
Università Degli Studi di Napoli "Federico II"

Dipartimento di Biologia e Patologia Cellulare e Molecolare 

"L. Califano"

Tesi di Dottorato di Ricerca in Fisiopatologia e Patologia Molecolare

THREE METHODS TO INCREASE THE LIKELY TO 

IDENTIFY GENE INVOLVED IN COMPLEX DISEASE

Candidato: dott. Michele Pinelli

Docente Guida: prof. Sergio Cocozza

Coordinatore del Dottorato: prof. Vittorio Enrico Avvedimento

XXI Ciclo di Dottorato, anni 2005-2008



I  greatly  respect  past  successes  of  
medical genetics, since they were achieved with  
limited means and crude methods. But medical  
genetics are not dead or finished disciplines – it  
is just starting now.

John P. A. Ioannidis
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Summary and thesis plan
The large part of human pathology is composed by complex disease, such as heart 

disease, obesity, cancer, diabetes, and many common psychiatric and neurological 

conditions.  The  common  feature  of  all  these  conditions  is  the  multifactorial 

etiology  that  involves  both  genetic  and  environmental  factors.  The  common 

disease-common  variant  (CDCV)  hypothesis  posits  that  common,  interacting 

alleles underlie most common diseases, in association with environmental factors. 

Furthermore, according to the thrift genotype, such alleles have been subjected to 

selective pressure, mainly those involved in metabolic disease such as T2DM and 

obesity. 

Although the concept of gene-environment interaction is central to ecogenetics, 

and has long been recognized by geneticists (Haldane 1946), there are relatively 

few  detailed  descriptions  of  gene–environment  interaction  in  biomedical 

literature.  This  lacking  may  be  explained  by  difficulties  in  collecting 

environmental information of enough quality and by great difficulties in analyze 

them.  Indeed,  when  the  number  of  factors  to  analyze  is  large,  become 

overwhelming the course of dimensionality and the multiple testing problems. 

In  the  present  thesis  the  hypothesis  that  knowledge-driven  approaches  may 

improve the ability to identify genes involved in complex disease was checked. 

Three approaches have been presented, each of them leading to the identification 

of  a  factor  or  of  a  interaction  of  factors.  As  the  study a  complex  disease  is 

composed by three steps: (1) selection of candidate genes, (2) collecting of genetic 

and non-genetic information and (3) statistical analysis of data, it is showed that 
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each  of  these  steps  may  be  improved  by  consideration  of  the  biological 

background.

The first  study,  regarded the possibility to  exploit  evolutionary information to 

identify  genes  involved in  type  2 diabetes.  This  hypothesis  was  based  on the 

thrifty genotype hypothesis. A gene was identified, ACO1, and was successfully 

associated to the disease.

In  the  second  study,  we  analyses  the  case  of  a  gene,  PPAGγ that  have  been 

inconsistency associated with obesity. We hypothesized that the inconsistence of 

association  may be  due  to  its  relationship  with  environment.  Then  we jointly 

analyzed  the  genotype  of  the  gene  and comprehensive  nutritional  information 

about a cohort and proved an interaction. The genotype of PPARγ modulated the 

response  to  the  diet.  Ala-carriers  gained  more  weight  than  ProPro  individuals 

when had the same caloric intake. 

In the third study, we implemented a software tool to create simulated populations 

based  on  gene-environment  interactions.  The  system  was  based  on  genetic 

information to simulate realistic populations. We used these simulated populations 

to collect information on statistical methods more frequently used to study case-

controls samples. Afterward, we built an ensemble of these methods  and applied 

it to a real sample. We showed that ensemble had better  performances  of each 

single methods in condition of small sample size.

Genetics  of complex disease is  becoming exclusive field  of  epidemiology and 

large  consortia.  In  this  scenario,  studies  are  based  on  brute-force  approaches, 
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using even-larger sample sizes and genotyping capabilities. However it may be 

difficult  to  imagine  a  consortium for  each  phenotype  and that  evidence-based 

approach may study complex genetics phenomena. Indeed, a more knowledge-

driven  approach  may increase  the  likelihood  to  shed  light  on  the  genetics  of 

complex disease. 

Abbreviations
GWAS: Genome-Side Association Study
T2DM: Type 2 Diabetes Mellitus
CDCV: Common disease common variant hypothesis
CGM: Candidate Gene Selection Method
FSM: Feature Selection Method 
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Chapter 1: Complex Disease

Introduction

The large part of human pathology is composed by complex disease, such as heart 

disease, obesity, cancer, diabetes, and many common psychiatric and neurological 

conditions [1, 2]. The common feature of all these conditions is the multifactorial 

etiology that involves both genetic and environmental factors [3, 4]. 

