reported the 

porosity and the etch rate as function of the current density, respectively. The values 

have been estimated by variable angle spectroscopic ellipsometry (UVISEL, Horiba, 

Jobin–Yvon). The SE spectra were recorded at three angles of incidence, 60, 65 and 70° 

in the wavelengths range 260-1600 nm with a step of 5 nm.  

2.4  Thermal Oxidation of Porous Silicon 

The PSi is a material characterized by a high chemical reactivity; if stored in ambient 

air, the texture becomes partially oxidized and both the refractive index and the 

extinction coefficient change. To stabilize the PSi and to eliminate the problem of 

aging, the thermal oxidation of the structure is used. Usually, this treatment is also 

applied to PSi waveguides to extend the analysis range into the visible spectrum [13]. 

The oxidation reduces or completely removes the Si from the skeleton substituting it 

with SiO2, that isotropically grows also into the pores. The Figure 2.9 shows the SEM 

images of PSi layer (a) and oxidized PSi layer (b).  

 

 
Figure 2.9. SEM images of p+ PSi layer (a) and p+ PSi 
layer pre-oxidized at 300°C for one hour following by an 
oxidation step at 900 °C in wet O2 for 1 hour (b) [14]. 

 

It is possible to observe that after the oxidation the pore shape is conserved but the size 

is reduced. In particular, the mean value of the pores width from 18 nm becomes 13 nm. 

Since the pores density is the same and the pore size decreased, the porosity after 

oxidation is lower than the porosity before oxidation [14]. The relationship between the 
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porosities of a PSi layer before and after the thermal oxidation is expressed by the 

equation: 

)1)(27.11()1( PxPox −+=−         (2.4) 

where P is the porosity before oxidation, Pox the porosity after the oxidation and x is the 

oxidation extent which is a function of the temperature T and the duration t of the 

process: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

initial

final

Si
SiO

tTx 244.0),(         (2.5) 

PSi is generally oxidized in a pure O2 atmosphere by a two step thermal treatment. The 

first oxidation step, defined as pre-oxidation, at low temperature (300 - 400 °C) is 

required in order to selectively oxidise the silicon backbonds thus assuring an easy 

propagation of the oxidant into the silicon structure [15]. Moreover, the pre-oxidation 

reduces the damage of the material texture in the second oxidation step at higher 

temperatures between 800 and 900 °C [16].  

 

 
Figure 2.10. Schematic diagram of the model layer used 
in the ellipsometric analysis and calculated ψ, ∆ spectra 
compared with the experimental ones before (a) and after 
(b) the pre-oxidation at 400° C for 30 min of the p+ PSi 
layer. 

 

A p+ PSi layer pre-oxidised at 400° C for 30 min has been characterized by 

spectroscopic ellipsometry before and after the thermal process. In Figure 2.10 are 
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reported the schematic diagrams of the models used in the analysis and the calculated ψ 

and ∆ spectra compared with the experimental ones before (a) and after (b) the pre-

oxidation of the material. The value of the variable x has been estimated to be about 

0.02; the oxidation interests only the surface of the material. A short (3-5 min) thermal 

treatment at 900°C completely oxidized the structure; in this case x=1 and the Eq. 2.4 

becomes (1-Pox) = 2.27(1-P). 

2.5  Porous Silicon Photonic Structures 

In the last few years, PSi resonant photonic structures as Fabry-Perot interferometers 

[17], Bragg reflectors [18], optical microcavities [6, 19], Thue-Morse sequences and 

optical waveguides [20] have been intensively studied by several research groups in 

particular for their photonic properties as interference filters.  

The refractive index profile of a PSi multilayered structure can be realized by choosing 

the proper current density profile during the electrochemical etching of crystalline 

silicon. This is possible because the PSi fabrication process is self-stopping, the already 

formed PSi layer is depleted of holes and any further etching only occurs at the pores 

tips [21]. In this section the PSi optical structures, fabricated for experimental purposes, 

are described.  

2.5.1  Fabry Perot Interferometer 

A single layer of PSi optically acts as a Fabry-Perot interferometer. In Figure 2.11 the 

reflectivity spectrum of a PSi layer under white light illumination is reported. The 

maxima in the reflectivity spectrum appear at wavelengths λm which satisfy: 

mndm λ/2=           (2.6) 

where m is an integer, d is the film thickness and n is the average refractive index of the 

layer [22, 23]. Assuming that the refractive index is independent on the wavelength over 

the considered range, the maxima are equally spaced in the wavenumber (1/λm). When 

m maxima are plotted as a function of the wavenumber, each point lies on a straight line 

which slope is two times the optical path of the interferometer, as it is shown in the 

Figure 2.12 
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Figure 2.11. Reflectivity spectrum of a PSi layer realized 
by the electrochemical etching of p+ crystalline silicon in 
a solution of 15 % hydrofluoric acid applying a current 
density of 115 mA/cm2 for 11 s (P=69 %; n=1.593 @1.2 
µm; d=2.9 µm). 
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Figure 2.12. m-order peaks are plotted as function of the 
wavenumber. The optical path of the interferometer has 
been estimated to be (4620±40) nm. 

 

2.5.2  Bragg Mirror and Optical Microcavity 

The Bragg mirror is a periodic structure made alternating layers of high (nH) and low 

(nL) refractive index, whose thicknesses satisfy the relation  2(nH dH + nL dL )=mλB, 

where m is the order of the Bragg condition (Figure 2.13 (a)). The layer stack is usually 
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denoted as [HL]N, where N is the number of periods. The periodicity gives to the 

structure a photonic band gap (PBG) behavior characterized by the property to forbid 

the propagation of the light at fixed wavelengths. The reflectivity spectrum of a Bragg 

mirror is characterized by the presence of a stop band centered around the Bragg 

wavelength λB (Figure 2.13 (b)). For a given number of periods, the height and width of 

the reflectivity stop band increases by increasing the index ratio H/L. A low index 

contranst can be compensated by a higher number of periods.  

An optical microcavity is a λ/2 layer sandwiched between two distributed Bragg mirrors 

(Figure 2.14 (a)). The reflectivity spectrum of  a microcavity is characterized by a 

transmittance peak in the photonic stop band (Figure 2.14 (b)). The Q factor of the 

microcavity is defined as Q=λ/∆λ, where λ is the wavelength of the resonance peak and 

∆λ is the full width half maximum (FWHM) of the resonance. This parameter is used to 

evaluate how the light is confined in the PBG structure.  

 
Figure 2.13. (a) Schematic of a Bragg mirror. (b) 
Experimental normal incidence reflectivity spectrum 
from a Bragg mirror (black line) compared with the 
calculated one (red line). 



Porous Silicon Optical Devices 

 

 20

 
Figure 2.14. (a) Schematic of an optical microcavity. (b) 
Experimental normal incidence reflectivity spectrum of a 
microcavity (black line) compared with the calculated 
one (red line). 

 

The calculated reflectivity spectra of the structures reported in Figure 2.13 e 2.14 have 

been reproduced by a transfer matrix method [24], also taking into account the 

wavelength dispersion of silicon. 

2.5.3  Thue‐Morse Sequence 

A quasi-crystal (QC) does not have a geometrical periodicity but is still 

deterministically generated. Even if these structures do not have a translational 

symmetry, they show several interesting physical properties such as the photonic band 

gaps, some resonance frequencies, and some high localized states [25]. Thue-Morse (T-

M) [26] sequence is one of the most common examples of one dimensional QC. The T-

M one dimensional structure is constituted by the sequence of two layers A and B with 

refractive index nA (nB) and thickness dA (dB). Applying the substitution rules A→AB 

and B→BA [26] all subsequent orders can be deduced, as follow: S0=A, S1=AB, 

S2=ABBA, S3=ABBABAAB, S4=ABBABAABBAABABBA, and so on.  
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Figure 2.15. Experimental (black line) and calculate (red 
line) reflectivity for S3 T-M structure (a), S4 T-M 
structure (b) and S5 T-M structure (c). The measurements 
have been taken at normal incidence. 
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Figure 2.16. Experimental (black line) and calculate (red 
line) reflectivity for S6 T-M structure (a) and S7 T-M 
structure (b). The measurements have been taken at 
normal incidence. 

 

The layers number of SN is 2N, where N is the T-M order. Dielectric T-M structures up 

to 128 layers have been fabricated by using PSi technology. The high porosity layers are 



Porous Silicon Optical Devices 

 

 22

characterized by a porosity pA=81%, with an average refractive index nA≅1.3 and a 

thickness dA≅135 nm. 
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Figure 2.17. Experimental reflectivity spectra of S6 T-M 
structure for the transverse electric (TE) mode (black 
line) and the transverse magnetic (TM) mode (red line) 
for different incident angles. 

 

The low porosity layers are characterized by a porosity pB=56%, with a effective 

refractive index nB≅1.96 and a thickness dB≅90 nm. The thickness di of each layer was 

designed to satisfy the Bragg condition nidi= λ0/4 where ni is the average refractive 

index and λ0=700 nm. In Figures 2.15 e 2.16 the experimental (black line) and 

calculated (red line) reflectivity spectra are shown in case of S3 (2.15-a), S4 (2.15-b), S5 
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(2.15-c), S6 (2.16-a), and S7 (2.16-b) T-M structures. The good control in the fabrication 

process of the devices is demonstrated by the agreement between the measured and 

calculated spectra. The not perfect matching can be ascribed to non-uniformities of 

thickness and porosities of layers along the etching direction. The spectrum of the S3 T-

M multilayer is characterized by two band gaps separated by a large transmission peak 

at 1000 nm. On increasing the order of T-M sequence, the PBG splits and very narrow 

transmission peaks appear (FWHM about 6 nm). The Figure 2.17 reports the 

experimental reflectivity spectra of the S6 T-M structure for both the TE (black line) and 

the TM (red line) polarization for different incident angles up to 30°. The grey area 

highlights a PBG region of 70 nm, centered at 1100 nm which exists in the incident 

angle range between -30° and 30°.  

2.5.4  Optical Waveguide 

An optical waveguide is a structure used to confine and guide the light by total internal 

relection. The simplest waveguide is the planar slab guide shown in Figure 2.18 

consisting of three media with refractive indices n1 < n2 > n3 and a waveguide layer 

thickness d. Light propagation along z-axis and electromagnetic field distribution 

independent of y coordinate are assumed. Solution of Maxwell’s equations for this 

structure can be assumed in the form: 

))(exp()(),( ztixuzxU βω −=
rr

       (2.7) 

where ),( zxU
r

 denotes the vector of electromagnetic field intensity, )(xur field 

amplitude, ω angular frequency, t time, and β propagation constant. 

 

 
Figure 2.18. Planar optical waveguide 
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The solution can be decomposed into two types of waves – transverse electric (TE) 

modes Ez=0 and transverse magnetic (TM) modes Hz=0. For these waves, the wave 

equations can be written as: 

0)()(
)( 22

2

2

=−+ xU
x

xU
y

y βεµω
δ

δ
       (2.8) 

where Uy denotes the y-component of the vector of electric (for TE modes) or magnetic 

(for TM modes) field intensity. In each medium the solution of wave equation can be 

expressed as a linear combination of exp(ikix) and exp(-ikix), where ki
2=ω2µεi-β and εi 

are dielectric constants of the involved media (i=1, 2, 3). 

In order to describe a light wave confined in the waveguide, parameters k1 e k2 must 

fulfill the condition k2<0 and the electromagnetic field exponentially decreases outside 

the waveguide. Continuity of tangential components of electric and magnetic field 

vectors yields to dispersion equations in the form:  

TE modes: 
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where k2
2=ω2µε2-β and γ1,3

2= β-ω2µε1,3. The solutions of these equation are the 

propagation constants of the guided modes. Dependence of the propagation constant of 

the first three TE and TM modes as a function of the normalized frequency, 

2
1

2
2 nnkdV −= is shown in Figure 2.19. A PSi slab waveguide was realized with a 

core layer of thickness 2.5 µm and porosity 65 %, and a cladding layer with thickness 

2.5 µm and porosity 78 %. These porosities correspond to a core and cladding refractive 

indexes of 1.65 and 1.52, respectively, calculated by the Bruggeman model [12] at a 

wavelength of 1.5 µm. The device was then fully oxidized in pure O2 by a two step 

thermal treatment (400 °C for 30 min and 900 °C for 15 min). The core and cladding 

refractive indices of the oxidized PSi waveguide were measured by the standard m-line 

technique [28] at 1.55 µm in TE polarization. A value of 1.361±0.001 for the core 

refractive index and of 1.18±0.01 for the cladding was obtained. From these values, the 

effective refractive indices neff,m of the fundamental (m=0) and first mode (m=1), 

supported by the slab waveguide, were estimated to be 1.341 and 1.282, respectively 

[29]. 
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Figure 2.19. Normalized propagation constant as a 
function of normalized frequency for three low-order TE 
and TM modes; n1=1.45, n2=1.8 , n3= 1.32 [27]. 

 

The PSi waveguide optical losses were characterized by measuring the light scattered 

from the top surface. In fact, assuming a constant scattering mechanism along the 

structure, the scattered intensity in the vertical direction is proportional to the intensity 

of the guided light [30].  

 

 
 

Figure 2.20. Top view of the scattered light from the 
surface of the oxidized PSi waveguide at 1.55 µm. 

 

To this aim, a laser beam at 1.55 µm was coupled into the waveguide by a single mode 

lensed fiber and the upper out-of-plane scattered light intensity was recorded by an 

infrared CCD camera (Xenics Xeva) placed above the structure. The Figure 2.20 shows 

a top view image of the scattered light from the device registered by an infrared camera: 
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it is very clear that the beam diverges and its intensity decreases along the propagation 

direction. The losses are measured along the light propagation direction in a region 

containing the luminous streak but excluding the defect scattering centers: an 

exponential decreasing behavior of the light intensity was observed. If the optical signal 

registered as a function of the propagation distance is reported in logarithmic scale, as it 

can be seen in Figure 2.21, the light attenuation can be estimated by the slope of the this 

curve. The conversion in dB/cm of this number gives an estimated value of the losses 

equal to 22.3±0.9 dB/cm, in agreement with those reported in literature [13, 21]. 

