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Chapter 1

Introduction

In order to design a computational fluid dynamics code oriented to the sim-

ulation of turbulent and chemically reacting flows, it is convenient to adopt

high level algebraical languages (like Python, Scilab, Octave, etc.) and in

particular Matlab R©. This choice is made considering the opportunities that

this kind of programming languages offer in terms of easy user interfacing,

fast libraries and packages integration (i.e. NAG, LAPACK, UMFPACK,

etc.) and increasing usage of natively multi-threaded functions. In compari-

son with low level programming languages (like C or Fortran) they result to

be easier to use and more portable across platforms because of their strong

abstraction from the details of the computer. Moreover high level algebraical

languages have also an easy parallelization capability by means of specifically

designed toolboxes (MPI based) and packages (like Star-P R©).

Following such considerations and with the purpose in mind of design-

ing a flexible code (sometimes referred to as proto-code) with turbulent and

reactive capabilities and oriented to the study of new mathematical and nu-

merical models and to the development or optimization of new numerical

algorithms, the first idea has been to import (translate) in high level alge-

braical environment a previously developed Fortran 77 code as kernel of the

new code. Unfortunately this attempt has turned out to be more tricky than
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aspected for two reasons. A Fortran 77 code can have a strong not structured

form with intensive use of unstructured goto statements (not supported in

high level languages such Matlab) as it can be argued by the observation of

its “main” flow chart’s spaghetti-like structure in figure (1.1))

Figure 1.1: Fortran 77 code flow chart.

Moreover in Fortran 77 codes there is an extensive use of common blocks

that, also having a Matlab counterpart in the global variables, makes very

difficult to use the mex-files interfacing procedure between Matlab and pre-

compiled subroutines written in other other languages like Fortran 77. This

interfacing procedure could be particularly helpful just when it is impossible
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or not so convenient to rewrite in Matlab the original Fortran subroutines.

This effort of using a pre-existent structure as a model for the kernel design

has been abandoned for its not so straight-forward realization and for the not

so efficient runtime execution most of all as a consequence of the not efficient

translation of linear solvers.

Taking this experience into account the proto-code design has been reori-

ented on new directions: to write from scratch a new numerical code called

PRIN-3D (PRoto-code for Internal flows modeled by N avier-Stokes equa-

tions in 3 -D imensions) tailored to the general structure of the mathemati-

cal models that we want to solve (in particular the incompressible and the

slightly compressible Navier-Stokes model) but also flexible enough to easy

implement new models exploiting the fast built in functions of high level alge-

braical languages. The focus is also on the introduction of advanced numeri-

cal solvers with pressure segregation by means of preconditioning techniques,

and to the study of different linear solvers (iterative and direct). Also a new

convective numerical scheme is introduced.
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Chapter 2

Mathematical models

The main differential model referred to in this work is described by the

following equations, every other model will simply be derived from the latter

adopting certain hypothesis:

∂ρ

∂t
+

∂(ρui)

∂xi

= 0 (2.1)

∂(ρuj)

∂t
+

∂(ρuiuj)

∂xi

= − ∂p

∂xj

+
∂

∂xi

[
μ(

∂uj

∂xi

+
∂ui

∂xj

) − 2

3
μ

∂uk

∂xk

δji

]
(2.2)

∂(ρh0)

∂t
+

∂(ρuih0)

∂xi

= . . .

· · · =
∂p

∂t
+

∂

∂xi

[
λ

cp

∂h

∂xi

+
N∑

k=1

(ρDk − λ

cp

)hk
∂Yk

∂xi

]
+ Φ (2.3)

∂(ρYm)

∂t
+

∂(ρuiYm)

∂xi

=
∂

∂xi

(
ρDm

∂Ym

∂xi

)
+ wm

(m = 1, 2, . . . , N). (2.4)

Here (2.1) is the continuity equation and (2.2) is the momentum equation in

which terms, that would be normally neglected due to the incompressibility
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of the flow, are now taken into account in a Slightly Compressibile Model

that will be described later. The equation (2.3) decribes the evolution of the

specific enthalpy h0 governed by advection, diffusion and production terms

that depend on the species’ mass fractions Ym, defined as usual. The m

equations (2.4) are essentially describing the transport phenomena associated

with chemical reactions (modeled by the production term wm in (2.4)) that

occur in every given control volume of the domain and they will be discussed

in detail in the slightly compressibile model section.

2.1 Incompressible Flow

The incompressible Navier-Stokes model is already closed if only equations

(2.1) and (2.2) are considered, since ρ is a constant and there’s no need for

the equations (2.3) and (2.4) (that essentially are needed to update such

variable).

∂Ui

∂xi

= 0 (2.5)

∂Uj

∂t
+

∂UiUj

∂xi

= − ∂p

∂xj

+ ν
∂2

∂xi∂xi

Uj (2.6)

with

p = P/ρ

Where P is the sum of the usual pressure and mass force potentials. Fluid

is assumed to be Newtonian (i.e. a linear relation holds between the non

isotropic parts of the stress and rate-of-strain tensors and such proportional-

ity is expressed by means of a single, constant μ termed viscosity of the fluid

[4]). There are only 4 unknows left to be solved: u, v, w and p. It is recalled

here that this model has an important drawback: since temperature and
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density are preassigned constants, from any given constitutive gas equation,

for example

P = ρRT

it could be argued that the pressure field ought be a constant. On the

contrary, in a typical incompressibile solver, pressure is the essential unknown

to be computed. It has a complex physical meaning being just a scalar field

whose gradient guarantees that the velocity field respects the indivergence

constraint expressed by (2.5). It could be argued from a dimensional analysis

that it could be a fairly good approximation to neglect temperature and

density gradients. This doesn’t apply at all for the pressure gradients which

are very effective on the momentum field while having a weak influence in

the energy equations.

A better understanding of the role of the pseudo-pressure gradient in equa-

tion (2.2), constrained by (2.1), is given by applying the Inverse Theorem of

the Vector Field Calculus providing a closure for the vector field
∂uj

∂t
[13].

The latter has a given divergence (zero), a given curl (known by taking the

curl of equation (2.6) ) and given boundary conditions on every point of the

domain boundary.
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2.2 Incompressible Turbulent Flow Modeling

By taking (any) statistical average 〈·〉 of equations (2.5)-(2.6) it is possible

to obtain the mean flow governing equations

∂〈Ui〉
∂xi

= 0 (2.7)

∂〈Uj〉
∂t

+
∂

∂xi

(〈Ui〉 〈Uj〉) = . . .

· · · =
1

ρ

∂〈P 〉
∂xj

+
1

ρ

∂

∂xi

[
μ

(
∂〈Uj〉
∂xi

+
∂〈Ui〉
∂xj

)
− ρ 〈ui uj〉

]
. (2.8)

Equation (2.8) can be rewritten as

∂〈Uj〉
∂t

+
∂

∂xi

(〈Ui〉 〈Uj〉) = · · ·

· · · = −1

ρ

∂

∂xi

[
μ

(
∂〈Uj〉
∂xi

+
∂〈Ui〉
∂xj

)
− ρ 〈ui uj〉

]
− · · ·

· · · − 1

ρ

∂

∂xi

[
2

3
ρkδij −

(
〈P 〉 +

2

3
ρ k

)
δij

]
(2.9)

and considering that the dynamic viscosity coefficient is constant for in-

compressible flows (μ = cost) and that the isotropic part of the Reynolds

stress tensor can be included in the pressure term, redefining a new pressure-

like variable (or divergence corrector) as P = 〈P 〉 + 2
3
ρk and adopting the

turbulent-viscosity model which is stated as follows

−ρ 〈ui uj〉 +
2

3
ρkδij = ρνT

(
∂〈Uj〉
∂xi

+
∂〈Ui〉
∂xj

)
(2.10)

(isotropic but non homogeneous linear relation between the deviatoric Reynolds

stress and mean rate of strain) this leads to
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∂〈Ui〉
∂xi

= 0 (2.11)

∂〈Uj〉
∂t

+
∂

∂xi

(〈Ui〉 〈Uj〉) = . . .

· · · = −1

ρ

∂P
∂xj

+ ν
∂2 〈Uj〉
∂xi∂xi

+
∂

∂xi

[
νT

(
∂〈Uj〉
∂xi

+
∂〈Ui〉
∂xj

)]
. (2.12)

Turbulent viscosity νT is still unknown and has to be updated. A typical

two-equation model, the K-Epsilon model in its low Reynolds form, will be

used.

Standard k − ε model

A commonly used two-equation turbulence model is the k − ε model. The

partial differential equation are derived for kinetic energy of turbulence (k),

and the dissipation of turbulence (ε), where

k =
1

2
〈uiui〉

and

ε = νT

〈
∂ui

∂xj

∂ui

∂xj

〉
The standard k− ε two equation model is expressed by the turbulent kinetic

equation

ρ
∂k

∂t
+ ρ 〈Ui〉 ∂k

∂xi

= ν
∂2

∂xi∂xi

k +
∂

∂xi

[
μT /σk

∂k

∂xi

]
+ Pk − ρε (2.13)

and the dissipation rate equation
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ρ
∂ε

∂t
+ ρ 〈Ui〉 ∂ε

∂xi

= ν
∂2

∂xi∂xi

ε +
∂

∂xi

[
μT /σε

∂ε

∂xi

]
+

+ Cε1Pkε/k − Cε2ρε2/k (2.14)

where Pk is the production of turbulence defined as Pk = τij
∂〈Ui〉
∂xj

with

τij = μT

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

− 2

3
δij

∂〈Ui〉
∂xi

)
− 2

3
ρkδij (2.15)

Low Reynolds number k − ε model

The difficulty with the standard k−ε model introduced in the previous section

is that the equations become numerically unstable when integrated to the

wall [10]. In order to overcome such problem and improve the capability of

the standard k−ε model, several modifications are introduced. The resulting

formulation is known as the low-Reynolds number k−ε model and the first one

was developed by Jones and Launder and subsequently it has been modified

by several inverstigators. The primary modifications introduced by Jones and

Launder were to include turbulence Reynolds number dependent dumping

functions f1, f2 and fμ within the standard k − ε model. Furthermore,

additional terms Lk and Lε were added to the equations to account for the

dissipation processes which may not be isotropic. Thus the low-Reynolds

number k − ε equation is written as

ρ
∂k

∂t
+ ρ 〈Ui〉 ∂k

∂xi

= ν
∂2

∂xi∂xi

k +
∂

∂xi

[
μT /σk

∂k

∂xi

]
+ Pk − ρε + Lk

(2.16)

ρ
∂ε

∂t
+ ρ 〈Ui〉 ∂ε

∂xi

= ν
∂2

∂xi∂xi

ε +
∂

∂xi

[
μT /σε

∂ε

∂xi

]
+

+ Cε1f1Pkε/k − Cε2f2ρε2/k + Lε (2.17)
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where the tubulent viscosity is now computed according to

μT = ρfμ cμ
k2

ε
(2.18)

A number of selected k − ε models are provided in tables (2.1)-(2.2)

Model f1 f2 fμ

Standard 1.0 1.0 1.0

Jones-Launder 1.0 1 − .3exp(−Re2
T )) exp

[
−2.5

1+0.02ReT

]
Hoffman 1.0 1 − .3exp(−Re2

T )) exp
[

−1.75
1+0.02ReT

]
Nagano-Hishida 1.0 1 − .3exp(−Re2

T )) [1 − exp (−ReT /26.5)]2

Table 2.1: low Reynolds k − ε models. (source [10])

Model Lk Lε Cμ Cε1 Cε2 σk σε

Standard 0 0 0.09 1.44 1.92 1.0 1.30

Jones-Launder −2μ
(

∂
√

k
∂xj

)2

2μνT

(
∂2ui

∂x2
j

)2

0.09 1.44 1.92 1.0 1.30

Hoffman − ν
yw

∂k
∂yw

0 0.09 1.81 2.0 2.0 3.0

Nagano-Hishida −2ν
(

∂
√

k
∂yw

)
ννT (1 − fμ)

(
∂2u
∂y2

w

)2

0.09 1.45 1.90 1.0 1.30

Table 2.2: low Reynolds k − ε models. (source [10])
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2.3 Slightly Compressibile Flow

The Slightly Compressibile model is particulary effective in simulating vari-

able density flows but its usage is restricted to low Mach flows (i.e. (0.7 −
0.8)). No shocks can be captured by this model and pressure is still lacking

thermodynamic relevance, and, just like in the incompressible case, it sim-

ply has the role of the velocity field’s divergence corrector. The equations

for such model are (2.24), (2.25), (2.26), and (2.27). The simulation of low

Mach, laminar or turbulent reacting flows will be discussed in this section

and, nonetheless, the incompressible Navier Stokes solver structure will be

preserved 1. The logical steps leading to the Flamelet model which is used

to solve equations (2.26) and (2.27) separately from (2.24) and (2.25) will be

also explained.

2.3.1 Complete Mathematical Model

Density is now a fully time and space variable quantity and it is given by the

following expression in the hypothesis of ideal gas mixtures

ρ =
pW

R0T
(2.19)

For low Mach flows high changes in pressure barely determine a sensibile

change in the density field and this is the main reason why in incompressible

flows pressure looses its thermodynamic role. In low speed reacting flows

density changes are still not determined by changes in pressure but rather by

changes in temperature and in the chemical composition of the gas mixture.

Changes in pressure will still be significant in the momentum equation (2.25)

but, as far as every other equation is concerned, they can be neglected and

it will be considered thermochemically constant.

1See the section 3.4, dedicated to the numerical solving techique of Slightly Compress-

ibile Flows
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The molecular weight of the gas mixture W can be calculated with given

molar fractions of all the single species

W =
N∑

m=1

(XmWm) (2.20)

where N is the total number of chemical species and Xm and Wm are molar

fraction and molecular weight of the mth species. Alternatively, it is possible

to rewrite equation (2.20) in terms of mass fraction Ym and molar fraction

Xm considering that

Ym =
Xm Wm

W
(2.21)

and

N∑
m=1

Xm = 1

obtaining

W =

[
N∑

m=1

Ym

Wm

]−1

. (2.22)

In this way equation (2.19) can be restated as

ρ =
p

R0T
∑N

m=1
Ym

Wm

. (2.23)

As previously explained, the complete set of equations (here rewritten) is

comprehensive of continuity and momentum equations, including energy and

N species transport equations [20]:

∂ρ

∂t
+

∂ (ρui)

∂xi

= 0 (2.24)
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∂ (ρuj)

∂t
+

∂ (ρuiuj)

∂xi

= · · ·

· · · = − ∂p

∂xj

+
∂

∂xi

[
μ

(
∂uj

∂xi

+
∂ui

∂xj

)
− 2

3
μ

∂uk

∂xk

δji

]
(2.25)

∂ (ρh0)

∂t
+

∂ (ρuih0)

∂xi

= · · ·

· · · =
∂p

∂t
+

∂

∂xi

[
λ

cp

∂h

∂xi

+
N∑

k=1

(
ρDk − λ

cp

)
hk

∂Yk

∂xi

]
+ Φ (2.26)

∂(ρYm)

∂t
+

∂(ρuiYm)

∂xi

=
∂

∂xi

(
ρDm

∂Ym

∂xi

)
+ wm (m = 1, . . . , N).