The burden of common complex disease is rapidly increasing worldwide. It has 

been calculated that,  in 2001, they contributed approximately 60% of the 56.5 

million total reported deaths in the world and approximately 46% of the global 

burden of disease. It has also been projected that, by 2030, complex diseases will 

account for almost three-quarters of all deaths worldwide [5]. More than half of 

them are  attributable  to  cardiovascular  diseases,  cancer,  diabetes  and  obesity. 

These conditions are also showing worrying trends, not only because they already 

affect a large proportion of the population, but also because they have started to 

appear  earlier  in  life.  Furthermore  for  the  ageing  of  populations  in  low-  and 

middle-income countries, complex disease problem is far from being limited to 

the developed regions of the world [6].

For most complex diseases are well recognized a familiar predisposition. In many 

cases also a genetic predisposition has been proved by classical genetics methods, 

such  as  the  analysis  of  concordance  between  twins,  the  evaluation  of  the 

frequency  of  disease  between  families  and  between  populations.  Although 
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complex  diseases  tend  to  cluster  within  families,  they  do  not  segregate  in  a 

mendelian fashion [7] and they are further caused by an interplay between genetic 

and environmental factors  [3]. Environment and life-style are major contributors 

to  the  pathogenesis,  nevertheless  genetics  background  could  be  the  necessary 

condition to allow the damaging effects of environmental factors. In fact, not all 

the people subject to an environmental exposure develop a disease (i.e. not all 

smokers develop a cancer). Moreover, a gene or a combination of genes might 

make an individual sensible to an environment and other combinations of genes 

might  make  him  susceptible  to  a  different  environment  [7]. For  these  reason 

different  genetic  backgrounds,  different  environmental  susceptibilities,  and 

resulting  different  gene-environment  interactions  could  be  present  in  different 

families. Therefore, when  considered by a population level, most susceptibility 

alleles result conferring only a modest increase in risk and are neither necessary 

nor sufficient to cause disease.  A popular model of the genetic architecture of 

common  disease  posits  that  the  minor-allele  frequencies  (MAFs)  of  genetic 

variants influencing susceptibility are often also common (i.e.,≥ 1%) and that such 

alleles are therefore old and found in multiple populations, rather than being rare 

and population specific. This model is known as the common-variant/common-

disease  (CV/CD)  hypothesis  [8].  Under  this  model,  disease  susceptibility  is 

suggested  to  result  from  the  joint  action  of  several  common  variants,  and 

unrelated affected individuals share a significant proportion of disease alleles [9]. 

There is currently not enough empirical evidence to either prove or disprove the 

CD/CV  hypothesis.  However,  a  few  prototypical  examples  of  such  common 
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variants are known, i.e Pro12Ala PPARγ in both T2DM  [10] and obesity  [11], 

rs7903146 TCF7L2 in T2DM [12] and rs9939609 FTO in obesity [13] that have 

been studied in various populations. Furthermore, a large meta-analyses suggested 

that  disease  causing  alleles  presently  know  are  largely  shared  among  ethnic 

groups  [14]. Also simulation studies provided support for the common disease–

common variant hypothesis [15].

Although the concept of gene-environment interaction is central to ecogenetics, 

and has long been recognized by geneticists [16], there are relatively few detailed 

descriptions of gene–environment interaction in biomedical literature [4]. 

To find genes involved in a disease is necessary to prove a significant association 

between disease and a functional polymorphism. Generally, this is achieved by 

comparing  a  random sample  of  unrelated  affected  individuals  with  a  matched 

control group. This approach may reveal a polymorphic allele that is increased in 

frequency in  the  patient  group  and  such  a  significant  association  might  point 

towards a disease-susceptibility locus  [17, 18]. Classically this approach can be 

applied to a selected loci (candidate gene) or to a set of markers along the genome 

(genome-wide approach).  Both methods have points of strength and weakness. 