 
Figure 2.21. Logarithmic of the scattered light intensity 
versus the propagation distance at λ=1.55 µm. 
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CHAPTER 3  OPTICAL  SENSING  OF  CHEMICAL  AND 

BIOLOGICAL  MOLECULES  BASED  ON  POROUS 

SILICON 
(Papers J1, J2, J3, J6, J7, J9, J13, J14, J17, J20, J24, P1, P6, P9, P10, P12, P16, 

P17, P18, P23) 

Lot of experimental work, exploiting the worth noting properties of PSi in chemical and 

biological sensing, has been recently reported in literature [1, 2]. PSi is an almost ideal 

material as transducer due to its porous structure, like a natural sponge, having a 

specific surface of the order of 200–500 m2 cm–3 [3], so that a very effective interaction 

with several adsorbates is assured. Moreover, PSi is an available and low cost material, 

completely compatible with standard integrated circuit processes so that it could 

usefully be employed in the so-called smart sensors [4]. Several different transducer 

schemes have been proposed, based on changes in capacitance, resistence, reflectivity 

and photoluminescence properties of the material when biochemical molecules adsorb 

to its surface. The electric measurements are relatively straightforward and the control 

electronics for the device can be easily integrated on a silicon chip. On the other side, 

optical measurements can be less straightforward than electric ones but safer in case of 

flammable vapors. The performances of different PSi structures as optical transducers 

of chemical and biological substances are analyzed in this chapter.  

3.1  Monitoring of Chemical Substances 

The sensing mechanism in monitoring of chemical substances is based on the refractive 

index changes of PSi due to the partial substitution of the air in the pores by the 

chemicals to be detected. The pores can be filled by the liquid phase of vapors, due to 

the capillary condensation in the sponge-like PSi matrix, or by the chemical solutions 

which penetrate in the pores due to the surface tension. The condensation conditions 

depend not only on the average pore size, distribution, and shape but also on the 

strength of the interaction between the fluid and the pore walls [5]. Once the pores 

shape and the surface chemistry are fixed, a one-to-one correspondence exists between 

the condensation conditions and the pore diameters given by the Kelvin equation: 
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where ρl is the density of the liquid phase, γlg is the liquid-gas surface tension at 

temperature T, R is the radius of the pores, p/psat is the relative vapor pressure into the 

pore, and θ is the contact angle. From the Eq. 3.1 it is easy to see that the relative 

pressure increases with the average radius of pores R. 

The sensitivity is a key issue of a sensor, so that several experimental works 

investigating the sensitivity of the different PSi structures have been reported in 

literature [6-8]. Ouyang et al. [9] focused their research on the sensitivity of PSi 

microcavities as function of the material properties, such as pore size, porosity, and 

number of layers. However, a general scheme to determine the performances of PSi 

optical sensors have not been proposed yet. In this paragraph, the sensitivities to the 

pore refractive index changes of two different PSi photonic structures are compared. In 

particular, a simple model to study the behavior of PSi multilayered structures on 

exposure to different compounds and to determine their response curve is proposed. The 

two multilayered structures analyzed are a one-dimensional periodic multilayer, the 

Bragg Mirror (BM), and an aperiodic multilayer, the Thue-Morse Sequence (TMS). 

Both the PSi structures are composed by 64 layers, 32 with high (H) refractive index 

(low-porosity), and 32 with low (L) refractive index (high-porosity). The layers 

thicknesses are dH=λ0/4nH, and dL=λ0/4nL, respectively. The different spatial order of 

the layers is the only difference between the two structures.  

The interaction of PSi sensors with the chemical species induces a variation of effective 

refractive index of PSi layers, thus a shift of the multilayer reflectivity spectrum. The 

average refractive index of the PSi layer, np, can be determined in the near infrared 

range by using the Bruggemann effective medium approximation for a heterogeneous 

mixture of components (nanocrystalline silicon and pore contents): 
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where Λ is the layer liquid fraction (LLF), i.e. the volume filled by the chemical species 

with refractive index nch, p is the porosity of layer, nSi, and nair are the refractive indices 

of silicon and air. From Eq. (3.2) the relative variation of the refractive index, ∆np/np as 

function of p, Λ, and nch can be numerically determined. In Figure 3.1 (a) e (b) the 

behavior of ∆np/np as function of Λ and nch for a PSi layer with p=0.5 is reported: the 
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relative change of the average refractive index of the layer has a linear dependence on 

the filling factor and the refractive index of the chemical species: 

Λ−=
∆

)1( chp
p

p nc
n
n

         (3.3) 

 
(a)     (b) 

 
Figure 3.1. Relative variation of PSi refractive index 
layer with p=0.5 as a function of layer liquid fraction for 
different refractive indices nch (a); as a function of nch for 
different layer liquid fractions (b). 
 

The constant cp depends on the layer porosity. It is well known that the refractive index 

change, due to the interaction of the PSi multilayers with external agents, preserves the 

shape of the reflectivity spectrum, so that it is still possible to individuate the resonant 

characteristics, i.e. the transmittance peaks of the TMS or the high reflectivity stop band 

of the BM. The shape of reflectivity spectrum depends on the phase modulation of each 

layer φi=2πnidi/λ; for a couple of layers, the phase modulation is φ=φL+φH. The 

reflectivity can be factorized as a product of two contributions: 
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where the function A takes into account the value of the reflectivity due to the refractive 

index contrast, and ℜ is a shape factor due to the different optical paths of the light into 

the layers. If the reflectivity is simply shifted on a wavelength range without changing 

of the shape during the measurements process, it is possible to write that: 

[ ] [ ])(),,( iiirriir dnndn ∆+∆+ℜ≅ℜ λλφλφ       (3.5) 

where λr is the characteristic wavelength used as a reference to measure the 

spectral shift, ∆ni is the variation of the layer refractive index due to the interaction of 

the devices with the chemical species.  

 
Figure 3.2. Experimental reflectivity spectra of Bragg 
multilayer (a, black line) and Thue-Morse multilayer (b, 
black line) composed by 64 layers. In red line are 
reported the reflectivity spectra after exposure to 
methanol. λBM and λTMS are the monitor wavelength for 
Bragg and Thue-Morse multilayer respectively. 
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The equality φ(λr,ni,di)=φ(λr+∆λr,ni+∆ni,di) can be deduced by the Eq. 3.4. By 

evaluating the variation of φ, an expression for ∆λr as function of layer refractive index 

variations, ∆nL, and ∆nH, can be deduced: 
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This formula is a powerful tool in the design of all resonant optical sensors, based on 

the average refractive index change. Combining the Eq. (3.6) with Eq. (3.3) it is 

possible to completely characterize the optical response of whatever PSi multilayer, 
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It is clear that the sensitivity of PSi multilayer depends strictly on the filling capability 

of the layers. The BM and the TMS have the same response as a function of the layer 

liquid fraction. In Figure 3.2 are shown the reflectivity spectra of BM (a) and TMS (b) 

when unperturbed, and on exposure to a methanol (nch=1.328) saturated atmosphere.  

 
Figure 3.3. Calculated relative wavelength shift ∆λr/λr 
for BM and TMS as a function of layer liquid fraction 
Λ after exposure of methanol (nch=1.328). The two curves 
coincide. 

 

The BM reflectivity shows a classic photonic band gap centered at the Bragg 

wavelength 2 (nL dL+nH dH)=712 nm. This wavelength is a natural candidate as monitor 

wavelength λΒΜ
r, since it is simply recognizable after the interaction process. On the 

other side, the TMS spectrum shows a more complex photonic band gap structure due to 

the aperiodic sequence of the layers: three photonic band gaps can be observed in 
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wavelength intervals centered at 640 nm, 890 nm, and 1120 nm, and three resonant 

transmittance peaks at 894 nm, 1030 nm and 1184 nm. In this case, it is possible to 

choose λr among the one of the resonant transmittance peaks. In particular, the spectral 

shift of the resonance transmittance peak at 1030 nm (λr
TMS=1030 nm) is monitored. In 

Figure 3.3, using the Eq. (3.7), the relative wavelength shift, ∆λr/λr as a function of 

Λ on exposure to methanol obtained in the case of TMS and BM is reported. The filling 

can be assumed to proceed uniformly into the entire multilayer stack until the low 

porosity layers are completely filled (ΛL=ΛH=Λ for Λ<pL), then the filling process 

proceed only in high porosity layers [10, 11]: the filling curves in Figure 3.3 shows a 

slope change when Λ= pL; the values of cL and cH are 0.927 and 0.677, respectively. In 

Table 3.1 are reported the experimental wavelength shifts and the layer liquid fractions 

extrapolated from the curve of Figure 3.3 for several compounds. First of all, it is worth 

noting that the pores filling is a characteristic parameter of the multilayer sequence, and 

is almost invariant respect to compound investigated, in agreement with Gurvitsch’s 

rule which states that the volume of liquid adsorbed should be the same for all 

adsorptives on a given porous solid.  

 
Table 3.1. Chemical orgainc substances and its refractive index used in sensing experiment. 
∆λr

TMS (∆λr
BM) and ΛTMS (ΛBM)) is the wavelength shift and the layer liquid fraction for Thue-

Morse (Bragg) structures. The reference wavelength λr is 1030 nm for TMS and 712 nm for 
BM. 

Solvent nch ∆λr
TMS(nm) ΛTMS ∆λr

BM(nm) ΛBM 

Methanol 1.328 180 0.745 108 0.599 

Pentane 1.358 199 0.761 118 0.599 

Isopropanol 1.377 209 0.761 125 0.599 

Isobutanol 1.396 215 0.745 127 0.467 

 

In Figure 3.4 is reported the response curve of both structures, the sensitivities, 

normalized to the reference wavelengths, are respectively, STMS=0.51(0.05) RIU-1 

(Refractive Index Units) and SBM=0.41(0.05) RIU-1; the TMS higher sensitivity can be 

ascribed to higher filling capability. This effect can be explained by considering the 

number of L-H interfaces in the different multilayers. The different spatial order of 

layers between BM and TMS can be observed, 
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TMS: LHHLHLLHHLLHLHHL… 

BM: LHLHLHLHLHLHLHLH… 

It is possible to conclude that the periodic arrangement of the BM induces a greater 

number of porosity gradients, due to the presence of a greater number of L-H interfaces 

(63), than in TMS (42). These interfaces produce an inhomogeneity in the pore network 

which obstacles the propagation of the liquid phase and thus reduces the filling 

capability of structures. Therefore, after the condensation process or the capillary 

penetration, the liquid phase finds a more homogeneous pore network in TMS respect to 

BM. 

 
Figure 3.4. Experimental response curves of TMS and 
BM. 

 

3.2  Surface Chemical Modification of “As‐Etched” Porous Silicon 

Unfortunately, a PSi sensor cannot discriminate the components of a complex mixture 

because the sensing mechanism is not selective. Some researchers have chemically or 

physically modified the Si–H surface sites in order to enhance the sensor selectivity 

through specific interactions. The common approach is to create a covalent bond 

between the PSi surface and the biomolecules which specifically recognize the target 

analytes [12, 13]. The reliability of a biosensor strongly depends on the 

functionalization process: how fast, simple, homogenous and repeatable it is. This step 

is also very important for the stability of the sensor: it is well known that ‘as-etched’ 

PSi has a Si–H terminated surface due to the Si dissolution process which is very 

reactive [14]. The substitution of the Si–H bonds with Si–C ones guarantees a much 
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more stable surface from the thermodynamic point of view.  Three different PSi surface 

modification strategies in order to realize an optical biosensor are here reported: the 

target is the fabrication of sensitive label-free biosensors, which are highly requested for 

applications in high throughput drug monitoring and disease diagnostics; unlabelled 

analytes require in fact easier and faster analytical procedures.  

FT-IR spectroscopy (Thermo - Nicholet NEXUS) has been used to compare the 

different passivation procedures: a pure chemical process based on Grignard Reactives; 

a photoinduced chemical modification based on the undecenoic organic acid and a 

passivation method simultaneous to the etching process. In each case the carboxyl-

terminated monolayer covering the PSi surface acts as a substrate for the chemistry of 

the subsequent attachment of the DNA sequences. 

Before the functionalization process the PSi substrate has been immersed in an aqueous 

ethanol solution, containing millimolar concentration of KOH, for 15 min. This alkaline 

treatment produces an increase in the porosity of about 15-20% [15] so improving the 

infiltration of the biomolecular probes into the pores. The process removes also most of 

the Si-H bonds from the PSi surface that can be restored by rinsing the PSi device in a 

low concentration HF-based solution (5 mM) for 30 s.  

3.2.1  Chemical Functionalization by Grignard Reactives  

The chemical functionalization is based on the Ethyl magnesium bromide 

(CH3CH2MgBr) as a nucleophilic agent which substitutes the Si-H bonds with the Si-C.  

The reaction was made at 85°C in an inert atmosphere (Argon) to avoid the deactivation 

of the reactive, for 8 hours. The chip was thus washed with a 1% solution of CF3COOH 

in Diethyl Ether, and then with deionised water and pure Diethyl Ether. The modified 

surface chip was characterized by infrared spectroscopy to verify the efficiency of the 

method. The FT-IR spectrum is reported in Figure 3.5. The characteristic absorption 

peaks which identify the presence of organic species are well evident after the 

functionalization. 

3.2.2  Photochemical Functionalization  

The photo-activated chemical modification of PSi surface was based on the UV 

exposure of a solution of alkenes which bring some carboxylic acid groups. The PSi 

chip has been pre-cleaned in an ultrasonic acetone bath for 10 min then washed in 

deionized water. After dried in N2 stream, it has been immediately covered with 10 % 
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N-hydroxysuccinimide ester (UANHS) solution in CH2Cl2. The UANHS was 

synthesised in house as described in ref. 12. 
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Figure 3.5. FT-IR spectra of the porous silicon 
monolayer before and after the pure chemical 
functionalization process based on EtMgBr. 
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Figure 3.6. FT-IR spectra of the porous silicon 
monolayer before and after the photoinduced 
functionalization process based on UV exposure. 