(2.27)

In order to have these equations in this form, a set of assumptions are

taken into account, apart from the ordinary ones being newtonian viscosity,

Fourier’s and Fick’s diffusion laws and vibrational equilibrium (that allows

to consider the specific heat capacity of every species just as a function of

temperature). In the momentum equation terms regarding the bulk viscosity

and mass forces have been dropped out. Moreover, in the energy equation

some terms have been neglected like volume forces work, radiative term,

and Dufour (diffusive-thermometric) term. In the species’ equations Soret’s

thermo-diffusive terms and the pressure gradient contribution to diffusion

have been dropped out; also binary diffusion coefficients Di of species i in

a background prevalent gas (like nitrogen in the air) are assumed instead

of multicomponent diffusion coefficients Dij (of species i in speciesj). It is

also important to know that in the energy equation h and h0 are respectively

static enthalpy and stagnation enthalpy and that the energy diffusive flux is

the sum of two contributions

λ
∂T

∂xi

+
N∑

k=1

ρDkhk
∂Yk

∂xi

.
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The first is given by the conduction heat transfer according to the Fourier

law, and can be rewritten (considering the specific enthalpy dependancy by

the mass fractions and by every single species’ specific enthalpy) as

λ
∂T

∂xi

=
λ

cp

∂h

∂xi

− λ

cp

N∑
k=1

hk
∂Yk

∂xi

whereas the second one is a consequence of the Fick’s mass diffusion transport

law that brings an energy contribution proportional to ρDkhk
∂Yk

∂xi
.

In the momentum equation, Φ is the viscous dissipation function that

models the irreversible energy transformation from kinetic to internal energy

and has the expression

Φ =
∂

∂xi

{
μ

[
uk

(
∂uk

∂xi

+
∂ui

∂xk

)
− 2

3
ui

∂uk

∂xk

]}
.

In the species equation (2.27) wm is the source term

wm = Wm

N∑
k=1

Δνmkωk

where ωk is the reaction rate of the kth reaction (k = 1, 2, . . . , M and M is

the number of reactions). The symbolic reaction expression is

N∑
m=1

ν ′
m,kMm �

N∑
m=1

ν ′′
m,kMm (2.28)

and it takes into account the direct and inverse reaction steps so that to be

referred to as reversible reactions. It is possible to adopt another symbolism

when both reaction steps are separately considered

N∑
m=1

ν ′
m,kMm →

N∑
m=1

ν ′′
m,kMm (2.29)
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and in this case they are called elementary reactions steps, and 2M reactions

must be considered. In (2.28) e (2.29) ν ′
m,k e ν ′′

m,k represent the stoichiometric

coefficients of species m as reactant and product in the kth reaction, and

Δνm,k = ν ′′
m,k − ν ′

m,k. There is also the definition of molecularity of direct

and inverse reaction steps (it is the number of molecules needed in order for

the reaction to take place)

mk =
N∑

m=1

ν ′
m,k nk =

N∑
m=1

ν ′′
m,k (2.30)

Considering equation (2.29), the reaction rate of kth elementary reaction

step can be expressed by Arrhenius law as

ωk = BkT
αk exp(− Ek

R0T
)ρmk

N∏
m=1

(
Ym

Wm

)ν′
m,k (k = 1, 2, ..,M) (2.31)

where Bk, αk e Ek can be assumed as constants (actually they should be

considered as piecewise constants in different temperature intervals).

If form (2.28) is considered, the kth reaction rate is the difference between

reaction rates of direct and inverse reaction steps, that are linked together

(when vibrational equilibrium hypothesis is assumed) by means of the equi-

librium constant

Kp,k = exp(− 1

R0T

N∑
m=1

Δνm,kWmμ0
m) (2.32)

where μ0
m is the chemical potential per unit mass of m species at standard

pressure p0. So the reaction rate of a reversible reaction is

17



ωk = BkT
α
k exp(− Ek

R0T
)ρmk

N∏
m=1

(
Ym

Wm

)ν′
m,k

[
1 − (pW/p0)nk−mk

Kp,k

N∏
m=1

Ym

Wm

Δνm,k

]
(k = 1, 2, ..,M)

(2.33)

Moreover, when considering simple systems, like combustion of methane

in air, the number of reactions M range from 18 to 128 and the number of

species N can vary from 15 to 39 according to the desired level of accuracy.

For the application of equations (2.24) (2.25) (2.26) (2.27) to reacting flows

it is convenient to consider other approximations. It is possible to assume

diffusion coefficients all equals to a single one

Dm = D (m = 1, 2, ..., N) (2.34)

this assumption is particularly wrong when hydrogen is present as one of

the species because of its high mobility, but is not so crucial when Reynolds

numbers become so higher that molecular transports becomes less dominant

with respect to convective ones. Introducing the Prandtl, Schmidt and Lewis

adimensional numbers

Pr =
cpμ

λ
, Sc =

μ

ρD
, Le =

Sc

Pr
(2.35)

it is possible to rewrite the diffusive term part that involves concentration

gradients as follows

∂

∂xi

[
N∑

k=1

(
ρDk − λ

cp

)
hk

∂Yk

∂xi

]
=

∂

∂xi

[
μ(

1

Sc
− 1

Pr
)

N∑
k=1

hk
∂Yk

∂xi

]
(2.36)

and for most of the gas species, with the exception of hydrogen, it results that

Le ≈ 1 that is to say Pr ≈ Sc. This further assumption makes it possible to

restate equations (2.27) (2.26) obtaining
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∂ (ρh0)

∂t
+

∂ (ρuih0)

∂xi

=
∂p

∂t
+

∂

∂xi

[
μ

σ

∂h

∂xi

]
+ Φ (2.37)

∂(ρYm)

∂t
+

∂(ρuiYm)

∂xi

=
∂

∂xi

(
μ

σ

∂Ym

∂xi

)
+ wm (m = 1, 2, . . . , N).

(2.38)

The final system of equations is now composed by equations (2.24) (2.25)

(2.37) (2.38) that is an N + 5 system in the N + 5 variables uj (j =

1, 2, 3), p, h0, Ym (m = 1, 2, . . . , N). The static enthalpy of the mixture is

h = h0 − ukuk/2 and density can be calculated from thermal state equation

(2.23). Temperature is needed in such equation and in the evaluation of

reaction rates and diffusion coefficients. This system is theoretically closed.

To take into account fluctuations of the thermo-fluid-dynamc field due to

turbulent behavior it is convenient to use a Favre’s mean averaged form of

these equations, which is shown below

∂ρ

∂t
+

∂ (ρũi)

∂xi

= 0 (2.39)

∂ (ρũj)

∂t
+

∂ (ρũiũj)

∂xi

= − ∂p

∂xj

+

+
∂

∂xi

[
(μ + μt)

(
∂ũj

∂xi

+
∂ũi

∂xj

)
− 2

3
(μ + μt)

∂ũk

∂xk

δji − 2

3
ρk̃δji

]
(2.40)

∂
(
ρh̃0

)
∂t

+
∂
(
ρũih̃0

)
∂xi

=
∂p

∂t
+

∂

∂xi

[
(
μ

σ
+

μ

σ0

)
∂h

∂xi

]
+ Φ (2.41)

∂
(
ρỸm

)
∂t

+
∂
(
ρũiỸm

)
∂xi

= . . .

· · · =
∂

∂xi

[
(
μ

σ
+

μ

σm

)
∂Ỹm

∂xi

]
+ wm (m = 1, 2, . . . , N) (2.42)
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but these equations (solved with models like k − ε ) brings critical issues

of thermochemical closure regarding the determination wm and ρ. First of

all, it is convenient to note that instantaneous density and production rates

are strongly nonlinearly dependent from all of the problem’s variables so

that, if the usual technique is followed, that is to split every variable in

its mean value and its fluctuation, and then taking the evolution equation

only of the mean quantity, a lot of undetermined double correlations will be

present and a strong modeling will be needed. Turbulent combustion models,

with some assumptions, provide the thermochemical closure and reduce the

problem to a numerical manageable one. Every model has a restricted field of

application and different models have different suitable utilization. It is also

fundamental to distinguish two different kind of models: non-premixed and

premixed combustion models. In the first case fuel and oxidizer enter with

separate fluxes in the combustion chamber and in the second one they enter

in a completely mixed state. There is also an intermediate case when fuel

and oxidizer are considered partially premixed. Only non-premixed models

will be here taken into account.

2.3.2 Passive scalar approach

The idea is to introduce new hypothesis so that it is possible to consider the

instantaneous density, that in general is a function of N + 2 variables as can

be argued by (2.23), as a function of just one variable and then to assume

some other hipotesys on the statistical behavior of this single variable so that

is possible to obtain mean values (variances, etc. ) of the state variables that

are considered like the density itself. This hipotesys are:

- Low velocity flux. In this case we can neglect the dissipation function Φ

in the energy equation and use the sensible enthalpy h instead of stag-

nation enthalpy h0. Pressure is considered thermochemically constant
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that is (as already mentioned) constant in the density expression (2.23)

but variable (as divergence corrector) in the momentum equation. It

can be observed that in the (2.23) temperature can vary of one order

of magnitude (e.g. it varies from 300K to 2200K in methane-air stoi-

chiometric combustion) and mix molecular weight can vary at most of

one order of magnitude (e.g. in hydrogen air combustion it varies from

W ≈ 2 (fuel) to W ≈ 29 (air)) but pressure, if the Mach is assumed

to be low (M ≈ 0.2) varies within a small range with respect to its

stagnation value.

- Molecular diffusion coefficients are all equal to D and Lewis’s number

Le = Sc
Pr

is assumed unitary. Therefore Prandtl and Schmidt turbulent

numbers are equal and their value is a constant σZ = 0.7.

- Adiabatic flux. There is no convective or radiative heat exchange with

solid walls.

- Chemical equilibrium. This implies that the the Damköhler number

Da = tf/tc, with tf characteristic flux time and tc characteristic chem-

ical time, has to be very much greater than one. Low velocity flux, and

high pressure and temperature hypothesis have a good agreement with

this assumption (as it can be implied by Arrhenius expression).

For the chemical equilibrium hypothesis every variable can be expressed

as a function of two other state variables for a particular initial value of the

equivalence ratio ϕ of reactants defined as

ϕ =
(F/O)

(F/O)st

=
Z

1−Z

( Z
1−Z

)st

(2.43)

where there is also Z, called mixture fraction or passive scalar. It is the

fuel mass fraction whether it is burned, unburned or partially burned, and it
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varies between 0 and 1. The oxidizer’s mixture fraction will be 1 − Z. For

its definition it can be argued that the mixture fraction’s governing equation

is a classical convection-diffusion, that is to say

∂(ρZ)

∂t
+

∂(ρuiZ)

∂xi

=
∂

∂xi

[
μ

σ

∂Z

∂xi

]
(2.44)

For the thermo-chemically constant pressure hypothesis, the ρ functional

expression, that in general (for the chemical equilibrium) is ρ = ρ(p, h; φ), will

be dependent only from the specific enthalpy and from the mixture fraction,

and so

ρ = ρ(h; Z) (2.45)

It is also useful to point out that with all the previously stated hypothesis,

the energy equations is

∂ (ρh0)

∂t
+

∂ (ρuih0)

∂xi

=
∂p

∂t
+

∂

∂xi

[
μ

σ

∂h

∂xi

]
(2.46)

and in its steady state formulation it is identical to (2.44). Both equations,

though, differ just for boundary conditions but if enthalpy in (2.46) is scaled

as follows

h − h0

hf − h0

(2.47)

where h0 and hf are respectively the oxidizer and fuel enthalpy, boundary

conditions will coincide. So they both vary from 0 (pure oxidizer) to 1 (pure

fuel), and an homogeneous Neumann condition can be imposed (solid (Z)

and adiabatic (h) wall) on solid walls. Because enthalpy is function of Z,

h = h0 + Z(hf − h0) (2.48)
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equation (2.45) becomes

ρ = ρ [h(Z); Z] = ρ(Z). (2.49)

It is clear that this functional relation can be numerically determined

because, for a given Z (point value fluid-dynamically evaluated), it is possible

to obtain enthalpy and temperature and with the thermo-chemically constant

pressure, it is possible to evaluate the M non linear equations that link the

N species molar fractions in M reactions in chemical equilibrium

N∏
m=1

X
Δνm,k
m = KX,k(T, p) (k = 1, 2, ...,M) (2.50)

where KX,k is the equilibrium constant, in terms of molar fraction, of the kth

reaction. Density can be evaluated from (2.23), and so then all other state

variables can be evaluated.

In the turbulent case, knowing the mixture fraction’s statistical distribu-

tion dependancy from spatial coordinates (i.e. P (Z; x1, x2, x3, t), probability

distribution function (pdf)), from (2.49) it could be possible to evaluate the

mean density (and the mean value for all the others state variables) by

ρ =

∫ 1

0

ρ(Z)P (Z)dZ. (2.51)

Because of the smooth variation of ρ(Z) (not taking into account its strong

variation around Zst), it is possible to argue that the integral (2.51) will be

computed correctly even if a presumed form of the Z pdf is adopted. It is

possible to locally determine the shape of the pdf transporting its moments

Z̃,Z̃ ′′2,Z̃ ′′3,. . . In general just the first two moments are used because of the

superior order moments’ equations modeling difficulty, without substantial
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improvement (considering the model roughness). The steady state equations

for mean and variance of Z are

∂

∂xi

(ρũiZ̃) =
∂

∂xi

[
(
μ

σ
+

μt

σZ

)
∂Z̃

∂xi

]
(2.52)

∂

∂xi

(ρũiZ̃ ′′2) =
∂

∂xi

[
(
μ

σ
+

μt

σZ′′2
)
∂Z̃ ′′2

∂xi

]
+ 2

μt

σZ

∂Z̃

∂xi

∂Z̃

∂xi

− ρχ̃. (2.53)

On the right hand side of (2.53) it is possible to identify, as in the tur-

bulent kinetic energy equation, respectively, a diffusion term (molecular and

turbulent), a production and a dissipation (known as scalar dissipation) one.

The latter one can be modeled according to Kolmogorov, assuming direct

proportionality with Z̃ ′′2 that is due to the increasing of fluctuations so that

χ̃ = Cχ
ε̃Z̃ ′′2

k̃
(2.54)

where to the modeling constant Cχ the value 2.0 is given.

The functional form of P (Z) can’t be a Gaussian one because random

variable Z can assume values just between 0 and 1. Additionally the in-

termittence phenomenon, where Z can assume its extremity values (0 and

1) for a limited amount of time, must be taken into account. This can be

achieved with a divergent Z pdf function in 0 and 1 that depends from two

parameters

P (Z; Z̃(x), Z̃ ′′2(x)) (2.55)

the chosen form of the function is

P (Z) = C Za−1(1 − Z)b−1 (2.56)
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where C is a normalizing factor meant to normalize to one the pdf integral,

and a and b are functions of mean and variance of Z

a =
Z̃2(1 − Z̃)

Z̃ ′′2
− Z̃ (2.57)

b =
Z̃(1 − Z̃)2

Z̃ ′′2
− 1 + Z̃. (2.58)

The intermittence phenomenon is taken into account when Z̃ and Z̃ ′′2

assume values so that a and b are negative.