Candidate  gene  studies,  being  hypothesis-driven,  allow  a  more  specific 

description  of  a  phenomenon,  in  this  setting  is  possible  to  validate  complex 

hypothesis and shed light on specific physiologic process. The main weakness of 

the  candidate  gene  approach  is  the  difficulty  to  make  hypotheses  because  in 

complex disease the number of elements involved often are very large. Genome-

Wide Studies (GWAS) allow the identification of loci associated with the disease, 
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with an unbias, brute-force approach. On the other hand, GWAS are expensive, 

difficult  to  organize,  because often require  a very large sample size,  and have 

overwhelming statistical problems that allow only simple analyses. In fact, in the 

last  years  have  been  performed  several  Genome-Wide  Association  Studies 

(GWAS) allowing the imputation of  a  large number  of  loci  in  many complex 

disease  [19,  20].  However  in  most  of  them there  is  no  consideration  of  any 

environmental factors role [4, 17, 20]. It is likely that this lacking is in part caused 

by difficulties that are encountered both at sampling and analytical level. At the 

sampling  level,  just  collecting  enough  environmental  and  clinical  data,  of  a 

quality that can allow a gene-environment interaction could be a compelling task, 

especially when the sample size is large and the information are not natively of 

numeric or categorical type. At a statistical level, analyzing relationships between 

factors, even with few factors, could lead to overwhelming problems such as the 

course of dimensionality and the multiple testing problem [17]. The course of the 

dimensionality is when the number of possible categories is relatively larger than 

the sample size. I.e. in a genetic association study all the possible genotypes of 

three biallelic SNPs results in 81 combinations and, in such a situation, only with 

a large sample size is possible to have enough individuals in each combination to 

statistically  evaluate  the  interaction  [17,  21].  On  the  other  hand,  the  multiple 

testing  problem  occurs  when  a  researcher  wants  to  study  all  the  possible 

interactions  between  factors  [17].  For  example,  in  the  case  of  2-elements 

interaction among 100 factors there are 4950 possible combinations! Then if a p 

value threshold of 0.05 is imposed for each test, in other terms a probability to 
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have 1/20 of false positive results, and 4950 tests are performed, we could expect 

to  have  247  results  obtained  just  by  chance.  In  such  a  situation,  to  keep  a 

experiment-wise  p-value  threshold  equal  to  0.05  the  researcher  has  to 

proportionally adjust the p-values of each test. The most conservative option is to 

multiply each test p-value by the number of performed tests and check if the new 

p-value is still lower the 0.05 value, the Bonferroni correction method  [22]. In 

such a case, only very strong effect could be individuated and it is likely to reject 

many false negative results.  Furthermore,  the interactions between genetic and 

environmental factors could be in several cases of a complex non-linear nature. 

For  this  reason  several  statistical  methods,  first  of  all  the  Binary  Logistic 

Regression could be not efficient to identify involved factors [21]. Although some 

further methods have been proposed, such as MDR,  there is still lacking a proper 

method to study complex interactions. The lacking of a proper method to analyze 

complex interactions could be a further reason of the rarity of this type of  study.

The difficulties in the identification of complex interactions is particularly high in 

GWAS, whereas  utilizing a  gene candidate  approach could overcome some of 

these problems. This, mainly because in candidate gene approach all the study 

steps are tailored on specific hypotheses and a shorter number of variables have to 

be  collected  and analyzed.  However,  in  this  case  the  greatest  difficulty  is  the 

appropriate selection of the genes to study. Classically the candidate gene process 

relied  on  information  of  gene  function  or  on  involvement  in  same  o  similar 

disease. A common critic is that we have only few information for most of genes 

and  there  is  an  important  bias  in  favor  of  few  popular genes.  This  kind  of 
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approach should further increase the bias forward these popular genes. To avoid 

this problem, further candidate gene selection methods have been developed based 

on sequence analyses. These methods rely on the assumption that genes involved 

in diseases tend to share some sequence characteristics, as length, few paralogs, 

highly evolutionary conservations [23]. According to this method a geneome-wide 

scanning of the gene sequences could output a set of genes that has high likely to 

be involved in a disease. The major weakness of this  method is that the large part 

of the criteria used to search for candidate genes are based on monogenic disease 

genes.

Why to study the genetics of complex disease

The difficulties to find genes involved in complex disease, the large amount of 

money invested in this searching, and the notion that in several cases the genetic 

risk is lower than most of the environmental risk have risen doubt on the overall 

utility of this researches [24].

There are at least three order of reason by which the identification of genetics of 

complex disease is important: at a population, individual and physiological level. 