 

This treatment results in covalent attachment of UANHS to the PSi surface clearly 

shown in the FT-IR spectrum, reported in Figure 3.6. The chip was then washed in 

dichloromethane in an ultrasonic bath for 10 min and rinsed in acetone to remove any 

adsorbed alkene from the surface.  
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3.2.3  Functionalization During the Etch Process 

The chemical modification of the PSi surface by directly using a functionalizing agent 

during the etching process has been studied. Some organic acids (eptinoic and pentenoic 

acid with concentrations ranging from 0.4 up to 3M) have been introduced in the 

electrochemical cell in presence of a diluted HF solution (HF:EtOH=1:2). In this case a 

current density of 60 mA/cm2 was applied to etch an area of 0.07 cm2. The FT-IR 

spectrum is reported in Figure 3.7. 

 
Figure 3.7. FT-IR spectra of the porous silicon 
monolayer before and after the functionalization during 
the etching process. 
 

3.3  Optical Detection of DNA‐DNA Hybridization 

Among the three procedures experimented, the photoinduced method is the best one due 

to several reasons: the relaxed reaction conditions (atmospheric pressure and room 

temperature); the shorter reaction time and the best reaction yield (largest peaks 

recorded in FT-IR measurements). This last result is somewhat expected because the 

reactive considered has a so called “outgoing group”, the succinimide, which promotes 

its substitution with the ammine group of the DNA probe.  

In view of these considerations, each chip with a photochemical modified surface has 

been incubated, over night, with fluorescent DNA single strand. After the chemical 

bonding of the labelled ssDNA, the chip was observed by the fluorescence macroscopy 

system. Under the light of the 100W high-pressure mercury lamp, a high and 

homogeneous fluorescence on the whole chip surface has been found; the fluorescence 



Optical Sensing of Chemical and Biological Molecules based on Porous Silicon 

 

 39

still remains bright even after two overnight dialysis washings in a HEPES solution and 

in deionised water, as it can be seen in Figures 3.8 (a), (b), and (c).  

 

 
(a)    (b)   (c) 

Figure 3.8. (a) Fluorescence of the chip surface after the 
binding of the labelled ssDNA; (b) after the overnight 
dialysis in HEPES solution; (c) after the overnight 
dialysis in deionised water. 
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Figure 3.9. Fluorescence intensities of the chip surface 
after the binding of the labelled ssDNA and the two 
overnight dialysis as a function of the cDNA 
concentration. 

 

The yield of the chemical functionalization has been studied by spotting different 

concentrations of the fluorescent ssDNA and measuring the fluorescence intensities of 

the images before and after the washings. The results reported in Figure 3.9 confirm the 

qualitative findings of Figure 3.8: the fluorescent intensities decrease but remain of the 

same order of magnitude. From this graph it is also possible to estimate the 
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concentration of the DNA probe which saturates the binding sites available (≈ 300 µM). 

The PSi optical biosensors measure the change in the average refractive index of the 

device: when a bio-recognition event takes place, the refractive index of the molecular 

complex changes and the interference pattern on output is thus modified. 

 
Figure 3.10. (a) Fringes shifts due to ssDNA-cDNA 
interaction. (b) Dose-response curve as a function of the 
cDNA concentration. 

 

The label free optical monitoring of the ssDNA-cDNA hybridization is simply the 

comparison between the optical spectra of the porous silicon layer after the UANHS and 

probe immobilization on the chip surface and after its hybridization with the cDNA. 

Each step of the chip preparation increases the optical path in the reflectivity spectrum 

recorded, due to the substitution of the air into the pores by the organic and biological 

compounds. The interaction of the ssDNA with its complementary sequence has been 

detected as a fringes shift in the wavelengths, which corresponds to a change in the 

optical path. Since the thickness d is fixed by the physical dimension of the PSi matrix, 
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the variation is clearly due to changes in the average refractive index. In Figure 3.10 (a) 

the reflectivity spectra of the PSi layer for different cDNA concentration are reported, 

while in Figure 3.10 (b) a dose-response curve is reported. A control measurement has 

been made using a ncDNA sequence: a very small shift (less than 2 nm) has been 

recorded in the reflectivity spectrum respect to the one obtained after the probe linking. 

The sensor response has been fitted by a monoexponential growth model, y=A(1-e-Bx), 

where A is the amplitude and B is the rate constant. The limiting sensitivity, i.e. the 

sensitivity in the limit of zero ligand concentration, S=AB, has been calculated 

obtaining the value 1.16 (0.04) nm/µM, which corresponds to a limit of detection 

(LOD) of 0.26 µM for a system able to detect a wavelength shift of 0.1 nm. The LOD is 

defined as three times the ratio between the standard deviation and the sensitivity 

according to IUPAC definition [16]. 

3.4  Protein Probes in Nanotechnology for Sugar Monitoring 

The D-trehalose/D-maltose-binding protein (TMBP) from T. litoralis is a monomeric 48 

kDa two-domain macromolecule containing 12 tryptophan residues [17]. It was found 

that TMBP is also able to bind glucose molecules [18]. Since human blood does not 

contain trehalose and maltose, it is not outrageous to envisage the use of the TMBP as a 

probe for the design of a minimally invasive biochip for glucose detection. The surface 

of a PSi Bragg mirror (BM) has been functionalized with TMBP by a three-step 

process, based on the chemical passivation of the PSi after the oxidation. Firstly, the PSi 

BM was thermally treated in O2 atmosphere, at 1000°C for 30 min, to remove all the Si-

H bonds and create an oxide layer on the pores surface to assure the covalent attachment 

with a proper chemical linker, the aminopropyltriethoxysilane (APTES). To this aim, 

the BM was rinsed by immersion in a 5% solution of APTES and an hydroalcoholic 

mixture of water and methanol (1:1), for 20 min at room temperature. After the reaction 

time, the chip was washed with DI-water and methanol and dried in N2 stream. The 

silanized device was then baked at 100°C for 10 min. 
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Figure 3.11. Optical reflectivity spectrum of the Bragg 
mirror as-etched (black curve), after oxidation (red 
curve), after APTES treatment (green curve) and after 
glutaraldehyde treatment (blue curve) . 
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Figure 3.12. FT-IR spectra of the Bragg mirror after 
oxidation and APTES/glutaraldehyde treatment. 

 

The next step consists in create a surface able to link the carboxylic group of the 

proteins: thus, the BM was immersed in a 2.5% glutaraldehyde solution in 20 mM 

HEPES buffer (pH 7,4) for 30 min, and then rinsed it in DI-water and finally dried in N2 

stream. The glutaraldehyde reacts with the amino groups on the silanized surface and 

coats the internal surface of the pores with another thin layer of molecules. All the 
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reaction steps were monitored by FT-IR spectroscopy and the consequent modification 

of the optical response of the PSi device by reflectivity spectroscopy. The modified 

surface binds the protein: 20 µl of 7.5 µM sodium bicarbonate buffer (pH 7.35) 

containing a rhodamine labelled TMBP were spotted on the PSi chip, then the system 

was incubated at -4°C over night. Even if the aim is the realisation of a label-free optical 

biosensor based on the PSi nanotechnology, a fluorescence protein was used to control 

the distribution of the biological matter on the chip surface and to test the chemical 

stability of the covalent link between the TMBP and the PSi surface. After this 

assessment phase, the ligand binding interaction was also optically detected by 

following the wavelength shift of the reflectivity spectrum.  

 

 
 
Figure 3.13. (a) Porous silicon chip after incubation with 
the labelled-TMBP. (b) Porous silicon chip after 
washings in demi-water 

 

The experimental measurement of the TMBP-Glucose binding is a two step procedure: 

firstly, the optical spectrum of the porous silicon after the TMBP immobilization on the 

BM surface and after the Glucose solution has been spotted on it was registered. The 

Figure 3.11 shows the optical spectra of the device as etched and after each steps of the 

chemical treatment in the range 600-800 nm where the m=5 Bragg resonance peak at 

about 720 nm is present. The oxidation process causes a blue shift of the reflectivity 

spectrum of 99.5 nm due to the lower value of the SiO2 refractive index (noxi≅1.5) 

respect to the Si refractive index (nSi≅3.5). On the contrary, the silanisation steps by 

APTES and glutaraldehyde produce red shifts of the reflectivity spectrum of 28 and 17 

nm, respectively, corresponding to an increasing of the average refractive index of the 

layers due to a filling of the pores by the organic layers. Since the protein distributes 
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uniformly on the pores surface, the TMBP attachment causes a new detectable red shift 

of only 9 nm in the reflectivity spectrum. The FT-IR spectra of the oxide PSi sample 

and after the silanization process are reported in Figure 3.12: the main characteristic 

peaks of silicon dioxide (at 1124 cm-1), of the APTES amino groups (at 3300 and 3352 

cm-1) and of gluteraldehyde cyano group (at 1404 cm-1) are easily recognized. In Figure 

3.13 (a) is shown the BM observed by a Leica Z16 APO fluorescence macroscopy 

system after incubation. By illuminating the chip spotted with the labeled protein, it was 

found that the fluorescence is very high and homogeneous on the whole surface. It was 

also qualitatively tested the strength of covalent bond between the protein and the PSi 

surface by washing the device in a dialysis membrane overnight in DI-water (Figure 

3.13 (b)). 
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Figure 3.14. Dose-response curve for PSi BM optical 
sensor exposed to several concentration of glucose 

 

Since the fluorescent intensities differ of only few counts, the PSi-TMBP double layer 

is very stable. The signal response to the glucose concentration was also measured after 

the interaction with the protein in a range between 70 and 150 µM. The maximum shift 

of the Bragg wavelength is 1.2 nm. Figure 3.14 shows the dose-response curve to 

glucose additions. The estimated sensitivity of the TMBP-Chip is 0.034 (0.001) nm/µM 

corresponding to a LOD of 9 µM. Interestingly, the concentration of glucose that 

induces a optical response of the protein is very close to the amount of the sugar present 

in the human interstitial fluids. This result suggests the use of this protein in designing 
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of a non-consuming and minimally invasive biosensor for the continuous detection of 

the level of glucose in diabetic patients. 
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CHAPTER 4  BIOLOGICAL PASSIVATION OF POROUS 

SILICON 
(Papers J15, J18, J23, P19) 

Recently, in the microelectronic and nano-device fabrication field, an increasing interest 

has been devoted to the utilization of nanostructured biological molecules purified by 

living organisms or synthesized in laboratory. Hybrid organic-inorganic devices which 

exploit the best features of both worlds can be designed and realized. Among all the 

biological molecules that nature has optimized during life’s history on earth, 

Hydrophobins are particularly attractive because of their biophysical features. In this 

chapter, the technological applications of the hydrophobins in the silicon 

micromachining and PSi surface passivation are discussed.  

4.1  Selfassembled Biofilm on Silicon 

Hydrophobins (HFBs) are small proteins, constituted by 100-125 amino acids residues, 

which can be purified by filamentous fungi. These amphiphilic proteins can strongly 

adhere to hydrophobic or hydrophilic surfaces, have high surface activity and self-

assemble in membranes or biofilms [1]. Due to their very peculiar characteristics, 

hydrophobins have been recently proposed for lot of practical applications, ranging 

from anti-fouling to the fabrication of new biomaterials [2]. Hydrophobins are divided 

in two classes on the basis of the stability of the assembled biofilm: the class I 

hydrophobins form high insoluble assemblies, which can be dissolved in strong acids, 

whereas class II biofilms can be dissolved in ethanol or in sodium dodecyl sulphate. The 

most studied hydrophobins are the SC3 hydrophobins from Schizophyllum commune 

(class I) and the HFBI and HFBII (class II) from Trichoderma reesei [3].  

In this study, a class I hydrophobin from the fungus Pleurotus ostreatus has been 

purified.  

Ethanol-deionized water (80%-20% V/V) solutions containing 0.11 mg/ml of 

hydrophobins have been deposited on two different surfaces, crystalline silicon and 

silicon dioxide (72 nm thick), by drop covering. The first surface, after rinsing in pure 

hydrofluoridic acid, shows a hydrophobic behaviour, whereas the second one is 

completely hydrophilic. Each sample has been incubated for 1h, then dried for 10 min 
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on the hot plate (80°C) and washed by the same solution used for the deposition. The 

optical parameters and the thickness of the self-assembled HFBs biofilm were 

determined by variable angle spectroscopic ellipsometry (VASE). 

 
(a)       (b) 

Figure 4.1. (a) Refraction index and extinction 
coefficient of the hydrophobins as a function of 
wavelength. (b) Measured and fitted ellipsometric spectra 
of the biofilm deposited on crystalline silicon. 

 

The Figure 4.1 (a) reports the refractive index and the extinction coefficient of the HFBs 

as a function of the wavelength calculated by means of the Cauchy dispersion model for 

absorption media [4]: 
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where n0, n1 and n2 are called the Cauchy parameters and k0, k1 and k2 the Cauchy 

extinction coefficients. This gives a value of the refractive index of 1.459 at λ=633nm, 

which is typical for proteins. Using these dispersion models, the thickness of the biofilm 

assembled on crystalline silicon was estimated. After three consecutive depositions, for 

a total time of three hours, a value up to 40 nm has been obtained, as shown in the inset 

of Figure 4.1 (b). By optical characterization, it also been discovered that the same 

deposition procedure of hydrophobins on silicon oxide also produces an assembled 

biofilm which is thinner than in the case of crystalline silicon. In case of thermal silicon 

dioxide the biofilm reached a maximum thickness of about 20 nm. This different 

behaviour can be ascribed to the greater number of hydrophobic residues present on the 

outer of the protein which better promote the hydrophobic interaction. The self-

3.67 (0.04) nm 41.66 (0.02) nm
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assembled protein biofilm changes the wettability of the substrate. The changing in 

silicon wettability has been monitored by water contact angle (WCA) measurements. 

 

 
Figure 4.2. Changing the wettability of silicon and 
oxidized silicon: the hydrophobin nanolayer turns the 
hydrophobic surface of silicon in hydrophilic and the 
hydrophilic surface of oxidized silicon in hydrophobic. 
(a) A water drop on silicon forms a contact angle of 90°. 
(b) A water drop on silicon after HFBs deposition forms 
a contact angle of 38°.  