As mentioned above, mean density can be locally evaluated with a nu-

merical integration of equation (2.51) where P (Z) is known from the Z̃ and

Z̃ ′′2 transport. For this integral calculation a lot of points in the Z space

could be necessary and this could represent a severe computational issue. In

the same way all the mean state quantities can be evaluated including mean

species mass fractions and their variances. This presumed pdf technique is

possible because of the sufficiently smooth behavior of the ρ(Z) law, but this

is absolutely not true for the mean species production rate that can vary of

ten orders of magnitude within a short range of Z. It is here useful to remem-

ber that the chemical equilibrium hypothesis is the reason why the transport

equation of species and energy are not taken into account but replaced with

the passive scalar equation that by definition has no source term. On the

contrary, the chemical species transport equation source term wm is not zero.

In conclusion, in the passive scalar approach combustion is assumed as

controlled by the mixing (or molecular and turbulent diffusion) of fuel and

oxidizer fluxes rather than by chemical reaction rates. In this way it is

possible to evaluate all of the instantaneous state variables as functions of

just one variable, the passive scalar Z. Assuming an approach based on

the pdf reconstruction from (2.23) would have required a N + 2 variables

p, T, Ym (m = 1, 2, ..., N) joined pdf prevision that needs at least the evalu-

ation of all variables first moments together with second ones and the latter
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calculation includes all the possible double correlations. And yet there would

the evaluation of the joint pdf of the species production rate problem that is

difficult to calculate for all the already described reasons including the stiff

dependancy of wm with the pdf shape for its high variability.

2.3.3 Flamelet Model

The key hypothesis of this model is that chemical reactions have a very small

time scale (but not zero) so that flames have one dimension (thickness) much

smaller than other two. With this hypothesis it is possible to write all the

transport equations with functions of just two variables Z and χ. The first

one is the mixture fraction and, as already stated, it represents the fluid mass

fraction composed by fuel originating atoms, not taking into account if this

atoms are linked to other species as a consequence of combustion. The second

variable χ is the scalar dissipation rate and takes into account slow-chemistry

temporal effects that is still considered fast (compared to flow velocity) but

not in equilibrium. As it will be seen later on , among other things χ governs

the flame quenching effects.

Considering for the transport equations the following variables transfor-

mation

τ = t

Z = Z (x1, x2, x3, t)

Z2 = x2

Z3 = x3

and with the definition

χ = 2D
∂Z

∂xk

∂Z

∂xk

(2.59)
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it is possible to show that, for the thin flames hypothesis, species transport

equations can be rewritten as

ρ
∂Yj

∂τ
= ρ

χ

2

∂2Yj

∂Z2
+ wj j = 1, 2, . . . , N (2.60)

and in the steady state

ρ
χ

2

∂2Yj

∂Z2
+ wj (ρ, T, Y1, . . . , YN) = 0 (2.61)

where wj is the jth species production rate. It is also possible to show that

enthalpy transport equation becomes

ρ
χ

2

∂2h

∂Z2
= 0. (2.62)

If χ was known, it would be possible to solve (2.61) and (2.62), together

with state equations

ρ =
p

R0T
∑N

i=1
Yi

Wi

(2.63)

h =
N∑

i=1

Yihi (T ) (2.64)

obtaining state variables equations as

ρ = ρ (Z, χ) (2.65)

h = h (Z, χ) (2.66)

T = T (Z, χ) (2.67)

Yi = Yi (Z, χ) (2.68)
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. . .

Flamelet approach makes it possible to consider chemical kinetics effects

by means of wi that are present in (2.61) and introduces (with respect to

the passive scalar approach) new variable χ with definition (2.59). In this

definition of χ, due to the presence of a spatial derivative, there is a spatial

scale dependancy: in thin flames χ will be big, on the other hand, it will

be small for thick ones. In the first case, finite velocity chemical effects are

important, in the latter there is a quasi-equilibrium situation.

In this approach flames will have an internal distribution of state variables

given by (2.63)-(2.68). For example temperature will be a function of Z and

with the right choice of a reference frame and once χ is known, Z is a function

of the spatial coordinate x normal to the flame, according to

dx =
√

2D/χ dZ.

As a function of Z temperature has high gradients when χ is big and this

situation increases the heat transfer from flame’s inner zones (where con-

ditions are nearer to stoichiometric ones and temperature is high) to outer

zones with a subsequent peak temperature decrease. When χ reaches values

greater than a given quenching value χq the flame stops burning.

Because of the non linear relation between Z and x, according to its def-

inition χ is not a constant but a Z function. This problem is solved with a

presumed functional form for the scalar dissipation rate that corresponds to

an idealized configuration and this is a counterflow diffusion flame configu-

ration ([16] and [15]). This functional form can be written as

χ (Z) = χst
f (Z)

f (Zst)
.

where χst is the scalar dissipation rate at a reference value of the mixture

fraction Zst that is typically chosen in stoichiometric conditions. For the sake
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of exactness it must be specified that state variables are not functions of two

independent variables Z and χ, but of a variable Z and of a parameter χst.

In the turbulent flows case, the flamelet model can be applied for the

instantaneous values of state variables when the laminar flames thickness

is smaller then the smallest spatial turbulent scale that is the Kolmogorov

scale. In this case the turbulent flame is a composition of small laminar

flames (flamelets) transported and stretched by the turbulent flow. The

instantaneous value of a generic state variable Φ can be still evaluated with

a law of the form Φ = Φ (Z, χst) but for the evaluation of mean values a

particular presumed probability distribution function P (Z, χst) is needed so

that is possible to evaluate mean values for every state variable Φ,

Φ̄ =

∫ ∞

0

∫ 1

0

Φ (Z, χst) P (Z, χst) dZdχst.

with the statistical independence hypothesis it is possible to factorize the

joint pdf in two probability distributions, one for Z and another one for χst

P (Z, χst) = P (Z) P (χst) .

For the first one a beta pdf is assumed

P (Z) = CZa−1 (1 − Z)b−1

where C is a normalizing factor needed to set equal to one the pdf integral

and is evaluated as

C =

[∫ 1

0

Za−1 (1 − Z)b−1 dZ

]−1

and a and b exponentials have a Z mean and variance dependancy
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a =
Z̃2
(
1 − Z̃

)
Z̃ ′′2

− Z̃

b =
Z̃
(
1 − Z̃

)2

Z̃ ′′2
− 1 + Z̃.

For the scalar dissipation rate probability distribution a log-normal law is

assumed

P (χst) =
1√
2π

1

σ̂χst

exp

[
− 1

2σ̂2

(
log

χst

χref

− μ̂

)2
]

where

χ̃

χref

= exp

(
μ̂ +

σ̂2

2

)
χ̃ = Cχ

ε̃Z̃ ′′2

k̃

and Cχ = σ̂ = 2.0 is assumed.

For the χ (Z) law determination, needed to solve equations (2.63)-(2.68),

a self similarity hypothesis is assumed and this leads to the law

χ =
as

π
exp{−2

[
erfc−1 (2Z)

]2}
where as represents the strain rate in a counter-flow diffusion flame stagnation

point, so that it is a velocity gradient with the dimension of the inverse of

a convective time. The χst value ranges form zero (chemical equilibrium) to

χq (flame quenching) and for greater values than the latter an inert mix of

fuel and oxidizer is supposed.

With the described procedure a flamelet library is obtained.
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Chapter 3

Numerical Models

In this chapter the structure of the PRIN-3D solver of the linear system of

equations yielded by the discretization of the incompressible laminar Navier

Stokes partial differential equations:

∂vj

∂t
+

∂vivj

∂xi

= −1

ρ

∂P

∂xj

+ ν
∂2vj

∂xi∂xi

∂vi

∂xi

= 0

will be analyzed.

3.1 Time discretization

An implicit time discretization for the diffusive part, weighing with θ the un-

knowns at time n+1 and (1−θ) the known values at time n, will be adopted1

whereas for the non linear part, several numerical schemes are available in

the code. In general an asterisk (*) will be used to indicate the presence

1The most common choice for the value of θ may be 1/2 and this leads to a truncation

error e = O(Δt2) + O(Δx2), i.e. the Cranck-Nicholson scheme, but there are specific

values for θ that increase the order of accuracy of the scheme such as θ = νΔt/Δx2 that

lead to a truncation error e = O(Δt2) + O(Δx4)
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of a generic numerical evaluation strategy for such terms2. All non linear

terms are left on the right side of the discrete equations, that is to say the

evaluation of such terms is only done on the basis of values at time tn. This

time discretization scheme leads to the following set of equations:

vn+1
j − νθΔt

∂2vn+1
j

∂xi∂xi

+
Δt

ρ

∂P n+1

∂xj

= vj
n − Δt

∂vivj

∂xi

n∗

+

+ νΔt (1 − θ)
∂2vn

j

∂xi∂xi

(3.1)

∂vi
n+1

∂xi

= 0. (3.2)

The pressure gradient has been collocated directly at the time t(n+1) and this

is to stress the fact that the vector field ∂P n+1

∂xj
has to correct the divergence

of the finally computed field at time t(n+1) and that in incompressible flows

pressure has barely no physical meaning and so does any attempt to assign a

time collocation to it. Equations (3.2) and (3.1) can be rewritten as follows

(1 − νθΔt
∂2

∂xi∂xi

) vn+1
j +

∂

∂xj

p n+1 = qn
j (j = 1, 2, 3) (3.3)

∂

∂xi

vn+1
i = 0 (3.4)

with

p = Δt
P

ρ

qn
j = vj

n − Δt
∂vivj

∂xi

n∗

+ νΔt (1 − θ)
∂2vn

j

∂xi∂xi

.

The solver of such equations will be the solving kernel for every incompress-

ible or even slightly compressible model being resolved.

2see the Chapter 4 dedicated to the 1D Advection Testing
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3.2 Full Pressure Segregation

Introducing a spatial discretization in the system of equations (3.3)-(3.4), the

whole problem can be restated in terms of algebraic operators

F vn+1
j + Gj p n+1 = qj (j = 1, 2, 3)

Di vi
n+1 = g.

The symbology can be further more condensed in the following manner

⎛⎝F G
D 0

⎞⎠⎛⎝v

p

⎞⎠n+1

=

⎛⎝q

g

⎞⎠ (3.5)

where F is a block-diagonal elliptic operator
( F 0 0

0 F 0
0 0 F

)
, G is a column operator( G1

G2
G3

)
, D is a row operator ( D1 D2 D3 ) and v =

( v1
v2
v3

)
.

In order to solve system (3.5), one choice is to consider Richardson itera-

tion with the following left preconditioner

P =

⎛⎝F 0

D −I

⎞⎠ (3.6)

that can be interpreted in terms of a Chorin-like projection method. In fact,

for every iterative step

⎛⎝F 0

D −I

⎞⎠⎛⎝v

p

⎞⎠n+1,iter+1

= −
⎛⎝0 −G

0 I

⎞⎠⎛⎝v

p

⎞⎠n+1,iter

+

⎛⎝q

g

⎞⎠ (3.7)

an intermediate velocity field is computed (momentum equations solved with-

out the pressure-gradient term) and then pressure is, with virtually no cost,

retrieved from the computation of the divergence of such field. Supposing
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such method to be convergent, this will lead the iterated solution to satify

to the following preconditioned system (see [3], [9] and [14])

⎛⎝ F−1 0

DF−1 −I

⎞⎠⎛⎝F G
D 0

⎞⎠⎛⎝v

p

⎞⎠n+1

=

⎛⎝q′

g′

⎞⎠ (3.8)

that with simple algebraic manipulation can be rewritten as

⎛⎝I F−1G
0 DF−1G

⎞⎠⎛⎝v

p

⎞⎠n+1

=

⎛⎝ F−1q

DF−1q − g

⎞⎠ . (3.9)

This is the typical structure of a segregated system where velocity and

pressure variable computations have been uncoupled. As a matter of fact,

the segregation procedure can also be suggested by the Inverse Theorem

of the Vector Field Calculus [13] which gives a fair interpretation of the

pressure field 3 as a scalar function that provides the divergence correction

for the velocity field and, thus, has to satisfy the classic pressure segregated

Poisson’s equation

DF−1Gpn+1 = DF−1q − g. (3.10)

This process involves the computation of the inverse F−1 or of the group

F−1G. Since the coefficient matrix of the linear system of equations (3.5)

remains unchanged throughout the whole computation (advection term is

estimated with explicit techniques such as predictor-corrector), such inverse

could be precomputed and stored in memory. This option is clearly not rec-

ommendable since if the matrices F−1 and F−1G were directly computed,

3even though would be exactly the case only if an explicit time stepping scheme had

been adopted
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both would turn out to be completely full and their storage would be dram-

matically demanding on memory resources. Nevertheless, solving exactly

(3.10) will guarantee that the new velocity field is divergence-free. Of course

also matrix DF−1G is completely full.

3.3 Sparse Approximate Inverse: Quasi-segregated

discrete equations

Since, as stated above, performing this first segregation process, by means of

direct solving, is too expensive especially in the 3D case ([11], [6]), a smarter

choice would be to adopt the following polynomial expansions of the inverse

of F (and so of the whole block diagonal matrix F):

F−1 = (I − νθΔt ∇2)−1 = I +
∞∑

n=1

(νθΔt ∇2)n.

which converges only if νθΔtρ(∇2) < 1. It can be truncated at the N -th

order so that to obtain the following approximate inverse operator

F̃−1
N = I + (νθΔt ∇2) + (νθΔt ∇2)2 + · · · + (νθΔt ∇2)N (3.11)

with an obvious reduced sparsity if N increases. Instead of using the full

inverse F−1, the approximate N -th order inverse (3.11) for the three diagonal

blocks of F−1 will be now adopted, yielding the following sparse approximate

block diagonal matrix

F̃−1
N =

⎛⎜⎜⎝
F̃−1

N 0 0

0 F̃−1
N 0

0 0 F̃−1
N

⎞⎟⎟⎠ . (3.12)
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Before proceeding, it is important to (numerically) analyze and eventually

control the error of adopting the sparse approximate inverse (3.11) instead

of the full inverse F−1 = [I − (νθΔt ∇2)]
−1

. Let D be an n-by-n matrix so

that 1
h2 D is the numerical approximation on uniform mesh with Δx = Δy =

Δz = h of the Laplacian operator with homogeneous Dirichlet boundary

conditions. The numerical approximation of the operator F will then be

(I − βD) with β = νθΔt
h2 . In Figure (3.1), it is shown how the error of a first

order (i.e. N = 1) sparse approximate inverse defined as

||(I + β∇2) − (I − β∇2)−1||
||(I − β∇2)−1||

increases with n but for large matrix sizes it is only function of β. To control

such error, a value of β (e.g β = 0.02) can be chosen and this, for a given

mesh size, viscosity and θ will be an upper bound for the time step interval

Δt, apart from other constraints given, for example, by the CFL condition.

Here, the approximate inverse (3.12) instead of F−1 is used, and the seg-

regation process (3.8) is repeated. Bearing in mind that

F̃−1
N F = I − BN = I − (νθΔt ∇2)N+1 (3.13)

this yields

⎛⎝I − BN F̃−1
N G

−DBN DF̃−1
N G

⎞⎠⎛⎝v

p

⎞⎠n+1

=

⎛⎝ F̃−1
N q

DF̃−1
N q − g

⎞⎠ . (3.14)

The pressure variables in this system are quasi-segregated (not fully seg-

regated as in the (3.9) system) since BN is different from zero but of the

(N + 1)th order, every term with BN can be somehow neglected or used to
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Figure 3.1: First order approximate sparse inverse error versus natrix

size for increasing values of β

start the following iterative method which will be denoted with the i iterative

counter:

⎛⎝I F̃−1
N G

0 DF̃−1
N G

⎞⎠⎛⎝v

p

⎞⎠n+1,i+1

=

⎛⎝ BN 0

DBN 0

⎞⎠⎛⎝v

p

⎞⎠n+1,i

+

⎛⎝ F̃−1
N q

DF̃−1
N q − g

⎞⎠ .

(3.15)

The system of equations (3.15) is clearly block-triangular and when solving

for the vn+1,i+1 unkowns, the following pressure segregated equation has to

be solved first:

DF̃−1
N Gpn+1,i+1 = DBNvn+1,i + DF̃−1

N q − g. (3.16)

It is possible to split the approximate inverse operator F̃−1
N into two parts

I + F1 and F2, as follows
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F̃−1
N = I +

Nlhs∑
n=1

(νθΔt ∇2)n +
N∑

n=Nlhs+1

(νθΔt ∇2)n = I + F1 + F2.

With such splitting, equation (3.16) is ready to be solved with an iterative

method. The laplacian’s power to be left in the left-hand side of equation

(i.e. in part I + F1) is indicated with Nlhs, and this leads to the following

“nested” iterative scheme indicated with the counter k:

D(I+F1)Gpn+1,i+1,k+1 = −DF2Gpn+1,i+1,k+DBNvn+1,i+DF̃−1
N q−g. (3.17)

If Nlhs = 0 (i.e. F1 = 0), the equation (3.17) has the same coefficient ma-

trix of the pressure equation in an explicit time discretization. The higher

the value of Nlhs the less sparse will the coefficient matrix D(I + F1)G be.

Chosing Nlhs ≥ 1 gives a bi-harmonic nature to such equation [19], reducing

the pressure checkerboard effect, while, on the other hand, increasing the

memory and computational demands for solving such system (see Figures

(3.4) and (3.5) ).

The Galerkin matrix
( F G
D 0

)
, being here attempted to be solved, is illus-

trated in Figure (3.3). In this case a sequential variable ordering (shown in

Figure (3.2)) has been adopted and, for expository purposes, a coarse mesh

(384 pressure nodes) is used.

Performing the previously described solving process with such variable

ordering, the pattern of the final pressure equation’s coefficient matrix for

Nlhs = 0 and Nlhs = 1 (with N ≥ 1 ) will respectively be as in Figure (3.4)

and Figure (3.5).

Apparently there is no further possible nested iterative cycle that could

be exploited to solve equation (3.17). Let’s analyze the stencil of an internal
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Figure 3.2: Sequential (lexico-

graphic) variable ordering

Figure 3.3: Matrix pattern visualiza-

tion of the Galerkin matrix

Figure 3.4: Matrix pattern visualiza-

tion of D(I + F1)G with Nlhs = 0

Figure 3.5: Matrix pattern visualiza-

tion of D(I + F1)G with Nlhs = 1
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equation given by the matrix D(I +F1)G (that, for the sake of simplicity will

be chosen with Nlhs = 0) which is shown in Figure (3.6.)

An idea is to find here alternative types of pressure variable ordering so

that the elliptic operator D(I + F1)G assumes a block-structured pattern.

This will make it possible to introduce another nested iterative cycle on equa-

tion (3.17) apart from allowing a parallel resolution for such equation. The

other pressure variable ordering that are being examinated are the following

2. classic 3D red-black ordering, Figure (3.7), yielding patterns shown in

Figure (3.10) and Figure (3.11)

3. three pressure “colors”, Figure (3.8), yielding patterns Figure (3.12)

and Figure (3.13)

4. four pressure “colors“, Figure (3.9), yielding patterns Figure (3.14) and

Figure (3.15)

All of the pressure orderings from 2 to 4 make it possible to set up a

further iterative nested cycle (with counter l). Two strategies have been

pursued: a block Gauss-Siedel method for a non-parallel solving technique

and a block Gauss-Jacobi method which allows parallel computing on clusters

or on multi-threaded single machine.
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Figure 3.10: Matrix pattern visual-

ization of D(I + F1)G with Nlhs = 0

Figure 3.11: Matrix pattern visual-

ization of D(I + F1)G with Nlhs = 1

Figure 3.12: Matrix pattern visual-

ization of D(I + F1)G with Nlhs = 0

Figure 3.13: Matrix pattern visual-

ization of D(I + F1)G with Nlhs = 1
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Figure 3.14: Matrix pattern visual-

ization of D(I + F1)G with Nlhs = 0

Figure 3.15: Matrix pattern visual-

ization of D(I + F1)G with Nlhs = 1
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3.4 Flamelet Numerical Implementation

All variables at the time tn are given, and a time stepping method designed

to upgrade the solution to the time tn+1 is here described.

Let’s start by using the mixture fraction transport equation in a non con-

servative form

∂Z

∂t
+ ui

∂Z

∂xi

=
1

ρ

∂

∂xi

[
μ

σ

∂Z

∂xi

]
, (3.18)

and then, let’s introduce an explicit time discretization that will lead us to

the following form

Zn+1 = Zn − Δt

[
ui

∂Z

∂xi

]n

+
Δt

ρn

∂

∂xi

[
μ

σ

∂Z

∂xi

]n

. (3.19)

In order to use the same sparse approximate solver used for the incompress-

ible model (that is the numerical kernel of our protocode PRIN-3D), the

equation (3.19) will be forced into an implicit structure inserting fictitious

viscosity and θ coefficients (ν0 and θ0) yielding

A Zn+1 = Zn − Δtν0θ0
∂2

∂xi∂xi

Zn − Δt

[
ui

∂Z

∂xi

]n

+
Δt

ρn

∂

∂xi

[
μ

σ

∂Z

∂xi

]n

(3.20)

with

A =

[
I − Δtν0θ0

∂2

∂xi∂xi

]
.

Let’s mutiply both sides of the (3.20) by the N th order sparse approximate

inverse of A (see section 3.3), which is

Ã−1
N = +(νθΔt ∇2) + (νθΔt ∇2)2 + · · · + (νθΔt ∇2)N
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and introduce an iterative index k obtaining

Zn+1,k+1 =

[
Δtν0θ0

∂2

∂xi∂xi

]N+1

Zn+1,k+

+Ã−1
N

{
Zn − Δtν0θ0

∂2

∂xi∂xi

Zn − Δt

[
ui

∂Z

∂xi

]n

+
Δt

ρ

∂

∂xi

[
μ

σ

∂Z

∂xi

]n}
.

(3.21)

Typically just a few iterations over k are necessary.

The value of Zn+1 on every node of the computational mesh is now calcu-

lated, as well as the value of the scalar dissipation rate χn+1 = 2 D ∂Zn+1

∂xi

∂Zn+1

∂xi

where D = μ
ρσ

. Looking up in the Flamelet’s table created in preprocessing4,

the corresponding values of ρn+1 (and of course , T n+1, μn+1, etc..) can be

evaluated, giving in this way a satisfying estimation of the source term −∂ρ
∂t

in the continuity equation, and leading to the following time stepping method

(ρuj)
n+1 − Δt ν0 θ0

∂2

∂xi∂xi

(ρuj)
n+1 + Δt

∂P

∂xj

n+1

= (ρuj)
n −

−Δt
∂

∂xi

(ρujui)
n + Δt

∂

∂xi

[
μ

(
∂uj

∂xi

+
∂ui

∂xj

)
− 2

3
μ

∂uk

∂uk

δij

]n

−

−Δt ν0 θ0
∂2

∂xi∂xi

(ρuj)
n

(3.22)

∂

∂xi

(ρui)
n+1 = −ρn+1 − ρn

Δt
. (3.23)

With the same Incompressible Navier-Stokes Equation solver, the vector field

(ρuj)
n+1 and the pressure field P n+1 can be determined. By dividing the

former by ρn+1, the velocity vector field un+1
j can also be determined. Now

the cycle can be started all over again. Given the complex, non-linear and

inter-dependent nature of such equations, the best way to achieve numerical

4This preprocessing procedure is carried out by means of a C++

numerical code called FlameMaster [15]. For more informations:

http://www.stanford.edu/group/pitsch/FlameMaster.htm
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stability in many cases is to underrelax the output of the Flamelet Library

(i.e. ρn+1, T n+1, μn+1, etc..). There is no optimum value for the underrelaxing

factor, it may vary according to the Reynolds number and geometry and it

is essentially determined from a trade off between avoiding instabilities and

reaching the steady state as soon as possibile.

Some considerations ought to be made for the diffusive term (containing

the real dynamic viscosity μ) in equation (3.22). The gradient of diffusive

contribution of the isotropic part of the velocity strain tensor −2
3
μ∂uk

∂uk
δij will

be included in the pressure variable and so it will be neglected. Regarding

the other diffusive terms, considering that

∂

∂xi

[
μ

(
∂uj

∂xi

+
∂ui

∂xj

)]
=

∂

∂xi

(
μ

∂uj

∂xi

)
+

∂

∂xi

(
μ

∂ui

∂xj

)
(3.24)

a different choice has to be made for the spatial differential operators in

equation (3.24). The first term is the one that in the μ = cost (incompress-

ible) case gives birth to the classic Laplacian operator so the same numerical

operators used in the momentum equation are chosen. The second term

has to vanish in the incompressible case so divergence and pressure gradient

operators are used.

∂

∂xi

[
μ

(
∂uj

∂xi

+
∂ui

∂xj

)]
=

∂

∂xi

(
μ

∂uj

∂xi

)
+ μ

∂

∂xj

(
∂ui

∂xi

)
+

∂μ

∂xi

∂ui

∂xj

=

∂

∂xi

(
μ

∂uj

∂xi

)
Momentum

+ μ
∂

∂xj

(
∂ui

∂xi

)
Divergence

+
∂μ

∂xi

∂ui

∂xj Divergence
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3.5 k − ε Numerical Implementation

The first step in order to start setting up this kind of simulation is to estimate

the correct mesh size. This is needed because the Low Reynolds number k−ε

model is meant to integrate the mean velocity, k and ε fields, all the way

down to the wall. Therefore, the viscous sublayer is needed to be filled in

with at least 4 or 5 computational cells. As an example of how this procedure

can be done, the mesh size estimation in the Channel flow case (see [17]) is

illustrated.

Figure 3.16: Sketches of a channel flow (source [17])

The procedure to empirically estimate the thickness of the viscous sub-

layer can be started by calculating the friction coefficient cf . If the Reynolds

number

Re =
2δŪ

ν

based on the bulk velocity

Ū =
1

δ

∫ δ

0

〈U〉dy
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(see Figure 3.16) is known, consulting the diagram in Figure 3.17, a good

guess for cf can be made.

Figure 3.17: The skin friction coefficient against the Reynolds number

for channel flow (source [17])

By the friction coefficient’s definition

cf =
τw

1
2
ρU2

0

, (3.25)

where U0 = 〈U〉y=δ is the maximum mean velocity of the inflow profile, the

τw can be evaluated, and in this way also the friction velocity

uτ =

(
τw

ρ

)1/2

=

(
−δ

ρ

dpw

dx

)1/2

(3.26)

can be calculated, allowing us to finally obtain the viscous length

δν =
ν

uτ

(3.27)
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that defines the thickness of the viscous sublayer (for Channel flows ≈ 5 δν).

All the details Regarding the numerical solving procedure are not reported

here, but rather a brief description of the updating process from tn to tn+1 is

given. This is because of the identical mathematical structure that mean flow

equations (2.11)-(2.12) and k − ε equations (2.13)-(2.14) (or (2.16)-(2.14))

share with incompressible Navier-Stokes equations (2.5)-(2.6) so that the

same numerical kernel (see sections 3.1-3.3) can be applied.

To have a non zero velocity field to begin with, a few laminar iterations

are performed before the actual k − ε numerical solver takes place. Knowing

the turbulent viscosity

νT = Cμ
k2

ε
(3.28)

at time step n, the mean velocity field (〈Ui〉, i = 1, 2, 3) can be directly

updated to time step n + 1, because the term

∂

∂xi

[
νT

(
∂〈Uj〉
∂xi

+
∂〈Ui〉
∂xj

)]
(3.29)

is positioned on the right-hand side of the numerical discretization of equation

(2.12). With this mean velocity field, the k and ε numerical equations, that

also have a suitable numerical kernel structure, can now be solved. The

boundary and initial conditions for k and ε fields are respectively chosen as

follows [10]:

- inflow:

kin = 1.5 (Tin 〈Uin〉)2 νTin
= (0.1 → 100) ν εin = Cμ

k2

νTin

with Tin = 10−6 → 10−1

- solid walls:

k = 0 ε = 0 νT = 0
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- outflow: extrapolation is used.

Because some terms in transport equations (2.13) and (2.14) (or (2.16) and

(2.14)) are divided by k and ε, a zero initial condition for k and ε fields can

not be assumed. One of the possible choices is to adopt instead the maximum

value that k and ε assumes on the boundary.
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Chapter 4

Convection

Let’s consider the simple advection equation of the momentum vector ρuj

∂ρuj

∂t
+

∂ρuiuj

∂xi

= 0 (4.1)

∂ρ

∂t
+

∂ρui

∂xi

= 0 (4.2)

by subtracting equation (4.2) from (4.1) it is obtained the equation

∂uj

∂t
+ ui

∂uj

∂xi

= 0, (4.3)

in the 1D case it is obtained the inviscid Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0 (4.4)

or in conservative form

∂u

∂t
+

∂(u2/2)

∂x
= 0 (4.5)

for which exact solutions exists.
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The purpose here is to test advection schemes and their monotone proper-

ties. Godunov’s theorem makes it impossibile for any high order (larger than

1) scheme which is not dependent from the solution itself, to satify these

qualities. The usage of flux limiters is still one of the best options in order

to satisfy these requirements but it leads to very tough programming tasks

especially in the 3D case [7].

Such schemes can also be extended to a general 1D equation

∂u

∂t
+

∂f (u)

∂x
= 0 (4.6)

and regarding its discretization, a finite volume technique will be adopted:

considering the integral form of (4.6) over the ith computational cell

d

dt

∫ xi+1/2

xi−1/2

u (x, t) dx = f
(
u
(
xi−1/2, t

))− f
(
u
(
xi+1/2, t

))
(4.7)

integrating it in time from tn to tn+1 and dividing by Δx = xi+1/2 − xi−1/2

we obtain

1

Δx

∫ xi+1/2

xi−1/2

u
(
x, tn+1

)
dx − 1

Δx

∫ xi+1/2

xi−1/2

u (x, tn) dx =

− 1

Δx

[∫ tn+1

tn
f
(
u
(
xi+1/2, τ

))
dτ −

∫ tn+1

tn
f
(
u
(
xi−1/2, τ

))
dτ

]
.