 

In Figure 4.2 (a) and (b) the WCA results in case of the bare silicon and after the 

deposition of the HFBs biofilm are reported, respectively. The dramatic increase in 

wettability of the silicon surface is well evident: in the first case, the WCA results in 

90°±1°, so that the surface can be classified as hydrophobic, while after the HFB 

deposition the WCA falls down to 38°±2° so that the surface is clearly hydrophilic. The 

adhesion characteristics of the hydrophobin biofilm on silicon have been studied by 

washing the sample in 2% sodium dodecyl sulphate (SDS) at 100 °C for 10 minutes and 

in sodium hydroxide (NaOH) solution 0.1 M, for 10 minutes [5]. The rinsing in the SDS 

solvent removes on average the 90 % of the biofilm, while the basic solution removes 

only the 42 % of the hydrophobin layer. HFBs film is formed via strong noncovalent 

interactions among these small proteins. Therefore peculiar properties of their assembly 

can be ascribed solely to hydrophobin amino acid sequences and consequently to their 

3D structures. The high persistence of the hydrophobin film on the silicon surface is due 

to its characteristic assembly in a β-sheet structures, confirmed by the presence of the 

amide I band at 1636 cm-1 in the Fourier transformed infrared spectroscopy (FTIR) 

spectrum [5], reported in Figure 4.3. The sinusoidal modulation in the FTIR spectrum is 
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due to the reflections from the bottom of the intrinsic silicon wafer which is 400 µm 

thick. 

 
Figure 4.3. FTIR spectrum of the hydrophobins after 
assembling on intrinsic crystalline silicon surface. 

 

4.2  Protein Masking in KOH Wet Etching of Silicon 

Since the protein biofilm has not been removed from the silicon surface on exposure to 

the basic solution, the protection ability against the standard chemical etch solution for 

crystalline silicon, the potassium hydroxide (KOH) [6], has been studied. It was found 

that the hydrophobin biofilm, even if thinned, perfectly protects the silicon surface. To 

this aim, a silicon wafer was thermally oxidized since silicon dioxide is a good masking 

material for KOH wet etches. Then, the oxide (130 nm thick) was removed in a 

controlled area by highly concentrated HF and the wafer was exposed to KOH (water 

solution 1: 2 w/w) at 80 °C in a thermostatic bath, for 30 sec. In this condition the KOH 

etch rate is of 1400 nm/min. A twin sample, with the crystalline silicon area covered by 

the hydrophobins self-assembled biofilm, has been immersed in the KOH bath in the 

same conditions. In Figure 4.4 the optical photos of the two silicon samples after this 

treatment, are shown: on the left is clearly visible the etched surface whereas in the right 

image the surface is perfectly homogeneous. This qualitative result is quantitative 

confirmed by ellipsometric and profilometric measurements: an 8.40 (0.05) nm biofilm 

of hydrophobins is still optically detected by the ellipsometer and the profilometer 
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cannot detect any dig into the hydrophobins shielded sample, as it can be seen in Figure 

4.5. 

 

   
 
Figure 4.4. Optical photographs of the silicon chips after 
KOH wet etch: left, a 700 nm etched dig on unprotected 
crystalline silicon; right, unetched silicon surface 
protected by the hydrophobin biofilm. 

 

It was also verified how long the self-assembled biofilm defends the silicon surface 

against the KOH wet etch: a prolonged exposition of the protein coated wafer decreases 

the biofilm thickness down to 5 nm, then the film is stable at least on a time scale of 20 

minutes. This value is probably the one corresponding to a monolayer of proteins 

assembled as a film on the silicon surface. The homogeneity of the residual surface is 

also confirmed by AFM measurement, reported in Figure 4.6. In all the explored areas 

the protein layer appears compact and no hole in the layer can be observed. Due to the 

simplicity of the hydrophobin deposition, an effective shielding against prolonged 

expositions to KOH can be obtained by spotting the protein solution over the masked 

areas before continuing the etch process. Following the same experimental procedure, it 

was also studied if the hydrophobins film could protect the silicon dioxide against the 

HF wet etch. In this case, the proteins are only partially successful: a 72 nm layer of 

silicon dioxide is completely removed in 5 minutes by 1:10 HF-water solution at room 

temperature, while 21 nm of silicon dioxide are still present on a protein masked 

sample. 
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Figure 4.5. Thickness profiles measured by the 
profilometer for both the samples. 

 

 
 
Figure 4.6. AFM height image of a hydrophobin coated 
sample. 

 

4.3  Protein Modified Porous Silicon Surface 

Once the HFBs biofilm was characterized on crystalline silicon substrate, the proteins 

were infiltrated by adsorption in PSi monolayers and multilayers. The protein coated 

surface of PSi takes advantages of the HFBs properties gaining chemical stability and 

variable wettability.  
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Figure 4.7. The ellipsometric model of the hydrophobin 
infiltration in a PSi monostrate. (a) The PSi monolayer as 
etched is characterised by a vertical voids distribution. (b) 
Also in the protein modified PSi monolayer the 
biological matter shows a not uniform distribution in the 
sample. 

 

In Figure 4.7 is reported the VASE characterisation of a 514 nm PSi monolayer of about 

76 % of porosity as etched (a) and after the HFB infiltration (b). Due to the hydrophobic 

interaction, the HFBs penetrate in the whole stack, cumulating at the bottom where the 

hydrogen concentration is higher since the hydrostatic pressure stops the air penetration. 

As observed in the paragraph 4.1, the HFB biofilm, when self-assembled on planar 

crystalline silicon, measures about 3 nm after the standard washing procedure with 

sodium hydroxide and sodium dodecyl sulphate.  
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Figure 4.8. Changing the wettability of PSi: the 
hydrophobin nanolayer turns the hydrophobic surface of 
PSi into a hydrophilic one. (a) A water drop on the PSi as 
etched forms a contact angle of 131°. (b) A water drop 
after the hydrophobin infiltration forms a contact angle of 
62°. 

 

 
Figure 4.9. Changing the wettability of the oxidised PSi: 
the hydrophobin nanolayer turns the hydrophilic surface 
of the oxidised PSi into a hydrophobic one. (a) A water 
drop on the oxidised PSi forms a contact angle of 6°. (b) 
A water drop after hydrophobin infiltration forms a 
contact angle of 57°. 

 

These values are compatible with the size dimension of the mesoporous material, 

ranging from 5 to 30 nm [7]. This nanometric organic layer is able to strongly modify 

the wettability of the PSi surface: after the electrochemical etching process, the PSi is 

highly hydrophobic (see Fig. 4.8 (a)) resulting in a water contact angle value of 131°, 

while after HFB infiltration the same surface shows a hydrophilic behaviour and the 

(b)(a)

(b)(a)
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water contact angle is reduce to 62° (Fig. 4.8 (b)). Following the same procedure, it is 

possible to turn the highly hydrophilic surface of the oxidised PSi into a slightly 

hydrophobic one as demonstrated by the images reported in Figure 4.9 (a) and 4.9 (b). 

The ability to switch between two different wettability regimes could be a key feature in 

designing bioactive interfaces for miniaturization not only of biosensors, but also of 

medical devices [8]. 
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Figure 4.10. The protein infiltration into the PSi structure 
strongly modifies its behavior on exposure to water 
vapors. (a) PSi bare microcavity. (b) PSi protein 
infiltrated microcavity. 

 

The different behaviors of two PSi optical microcavities, one bare and one infiltrated 

with HFB, were studied on exposure to water vapors. The bare microcavity is 

characterized by a hydrophobic surface. The water vapors can not condensate into the 

PSi pores and only an irreversible blue-shift in the reflectivity spectrum of the structure 

is observed due to a partial oxidation of its surface (Figure 4.10 (a)). In the case of HFB 

infiltrated microcavity a reversible red-shift is recorded, as shown in Figure 4.10 (b), 

due to the capillary condensation of the vapors into the pores. The condensation of the 
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water is now possible because the PSi surface has been made hydrophilic by the HFB 

infiltration. 

4.4  Protection against NaOH Etching in Porous Silicon Structures 

In the paragraph 4.2, it is demonstrated that a nanometric biofilm of HFB, self-

assembled on planar crystalline silicon, perfectly acts as a mask material during a 

standard wet etch process based on the KOH. After these encouraging results, it was 

tested the shielding ability of the HFB biofilm against the etch ability of NaOH, when 

self-assembled on the internal surface of porous silicon monolayers and multilayers.  
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Figure 4.11. The hydrophobins protect the PSi against 
dissolution in basic solutions: a layer of a protein 
modified PSi sample is very slowly etched, while the PSi 
layer not infiltrated is heavily reduced on the same time 
scale.  

 

The Figure 4.11 shows the results of the ellipsometric measurements to compare the 

dissolution rate of two PSi twins monolayers (thickness 465 nm, porosity = 72 %), one 

protein coated and the other bare, on exposure to a NaOH 0.1 M (pH = 12.5) water 

solution for equal times. Both the samples are VASE characterized at the same time 

intervals, so to directly assess the competition between the oxidation and the dissolution 

processes. It was never revealed the formation of an oxide layer on both the samples, 

but only a reduction of the films width together with the increasing of their porosity. In 

particular, the thickness of the coated sample changes of about 4 %, while in the case of 
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the bare sample of about the 81 %, in the same time interval. The chance of giving 

strong chemical stability to the porous silicon without modifying its intimate structure is 

even more intriguing in case of PSi based photonic crystals which are quite ideal 

transducers devices in chemical and biological sensing experiments. Furthermore, the 

protein nanobiofilm is completely transparent from ultraviolet to near infrared 

wavelengths so that it is perfectly compatible with optical applications. In Figure 4.12 

the transmission curves of two different biofilms on silicon are reported. In both cases 

the self-assembled layer is transparent in a very large interval of wavelengths: the 

transmittance is still the 80% at 300 nm.  
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Figure 4.12. Transmission curves of two different 
samples of HFB self-assembled biofilm on silicon 
substrate. 

 

Thus, a PSi optical microcavity (PSMC) was infiltrated by the HFB solution. In this 

case, the ellipsometry is not well suited to analyse such thick and multilayered samples 

[9], so that the spectroscopic reflectometry has been used [10]. The reflectivity spectra 

of two PSMCs, one coated by the HFB protein, and the other bare, have been recorded 

by an optical spectrum analyser. In Figure 4.13 the optical spectra of both samples for a 

rapid comparison are reported. On exposure to a 0.1 M aqueous solution of sodium 

hydroxide, the protein coated microcavity undergoes a blue-shift of about 329 nm, due 

to the removal by NaOH dissolution of some unprotected silicon nanocrystallites, while 

in the same time the uncoated sample is completely dissolved: the unmodulated 

continuous line at bottom of the (a) graph reproduces the source spectrum; on the 
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contrary, the (b) graph retains the starting characteristic shape of the microcavity. Even 

if blue-shifted, the optical spectrum yet shows a reflectivity stop band of about 50 nm 

with a well defined transmission defect inside. The coated PSMC has been also exposed 

to the sodium phosphate (20 mM, pH = 8) and Hepes (pH = 7.5) buffer solutions, which 

are often used in biological experiments, to test the chemical stability of the porous 

silicon structure in these standard environments. 

 

 
Figure 4.13. Due to the nanodimensions of the 
hydrophobin layer, these proteins can self-assemble also 
inside the pores of a thick porous silicon vertical structure 
such as a microcavity, which results unetchable by the 
NaOH solution. (a) PSi microcavity not infiltrated. (b) 
PSi proteins modified microcavity. 

 

The PSMC has been immersed in the solutions for 1 hour and has been analysed each 

ten minutes: the optical spectrum of the PSMC remains unchanged in all tests. After the 

basic etch process the hybrid organic-inorganic device still works as a chemical optical 

transducer: its ability in sensing the vapours of different volatile substances has been 

proved. In Figure 4.14, the characteristic red-shifts due to the capillary condensation of 

the vapours inside the nanometric pores of the PSMC are reported. The red-shift, due to 
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the presence of a single gas, is completely reversible when the gas is replaced by air and 

the protein coated microcavity can be used after months with different substances 

giving high reproducible results. The sensitivity of this optical transducer to the 

refractive index changes has been also calculated by exposing it to substances having 

different refractive index. Assuming that the four solvents equally penetrates the 

nanostructured spongy multilayer, a sensitivity of 459 (3) nm expressed in refractive 

index units was estimated [11].  

 
Figure 4.14. The PSi protein modified microcavity still 
works as optical transducer for vapour and liquid 
detection. (a) The characteristic red shifts of the optical 
spectrum on exposure to methanol and isopropanol. (b) 
Determination of the sensitivity to refractive index 
changes of the optical transducer. 
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CHAPTER 5  INTEGRATION  INTO  A  LAB‐ON‐CHIP 

AND PATTERNING TECHNIQUES 
(Papers J4, J10, J11, J12, J19, J21, J22, P3, P5, P7, P11, P20, P21) 

The acronym MOEMS stands for Micro-Opto-Electro-Mechanical-System representing 

one of the most interesting example of new technologies already available, but applied 

on micrometric scale. More than a simple collection of micro-devices, the MOEMS 

science is a new research field that combines the properties and characteristics of 

different materials with scientific disciplines to find innovative and affordable solutions 

in fields such as sensing, biotechnology, analytical chemistry. The integration of micro-

devices means not only lower costs through mass production, but also an improvement 

in terms of analysis time, simplicity of use and a decrease in consumption of materials 

(reagents and analytes, for example) [1]. Generally, a MOEMS includes a microfluidic 

system used to connect the different elements of the device such as biochemical reaction 

chambers and micropumps. Lab-on-Chip are the first MOEMS appeared on the market 

in the late 90’s. Now they are expected to be at the basis of the new scientific 

revolution. Many materials are involved in the Lab-on-Chip fabrication each one with a 

specific function. The glass is one of the most used in chip sealing through some 

thermal or mechanical techniques. The anodic bonding is a standard IC fabrication 

technique which is widely used in microfluidic due to a wide spectrum of advantages 

among which the hermetic sealing [2-3]. Due to the good bonding quality, glass 

transparency, technological cleanness and high passivity to most of chemicals and 

biological substances, anodic bonding is commonly exploited in the fabrication of 

microsystems such as MOEMS or Lab-on-Chip. Another important fabrication process 

employed in most microsystems is the photolithography, used to transfer patterns of 

geometric shapes  on the circuit.  

In this chapter, different examples of integrated systems joining together typical 

microelectronic fabrication technologies with the PSi optical transducer features are 

reported. It is also exploited the Direct-Laser-Writing on PSi surface as alternative 

patterning process to the traditional photolithographic approach. 
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5.1  Silicon Glass Anodic Bonding 

Anodic bonding (AB) [4-7] is widely used for bonding glass wafers to other conductive 

materials due to the good bond quality. The deterministic parameters for AB process 

include applied voltage, temperature, bonding time and nature of the surfaces to be 

bonded. Nevertheless, the AB conditions can cause electrical damages, when bonding 

wafers with integrated circuits on board, or mechanical damages when bonding silicon 

wafers with thermally mismatched materials like piezoelectric lithium niobate 

(LiNbO3), especially important for MOEMS. In presence of PSi, the major problem can 

be a strong oxidation of the material causing a partial or complete pores filling by 

thermal oxide. This can cause an inactivation of the porous sensing region and a 

degradation of the optical response of the whole structure. For this reason a preliminary 

characterization of the typical silicon-glass AB parameters has been performed to 

investigate low temperature, low voltage and short time, taking into account the 

electrode type and thickness of glass wafers. In preliminary experiments, 2-in 

crystalline silicon wafers with no porous layer on their top were used. The glass wafers 

were 2-in, Borofloat 33 type, 1 mm and 2 mm thick. Silicon wafers were prepared by 

standard wet cleaning process based on RCA rule, referred in literature as good method 

for contact angle reduction [8].  

 

(a) (b)(a) (b)
 

Figure 5.1. (a) Schematic of the system used for the 
silicon glass anodic bonding. (b) Reaction scheme 
between silicon and glass. 

 

The glass wafers were prepared by using acetone, K2Cr2O7 and isopropanol. A final 

treatment in H2O2 was performed for both silicon and glass wafers for hydrophilic 

surface formation. Two different electrodes were employed for applying voltage, single 

point (tip shaped) and planar electrode (circular shaped, 10 cm diameter). The first one 
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was placed approximately in the central region of the wafer while the planar electrode 

covered the whole wafer surface. AB of silicon and glass was investigated in the 

temperature and voltage range of 200-400 °C and 0.2-2.5 KV, respectively.  

A scheme of the system used for the silicon-glass anodic bonding is reported in Figure 

5.1 (a). The silicon was placed on a hot-plate connected to the anode of a voltage 

source. Then, the glass was positioned in close contact on the silicon wafer and 

connected to the cathode of the system. Due to the applied voltage, the sodium ions in 

the glass drifted toward the negative electrode leaving the oxygen ions free to react with 

the silicon (Figure 5.1 (b)) so to create Si-O bonds according to [9]: 

Si-OH+HO-Si→Si-O-Si+H2O       (5.1) 

In the case of planar electrode, satisfactory strength and bond quality with high 

uniformity was obtained at temperatures as low as 200 °C, at voltage of 2500 V, with 

process times lower than 2 minutes (see Figure 5.2). This is an important and somehow 

unexpected result: normally AB temperatures are about 350 – 500 °C with times of 

several minutes. 

 

 
 

Figure 5.2. Time characteristics of AB versus voltage, 
with temperature and glass thickness as parameters, for 
planar electrode.  

5.2  Lab‐on‐Chip based on Porous Silicon‐Glass Anodic Bonding  

A Lab-on-Chip (LOC) is a device integrating laboratory functions on a single chip of 

few square centimetres in size. In recent years, there was a fast and intensive interest 



Integration into a Lab-on-Chip and Patterning Techniques 

 

 64

about LOC for sensing applications due to several factors such as very limited sample 

consumption and short analysis time. In this work, the basic element of a Lab-on-Chip, 

the sensor device, has been obtained integrating the PSi optical transducer and a glass 

slide, which ensures sealing and the interconnections for fluids inlet and outlet. The 

cross section of the chip structure is shown in Figure 5.3.  

 

 
 
Figure 5.3. Schematic of the sensor device for Lab-on-
Chip application. 

 

The reaction microchamber has been realized by a two-step electrochemical etching of 

the silicon. The first step is the electropolishing of the material obtained by means a 

high current density electrochemical etch which creates a microwell. The second step is 

a consecutive electrochemical etch which is used to fabricate the PSi layer on the 

bottom of the microchamber. The thickness and porosity of the PSi layer were measured 

by variable angle spectroscopic ellipsometry; the values obtained were about 9.1 µm 

and 79 %, respectively. The refractive index of the layer has been calculated as 1.34 

from the porosity, using the Bruggemann Eq. (2.3). After the mechanical drilling of the 

flow channels, the glass slide has been cleaned and activated for the AB process 

following standard RCA and H2O2 procedures. Due to the highly reactive PSi nature, 

the standard cleaning procedures had to be changed with a soft cleaning procedure 

based on trichloroethylene, acetone and ethanol. The silicon chip has also been carefully 

rinsed in deionised water for several minutes. Silicon etched wafer and glass top 

prefabricated components have been anodically bonded together with mutual alignment 

at a temperature of 200°C, voltage of 2.5 kV and with a process time of 2 minutes. The 

reflectivity spectra in the VIS-IR wavelength region have been recorded with a very 

simple experimental set-up: a white source illuminates, through an optical fiber and a 
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collimator, the porous silicon at nearly normal incidence. The reflected light is collected 

by an objective and coupled into a multimode fiber. The signal is sent to an optical 

spectrum analyzer (Ando, Mod. AQ-6315B) and measured with a 0.1 nm resolution. 

Time-resolved measurements have been also performed in order to characterize the 

sensor dynamic: using the laser beam from an IR source, the signal of a receiving 

photodetector before, during and after the exposure to acetone has been measured as a 

function of time. In Figure 5.4 the reflectivity spectra of the device, unperturbed and on 

exposure to vapors of different organic compounds, are reported. As it can be seen, on 

exposure to compounds, due to the phenomenon of capillary condensation, the average 

refractive index of the layer increases, and, as a consequence the optical thickness of the 

porous silicon layer also increases. 

750 800 850 900

0,5

1,0

 Unperturbed
On exposure to:

 

 

750 800 850 900

0,5

1,0

Acetone

750 800 850 900

0,5

1,0

Ethanol

 

750 800 850 900

0,5

1,0

Isopropanol

750 800 850 900

0,5

1,0

 Xylene

Wavelength (nm)

R
ef

le
ct

iv
ity

 (a
. u

.)

Wavelength (nm)  
Figure 5.4. Reflectivity spectra of the unperturbed sensor 
and on exposure to vapors of several organic compounds. 

 

In Figure 5.5 the maxima of order m as function of wavenumber are shown; the slopes 

of the lines give the optical thickness of the layer for each substance. In the wavelength 

range considered, the assumption of a refractive index independent on the wavelength is 

satisfied since the PSi refractive index changes less than 2 % in this interval.  
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Figure 5.5. Maximum m-order as function of 
wavenumber (1/λm). The slopes of the straight lines are 
the optical thicknesses of the unperturbed layer and on 
exposure to the vapors. 

 
Table 5.1. Chemical organics substances used in sensing experiments and some relevant 
physical-chemical properties a.  

Chemical 

compounds 
n 

ρ 

(g/cm3) 

STC 

(mN/m) 

VP 

(kPa) 

BP 

(°C) 

∆<nd> 

(nm) 
LLF 

Acetone 1.359 0.791 23.46 30.8 56 1000 (60) 0.23 

Ethanol 1.360 0.785 22.8 5.8 78 1010 (70) 0.23 

Iso-propanol 1.377 0.785 20.93 6.8 82.4 1040 (60) 0.22 

Xylene 1.501 1.454 38.8 0.046 214 1400 (50) 0.22 

an is the liquid refractive index; ρ is the density (@ 25 °C); STC is the surface tension 
coefficient (@ 25 °C); VP is the vapor pressure; BP is the boiling point; ∆<nd> is the average 
optical path increase and LLF the layer liquid fraction.  

 

In Table 5.1 the average optical path of the PSi layer and the layer liquid fraction (LLF), 

calculated by using the Eq. (3.2), are reported for each substance. The LLF values are 

about 30 % lower than ones obtained in the case of the PSi transducer before of the AB 

process [10]. These differences can be ascribed to a slight oxidation of the porous 

silicon layer due to the AB temperature process. The silicon oxide can fill or obstruct 

the very small pores of the sponge-like structure, preventing the liquid to condense into 

them. Moreover, due to the air present during the AB process, there probably exists an 
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extra pressure into the microchamber because some air has been entrapped in the PSi 

matrix. As a consequence, according to the Kelvin Eq. (3.1), the capillary condensation 

of the liquid phase decreases. The result of time-resolved measurement is compared in 

Figure 5.6 to the data acquired on the same PSi layer before the AB integration process: 

it is well evident that, due to chamber miniaturization, the response time (τresp=2 s), the 

time interval between the 10% and 90% of the maximum signal, is significantly shorter.  
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Figure 5.6. Time-resolved measurements of porous 
silicon layer during the monitoring of acetone in 0.4 l test 
chamber (solid line) and in the integrated 10 µl micro-
chamber (dashed line). 

 

The value of response time depends not only on the physical phenomena involved (i.e., 

equilibrium between adsorption and desorption in the PSi layer) but also on the 

geometry of the test chamber and on the measurement procedure, i.e. static or 

continuous flow mode. In static condition, the response time is mainly determined by 

the diffusion of the gas into the chamber volume: in fact, when vapor is in contact with 

the porous silicon surface, the capillary condensation takes place instantaneously [11-

12]. For the same reason, the recovery time is longer (τrec=8 s): as soon as Nitrogen is 

introduced into the µ-chamber, the conditions for capillary condensation are not still 

valid so that the liquid phase disappears, depending on atmosphere rate exchange. As it 

is shown in this graphic, the sensor response is completely reversible.  

5.3  Flow Injection Analysis 

Flow Injection Analysis (FIA) is a versatile technique to perform quantitative chemical 

analysis. FIA was invented at Department of Chemistry at DTU in 1975 by Ruzicka and 
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Hansen [13-14]. Since then more than 15000 research papers appeared in the scientific 

literature. FIA is based on injecting by a valve of small and well-defined volume of 

sample into a continuously flowing carrier stream to which appropriate auxiliary reagent 

streams can be added. The sample disperses and reacts with the components of the 

carrier in a reactor, forming a species that is sensed by a detector and recorded. A 

schematic of the Flow Injection Analysis is reported in Figure 5.7. 

 

Sampling Sample
Processing Detection

Carrier
Stream Waste

Carrier Waste

Valve Reactor Detector

Sample

 
 
Figure 5.7. Schematic description of the Flow Injection 
Analysis. 

 

Thus, in contrast to conventional continuous flow procedures, FIA does not rely on 

complete mixing of sample and reagent. Combined with the inherent exact timing of all 

events it is not necessary to wait until all chemical reactions are in equilibrium. These 

feats, which allow transient signals to be used as the readout, do not only permit the 

procedures to be accomplished in a very short time, but have opened new ways to 

perform an array of chemical analytical assays, which are very difficult and in many 

cases directly impossible to implement in a traditional way. Thus, in FIA it is possible 

to base the assay on the measurement of metastable compounds, which exhibit 

particularly interesting analytical characteristics. The concept of FIA depends on a 

combination of three factors: reproducible sample injection volumes, controllable 

sample dispersion, and reproducible timing of the injected sample through the flow 

system. The system is ready for instant operation as soon as the sample is introduced. 

FIA offers several advantages in term of: considerable decrease in sample (normally 

using 10 to 50 µL) and reagent consumption, high sample throughput (50 to 300 

samples per hour), reduced residence times (reading time is about 1 to 40 s), shorter 
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Flow Injection Analysis reaction times (1 to 60 s), easy switching from one analysis to 

another (manifolds are easily assembled and/or exchanged), reproducibility, reliability, 

low carry over, high degree of flexibility, and ease of automation [15]. Perhaps the most 

compelling advantage of the FIA technique is the great reproducibility in the results 

obtained by this technique that can be set up without excessive difficulties and at very 

low cost of investment and maintenance. These advantages have led to an extraordinary 

development of FIA, unprecedented in comparison to any other technique. 

5.4  Integrated Pressure‐Driver Microsystem for Optical Sensing 

The evolution of the system described in section 5.2 is schematized in Figure 5.8 

together with the read-out experimental set-up. The main difference between this device 

and the previous one is the use of the FIA method, that largely improves the 

performances of the sensor. 

 
Figure 5.8. Schematic of the complete optical 
microsystem and of the read-out experimental set-up. 

 

In this system the analyte is sent into the reaction chamber by a carrier stream after the 

valve opening. The interaction between the analyte and the PSi transducer is monitored 

by time-resolved optical measurements: a laser beam with 633 nm wavelength was used 

at nearly normal incidence; the signal of a receiving photodetector before, during and 

after the exposure to gaseous substances (Isopropanol, Ethanol and Methanol) has been 

measured as a function of the time. The fabrication of the integrated device was based 

on three steps as shown in the process flow reported in Figure 5.9. It started with the 

glass micromachining (Figure 5.9 (a)) in order to realize the channels for the FIA 

analysis; a glass slab has been patterned and etched by HF/ethanol (3:1) solution 
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characterized by an etch rate of 30 µm/min. Inlet and outlet channels for feeding gas or 

liquid substances have been mechanically drilled in the top glass wafer, on the opposite 

side of the porous region. The microchamber with the PSi on the bottom (Figure 5.9 (b)) 

has been realized by two steps electrochemical etching as already reported in the section 

5.2.  

 

 
 

Figure 5.9. Fabrication process flow. (a) Glass 
micromaching. (b) Silicon micromachining based on two 
steps electrochemical etching. (c) Silicon-glass anodic 
bonding. 