Considering now the flux function time average

f̃i+1/2 =
1

Δt

∫ tn+1

tn
f
(
u
(
xi+1/2, τ

))
dτ

and the mean value of u over the ith computational cell at time tn

ūn
i =

1

Δx

∫ xi+1/2

xi−1/2

u (x, tn) dx
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the following expression is obtained

ūn+1
i = ūn

i − Δt

Δx
[f̃i+1/2 − f̃i−1/2]. (4.8)

All the convection schemes differ in the way they evaluate the numerical

flux F and/or its time averaged counterpart F̃ [12] and this will be examined

in subsequent sections. But let’s focus for a moment on the cell mean value

ũ. In general this variable can be evaluated by means of a reconstruction of

the function itself based on nodal values and subsequent integration, leading

to a linear combination of nodal values of u with some weights. With equally

spaced cells (or in general node centered ones) and adopting a linear recon-

struction, the mean value ū is equal to the nodal (cell center) value of the

function u = ū. In this case the formula (4.8) can be obtained with a finite

difference discretization technique, with central differencing discretization [5].

4.1 Burgers’ Equation Test Case

The following analytical solution of the Burgers’ Inviscid equation for the

given initial condition represented in Figure 4.1 will be used as a test case

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ xi

(x − xi)/t xi < x ≤ x1

Umax x1 < x ≤ x2

0 x2 ≤ x.

(4.9)

In order not to make the expansion wave (departing from xi) reach the

discontinuity (departing from xf ) and not to make the latter reach the end

of the domain (x = L), the final time of the simulation will be chosen as
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Figure 4.1: Burgers initial condition with L = 2, Umax = 1, xi = L/10,

xf = L/2.

Tfin =
2

Umax

min(L − xf , xf − xi)

4.2 Non Conservative Schemes

Lagragian approach

Considering an explicit time discretization of the (4.4), that is to say

un+1 = un − Δt

[
u
∂u

∂x

]n

which is equivalent, considering the first order Taylor’s polynomial expansion,

to the following expression

u(x)n+1 = u(x − uΔt)n + O(Δt2).

Dropping the second order term and introducing a spatial discretization fi-

nally yields
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un+1
i = un|xi−Δt ui

which is only first order accurate and of course the value un|xi−Δtui
must

be obtained by interpolation. Higher interpolative orders guarantee a lower

amount of artificial viscosity. This method is of course non conservative

(there is no numerical flux to be estimated) and, accordingly, it is not shock

capturing.

4.3 Conservative Schemes

All conservative schemes come down to the same time stepping method (see

equations (4.6)-(4.8))

un+1
i = un

i − λ[F̃i+1/2 − F̃i−1/2]

(λ = Δt
Δx

) and all the schemes that will be described will differ in the way

the time averaged flux F̃ (over the time interval tn and tn + Δt) is being

estimated at the control volumes surfaces.

Upwind Differential Scheme

The Upwind Differential Scheme (UDS) is a first order and very diffusive

conservative scheme. The numerical flux is defined as follows

F̃i−1/2 =
1

2
u+

i−1ui−1 +
1

2
u−

i ui (4.10)

Lax Friedrichs Scheme

This scheme is a high order central explicit scheme with additional artifi-

cial viscosity meant to stabilize an otherwise totally unstable scheme. The

numerical flux is
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F̃i−1/2 = − Δx

2Δt
(un

i − un
i−1) +

1
2
u2

i+1 + 1
2
u2

i

2
(4.11)

nth Order Upwind Interpolation Scheme

The idea is to interpolate the value of fi−1/2 = f−
i−1/2 + f+

i−1/2 at the face

i − 1/2 with an upwind interpolation that is to say

F+
i−1/2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
f+

i + f+
i+1

)
linear

−1
8
f+

i−2 + 3
4
f+

i−1 + 9
8
f+

i quadratic

1
16

f+
i−3 − 5

16
f+

i−2 + 15
16

f+
i−1 + 5

16
f+

i cubic
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F−
i−1/2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
f−

i + f−
i+1

)
linear

+9
8
f−

i−1 + 3
4
f−

i − 1
8
f−

i+1 quadratic

+ 5
16

f−
i−1 + 15

16
f−

i − 5
16

f−
i+1 + 1

16
f−

i+2 cubic

(4.13)

The Richtmyer Two-Step Lax-Wendroff Method

The Lax Friedrichs Scheme is overall only first order accurate. The goal is

now increasing the time-average accuracy with this second order scheme with

F̃i−1/2 = f(u
n+ 1

2

i−1/2)

where

u
n+ 1

2

i−1/2 =
1

2

(
un

i−1 + un
i

)− λ

2

(
f(un

i ) − f(un
i−1)
)

(4.14)
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n

xixi-1 x i+1

Figure 4.2: the Richtmyer two-step Lax-Wendroff scheme.

Multilevel Lagrangian Conservative Schemes

The Richtmyer scheme is extremely oscillating and a scheme which is more

accurate in time and space, with a simple control on spurious viscosity effects,

will be introduced. The first step is interpolating with a given order the nodal

values of the velocity u from the first grid (grid 1 ) to a second grid (grid 2 )

which is derived from grid 1 by refining the mesh with additional nsbgr − 1

cells or nsbgr cell centers in between two cell centers of mesh 1

un
i1 → un

i2. (4.15)

The time averaging of the flux will be carried out with Gaussian integration

of the analytical flux f(u) on the cell’s face

f̃ =
1

Δt

∫ tn+Δt

tn
f(t)i−1/2 dt � . . .

· · · � 1

2

[
f(un+ 3−√

3
6 )i−1/2 + f(un+ 3+

√
3

6 )i−1/2

]
= F̃

(4.16)

this time averaging is third order accurate1. The values of the velocity at the

Gauss points in time are calculated as follows:

1Usual Gaussian quadrature rule refers to points ±√1/3 for the evaluation of∫ 1

−1
ϕ (t) dt. With the change of variables t̄ = t+1

2 Δt is posible to see that
∫Δt

0
ϕ (t (t̄)) dt̄ =

Δt/2
∫ 1

−1
ϕ (t) dt = Δt/2

[
ϕ
(

3−√
3

6 Δt
)

+ ϕ
(

3+
√

3
6 Δt

)]
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un+ 3−√
3

6 = un

(
xi−1/2 − 3 −√

3

6
Δt u∗

i−1/2

)
(4.17)

un+ 3+
√

3
6 = un

(
xi−1/2 − 3 +

√
3

6
Δt u∗

i−1/2

)
(4.18)

(4.19)

with

u∗
i−1/2 =

1

2
(ui−1 + ui) (4.20)

and the values of un
(
xi−1/2 − 3−√

3
6

Δt u∗
i−1/2

)
and un

(
xi−1/2 − 3+

√
3

6
Δt u∗

i−1/2

)
must be obtained with a nearest value interpolation from the ui2 array of in-

terpolated velocities, providing the correct amount of artificial viscosity while

preserving a high-order spatial and temporal resolution.

n+1

n

xixi-1 x i+1

Figure 4.3: Multilevel Lagrangian Conservative scheme.

4.4 Flux Limiters

The purpose of Flux Limiters is to blend, by means of a limiter function φ,

low order (monotonic but extremely diffusive) and high order (accurate but
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oscillating in proximity of discontinuities) approximations of the velocity flux.

A splitting into postive and negative velocities is necessary. The numerical

flux is estimated as follows

F+
i−1/2 = fLOW+

i−1/2 − φ(r+
i−1/2)

[
fLOW+

i−1/2 + fHIGH+
i−1/2

]
F−

i−1/2 = fLOW−
i−1/2 − φ(r−i−1/2)

[
fLOW−

i−1/2 + fHIGH−
i−1/2

]
with

r+
i−1/2 =

(ui−1 − ui−2)(ui − ui−1)

(ui − ui−1)2

r−i−1/2 =
(ui − ui+1)(ui−1 − ui)

(ui−1 − ui)2

two algorithms for the evaluation of the limiter function have been imple-

mented

SuperBee

φ(r) = max[0, min(2r, 1), min(r, βsb)] (4.21)

lim
r→+∞

φ = βsb (4.22)

vanLeer

φ(r)vl =
r + |r|
1 + r

(4.23)

lim
r→+∞

φ = βvl. (4.24)
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4.5 Schemes Comparison

In this section some numerical comparisons among the convection schemes

above described are shown. The logarithm of the time average of the taxi-

cab norm2 of the difference between the analytic solution and the numerical

solution (error), that can be be written as

log
(

˜‖ua − unum‖1

)
is reported in tables as confronting index of good approximation for every

scheme being tested.

Prediction correction schemes

With these schemes a lagrangian prediction of u values at tn+1, with different

interpolating orders, is made, then both fluxes at times tn and tn+1 with a

particular reconstruction order, are evaluated, and finally the temporal mean

with a trapezoidal time integration is obtained.
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Figure 4.4: prediction (linear) - correction.
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Figure 4.5: prediction (cubic) - correction.

Flux Order↓ \ Predictor→ NEAREST LINEAR CUBIC

LINEAR n/a n/a n/a

QUADRATIC n/a 0.0521 0.0495

CUBIC n/a 0.0373 0.0350

The not available symbol n/a indicates that the simulation is unstable or

the results are very poor. This is the case respectively, for the linear flux

reconstruction (that means central differencing) and for the nearest recon-

struction.

Prediction correction schemes with limiters

Here two different limiters (van Leer and SuperBee) are applied to some

prediction-correction schemes with different interpolating order on the la-

grangian prediction and with quadratic order for fluxes evaluation.

2The taxi-cab norm or 1-norm of vector v is ‖v‖1 =
∑

i |vi|
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Figure 4.6: prediction - correction with quadratic order reconstruction

and flux limiter van Leer.
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Figure 4.7: prediction - correction with quadratic order reconstruction

and flux limiter SuperBee.

Predictor↓ \ Limiter→ van Leer SuperBee

NEAREST 0.0313 0.0378

LINEAR 0.0162 0.0153

CUBIC 0.0175 0.0157
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Multilevel Lagrangian Conservative Schemes (MLCS)

In this case MLCS schemes with 2 and 3 sub-grid points and different recon-

struction orders, are compared with the Richtmyer two-step Lax-Wendroff

method
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Figure 4.8: Multilevel Lagrangian Conservative scheme with 2 sub-grid

points vs. Lax-Richtmyer.
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Figure 4.9: Multilevel Lagrangian Conservative scheme with 3 sub-grid

points vs. Lax-Richtmyer.
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Predictor↓ \ n. Sub-grid→ 2 3

LINEAR 0.423 0.628

CUBIC 0.0277 0.0366

Lax-Richtmyer → 0.0521

Multilevel Lagrangian Conservative Schemes (MLCS) with limiters

Here the van Leer and SuperBee limiters are applied to the above tested

MLCS schemes
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Figure 4.10: MLCS with 2 sub-grid points and van Leer limiter.

Predictor↓ \ n. Sub-grid→ 2 3

LINEAR 0.0214 0.0163

CUBIC 0.0194 0.0143
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Figure 4.11: MLCS with 3 sub-grid points and van Leer limiter.

� ��� � ���  
��� 

�

�� 

��/

��!

��"

�

�� 

+��+��

�#
+$

��%	&���������+����'����������&���&(	&�-�)����������������

�

�

�*+'�����	�&������ (&, �*�%��	&�#-%������-	& 		
�*+'����� �������� (&, ��*�%��	&�#-%������-	& 		

Figure 4.12: MLCS with 2 sub-grid points and SuperBee limiter.

Predictor↓ \ n. Sub-grid→ 2 3

LINEAR 0.0206 0.0154

CUBIC 0.0189 0.0148
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Figure 4.13: MLCS with 3 sub-grid points and SuperBee limiter.
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Chapter 5

Code overview

One of the primary reasons for writing a computational fluid dynamic code

from scratch in an high level algebraical language such as Matlab, Scilab

or Python, is to exploit their characteristics of clean and simple but also

effective coding. Using these kind of languages is a suitable choice taking

especially into account their “natural” handling of fundamental linear alge-

bra objects like matrices, and the extensive amount of libraries and functions

available for a lot of simple and complex operations like matrix manipulation

or 3D graphics and visualization.

5.1 PRIN-3D General Design

One of the most important characteristics that has to be included in the

design of the code is modularity; the idea is to write a code that enables the

user to perform several tests ranging from algebraic analysis of the equations’

structure to modular implementation of virtually any kind of Fluid Dynamic

model. With this in mind, we can take a tour of the basic structure of the

code and start with a basic user-input example.
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5.1.1 3D Computational Domain

Three-dimensional geometry handling is one of the toughest steps in a CFD

code design. The purpose was not to realize an “industrial” CFD code, so

the idea of dealing with a totally generic geometry has been dropped. An

effort has been made to guarantee the maximum flexability with respect to

the user’s demands in within a certain class of 3D domains. The actual ver-

sion of the code is intended to handle a specific class of three-dimensional

domains, right prisms. The user defines a basic 2D polygon (with points

assigned in a counterclockwise manner in the Y-Z plane) and the height of

the prism which extends along the X-dimension, as illustrated in Figure (5.1).
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Figure 5.1: Computational domain example

There are essentially two types of boundary faces in this class of domains:

1. type A : faces with normals orthogonal to the X-axis, which are always

rectangular
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2. type B : faces with normals parallel to the X-axis, which are polygons

defined with subsets of points taken from the previously defined basic

2D polygon (this will be better explained later on)

Boundary conditions available for the velocity’s components u,v,w are

Dirichlet (for all faces) and Extrapolation (for Outflow faces only) 1. It is

possible to have multiple inflows/outflows but, due to the actual variable col-

location, which will be discussed later on, the code works better if different

inflows or outflows are not defined on adjacent faces. Every point on type

B faces is defined by the set of (dimensional) coordinates (z,y) and dirich-

let boundary conditions for the three velocity components can be defined as

functions of (z,y). These set of faces are not rectangular in general, they can

be of any polygonal shape and this is user-defined. Exactly the same thing

can be done for type A faces which, on the contrary, are ALL rectangular. A

set of dimensionless coordinates (x,s) can then be defined to locate any point

on their surface. For example, the set of (x,s) coordinates has been drawn

on a type A face in Figure (5.1) and the coordinates (x=0,s=0) indicate the

upper-right vertex (point 3), whereas the coordinates (x=1,s=1) the lower-

right vertex (point 4’). An example of a kind of velocity outlet that can be

assigned on a face normal to the Z-axis is showed in Figure (5.2).

It is also possible to assign lid driven faces or even swirled. Extrapolation

for outflow faces has proven to be quite effective with the implicit time step-

ping scheme (see Chapter 3 for further details) but it was originally meant

to be used with explicit schemes. This particular boundary condition (see

Figure 5.3) consists in using the velocity profile at time tn in flow section

’P’ immediately before (with respect to the flow direction) the outlet section

’O’ as the dirichlet boundary condition for the ouflow face at time tn+1 (this

1Pressure Inlet and Neumann are supported in the code but non tested yet
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Figure 5.2: W component hat function given on a outflow face

is why this is NOT an homogenous Neumann boundary condition!). Same

boundary conditions apply for transported scalars and other model-related

quantities (Turbulent Energy K, Energy Dissipation ε, Mixture Fraction Z,

etc...) and have to be defined by the user.

� �

�
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�
����

��

Figure 5.3: Extrapolation for outflow faces
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Figure 5.4: Staircase approximation of user defined domain boundary.