 

The last step was the anodic bonding process joining together silicon and glass (Figure 

5.9 (c)). By monitoring the changes in the reflectivity spectrum, the valve opening 

frequency which allows a steady state of the optical response was found; this value was 

then fixed (100 mHz) for all the measurements. The pressure range for the analyte and 

the carrier was also investigated. The result of a time-resolved measurement is shown in 

Figure 5.10, in the case of Isopropanol: a response time, τresp, has been determined of 

only 156 ms. The signal returns to its original value in even faster time: τrec =24 ms. The 

similar optical microsystem reported in the section 5.2 but realized without using the 

FIA procedure is characterized by a response time of 2 sec, significantly longer respect 

to the present result. Using the same experimental conditions, the stability and 

repeatability of the sensor on several pulses of the gas analyte were also verified. The 

(a) (b) (c) 
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response times obtained by exposing the device to other substances have been 

compared. 
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Figure 5.10. Time resolved measurement in case of 
Isopropanol. The optical response and the time reference 
of the carrier have been shifted for the sake of clarity. 
Dotted lines are eyes guide for the 10% and 90% of the 
PSi signal. 

 
Table 5.2. Comparison between response times due to different substances 

VOC Isopropanol Ethanol Methanol 

Response 

time 
156 ms 104 ms 64 ms 

Dipole 1.66 D 1.66 D 2.87 D 

 

The carrier and analyte pressures have been set so that the microchamber atmosphere 

was vapor saturated in each case. In Table 5.2 a comparison among the obtained results 

is reported. The different response times can be attribute to the chemical-physical 

characteristic of each substance which determines their interaction with the PSi surface. 

In particular, Methanol has the higher dipole (as reported in Table 5.2) which probably 

assures its faster penetration and condensation into the pores. 

5.5  Patterning technique: Direct Laser Writing 

The formation of a porous area on a micro-machined silicon wafer generally requires 

the definition of a pre-patterned region through the standard photolithography. In this 
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case two problems could arise: the photoresist mask is effective only for 2-3 min. 

against the HF solution during the electrochemical process [16] and for longer etching 

times, a different masking material such as silicon nitride, is needed; then, the 

photoresist developer, being alkaline, can damage and dissolve the porous silicon. The 

first proposed alternative technique to the traditional photolithographic approach is 

direct photo structuring of porous silicon in HF [17]. A non-wet option to the direct 

patterning process is the Direct Laser Writing (DLW). This is an ablation-oxidation 

process already used on the PSi surface in order to define channel waveguides [18-19] 

or oxidized regions for the selective cells growth [20]. Due to the low thermal 

conductivity of the PSi, the high temperature required for the writing process (about 

900° C) can be obtained by a low power laser [21].  

5.5.1  Process Characterization 

In order to characterize the DLW process, five p+-PSi layers with different porosities in 

the range between 45 and 80 % were fabricated.  

 
Figure 5.11. Scheme of the experimental set-up: the blue 
light of a diode laser beam is shaped by a 1 mm pinhole 
and carried by three mirrors (M1, M2, and M3) onto the 
sample of PSi placed on a micrometric stage (x-y, 
resolution 1 µm). 

 

The local laser ablation-oxidation of the PSi layers is a room temperature process, 

obtained by using the experimental setup schematized in Figure 5.11. The samples, 

placed on a motorized x-y micrometric stage (x-y resolution 1 µm; scan speed 0.001-90 

mm s-1), have been exposed to a laser diode beam (48 mW @406 nm, spot diameter ≈ 

1.5 mm) at normal incidence, focused by a 40 x microscope objective lens (NA=0.65). 
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A pinhole, 1 mm diameter, selected the centre of the laser spot. The focused beam had a 

quite homogenous spot with a 1 µm diameter and a power of 38 mW just before the 

surface to be oxidized. Changing the scanning speed of the beam, the laser energy 

densities ranged between 38 mJ/mm2 and 3.8 J/mm2. 

 

 
 

Figure 5.12. Scanning electron micrograph top view of 
the laser oxidized region on the PSi layer (P=72%): (A) 
almost oxidized porous silicon surface; (B) channel 
ablated by laser light at 3.8 J/mm2. 

 

The optical characterization of the oxidized area by variable angle spectroscopic 

ellipsometry required the fabrication of an oxidized area large enough to match the size 

of the ellipsometer micro-spot (about 150 µm). This zone has been obtained by multiple 

adjacent irradiations with equal laser energy density. Ellipsometric measurements were 

performed at an incidence angle of 65°, in the 370-850 nm wavelength region with 1 nm 

spectroscopic resolution. The morphology of the PSi layers was also investigated by 

scanning electron microscopy (SEM) (Tescan Mira). The presence of Si-O-Si bonds due 

to the oxidation process has been monitored by means of infrared spectroscopy with a 

Fourier transform spectrometric microscopy (FT-IR) (Nicolet Continuum). Spectra were 

obtained at a 4 cm-1 resolution averaging 200 scans. 
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Figure 5.13. The three-layer model used in the 
ellipsometric analysis of the PSi sample (P=72%) before 
(a) and after (b) the local laser oxidation; (c) the 
reflectivity spectra of the two samples calculated from 
ellipsometric measurements. 

 

On some samples, the oxidized regions were removed by rinsing the PSi layers in a low 

concentration HF-based solution for 10 sec. The depth of the grooves has been 

measured by a profilometer (KLA-TENCOR P15) with a vertical resolution of 1 nm and 

a horizontal resolution of 1 µm. Even if the optical power density used in this 

experiment was quite high with respect to the other values reported in literature [18, 

22], any light sculpturing effect of the PSi surface was not found for scan speed faster 

than 10 mm/s, corresponding to a fluence lower than 3.8 mJ/mm2. In Figure 5.12 the 
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SEM top view of the laser oxidized region at 3.8 J/mm2 on the PSi layer with a porosity 

of 72 % is reported. 

 
Figure 5.14. FT-IR spectra of the PSi layer (P=72%) 
before (solid line) and after laser irradiation with 38 
mJ/mm2 (dash line) and 3.8 J/mm2 (dot line). 

 

Two distinct zones are shown: the oxidized surface (A) can be easily recognized by the 

presence of very small pores, due to volume expansion accompanying the oxidation 

process. The second one (B) is an ablated strip, 2 µm broad and approximatively 0.5 µm 

deep, observed in the superficial area where the temperature profile, induced by the 

beam shape, exceeds the melting point of the PSi. The presence of this ablation has been 

also revealed by profilometric measurements. In this region the vertical distribution of 

the silicon oxide down to the first porous silicon layer is visible too. The asymmetry of 

the laser induced effect in the (A) and (B) zones can be attributed to a slight distortion 

of the beam profile and – consequently – to the asymmetric temperature distribution on 

the PSi surface. Ellipsometric measurements confirm the bulk structuring of the PSi 

surface after the ablation-oxidation treatment. To fit the ellipsometric data, a three EMA 

(Effective Medium Approximation) layer model was used since the porosity of the PSi 

structure decreases towards the Si-substrate [23]. Figure 5.13 shows the three-layer 

model for the sample before (a) and after (b) the local ablation-oxidation together with 

the reflectivity spectra of both samples (c); the thickness (in nm) and the material 

content (%) of each layer are reported with the respective errors (in brackets) calculated 

by fitting the experimental data of the ellipsometric measurements. Before the 

oxidation, each EMA layer consists of silicon and void; the total thickness of the 
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structure is about 5 µm. After the oxidation, the silicon in the sample is almost 

completely replaced by SiO2 (Figure 5.13 (b)), and the porosity is reduced on average to 

approx. 50%. The thermal oxide, due to the local irradiation by high optical density, not 

only grows in the silicon nanocrystals, but also in the pores with a volume ratio 2:1, so 

that the smaller pores can be completely filled by the oxide resulting in a homogeneous 

silica layer as evidenced by the ellipsometric results of Figure 5.13 (b).  

 
Figure 5.15. Profilometer analysis of the oxidized strip 
on the 60% porosity sample before (solid line) and post 
(dash line) the HF removal.  

 

The reflectivity spectrum is calculated from the measurements of the standard 

ellipsometric parameters [24], the irradiated sample (dashed curve in Figure 5.13 (c)) is 

blue shifted with respect to the fresh sample (continuous curve in Figure 5.13 (c)): the 

optical path (nd, where n is the refractive index and d the layer thickness) in the fresh 

sample is 8455 nm, while it is 5687 nm in the irradiated sample. As soon as the 

superficial layer is irradiated, it becomes transparent to the laser light, thus avoiding any 

further heating so that the process is self-stopping. This effect is due to the very low 

thermal conductivity of the porous silica and also to the high reflectivity interface at the 

boundary between the porous silica and the porous silicon which causes the line width 

to be weakly dependent on the laser fluence, while it strongly depends on the layer 

porosity. The oxide growth has also been monitored by FT-IR measurements. The FT-

IR spectra of the PSi layer, before and after the laser irradiations, at two different energy 

densities, are shown in Figure 5.14. It was verified, as already reported by Rocchia and 

co-workers [25], the decreasing of the Si-Hx bands intensity (at 2100 cm-1) and the 
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presence of stronger Si-Ox peaks (1000-1100 cm-1) in the PSi FT-IR spectra by 

increasing the laser energy densities. This effect has been measured by calculating the 

peak area of the silicon oxide grown on the surface of the sample with 72% of porosity 

at different laser fluences. In the case of PSi as-etched, a value of 3800 counts cm-1 was 

obtained, after irradiation by an energy density of 38 mJ/mm2 the peak area becomes 

4200 counts cm-1, and for a 3.8 J/mm2 laser fluence 5300 counts cm-1 were measured, 

thus confirming the expansion of the oxide in the PSi layer as the delivered light energy 

increases. In Figure 5.15, the vertical profile of the oxidized strip obtained on the 60 % 

porosity sample with a fluence of 3.8 J/mm2 before (solid line) and after (dash line) HF 

removal was reported. Before the HF washing, the strip shows an irregular shape: a 4 

nm large groove is confined between two margins 20 nm high, due to the mechanical 

and thermal strain, as observed in previous works about the laser oxidation of silicon on 

insulator [26, 27]. After the HF rinsing, the local oxide is completely removed, and a 3 

µm large and 280 nm deep V groove appears. By repeating this measurement on the 

other samples, it was found that the oxidation depth tox increases with the porosity and 

the absorbed laser energy densities.  

 
Figure 5.16. Ratio between the oxidized depth tox and the 
PSi thickness t vs the laser fluence for different starting 
porosities.  

 

In particular, for the lowest porosities (45 and 60%) tox shows a rapid saturation with the 

laser fluence, reaching 0.3 µm for the deepest strip obtained. In this regime of porosity, 

there is probably a competition between thermal oxidation and photo oxidation. The 

behavior is different for the higher porosities, where tox continuously increases within 
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the explored laser fluence range. Figure 5.16 shows the ratio between the oxidation 

depth tox and the total film thickness t. The rate of this process increases with the 

porosity, so that the sample at 80% porosity is almost totally oxidized at the average 

energy density used. The penetration of the laser light in the PSi bulk is favored in high 

porosity structures. This is also confirmed by the value of 1/α which is the light 

penetration depth, estimated by the ellipsometer measurement @ 406 nm on the fresh 

material. The 1/α coefficient value increases with the porosity: a value of 200 nm for 

the sample at 45% was calculated, while the layer with 72% of porosity is characterized 

by a penetration depth of 2400 nm. The strong dependence of the laser induced 

ablation-oxidation at higher values of porosity suggests a thermal nature of this 

phenomenon rather than a pure photo-induced one. Another key factor is the oxygen 

penetration which is completely inhibited by the presence of the oxidized layer where 

pores have been filled by the oxide expansion. An important issue of a patterning 

process is represented by its repeatability: it was experimentally verified that for a given 

sample porosity and a fixed laser power the grooves obtained are perfectly identical, so 

that it’s possible to predict the oxidation depth in the device design phase. Nevertheless, 

some substantial differences can arise if the process is used on aged samples: the 

spontaneous oxidation of the porous silicon surface makes the laser oxidation less 

effective and the geometrical features of the grooves could be different even on the 

same surface if light was etched on different days. There is also a good repeatability in 

twin samples on condition that they are processed on the same day. 

5.5.2  Bragg Grating Waveguide 

The DLW process has been used to etch a high order Bragg grating on a PSi waveguide, 

obtaining a resonant structure in the near infrared which has been characterized by end-

fire coupling. Bragg grating optical filters photoinduced in waveguides are cost-

effective devices for applications in optical networks, waveguide lasers, and optical 

sensors. Bragg gratings in silica planar waveguides increase the versatility of planar 

lightwave circuits which already have the advantage of being compatible with well-

established semiconductor processing technologies. Lot of photonic devices — such as 

wavelength division multiplexers, photonic beam-formers, external-cavity lasers and 

optical sensors that measure surrounding refractive index — all benefit from the 

incorporation of Bragg grating technology [28]. One of the challenges for devices with 

integrated Bragg gratings is the easiness of their fabrication, but also the regularity of 
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their geometrical features. It is important to underline that even if some submicrometer 

gratings have been fabricated on PSi surfaces by electron beam (EB) lithography or 

direct writing, no one of these structures have been optically characterized [19]. 

Moreover, the DLW requires much simpler and less expensive equipment with respect 

to the EB. 

The PSi-based Bragg grating waveguide (BGW) fabrication flow process is reported in 

Figure 5.17. The first step is the electrochemical etching of the crystalline silicon at two 

different current densities so to realize the PSi waveguide as shown in Figure 5.17 (a). 

More details on the PSi waveguide fabrication and modal behavior characterization are 

reported in the section 2.5.4. 

 

 
Figure 5.17. PSi based BGW fabrication process flow 
chart. 

 

After the electrochemical etching, the sample was rinsed in ethanol and dried under a 

stream of N2. A fifty periods BGW was written on the porous surface of the upper layer 

by laser ablation/oxidation (Figure 5.17 (b)). The sample was scanned with a speed of 

0.01 mm/s. After the writing process, we removed the oxidized region by rinsing the 

PSi structure in a low concentration HF-based solution for 10 s, as it is shown in Figure 

5.17 (c). The device was then fully oxidized in pure O2 by a two step thermal treatment 

(400 °C for 30 min and 900 °C for 15 min). The oxidation strongly reduces the 

roughness of the interfaces and, as a consequence, the scattering losses of the 

waveguide [29]. The last fabrication step was the cleaving of the waveguide edges in a 

direction parallel to the grating in order to allow the measurement of the BGW 

transmission spectrum by end-fire fiber coupling. 

The transmission spectral response of the BGW was registered by end-fire coupling. A 

sweeping tunable laser source (Ando AQ4321D) was launched into the waveguide by a 

single-mode lensed fiber; a second fiber collected the light at the end of the device, and 

sent the signal to an optical spectrum analyzer (Ando AQ6317C) synchronized with the 

tunable laser source. The spectrum was acquired in the wavelength range of 1520-1620 
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nm with a resolution of 0.1 nm. In Figure 5.18 (a) and (b) two electronic microscope 

images of the PSi Bragg grating waveguide after the HF rinsing and the thermal 

oxidation are reported: Figure 5.18 (a) shows very regular air trenches etched by laser 

light in the porous silicon surface: the grating pitch Λ is about 10 µm and the duty cycle 

about 0.7. 

 

 
Figure 5.18. (a) SEM top view of the BGW structure. (b) 
Detail of a single element end. 

 

Figure 5.18 (b) is a detail of a single element end: quite regular walls with a porosity 

gradient along the vertical direction can be observed. The whole structure is extended 

on an area of about 0.7 mm2 and consists of 1.3 mm long straight lines, perpendicular to 

the propagation direction. The depth profile of the Bragg grating, as measured by the 

profilometer, is shown in Figure 5.19. The Bragg grating can be considered as a 

periodic perturbation of the waveguide which forbids the forward propagation of the 

electromagnetic radiation at specific wavelengths, according to the condition λB=2neffΛ, 

where λB is the Bragg wavelength, neff the effective refractive index of the mode 

supported by the waveguide, and Λ the grating pitch. To obtain such optical gap in the 

near infrared region, the pitch should be of the order of few hundreds of nanometers, 

close to the resolution of standard technologies used in integrated circuits. The porous 

silicon walls should also be too thin (about 500 nm) to be safety handled [30]. To 

overcome these problems, high order Bragg gratings could be considered: in this case 

the resonance condition becomes λB=2neffΛ/k where k is an integer called order of the 

Bragg grating and which represents the number of quarter wavelengths within the air 

and porous silicon refractive indexes. 
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Figure 5.19. Thickness profile of the BGW measured by 
the profilometer after the HF rinsing. 
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Figure 5.20. Experimental (solid curve) and calculated 
(dash curve) transmission spectra of the BGW structure. 

 

The transmission spectrum of the resonant structure can be calculated by using the 

transfer matrix method together with the slab waveguide modal calculation [31]. In 

Figure 5.20 the experimental (solid curve) and calculated (dash curve) transmission 

spectra of the PSi BGW are shown: there is a good qualitative agreement between the 

two spectra. The transmission peaks, present at 1540 nm and 1590 nm, correspond to 
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the seventeenth Bragg order of the fundamental guided mode and the sixteenth Bragg 

order of the first guided mode, respectively. The oscillations of the baseline between the 

two peaks can be attributed to the inner surface roughness and variation of the walls 

thicknesses due to the DLW fabrication process [32]. The contrast reduction in the 

transmitted intensity between the numerical and experimental spectra is about 4 dB and 

due to the scattering losses experienced by the propagating modes in the PSi slab 

waveguide. The agreement between the spectra is a demonstration of the good control 

in the fabrication process, suggesting the possibility to use the PSi BGW as optical 

sensor of biochemical substances and in Lab-on-Chip applications. Even if the optical 

losses can be reduced by proper design below an acceptable value for 

telecommunication purposes, for example under 1 dB/cm as reported in the recent 

literature [18, 33], the ultimate application of such a device can be in the chemical and 

biological sensing. The easiness and low cost of fabrication, jointly with the 

morphological features of porous silica, can be the key factors for successful sensor 

devices. 

5.5.3  Chemical Sensing by Bragg Grating Waveguide 

The BGW has been characterized as optical sensor for chemical substances. In Figure 

5.21 is reported the experimental set-up used for the optical sensor characterization. The 

device is placed in a test-chamber of about 0.5 x 1 x 1.5 cm3 equipped with holes for the 

fibers access, and inlet/outlet gas channels. The experimental setup was in a humidity 

controlled room (relative humidity 50 % ± 5 %). The transmission spectral response of 

the BGW was registered by end-fire coupling. The sensor response has been studied on 

exposure to vapors of different substances changing the concentrations in the case of 

ethanol and iso-propanol. All the high purity chemicals used were supplied by Sigma-

Aldrich. A continuous flow of pure nitrogen carriers the analyte vapors from the tank 

source into the test chamber; the total gas flow was set to 0.05 sccm. Different gases 

concentrations on the BGW surface were obtained by diluting in pure nitrogen the 

organic volatile substance after bubbling. The desired concentration of the considered 

gas, expressed in the following as volume by volume, has been obtained by properly 

setting the computer controller (MKS, Type 647C) of the gas flow-meters (MKS, Type 

1479A) with a resolution of 0.1 % on the full scale (F. S.) (10 sccm) and an accuracy of 

± 1% F. S.  
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Figure 5.21. Experimental set-up to measure the 
transmission spectrum of the BGW in nitrogen and on 
exposure to different vapor substances. TLSource: 
Tunable Laser Source; OSA: Optical Spectrum Analyzer. 

 
 

Table 5.3. Analytes used in the sensing experiments. n is the refractive index, VP is the 
vapor pressure, ∆λ the experimental peak shift and LLF the estimated layer liquid fraction.  

Analyte n VP (KPa) ∆λ (nm) LLF 

Methanol 1.329 16.9 4.2 0.015 

Ethanol 1.360 5.8 5.5 0.018 

Iso-propanol 1.377 6.8 7.4 0.023 

 

When the vapors of the chemical substances penetrate into the sponge structure of the 

PSi BGW, the analyte molecules condense into the liquid phase, due to the capillary 

condensation phenomenon, and substitute the air in the PSi pores inducing an increasing 

of the waveguide refractive indexes. In Figure 5.22 (a) is reported the transmission 

spectrum of the structure in nitrogen and on exposure to different atmospheres of 

methanol, ethanol and iso-propanol. The largest spectral shift is observed for the iso-

propanol, the analyte with the highest refractive index value (see Table 5.3). Each 

volatile compound determines a different shift of the Bragg peak so that the resonant 

device can be used to quickly recognize pure substances.  The red shift of the BGW 

transmission peak as a function of the refractive index of each substance is shown in 

Figure 5.22 (b). In the linear region of the sensor response, the sensitivity was 

calculated as the slope of the curve obtaining a value of (63±12) nm/RIU (Refractive 
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Index Unit). Since the system is able to detect a peak shift of 0.1 nm, the limit of 

detection (LOD), is (48±9) x10-4 RIU.  
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Figure 5.22. (a) Transmission spectra of the BGW on 
exposure to methanol, ethanol and iso-propanol 
atmosphere; (b) Shift of the transmission peak vs the 
refractive index of the organic substances. 

 

Anyway, the relationship between the induced peak shift and the refractive index of the 

analyte gas is not so straightforward, being also related to the amount of adsorbed 

substance by capillary condensation which in turn depends on the physical parameters 

of the gas (surface tension, vapor pressure, and so on) [34]. By applying the Bruggeman 

effective medium approximation [35], the change in the average refractive index of the 

PSi waveguide layers as a function of the pore filling for each analyte can be 

determined. A transfer matrix method [36] can be then used to calculate the 
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transmission spectrum, assuming that the filling proceeds uniformly into the 

waveguiding stack [12].  

 
Figure 5.23. Calculated shift of the BGW transmission 
peak as function of the organic substances condensate 
fraction. 

 

The Figure 5.23 shows the theoretical peak shift vs the Layer Liquid Fraction (LLF), i.e. 

the pores volume percentage filled by liquid. By comparing these results with the 

experimental shifts, the LLF of the liquid phase into the silica pores was estimated. The 

values found are reported in Table 5.3: due to the very low porosity of the cladding and 

core layers, a small percentage of the pores have been filled by the liquid phase. 

 
Figure 5.24. Reproducibility and reversibility of the gas 
sensing measurements in the case of ethanol exposure. 
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The reproducibility and the reversibility of the gas sensing measurement were verified 

in the case of an ethanol flow equal to 0.05 sccm. To this aim, the wavelength of the 

tunable laser source was set at 1545 nm and sent the output signal from the sensor to a 

photodetector (THORLABS, DET 410) connected to an oscilloscope.  
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Figure 5.25. Response curves of the optical sensor to 
different concentrations of ethanol (a) and iso-propanol 
(b). 

 

The device response was acquired on exposure to several ethanol pulse, 4 s long. The 

result of the time-resolved measurement is shown in Figure 5.24: the effect is 

reproducible and reversible. A response time of 0.3 s and a recovery time of 3 s can be 

estimated, which are faster than those reported for other optical sensor [37]. It also 

studied the sensor response at different gas concentrations. The experimental results are 

shown in Figure 5.24 (a) for the ethanol and in Figure 5.24 (b) for the iso-propanol. The 

peak shift increases with the concentration until the saturation: the experimental data 
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were fitted with an exponential growth curve y=A(1-e-Bx) where A is the amplitude and 

B is the rate constant. The sensitivities were calculated in the limit of low concentrations 

S≈AB obtaining the values SEtOH=0.228 (0.019) nm/%V/V and SIsoprop=0.24 (0.04) 

nm/%V/V. The respective limits of detection are LODEtOH=1.3 (0.1) %V/V=1000 (80) 

ppm and LODIsoprop=1.2 (0.2) %V/V=700 (100) ppm, in both cases of the same order of 

the Threshold Working Limit (ethanol TWL= 1000 ppm; iso-propanol TWL=500 ppm) 

established by the actual legislation [38]. Due these experimental performances the PSi 

BGW sensor can be used as an alarm device in industrial applications. 
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CHAPTER 6  CONCLUSIONS 
The realization of PSi devices with attractive sensing features, such as fast response 

time, high sensitivity and specificity, requires the targeting of at least three objectives: a 

proper design ability, based on numerical simulations by using a transfer matrix 

method; a well defined fabrication ability, which implies a good control of the 

electrochemical process; and, finally, a deep characterization technique such as the 

sophisticated variable angle spectroscopic ellipsometry. The results shown in this thesis 

demonstrate that these goals have been achieved: multilayered PSi structures which 

show complex photonic features such as optical resonances, photonic and fractal band 

gaps, have been realized. In particular, high contrast Bragg mirrors (nH= 2.2, nL= 1.3), 

narrow peak optical microcavity with high Q factor, and Thue-Morse sequences up to 

128 different layers have been fabricated. When compared with the calculated 

reflectivity spectra, the experimental ones all show a very good agreement. 

These photonic structures have been successfully used as optical sensors of biochemical 

molecules present in both liquid and gaseous substances. The sensitivity in the 

monitoring of chemical vapours has been correlated to the filling capability of the liquid 

phase of each substance which condense in the pores, but also to the geometrical 

characteristic of the PSi structures, thus underlying the most important parameters in the 

sensor design and fabrication.  

Since the sensing mechanism is very specific but not selective, different methods of 

chemical functionalization of the PSi surface have been studied in order to link 

bioprobes which naturally show high selectivity in recognise target analytes. Two 

different examples of biological sensing have been reported: the first one is a 

monitoring of DNA-DNA hybridization by means of a label-free PSi optical biochip; a 

limit of detection of 260 nM DNA concentration has been obtained. This value is of the 

same order with those reported for other optical DNA hybridization sensors realized 

using more complicated and expensive technologies. In the second case, a sugar binding 

protein has been covalently immobilized on the PSi surface: the protein-chip complex 

has been investigated for glucose detection. A sensitivity of 0.034 nm/µM would easily 

allow the revelation of glucose concentration very close to the amount of the sugar 

present in the human interstitial fluids, such as lachrymal or saliva. The result suggests 

the use of the device in the detection of the glucose level in diabetic patients.  
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From the studies about the interfacing of porous silicon with the organic matter, an 

innovative biological passivation of the PSi, based on some amphiphilic proteins, the 

Hydrophobins, has been used to modify its surface thus avoiding any chemical 

treatment. The self-assembled protein biofilm allows to control both the wettability of 

the material and its resistance against alkaline solutions which rapidly dissolve the PSi. 

Beside the improved chemical stability, this bio/non-bio interface leaves unaltered the 

sensing ability of the optical transducer.  

The optimization and functionalization of the PSi based optical transducer element is 

only the first step towards microsystems for sensing application: the step further has 

been the integration of the PSi sensing elements into a Lab-on-Chip prototype, designed 

and realized for biochemical analysis and medical diagnostic. Due to the mechanical 

and chemical characteristic of the nanostrucutred porous material several 

microelectronic techniques including the Anodic Bonding and the Flow Injection 

Analysis have been adapted and exploited. The integrated devices have been 

characterized as fast sensors of chemicals compounds. The integration of the PSi in a 

microsystem strongly reduce the response times, down to 100 ms or even less, as shown 

by time-resolved measurements. The sensor response dynamic has been characterized 

demonstrating a sensing effect completely reproducible and reversible. Moreover, the 

response time is different for different substances as it happens in chromatographic 

instruments: this is a clear evidence that PSi device could be the fundamental element of 

an all-optical chromatograph for gaseous or liquid complex mixtures.  

Since PSi production is not completely compatible with standard lithography, which 

uses massively alkaline developers, the Direct-Laser-Writing on the PSi surface, as 

alternative process to the traditional photolithographic patterning, has been exploited. 

This powerful technique has been used to fabricate different microstructured devices, 

not all shown in this thesis, having different functionalities. In particular, a PSi Bragg 

grating waveguide with a pitch of 10 µm and resonant in the near-infrared wavelength 

region has been realized and characterized on exposure to volatile organic compounds. 

Limits of detection of hundred of ppm were estimated from the experimental data, 

suggesting to use the sensor as an alarm device in industrial applications.  