The computational grid is a 3D block-structured grid obtained by a stair-

case approximation of the user defined boundary geometry and the mesh is

uniformally spaced (Δx = Δy = Δz ). This allows an isotropical distrubu-

tion of the truncation error of the discrete spatial operators, simplicity in the

code design and it is very suitable for Large Eddy Simulations. In Figure

5.4 the red line is the user defined polygon which is repeated along the X-

direction whereas the blu line is the actual staircase approximation and our

real computational domain boundary.

In the case of velocity boundary conditions, for example, the user has

to specify for every face of the domain a two-variable function (function of

dimensionless coordinates (x,s) for faces of type A, function of dimensional

coordinates (z,y) for faces of type B) that defines the boundary condition

itself and an integral mean value used to calculate the integral velocity flux

contribution of that particular face. Once the association of the boundary

velocities on the multi-rectangle is made, these are adjusted in order to ac-

count for the divergence-free constraint.

72



5.1.2 Grid System

There are typically three possibile variable arrangements for structured grids:

Colocated,Partially-Staggered and Staggered. PRIN-3D can switch from Con-

trol Volumes to Finite Difference method according to what advection scheme

is adopted [5]. Nodes can therefore be intended as CV centers or collocation

points of the spatial discretization of the PDE we intend to solve.

• Regular Grid System This variable arrangement is by far the most

developer-friendly but troublesome choice. In the 3D case there is only

one mesh to handle and velocity boundary conditions are very easy to

assign but on the other hand having pressure nodes right on the domain

boundary may force an embarrassing assignment for pressure boundary

conditions which is not normally done in the incompressible case. The

worst effect of this arrangement is the well-known checkerboard effect

on the pressure field

Figure 5.5: Regular Grid System

• Staggered Grid System
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Such arragement (Harlow-Welch arrangement) allows very reduced us-

age of interpolations for flux computation on cell faces and the pressure

field is totally oscillation-free. The worst drawback is the handling of

four different computational grids (for the u,v,w,p variables ) which

makes the boundary conditions treatment quite troublesome from a

programmer’s point of view. The overall system of equations in this

case leads to a rank deficient matrix which can be made invertible and

good conditioned by simply specifying the pressure value in a single

node.

Figure 5.6: Staggered Grid System

• Partially Staggered Grid System

With this arragement there are only two grids (pressure grid and veloc-

ity grid) and velocity boundary conditions are easily defined keeping at

the same time pressure nodes inside the computational domain. This

arragement gives birth to highly rank defective system of equations

with pressure checkerboard effect.

The best choice in order to achieve the best numerical results would be

the Harlow-Welch arragement but this choice has been dropped in order to
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Figure 5.7: Partially Staggered Grid System

prevent the programming efforts from being exclusively focused on the mesh

generation and handling. The regular grid system option, though extremely

developer-friendly, would have lead to poor numerical results. The Partially

staggered grid system appears to be a fair trade off between these two choices.

�
�

�

�

�

�

�

Figure 5.8: 3D Partially Staggered Grid System
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The main drawback are oscillating pressure fields which can be efficiently

smoothed by linearly interpolating (8 point average) its values on the veloc-

ity nodes and adopting sparse approximate inverses that give a biharmonic

structure to the pressure equation (see Chapter 3 for further solver related

issues).

5.1.3 Discrete Operators

y
x

z

-6

1

1

1

1

1

1

Figure 5.9: Laplacian 3D Stencil

The control volume for the momentum equations is a cube centered in the

velocity nodes with vertices being the 8 surrounding pressure nodes (see Fig-

ure 5.8). The discretization of the diffusive contribution is shown in Figure

5.9 where the central velocity node is labeled with the −6 weight. The dis-
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Figure 5.10: Z-Divergence operator / Pressure Gradient - 3D Stencil

crete pressure gradient is computed by a central difference of 4-averaged pres-

sures: for example, to compute the pressure gradient along the Z-direction

in a velocity node (say the black one in Figure 5.10 the weights are ±1/4 for

pressure nodes (in blue) surrounding the velocity node. Interpreting, instead,

in Figure 5.10 blue nodes as velocity nodes and the central black node as a

pressure node the divergence stencil (only the derivative with respect to Z)

is obtained. Such Divergence operator is the opposite of the transpose of the

Pressure Gradient one.

5.2 User Input Example

The best way of getting started with PRIN-3D is to guide the reader through

a demostrantive simulation that is available in the first code release (apart

from many others). Everything the user needs to do is to fill in a user input

m-file. We will start with a simple incompressible fully three-dimensional

flow that can show the code’s capability. Open from the Matlab editor the
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Figure 5.11: Fully-3D simulation
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Mainuvwp.m file and uncomment under the ‘% User Defined Script’ sec-

tion just the code line ‘uifile=‘Fully3D.m’;’ which will load the user de-

fined geometry and boundary condition data contained in such script once

the main script Mainuvwp.m is launched. By starting the Mainuvwp.m script

the program will start and at specific iteration itervals a dumping of pro-

cessed data will occur on the hard drive in ascii format and the simulation

will stop with a user defined criterion. But let’s analyze the user defined

script in the first place. All the user defined parameters of this example can

be seen in the file ./UserInput/Fully3D.m. Let’s analyze, chunk by chunk,

this file, which is the only file the user has to edit. The file starts with the

following code lines:

% Fully3D Demo

% Box Dimensions

Lx=.5; Ly=1; Lz=2;

% ( ∧ )

% YZ-Plane polygon, must be assigned counter-clockwise in the |y−z− > plane

y1=.5; z1=1/3; z2=2/3;

yp=[Ly y1*Ly y1*Ly 0 0 0 y1*Ly y1*Ly Ly Ly Ly ];

zp=[0 0 z1*Lz z1*Lz z2*Lz Lz Lz z2*Lz z2*Lz z1*Lz 0];

xp=[0 Lx]; nfaces=10+4+4;

% Containing Mesh Factor

cmshf=.2;

Reference lengths Lx, Ly, Lz for each dimension MUST be assigned in or-

der to give roughly the maximum extent, along each direction, of the compu-

tational domain. The two arrays yp, zp describe the 2D basic polygon that
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MUST be assigned in a counterclockwise manner in the Y-Z plane as shown

in Figure 5.1. The xp array contains just two entries specifying the position

along the X-coordinate of the two Y-Z boundary faces. In general such planes

will always be located at 0 and Lx. The value of the Containing Mesh Fac-

tor cmshf will be used by the ./GeoMesh&BCProcessing/MeshOperGen3D.m

routine to define the actual boundaries of the containing mesh which is a

rectangular prism defined by the following set of coordinates (xm,ym,zm);

(xM,ym,zm); (xm,yM,zm); ...; (xM,yM,zM) that in a Matlab language

style are:

% Containing Mesh Definition

xm=-cmshf*Lx+min(xp); xM=cmshf*Lx+max(xp);

ym=-cmshf*Ly+min(yp); yM=cmshf*Ly+max(yp);

zm=-cmshf*Lz+min(zp); zM=cmshf*Lz+max(zp); 2

Faces 1 to 10 (type A faces) are automatically defined but still we haven’t

yet decided what are the set of vertices of the basic 2D polygon that make up

the several lateral faces, i.e. type B faces, from 11 to 14 which are identical

to, respectively, faces 15 to 18. This is done in the following code lines:

nfl=4;

maskptinfl=[1 0 0 0 % 1

1 0 0 0 % 2

1 1 1 0 % 3

0 0 1 0 % 4

0 0 1 1 % 5

2these are not the actual lines in the MeshOperGen3D.m routine, they are meant for

explanatory purposes only
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0 0 0 1 % 6

0 0 0 1 % 7

0 1 1 1 % 8

0 1 0 0 % 9

1 1 0 0]; % 10

maskptinfl=logical(maskptinfl);

The variable nfl defines the number of distinct lateral faces ( in this case

it is 4 but we could have defined any number of faces from 1 to 8 3 ) and

variable maskptiinfl must be a nfaces-by-nfl logical matrix whose i-th

column has 1 in every position indicating the set of vertices forming the

(i+nfaces-2 nfl)-th face. In this case there are 10 faces of the first type

and these are the first in the boundary face numbering sequence. The first

column of maskptiinfl refers to the first face (in the numbering sequence)

of the second type, i.e. Face 11. Only faces from 11 to 14 need to be defined,

since, as previously stated, faces from 15 to 18 are one by one respectively

identical. For example, by calling find(maskptinfl(:,3)) the numbers

corresponding to the set of points that define Face 10+3 will be printed to

the screen.

We want to give inflow Dirichlet boundary conditions on face 15 and sim-

ilar outflow conditions for face 5 and 6. Just to make things a little more

tricky we will give circular plug flow jets. The code lines to do this are:

% Velocity BC and Fluid Info

mu0=2.303724665081446e-04; % Tuning this value will change the Reynolds Number

rho0=1.205; % Physical value for air density [kg/m3]

31 lateral face would be a face having the user defined basic 2D polygon as its edge;

8 lateral faces would be a set of triangles made up, for example, by the following sets of

nodes {1,2,10},{2,10,3},{3,10,9},{3,8,9},{3,8,4},{5,8,4},{5,8,7},{5,6,7}
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ni0=mu0/rho0;

Vin=-.001;

Vout=.0005;

ain=z1*Lz/4; % inflow Z semi-axis

bin=(1-y1)*Ly/4; % inflow y semi-axis

xin=.25;

sin=.25;

z0=.5*z1*Lz; y0=.5*(1-y1)*Ly+y1*Ly; % inflow orifice center

hVin= (z,y) Vin*hat((((z-z0)/ain).∧2+((y-y0)/bin).∧2),1); % Y = hat(X,Delta)

hVout= (x,s) Vout*hat((((x-.5)/xin).∧2+((s-.5)/sin).∧2),1);

ReLref=2*mean([ain,bin]);

In order to assign a velocity profile on Face 15 we need to use dimen-

sional coordinates (z,y) and a handle function of such coordinates must be

defined. For the inflow, the handle is ‘hVin’ (as we will se later on, the

name is unessential) and for faces in the Z-Y plane (i.e. type B) the (z,y)

coordinates must indicate the actual position on the face and must be di-

mensional. The function hat(x,L) defined in the folder ./Other returns 1

if −L/2 < x < L/2 otherwise 0. The inlet plug flow is defined using the

ellipse’ formula where z0 and y0 clearly define the center of Face 15 and ain

and bin the ellipse’s (dimensional) semi-axes. The same thing is done for the

outflow faces 4 and 6 for which an identical handle can be defined but the

coordinates to use are (x,s) (since Faces 4 and 6 have a normal orthogonal

to the X-axis thus belonging to the type A boundary faces) which are both

dimensionless (both ranging from 0 to 1). The center of such face is simply

located at (.5,.5).

Moreover, this is where the user has to assign the reference length for the

Reynolds number, which is computed later on after the velocity boundary

conditions have been corrected. The Reynolds number being displayed in the
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code’s text output is based on such reference length and on the maximum

boundary velocity module.

We now need to assign such handles to each of the faces and to assign a

desired flow rate. It is possible to assign the value of each velocity component

on every previously defined face but the user will not have to give such values

in terms of u, v, w but rather in terms of Vn, Vt, Ve where Vn is the velocity

component normal to the face and pointing outside of the domain and Vt, Ve

are the two remaining tangential components. Figures 5.12 and 5.13 show

the rule adopted for the positive values of such velocity components.
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Figure 5.12: Positive Vn and Vt direction

All the handles associated with every component are predefined as zero-

functions in the following preprocessing code lines (which shall not be in-

cluded in the user input m-file)
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Figure 5.13: Positive Ve direction

chVn=cell(1,nfaces);

for ic=1:nfaces, chVnic=null; end; chVe=chVn; chVt=chVn;

Vn=zeros(1,nfaces); Ve=zeros(1,nfaces); Vt=zeros(1,nfaces);

Variables chVn,chVt,chVe are preallocated 1-by-nfaces cell arrays of han-

dles that return flat zero velocity profiles on every face. The user will assign

a predefined function handle (in this example this has already been done

with hVin and hVout) to be inserted in the correct entry of chVn,chVt,chVe.

Variables Vn,Vt and Ve are simply 1-by-nfaces arrays of doubles which are

intended as the surface-integral-mean values (i.e. flow rates in the case of

normal velocity components) assigned by the user for each face. Now, if
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the flag variable Qcheckflag is set to 0, these values are corrected (in order

for the total flow rate to sum up to zero for the divergence free constraint)

by the routine ./GeoMesh&BCProcessing/vdirich.m and then the routine

./GeoMesh&BCProcessing/Qcheck.m (the trickiest one of the whole code)

corrects the actual velocity boundary vectors on the multi-rectangle so that

their surface integral (that MUST be computed with the same criterion used

to approximate the divergence operators) for each face is exactly the one

computed by the vdirich routine.

In order to assign handles hVin, hVout and define the values of the surface-

integral-average of the velocity components keep in mind the number of the

faces on which such boundaries conditions want to be imposed and, for this

example, such assignement will be as follows:

Vn([15 4 6])=[Vin,Vout,Vout];

chVn([15 4 6])=hVin,hVout,hVout;

chV=chVn;chVe;chVt;

Qcheckflag=0

Setting Qcheckflag to 1 will force the inflow boundary conditions to be

exactly how the user has defined them and correct only the outflow faces in

order to satisfy the divergence-free constraint.

Another step, essential for simulating reactive flows, but still needed in order

for a simple incompressible flow simulation to run is the assignment of the

boundary conditions for dynamic viscosity μ and density ρ done as follows:

% BC for Fluid density and viscosity

chMu=challoc([1,nfaces],mu0);

chRho=challoc([1,nfaces],rho0);

Rhobc=ones(1,nfaces)*rho0;
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Mubc=ones(1,nfaces)*mu0;

where the function challoc([n,m],v) stored in the ./Other folder cre-

ates an n-by-m cell array of handle functions of two coordinates (x,s) or (y,z)

returning all always the same constant value v. In the incompressible case,

of course, density and viscosity on the boundary is all set to mu0 and rho0.

We then need to specify the type of boundary condition for each face:

%%% specify the type of boundary condition for each face

% ’D’ -> dirichlet

% ’E’ -> extrapolation

bctype=repmat(’D’,[1,nfaces]);

Faces labeled with ’D’ are Dirichlet faces and boundary conditions for

these faces are stationary throughout the whole simulation. Boundary con-

dition on faces labeled with ’E’ (that must be outflow faces) will be updated

as previously described, at every step. Finally we have to specify the type of

face, whether it has to be treated as a wall, an inflow/outflow face or a lid

driven face.

%%% specify the label the for boundary face

% ’W’ -> wall

% ’I’ -> inflow

% ’O’ -> outflow

% ’L’ -> lid

bclabel=repmat(’W’,[1,nfaces]);
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bclabel(15)=’I’; bclabel([4,6])=’O’;

We now want to decide the mesh size. By specifing the value of nng in

the following lines

nng=160;

maskcnc=false(2,10);

we choose a mesh size h which is computed in the following manner

h=max([xM-xm,yM-ym,zM-zm])/(nng-1)

For approximately cubic geometries Lx∼Ly∼Lz the number of unknowns

will be very sensitive to the value of nng. The variable maskcnc is a 2-

by-(nfaces-2 nfl) logical matrix that, for this particular simulation, can

be set completely to false. As it will be illustrated in other tutorials, that

will be available on-line, it will be necessary to correct some vectors that

are assigned by nearest interpolation to the multi-rectangle. For instance by

setting maskcnc(2,5)=1 the code will erase all the velocity boundary vectors

in the last set of points aligned along the X-direction of Face 5 (this applies

only to faces of the type A) i.e. all the points at s=1 in face 5.4 If we were

dealing with geometry in Figure 5.1 this would erase all the boundary veloc-

ity vectors on the 6-6’ segment.