So many interesting experimental results obtained and presented in this PhD thesis work 

confirm that PSi is a very promising and versatile platform for the fabrication of the so-

called smart sensors and biochips due to its peculiar physical-chemical properties and 
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morphology: just quoting a very celebrate phrase of R. Feynman “...there is still plenty 

of room at the bottom” of the PSi pores! 
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APPENDIX  A  BOTTOM‐UP  APPROACH  TO 

MICROOPTICS: BIOPHOTONICS IN MARINE DIATOMS 
(Papers J16, J25, P2, P8, P13, P22) 

Diatoms are microalgae with a peculiar cell wall made of amorphous hydrated silica 

valves, reciprocally interconnected like a Petri dish in a structure called “frustule”. The 

valve surfaces exhibit specie-specific patterns of regular arrays of holes, called 

“areolae”. More than 100000 types of diatoms have been discovered and classified by 

different shapes of their cell walls. Diatoms could be divided in two major classes on 

the base of their geometrical symmetries: the centric diatoms, having circular symmetry, 

and the pennate diatoms with anisotropic shape. Due to their peculiar structures and 

large variety of morphologies [1], a widespread interest about diatoms and their possible 

use in nanosciences and nanotechnology has growth. Some futuristic applications have 

already been proposed and realized: the silica cells of diatoms, with their different 

geometries, can be exploited in nanopatterning for the fabrication of photonic devices as 

an alternative to the traditional lithographic techniques [2]. The surface of the diatom 

structure has been used for the deposition and growth of other nanoporous materials 

(zeolites) to provide a micro/macroporous composite material for a specific application 

[3]. Also it is possible to extend the range of applications for diatom frustules, limited 

by the properties of silica, substituting the silicon atoms with magnesium atoms placing 

the diatom in magnesium gas at 900° C for 4 h without losses of the structure [4]. 

Despite the beautiful pattern ornamentations, which are specie-specific and can be 

analyzed by light and electron microscopy, the optical properties of diatoms frustules 

are still unexplored. In this appendix, the optical properties of the silica frustule of a 

centric diatom, the Coscinodiscus walesii, are investigated: impressive morphological 

and physical analogies with porous silicon have been observed. 

A.1  Diatoms Morphology 

Biologists are used to classify diatoms on the basis of their symmetry: usually diatoms 

are divided in centric, which show radial symmetry as it can be seen in Figure A.1 (a), 

and pennate, which have lateral symmetry (Figure A.1 (b)). In order to analyze the 

properties of the diatoms, a cleaning procedure that destroys the external organic matrix 
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covering their siliceous frustules is mandatory. A mixture of acids of different strength 

is generally used for this purpose. 

 

   
(a)      (b) 

 
Figure A.1. (a) Different centric diatoms species. (b) 
Different pennate diatoms species (Image source from 
Internet). 

 
Some micro and nanostructured valves and less silicified frustules can be dissolved in 

strong acids. It is very important to accurately calibrate the strength of the mixture to 

avoid silica skeleton damages. The Coscinodiscus wailesii possesses highly silicified 

frustule, therefore the cleaning procedure uses highly concentrated acid. The samples 

analysed were cleaned using the following steps: 

 

i. 50 ml of a highly concentrated, fixed phytobenthos sample was centrifuged at 

3000 rpm for 10 min; 

ii. the pellet was washed in distilled water 5 times to remove the excess of fixative; 

iii. 2 ml of pellet was mixed with a similar volume of 97 % sulphuric acid for 5 min 

at 60°; 

iv. the acid was removed and the pellet washed again in distilled water 5 times. 

 

In Figure A.2 a SEM image of Coscinodiscus wailesii is reported. The inset B is a 

particular of diatom structure. The valves display regularly ordered and circular pores 

with diameter of about 500 nm (inset A). The pores are occluded by internal cribra with 

nanopores of 30-40 nm in diameter (inset B). The pores of the valves are in a regular 

repeating hexagonal lattice. As in the case of the porous silicon, an important parameter 

of the diatom is its porosity. The diatom porosity was calculated as the ratio between the 

total area occupied by the pores on the surface and the area of the simple hexagon. Thus 

a porosity value of about 0.53 was estimated for the considered sample. 
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Figure A.2. Top view of a Coscinodiscus wailesii after 
the removal of organic material from the pores (inset A). 
In the inset B a particular of diatom structure is reported. 
The pores of the valves are in a regular repeating 
hexagonal lattice. 

A.2  Optical Characterization 

The reflectivity spectrum of the diatom was measured by using as source a white light 

directed on it through a Y fiber. The same fiber was used to guide the output signal to 

the optical spectrum analyzer. The spectrum was measured over the range 1000-1200 

nm with a resolution of 0.2 nm. The diatom reflectivity spectrum is reported in Figure 

A.3. Typical fringes like a Fabry Perot interferometer are shown. 
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Figure A.3. Optical reflectivity spectrum of diatom. The 
difference between two successive maxima is 30 nm. 
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The refractive index of the diatom, n, was determined from the wavelengths of two 

successive maxima (λ1 and λ2) using the thickness d=15µm, measured by SEM, and the 

equation n=λ1λ2/2d∆λ. A value n=1.2 was obtained. Thus, using the Bruggemann Eq. 

(2.3), a porosity of 0.55, comparable with the value obtained by SEM analysis, was 

estimated. 

A.3  Lensless Light Focusing 

The areolae arrays of Coscinodiscus walesii are arranged on the diatom surface with a 

radial symmetry which is very similar to the one of some man-made optical devices, 

such as photonic crystal fibres or phase-locked arrays of optical fibres or lasers: the 

uncommon features of light propagation through these regular structures don’t depend 

only on the interaction with the matter but also on the spatial order of the periodic 

lattice [5, 6]. Therefore, the light transmission characteristic of a single valve was 

investigated, by using the experimental set-up shown in Figure A.4. The central section 

of a diode laser beam (@λ=785 nm, elliptical spot size of approximately 2 mm) was 

selected by a 100 µm pinhole placed at 1 cm from the glass slide to fit the valve 

dimension. The transmitted signal was collected by a 2 0x objective and recorded by a 

CCD camera (Leica DFC300 FX).  

 

Laser CCD
Camera

20X

DiatomPinhole

Z

Glass Slide

Laser CCD
Camera

20X

DiatomPinhole

Z

Glass Slide

 
Figure A.4. The experimental set-up used to investigate 
the light transmission characteristic of the diatom valve. 
Distances are not in scale. 

 

It was verified that the optical setup (pin-hole, glass slide and objective) without the 

diatom didn’t change the features of the laser light: the beam profile divergence and its 

intensity changed less than 5 % over a distance of 250 µm from the focal plane of the 

diatom. The measurement started when the diatom surface was in the objective focal 
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plane; then, the transmitted light spot image was registered by moving the objective up 

to 200 µm by steps of 4 µm. It was found, quite surprisingly, that the valve acted as a 

microlens: the laser beam was highly focused at an output distance from the valve 

surface ranging from 100 µm to 110 µm; then the light beam diverged. The beam was 

confined in 8.1 µm (value of the full width at half maximum) in its narrowest point, 

resulting in a spot size about 12 times smaller than the pinhole diameter (see Figures 

A.5 (a) and A.5 (b)).  

 
Figure A.5. (a) The intensity distribution of the 
transmitted light at the distance (z) of 4 µm (top plot) and 
104 µm (bottom plot): the red line is the experimental 
recorded one, the black line is the numerical estimated. 
(b) The correspondent images of the diatom surface 
recorded by a CCD at the two distances considered. 

 

The light focusing occurs at the centre of the diatom valve in correspondence of the 

uniform zone, free of areolae, which is about 15 µm in size. Even if it’s possible to 

demonstrate that the diatom valve could act as a guiding structure and hence support a 

guided mode in this defect [7], this focusing effect is attributed to a coherent 

superposition of the unfocused wave fronts coming from the about 600 areolae of C. 
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walesii valve which are regularly disposed on diatom surface: the light scattered by the 

holes on the diatom surface interferes constructively only at a fixed distance, which also 

depends on the holes spatial disposition, determining a well-defined spotlight. 

Moreover, the focusing effect found cannot be completely ascribed to the diffraction 

from a round obstacle, as in the well-known case of the Poisson-Arago spot [8]. The 

intensity of this bright spot, which appears in the shadow behind a circular obscuration, 

can be exactly evaluated in the frame of the Fresnel-Kirchoff or the Rayleigh-

Sommerfeld diffraction models [9]. The intensity value of the Poisson-Arago spot 

increases continuously with the distance and saturates at z/a ≈ 4, where a is the radius of 

the obstacle. In the case of the diatom observed this would mean a focusing distance of 

about 300 µm, which is outside the range investigated. In Figure A.6, the intensity of 

the spot center observed as a function of the distance is reported: the light converges 

with a complex modulation which cannot be simply modelled by diffraction. The 

numerical simulations based on this assumption qualitatively reproduce the behaviour 

of the experimental data. 
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Figure A.6. Spot intensity as function of the distance. 

 

In order to calculate the optical properties and analyze the light propagation through a 

real sample of diatom and not just exploiting a model of this organism, the electron 

microscope image of the tested valve was digitalised and the measured geometrical 

parameters used to simulate the optical transmission through it. The numerical 

calculations have been performed by a wide angle Beam Propagation Method, based on 

multi-steps Padè- wide angle technique [10-11]. The calculations grid is composed by 
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2000×2000×50 points and a (1, 1) Padè coefficient has been adopted in order to 

investigate the beam propagation with a divergence of about 30°. The valve refractive 

index value, used in numerical simulations, has been estimated by reflectivity 

measurement to be 1.43, in accordance to the values elsewhere reported [12]. The inner 

structure of the diatom valve has been taken into account as a homogeneous layer of 

amorphous silica with proper thickness (400 nm), since the holes size in this 

ultrastructure is well below the light wavelength. The light intensity distribution on the 

diatom surface has been calculated and the colour plot reported in Figure A.7: from this 

picture is well evident that the highest contribution to the transmitted intensity comes 

from the valve holes.  

 
Figure A.7. Relative intensity of the light on the diatom 
valve surface. 

 

The numerical results of the focusing simulation, plotted in Figure A.5 (a) as black 

curves, are in a good qualitative agreement with the experimental ones (red curves in 

Figure A.5 (b)). If the focusing effect really depends on the interference from the light 

scattered by the areolae, the focalisation distance would behave as the diffraction angle 

which is proportional to 1/λ. In Figure A.8 the calculated focusing distances have been 

reported, as function of the incoming light wavelength, which are perfectly fitted by a 

rationale curve (i.e. 1/λ curve) thus clearly suggesting that the diatom focusing is a 

holes diffraction-driven effect. The discovery of the C. walesii focusing features really 

opens new opportunities in the field of microlenses and of diatom nanotechnology in 

general. Diatom based microlenses could be more flexible than those fabricated with 



A Bottom-up Approach to Microoptics: Biophotonics in Marine Diatoms 

 

 102

usual technologies [13], due to the intrinsic properties of their frustules: silica atoms can 

be substituted with other species without losing the structure [14], and since diatoms 

decrease in size through the succeeding generations, in a short period they can scale to 

nano-dimensions preserving symmetries and other characteristics [1].  
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Figure A.8. The calculated focusing distances as a 
function of the light wavelength. 

 

Furthermore, the diatoms have a very high reproduction rate that means lot of samples 

with their precise and reproducible nanometre scale features at very low production 

cost. The valves are easy to handle by standard micro-needles or micro-tips since 

geometry and material properties can make diatom frustules mechanically very strong, 

hence resistant to large physical forces [15]. Single valves could fit the top of an optical 

fibre to make a lensed fibre without modifying the glass core or, similarly, they could 

match the output of a vertical cavity surface emitting laser [16]. Other photonic micro-

components which could benefit of diatoms focusing ability could be semiconductors 

and organic light emitting devices and in general all other optical micro-arrays. The 

focusing ability of the diatom’s frustule could also have a biological function, which 

should of course be deepened in following researches. This mechanism could provide 

an effective way to concentrate the light with biologically useful wavelengths inside the 

diatoms protoplasm; indeed it is known that light intensity causes a redistribution of the 

chloroplast away from the frustule to the centre of the cell [17].  
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A.4  Photoluminescence and Optical Sensing by Diatoms 

Recently, a study on the photoluminescence (PL) of diatoms has been reported [18]: 

under the 325 nm beam of He-Cd laser, authors found a broad peak at 2.75 eV (450 

nm). In this paragraph, the effect of the surrounding atmosphere on the diatom PL 

spectra is investigated. To this aim, the frustules of the C. walesii were wet deposited on 

a single-polished, intrinsic silicon wafer, which gives a negligible contribution to 

photoluminescence (PL) signal at the wavelength considered. The PL was induced by 

c.w. He-Cd laser (Kimmon IK5651R-G) light at the wavelength 325 nm and measured 

at room temperature in a test chamber with quartz windows for optical access through a 

Triax 320 monochromator (Jobin-Yvon-Horiba) equipped by 1200 grooves/mm grating 

blazed for 500 nm and thermo-cooled charge-coupled device (CCD) camera. The 

spectra were recorded within an accumulation time of 3 s. The spot size of the laser 

beam was 1 mm2, since the incident laser beam power was 20 mW, a light intensity of 

20 mW/mm2 resulted. In Figure A.9 the effect of diatom exposure to NO2 is shown.  
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Figure A.9. Quenching of diatom photoluminescence 
spectrum in presence of NO2. 

 

The PL signal is quenched due to the electrophilic nature of NO2 which can attract some 

electrons from the silica skeleton of diatoms and quench its photoluminescence. A 

stationary concentration of 30 ppm of NO2 flowing into the test chamber induced a 

relative change of the PL intensity of about 17 %. The response time is of few seconds, 

about 2 s, and it depends on the gas diffusion in the test chamber: reducing the volume 

smaller response time can be obtained. The PL quenching effect is completely 
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reversible as soon as the gaseous atmosphere is replaced by air. Furthermore, it is worth 

nothing that the principal peak of the PL band shifts of 5.1 nm towards longer 

wavelengths, due to absorption of the gaseous substance into the nanometer pores of the 

diatom frustule which increases the average refractive index of the structures, as it 

happens in similar conditions to the porous silicon optical devices [19].  

The effects on both the luminescent intensity and the band peak position registered on 

exposure to different substances suggest the possibility to obtain a dual-parameter 

optical sensor by using a free, simple to prepare, and almost ubiquitous material. The 

resolution of the experimental set-up could allow a sensitivity of few ppm, comparable 

with other common sensor devices [20]. 
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