Now the geometry and boundary definitions are all set. The very last step

4This works perfectly for faces aligned with the mesh whereas for oblique inflow/outflow

faces velocity flux correcting routines still need to be upgraded
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is to define the solver options, the model-related parameters and many other

parameters. The basic options are:

%%% BASIC OPTIONS

invmethodImplicitoSpai=struct(‘N’,1,‘N lhs’,0,‘press ord’,2,‘parallelize’,0);

itrslvr=struct(‘iteri max’,1,‘iterk max’,1,‘iterl max’,1);

options=struct(‘Solver’,0,‘invmethod’,invmethodImplicitoSpai,‘itrslvr’,itrslvr,

‘typgeoin’,‘Extrusion’,‘Periodic’,‘no’,‘TimeSteppingMethod’,‘Implicit’,‘Model’,

‘Laminar-Incompressible’,‘rTfin’,10,‘istatsupdate’,200,‘dEkdt tol’,0.01,‘beta’,0.02,

‘rdt’,.2,‘inormerrp’,1e06,‘isumdiv’,1e06,‘igraf’,1e06,‘isave’,200,‘toldiv’,1e-004,

‘th’,.5,‘Qvischeck’,1,‘maskcnc’,maskcnc,‘typcflux’,‘Lagrangian’,‘interpflux’,‘linear’,

‘limitertype’,‘superbee’);

Structures invmethodImplicitoSpai and itrslvr define specific options

of the iterative solver (see Chapter 3 for further details), in general the setting

showed here are pretty much the optimum for almost every case.

• invmethodImplicitoSpai

– ‘N’ : Order of the approximate sparse inverse

– ‘N lhs’ : Laplacian’s power to be left on the right hand side of

(3.17)

– ‘press ord’ : Pressure variable ordering (i.e. number of pressure

colors)

– ‘parallelize’ :

∗ 0 : Sequential block Gauss-Siedel solving

∗ 1 : Parallel block Jacobi solving. This is possible only if the

Star-P software has been installed with Matlab. Star-P is a

client-server parallel-computing platform that’s been designed
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to work with high level languages (hll) such as MATLAB R©,

or Python and has built-in tools to expand hll computing

capability through addition of libraries and hardware-based

accelerators. The programming effort in setting up such par-

allel computation is very low since there is absolutely no need

for an MPI based cluster expertise management. A beneficial

description of Star-P for many users is that Star-P is a global

array syntax language. By providing a global array syntax

in Star-P, the user variable App refers to the entirety of a

distributed object on the back end server. The abstraction

of an array that contains many elements is a powerful con-

struct. With one variable name such as App, you are able

to package up a large collection of numbers. This construct

enables higher level mathematical operations expressed with

a minimal amount of notation. On a parallel computer, this

construct allows you to consider data on many processors as

one entity. By contrast, message passing or “node-oriented”

languages force you as a programmer to consider only local

data and create any global entity completely outside the scope

of the language. Data is passed around through explicit calls

to routines such as send and receive or SHMEM get and put.

The lack of support for the global entity places more of a cog-

nitive burden on you, the programmer. Star-P allows users

to implement their programs in parallel without having to

master the intricacies of MPI in Fortran, C, or C++ [1].5

• itrslvr

– ‘iteri max’ : maximum number of i-iterations

5for more details see http://www.interactivesupercomputing.com/
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– ‘iterk max’ : maximum number of k-iterations

– ‘iterl max’ : maximum number of l-iterations

These structures are inserted in the options structure that contains the

other following fields:

• ‘Solver’

– 0 : Standard Approximate Sparse Inverse solver (see Chapter 3);

– 1 : Full pressure segregation, extremely slow and memory demand-

ing, only to be used in the 2D case! (see Chapter 3 for further

details);

– ? ... whatever new solver you would like to implement;

• ‘typegeoin’

– ‘Extrusion’ : this field specifies basically the role of the MeshOperGen3D.m

routine which interprets the user-input data as previously de-

scribed extruding the 2D Y-Z polygon assigned by the user;

• ‘Periodic’

– ‘no’ : all user defined boundary data will be respected, all oper-

ators are created with Dirichlets boundary conditions;

– ‘x-x’ : all of type B faces become periodic, this is needed when

the user wants to run essentially 2D simulations. This is done

by assigning 2D boundary conditions, i.e. all boundary velocity

vectors orthogonal to the X-direction.

• ‘TimeSteppingMethod’

– ‘Implicit’ : Implicit discretization is essentially allowed by the

linearity of the diffusive flux and allows larger time steps though

approximate sparse inverse give an upper bound (see Chapter 3)
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– ‘Explicit’ : (NOT AVAILABLE) Everything is ready to set up,

for example, a Runge-Kutta time integration of fluxes

• ‘Model’

– ‘Laminar-Incompressible’ : Basic Incompressible flow model

– ‘RANS - K-EPS -Incompressible’ : Low-Reynolds K-Epsilon

incompressible model with further model-related options

– ‘Laminar-Slightly-Compressible’ : Laminar Combustion sim-

ulation with precomputed Flamelet libraries

• ‘rTfin’ : real number indicating the fraction of the extimated final

simulation time Tfin (variable present in the Solver.m routine) at

which to stop the simulation. Tfin is taken as: Tfin=rTfin max([Lref∧2

/ni0,Lref/Vref]);

• ‘beta’ : a good value for this parameter is 0.02 this is an upper bound

for the group dt�th�ni0/h∧2 (and so for the time step dt) due to a

very down to earth error analysis of the sparse inverse approximation

(see Chapter 3)

• ‘istatusupdate’ : must be an integer and indicates the number of

time-steps intervals over which the derivative of the field’s kinetic en-

ergy is computed. This can be quite an expensive calculation especially

with large number of nodes, a wise choice might be setting this value

to between 100-1000 depending on the machine’s speed.

• ‘dEkdt tol’ : the fraction of dEkdt0 (the initial total kinetic energy

integral derivative) to stop the simulation at.

• ‘rdt’ : real number indicating the fraction of the minimum allowed dt

chosen among 3 candidates that is to say dtcand=[.5�h∧2/ni0,h/Vref,
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beta�h∧/(th�ni0)]; the first and the last value are suggested respec-

tively by the monoticity criterion for explicit parabolic problems and

(as previously stated) inverse sparse error control, the second one is

simply the CFL condition; The final dt will be dt=rdt�min(dtcand);

• ‘inormerrp’ : the number of time step intervals over which the norm

of the pressure-segregated equation is computed.

• ‘isumdiv’ : the number of time step intervals over which the sum of

all the divergence equations is computed.

• ‘igraf’ : the number of time step intervals over which the processed

solution is being displayed with Matlab’s output graphics.

• ‘isave’ : the number of time step intervals over which the processed

solution is being stored to the hard drive. If a simulation is started on

the 31st of October 2008 at 17.53 (and 31 seconds!) the saving paths

will be

– on Windows: C:\PostProcessing\31Oct2008T175331
– on MacOSX: /Users/username/Documents/PostProcessing/31Oct2008T175331

– on Linux: /home/username/Documents/PostProcessing/31Oct2008T175331

• ‘toldiv’ : tolerance on the overall sum (in sign) of the divergence

equations.

• ‘th’ : value of θ for the implicit time stepping scheme (see Chapter

3).

• ‘Qvischeck’ : setting this value to 1 will enable a check on the velocity

boundary conditions making it possible for the user to edit the maskcnc

logical matrix and delete unwanted
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• ‘maskcnc’ : this is not an editable field, we are just inserting the logical

matrix maskcnc in the options structure

• ‘interpflux’ : sets the interpolation order of the Matlab interp3 rou-

tine being used in case of any kind of Convection scheme needing La-

grangian interpolation, this field can therefore be ‘nearest’,‘linear’

or ‘cubic’ (‘spline’ wont work since the domain is immersed in

NaNs)

• ‘typcflux’ : possible options are 6

– ‘NoConvFlux’ : No convective flux being computed, i.e. Stokesian

flow

– ‘Quadratic’ : QUICK scheme with 1D splitting, (zero order ac-

curate in time)

– ‘Lagrangian’ : (NON CONSERVATIVE) Lagrangian upwind in-

terpolation

– ‘Predictor3DCorrector1D’ : Lagrangian upwind interpolation

and evaluation of predicted and actual fluxes with QUICK scheme

with 1D splitting (first order accuarate in time)

– ‘PredictorCorrectorTVD’ : Lagrangian upwind interpolation and

evaluation of predicted and actual fluxes with QUICK scheme with

1D splitting (first order accuarate in time) with limiters functions

specified by the field ‘limitertype’

∗ ‘superbee’

∗ ‘vanleer’

• ’MLCS’ : Multilevel Lagrangian Conservative Scheme

6all of these schemes are explained in detail in Chapter 4
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Chapter 6

Numerical Results

In this chapter some of the most relevant numerical simulations that have

been so far carried out with PRIN-3D, will be presented, ranging from Incom-

pressible Flow simulations to Turbulent Low-Reynolds and Reacting flows,

all with different geometrical layouts. Most of these simulations were meant

as test cases for code validation and some other for debugging the code’s

full three-dimensional potentiality. All the post-processing analysis has been

done with Tecplot
TM

by loading ascii data files containing processed vari-

ables that are dumped to a specific hard drive folder (see Chapter 5) during

the simulation. All the data is arranged with tecplot finite-element data

format. For every simulation there is a table showing basic numerical and

geometrical data such as the three reference lengths for each direction Lx, Ly

and Lz, the number of velocity nodes nvel, the number of pressure nodes or

cells ncp (in some cases the number of pressure cells along the x, y and z di-

rection are shown and are, respectively, ncpx, ncpy and ncpz ), the Reynolds

and the cell Reynolds number respectively Re and Recell, the number of

boundary faces nfaces and other model-related parameters.
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6.1 Fully 3D

Y

Z

X

Pressione

-1E-05
-1.55556E-05
-2.11111E-05
-2.66667E-05
-3.22222E-05
-3.77778E-05
-4.33333E-05
-4.88889E-05
-5.44444E-05
-6E-05

Figure 6.1: Post-processing of a fully 3D Incompressible Navier Stokes

simulation.

This simulation is intended to test the code for any bugs concerning the

velocity boundary conditions assignement and management. There are two

Dirichlet outflows with circular plug flow velocity profiles (one with negative

V component the other with W positive component) and one inflow where a

negative U component has been assigned as showed in Figures 6.3 and 6.2.

The code has automatically checked and reassigned such velocity boundary

conditions in order to satisfy the divergence-free constraint and this was an
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Figure 6.2: Rappresentation of dirichlet velocity boundary conditions.

important test for the right-hand side equation generators because the inflow

and outflow conditions are totally 3D. Since this was a simple test with no

physical relevance, a non conservative Lagrangian convective scheme (with

3D linear interpolation with low computational cost) has been adopted. This

type of convective scheme has proven to be less numerically dissipative than

a TVD high order flux reconstruction with dimensional splitting as it will be

shown later on with some other Laminar Incompressible examples. Predictor-

Corrector convective schemes with Lagrangian prediction are also available

in the code and could be a better option for accuracy improvement. This

simulation has been carried out with the second type of pressure variable or-

dering (see Chapter 3) because it has been tested that with the forth pressure

variable ordering and block Gauss-Siedel solving, the pressure field evolves
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Lx = .5 nvel = 110862

Ly = 1 Re = 31.54

Lz = 2 Recell = 1.904

ncp = 119700 nfaces = 18

Table 6.1: General simulation data for Fully3D

with plenty of oscillations causing the flow to oscillate as well several times

while reaching for the steady state, which can cause numerical instabilities.

It is possible to notice from Figure 6.1 that the pressure isosurfaces’ values

indicate that it decreases downstream (as it should be).

Figure 6.3: Rappresentation of dirichlet velocity boundary conditions.

It is interesting to zoom into the inflow area Figure 6.4 and notice that

there is a stagnation point on the wall right in front of the inlet, and that
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right on the edge of the inflow orifice there are recirculating streamlines.

(Figure 6.5 )

X Y

Z

Pressione

-2E-05
-2.5E-05
-3E-05
-3.5E-05
-4E-05
-4.5E-05
-5E-05
-5.5E-05
-6E-05

Figure 6.4: Stagnation point zoom

in.

X

Y

Z

Pressione

-2E-05
-2.5E-05
-3E-05
-3.5E-05
-4E-05
-4.5E-05
-5E-05
-5.5E-05
-6E-05

Figure 6.5: Inflow recirculating

streamlines.
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6.2 LID 2D

Figure 6.6: Illustration of the experimental set up in (source [2]). The

side-wall curvature is exaggerated

Despite the fact that the code is meant to run 3D simulations, by set-

ting the ‘Periodic’ field in the options struct to ‘x-x’ and by giving bi-

dimensional velocity boundary conditions (all boundary velocity vectors lying

in the Z-Y plane) a 2D simulation can be set up. A smart choice would be

to tune the geometry parameters in order to reduce as much as possible the

spanwise nodes so that the total processing time can be more efficient and

the preprocessing time (LU factorization with UMFPACK) and memory us-

age (which has been found to be the real bottleneck in many simulations,

especially for bulk 3D domains) will be reduced. On the same geometry, two

different convection schemes available in the code have been tested, which are

Lagrangian (non conservative) and a predictor-corrector conservative scheme

with TVD flux reconstruction by means of spatial splitting. Moreover, for

both of these schemes, two different configurations have been used:

1 Figure 6.8 : double lid driven cavity with moving faces at Y=0 and

Y=0.04 with Rep = 100

2 Figure 6.12 : single lid driven face at Y=0 and Y=0.04 with Re = 700
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Figure 6.7: Stability domain in the Re1 vs Re2 plane. Experimental crit-

ical Reynolds number Re2 as function of Re1 (filled symbols) in compar-

ison with numerical neutral curves for different modes : Cp cooperative

instability - filled diamond, continous line, Ce
2 and Qa respectively cen-

trifugal instability and quadripolar instability - filled triangles, dashed-

dotted line, Ce
3 open circul double dash, dotted line (source [2])

The data for these simulation has been taken from [2]. In Figure (6.7) it is

clearly shown that in both cases no instabilities should rise, assuring that the

basic 2D flow will not breakdown into a fully 3D phenomena. From Figures

6.8 and 6.12 it can be seen that the spanwise dimension is very short (in this

case only 3 spanwise cells have been used)

Lx = .02 Ly Ly = .04 Lz = .04

numiteri = 2 numiterk = 1 numiterl = 1

‘Periodic’=‘x-x’ pres. var. arrangement 2 ncp = 111747

ncpx = 3 ncpx(np) = 4 ncpz = 193

ncp(np) = 148996 ncpy = 193 nvel = 110592

Table 6.2: General Simulation Data for LID 2D
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6.2.1 Double LID Driven Cavity Rep = 100

X

0.0002

0.0004

0.0006

0.0008

Y

0

0.01

0.02

0.03

0.04

Z

0

0.01

0.02

0.03

0.04

X
Y

Z
Kinetic Energy

0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

Figure 6.8: X-plane slices of a double lid driven cavity with Rep = 100.

In this post-processing three slices along the periodic direction have been

created and pulled apart in order to show that the data is truly bi-dimensional.

As shown in Table 6.3 the TVD SuperBee scheme inserts a greater amount

of artificial viscosity into the numerical results, whereas the Lagrangian con-

vection scheme, though not conservative, proves to be less dissipative. This

is due essentially to the fact that the latter is a genuinely 3D upwind interpo-

lation whereas the TVD limiter function blends a high order flux (QUICK)

with an upwind low order (UDS) which is very diffusive. This numerical

effect is magnified in multidimensional problems if the flow is oblique to the

grid; the truncation error then produces diffusion in the direction normal to
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the flow as well as in the streamwise direction, a particularly serious type of

error. Peaks or rapid variation in the variables will be smeared out and, since

the rate of error reduction is only first order, very fine grids are required to

obtain accurate solutions. [5]

In Figures 6.9, 6.10 and 6.11 a good agreement between PRIN-3D numer-

ical results 6.11 and the experimental and numerical results presented in [2],

respectively 6.10 and 6.9, is shown.

TVD SuperBee Lagrangian

1.7123e-008 1.842e-008

Table 6.3: Double LID Driven Cavity - Comparison of numerical inte-

gration of Kinetic Energy for different convection schemes

Figure 6.9: Numerical results in

(source [2])

Figure 6.10: Experimental results

in (source [2])
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Figure 6.11: PRIN-3D numerical results
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6.2.2 Lid Driven 2D Cavity Re = 700

X
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0.02
0.015
0.01
0.005

Figure 6.12: 3 X-plane slices of a single lid driven cavity with Re = 700.

The second configuration that has been tested is the classic LID Driven

Cavity at a Reynolds number that guarantees that no instabilities should

rise.

TVD SuperBee Lagrangian

4.025e-007 5.081e-007

Table 6.4: LID Driven Cavity - Comparison of numerical integration of

Kinetic Energy for different convection schemes

It can be seen that in the first case (double LID driven cavity at Re = 100)
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the amount of energy being dissipated by the TVD scheme is approximately

7% of the total kinetic energy of the Lagrangian case. On the other hand,

with the single LID driven cavity at Reynolds 700, the dissipated energy is

20%. This is probably due to the fact that with higher velocity gradients (i.e.

with a higher Reynolds number) the limiter function overdamps the velocity

field switching too often to the low order UDS flux reconstruction.

Figure 6.13: Numerical results in

(source [2])

Figure 6.14: Experimental results

in (source [2])

This simulation is actually 3D but, just like in double LID case, boundary

velocity vectors are given exactly in the Y-Z plane with periodic boundary

conditions along the X-direction. This guarantees that the velocity field is

truly bi-dimensional as it can be gathered by Figure 6.12
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Figure 6.15: PRIN-3D numerical results
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6.2.3 Double Lid Driven 3D Cavity

Figure 6.16: Double lid driven 3D cavity.

A straightforward extension to the 3D case of the previously described

double LID driven 2D simulation is the one presented here. The two parallel

moving lids are faces X = 0 and X = 0.04 whereas all of the other faces are

solid walls. By taking a central slice (i.e. at Z = 0.02), shown in Figure 6.16,

it is possible to notice that the velocity field is pretty much bi-dimensional,

even though not identical to the analog 2D case. As a matter of fact, it can be

seen that the vortex core is actually drawing mass from the neighbor zones

into the central plane giving birth to 4 double nested helix structures one

descending and the other one ascending (symmetrically located with respect
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Lx = .04 Ly = .04 Lz = .04

numiteri = 1 numiterk = 1 numiterl = 1

‘Periodic’=‘no’ pres. var. arrangement 2 ncp = 456533

ncpx = 77 ncpy = 77 ncpz = 77

nvel = 438976 Rec = 100 Rec = 1.284

Table 6.5: General Simulation Data for LID Driven Cavity 3D

to the Z = 0.02 plane and the X = 0.02 plane) of which only one is shown

in Figure 6.17 for the sake of clarity.

Figure 6.17: Double lid driven cavity 3D close-up.
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6.3 Combustion Simulation

Figure 6.18: Santoro flame OH concentration profile rdt = 0.6 rlxFL =

0.8. (source [18])

The main objective now is to validate the flamelet combustion numerical

implementation starting with experimental data retrieved from [18]. The

aim of this article is the investigation of chemical and thermofluiddynamic

properties of an axial-symmetric diffusion flame with several different types of

oxidizer and fuel. The focus will be on methane-air laminar diffusion flames

for which flamelet libraries will have been preprocessed. The experimental

setup consists in a coannular burner made up of a 1.1-cm-diameter fuel tube

and a concentric 10.2-cm-diameter air annulus which is used to establish

the laminar diffusion flames. The air and fuel flow rates are respectively
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set to 1300 cm3/s and 9.8 cm3/s. Considering the geometrical layout of the

apparatus, this yields a fuel and air mean velocities of 0.103 m/s and 0.161

m/s. The very first attempts in simulating such flame have been carried out

with a cartesian 2D geometry. The flames evolve in the Y-Z plane while

spanwise periodic boundary conditions (along the X-direction) are imposed.

In Figure 6.19 it is clearly shown that the simulation is truly bi-dimensional

and this can be argued by noticing that the Mixture Fraction’s isosurfaces

are identically repeated along the X-direction.

Figure 6.19: Contour of density (mid X-plane) and isosurfaces of Mixture

Fraction
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6.3.1 2D Methane-air flame

The simulation data in Table 6.6 is common to all of the numerical results

presented in this section. The oxidizer’s mean velocity is kept at 0.161m/s

for all cases whereas three different fuel velocities are being tested: Flame 1)

0.103 m/s, Flame 2) 0.5 m/s, Flame 3) 0.015 m/s. This is done for the sake of

testing the code’s basic respondance to inlet b.c. variations. Plug flow veloc-

ity Dirichlet boundary conditions are given for the lateral air co-flow whereas

Poiseuille Dirichlet boundary conditions are assigned for the central methane

injector. On the outflow face at Z=0.8 extrapolation b.c. are assigned for

all the transported species. On lateral walls homogenous Dirichlet b.c. are

issued for the Mixture Fraction and this has proven to work correctly even

though, for the flamelet model’s approximations, all solid wall boundaries

should be adiabatic walls and, therefore, homogenous Neumann b.c. should

be imposed. Our choice can be explained by taking into account that the

time stepping procedure used to update the Mixture Fraction transport is

explicit and by the fact that the flame never reaches the lateral walls apart

from zones near the outflow section which are not relevant due to the typical

presence of an error region associated to ouflow b.c. . The time evolution of

the whole simulation (which only makes sense if the solver is set to provide a

good time resolution, i.e. large values for numiteri, numiterk and numiterl

) is very sensitive to the mixture fraction underrelaxing parameter but, on

the other hand, the steady state configuration is not.

Lx = .01 Ly = .15 Lz = .8 ‘Periodic’=‘x-x’ pres.arrang. 2

ReOX = 112.44 ReOXcell = 1.284 numiteri = 1 numiterk = 1 numiterl = 1

ncp = 200715 ncpx = 5 ncpy = 87 ncpz = 463 nvel = 438976

Table 6.6: Simulation general data
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SANTORO 2D Flame 1

In this case the fuel rate is set at full speed (i.e. the true value in [18])

and the flame surface’s position (i.e. the isosurface of the maximum OH

concentration or maximum Temperature value contour ) is not stationary.

Its position should be fixed in space and as it can be seen in Figure 6.18 at

7.62 cm the flame should be approximately 1 cm wide.

Figure 6.20: Santoro Flame 1 temperature profile

‘rdt’=0.6 ‘rlxFL’=0.8 Vfuel = 0.103 m/s ReFUEL = 65.03 ReFUELcell = 9.976

Table 6.7: Flame 1 simulation data
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Figure 6.21: Santoro Flame 1 density profile

Figure 6.22: Santoro Flame 1 Kinetic Energy profile
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‘rdt’=0.6 ‘rlxFL’=0.4 Vfuel = 0.5 m/s ReFUEL = 31.52 ReFUELcell = 4.84

Table 6.8: Flame 2 simulation data

SANTORO 2D Flame 2

Since in Flame 1 the simulation yielded a non-physical unsteady behavior,

the simulation presented here wanted to test if by lowering the fuel Reynolds

number a true steady state but with a shorter flame would have been ob-

tained. This has been the case, in fact as shown in Figure 6.23 the flame

surface assumes a typical shape and it reaches approximately 4.5 cm (less

than 7.62 as expected). Nonetheless, the zone ranging from 5 cm to 8 cm still

shows unsteady behavior probably due to the extrapolating outflow boundary

conditions.

Figure 6.23: Santoro Flame 2 temperature profile
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Figure 6.24: Santoro Flame 2 density profile

Figure 6.25: Santoro Flame 2 Kinetic Energy profile
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SANTORO 2D Flame 3

Same as Flame 2 but with fuel flow rate reduced to 10 % of the original value

(Flame 1). Extrapolating b.c. are less effective on the flame’s configuration

which is steady and rather short (approx. 2 cm).

Figure 6.26: Santoro Flame 3 temperature profile

‘rdt’=0.6 ‘rlxFL’=0.4 Vfuel = 0.5 m/s ReFUEL = 31.52 ReFUELcell = 4.84

Table 6.9: Flame 3 simulation data
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Figure 6.27: Santoro Flame 3 density profile

Figure 6.28: Santoro Flame 3 Kinetic Energy profile
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6.3.2 SANTORO 3D Flame

A truly 3D combustion simulation reproducing the 3D boundary conditions

of the experiment in [18], is here going to be set up . The computational

domain is now a 3D box with a single inflow and outflow face with the

‘Periodic’ option field set to ‘no’. Axialsymmetric boundary conditions

(as far as the staircase approximation’s limited reconstruction capability is

concerned) are reproduced by using combinations of circular hat functions.

On the same inflow face, starting from its center, radial functions for the

mixture fraction, normal velocity component, density and dynamic viscosity

are assigned by the user, in order to reproduce the geometry of the coannular

burner and the concentric air annulus inflows.

In Table 6.10 all PRIN-3D numerical parameters, common to 3D flame

simulations, are shown.

‘rdt’=0.1 ‘rlxFL’=0.1 nvel = 392040 ncp = 200715 ncpx = 67

ncpy = 67 ncpz = 91 Lx = .11 Ly = .11 Lz = .15

Table 6.10: 3D Flame simulation data

Plug inflow conditions

ReFUEL = 63.59 ReFUELcell = 9.56 ReOX = 109.94 ReOXcell = 16.53

Table 6.11: 3D Flame simulation data - Plug Flow

As a first simulation attempt, for both fuel and oxidizer’s velocity inflow

conditions, plug profiles have been adopted. Moreover, because of the high

number of pressure cells and of the bulk geometry that leads to a quite filled
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Figure 6.29: Santoro 3D flame Z profile.

pseudo-elliptic matrix pattern, it has been tried to launch the simulation

with a 4 pressure variables arrangement (see section 3.3).

Because of these choices, as can it be seen in Figure 6.29, the flame, in

its maximum extension, is shorter than expected and in addition it collapsed

due to the known stability issues associated with the four pressure variable

arrangement.

As it can be observed from Figures 6.30 and 6.31, the effect of combustion

on the flow is to generate mass flux source cells. This due to the fact that in

the reacting cells temperature rises causing density to drop and particles to

be locally pushed away from the reacting front. In particular, from Figure

6.31 it is clear how such positive-divergence front , where non stoichiometric

reactions are taking place, stays ahead of the actual flame surface.
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Figure 6.30: Santoro 3D flame. Mass flux source cells.
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Figure 6.31: Santoro 3D flame. Chemical reaction front.
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Poiseuille inflow conditions

After the first simulation and observing that in [18] is specified that fuel and

oxidizer supply ducts are long enough to obtain fully developed flows, it has

been decided to impose for both fuel and oxidizer inlet velocities, Poiseuille

conditions Figure 6.32.

Figure 6.32: Santoro 3D flame. Poiseuille inflow conditions.
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This means that radial hat functions representing this inlet conditions are:

wFUEL = 1 − r2

R2
1

for the fuel, and

wAIR = R2
2 − r2 +

(
R2

2 − R2
1

) ln (R2/R1)

ln (R1/R2)

for the oxidizer, where R1 and R2 are respectively the inner and outer radius

of the air annulus.

ReFUEL = 127.18 ReFUELcell = 19.12 ReOX = 164.91 ReOXcell = 24.80

Table 6.12: 3D Flame simulation data

Considering that maintaining the same flow rate, such profiles have higher

maximum velocities than the plug ones, a longer flame is obtained.
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Figure 6.33: Santoro 3D flame. Density profile and velocity vectors

slice.

Cutting the flame with a Z = 7.62 plane (Figure 6.35), a temperature

profile in this plane (Figure 6.36) is obtained.
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Figure 6.34: Santoro 3D flame. Temperature isosurfaces.

The maximum temperature profile (flame surface intersection with plane

Z = 0.75) has approximately a 1 centimeter diameter, and this is what the

experimental results show in Figure 6.18.
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Figure 6.35: Santoro 3D flame. Temperature isosurfaces with slicing

plain at Z = 0.75 meters.
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Figure 6.36: Santoro 3D flame. Temperature profile on plain at z = 0.75

meters.
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6.4 Turbulent Flow Simulation

This simulation is intended to test the numerical implementation of the Low

Reynolds k-ε model in a classic test case, i.e. the channel flow (see Figure

3.16). Mesh size has been estimated as described in section 3.5, and all the

simulation data is shown in Table 6.13. In order to obtain a fully developed

flow, a modified version of the outflow extrapolation technique is being im-

plemented: while still adopting section’s P velocity profile (see Figure 5.3) at

time tn for defining boundary conditions at time tn+1 in the outflow section

O, the same profile is, for every global iteration, used as the inflow velocity

profile. Same procedure has been adopted for the k and ε scalar fields. This

has been a first attempt to implement streamwise (‘z-z’) periodic boundary

conditions.

Re = 3500 cf = 0.0065 uτ = 1.737 δν = 0.00011

kin = 0.10
U2

in

2
μT = 25 μin ncp = 762045 mesh size = 0.000112

Lx = 0.0002 Ly = 0.04 Ly = 0.2 ‘Periodic’=’x-x’

Table 6.13: Turbulent Flow Simulation data

In Figures 6.37 and 6.38 the flood contours of the Rate of Energy Dissipa-

tion (ε) and the Turbulent Kinetic Energy (k) are shown. It is interesting to

notice how such fields, though slightly varying along the streamwise direction,

show to interdependently do so in order to achieve a correct distribution of

the turbulent viscosity field as shown by the good agreement between Figures

6.40 and 6.39.
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Figure 6.37: Flooded contour of the Rate of Energy Dissipation (ε)

Figure 6.38: Flooded contour of the Turbulent Kinetic Energy (k)
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Figure 6.39: Mean velocity profiles in fully developed turbulent channel

flow measured by [22] (source [17]).

10
0

10
1

10
2

10
30

2

4

6

8

10

12

14

16

18

20

y+

w
+

Figure 6.40: PRIN-3D Numerical Results
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