By the population level, the understanding that in a specific population there is a 

genetic predisposition to a disease or to be particularly sensible to a environmental 

exposure  could  drive  public  health  policy  [4].  At  individual  levels,  genomic 

information could be used to predict the future occurrence of disease for patients 

and  their  families,  design  interventions,  and  tailor  therapeutic  strategies  to 

individual  patients  [25].   Furthermore,  the  notion  that  a  discovery  in  human 
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genetics consists of identifying ‘the gene’ for a disease should be overcome. This 

effort  serves  also,  and  perhaps  mainly,  for  discovery  science.  It  will  help  to 

determine  the  mechanisms  of  gene  function  and  how  they  are  perturbed  in 

different  situations,  ultimately  providing  insights  into  possible  preventive  or 

therapeutic strategies [26]. Large resources of information on biologic mechanism 

are  generated  without  necessarily  knowing  in  advance  which  pieces  of 

information will prove most important for human health [27].  Nevertheless, these 

findings  may  not  only  discover  “new  genes”,  but  permit  advances  in  our 

understanding of how human evolution has “used them” to develop the diseases 

that are common today [28].

Type 2 Diabetes Mellitus

The number of cases of diabetes worldwide in 2000 among adults older than 20 

years of age is estimated to be 171 million with the vast majority being cases of 

Type 2 Diabetes Mellitus (T2DM). In USA have been  estimated that more than 

one in three born in 2000 will develop type 2 diabetes [28]. Furthermore, even if 

the prevalence of obesity remains stable, which seems unlikely, it is anticipated 

that the worldwide number of people with diabetes will more than double until 

2030 [29].

Italy is among the 10 countries with highest number of affected [29]. The diabetes 

prevalence is 8.4% in males and 6% in females [30] and it accounts for 3% of all 

the deaths nationwide [31]. 

T2DM often leads to a number of long-term complications, generally subdivided 
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into  micro-  and  macrovascular  complications.  It  is  these  long-term  chronic 

complications that have the greatest impact on the health and quality of life of 

patients.  The  microvascular  complications  include  retinopathy,  neuropathy and 

nephropathy, with T2DM being one of the main causes of blindness, lower limb 

amputations, and renal failure in adults. The macrovascular complications mean 

that T2DM is a major risk factor for cardiovascular disease and stroke. Diabetic 

patients have 2-4 times higher rate to die for cardiovascular accidents  [32]. The 

overall mortality rate is double in individuals affected by diabetes and is mainly 

linked to cardiovascular disease  [33]. These chronic complications have a high 

socio-economic cost and put a heavy burden on public health services [32]. 

The T2DM is characterized by elevated plasma glucose levels. Normal glucose 

homeostasis depends on the balance between glucose production by the liver , and 

glucose uptake by the brain, muscle and adipose tissue. Insulin, the predominant 

anabolic  hormone  involved,  increases  the  uptake  of  glucose  from  the  blood, 

enhances its conversion to glycogen and triglyceride and also increases glucose 

oxidation. Plasma glucose levels are normally kept within a small range (4 to 6 

mmol/l) by multiple mechanisms. After a meal, a small increase in plasma glucose 

will lead to an increased insulin secretion by the pancreatic β-cells.

Both insulin’s inhibitory effect  on liver  glucose production and its  stimulatory 

effect  on  peripheral  glucose  uptake  are  diminished.  Although  many  T2DM 

patients  have  a  basal  hyperinsulinemia,  elevations  in  plasma  glucose  have  a 

characteristically reduced stimulatory effect on insulin secretion. 

Many risk factors have been identified which influence the prevalence and the 
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incidence. Factors of particular importance are a family history of T2DM, age, 

overweight, increased abdominal fat, hypertension, lack of physical exercise, and 

ethnic  background  [34].  The  familial  predisposition  could  indicate  for  the 

involvement of genes in people’s susceptibility for the disease. 

Genetics DM

According  to  the  multifactorial  model,  predisposition  to  the  T2DM  could  be 

determined by many different combinations of genetic variants (genotypes) and 

environmental  factors.  The  genetically  predisposed  individuals  will  not 

necessarily develop the overt syndrome unless they are also exposed to particular 

environmental factors [35]. It is well known that exogenous factors such as age, 

physical activity, diet, and obesity, play a major role in the disease aetiology of 

T2DM  [36].  However,  there are several  evidence proving the genetic bases of 

T2DM [37, 38].

Evidence from family and twin studies.  The common familial aggregation of 

T2DM is clearly consistent with a genetic component to disease susceptibility, 

although  a  shared  environment  may  also  contribute.  The  extent  of  familial 

aggregation is often summarized in terms of the sibling relative risk (ls, the ratio 

of disease prevalence in the siblings of affected individuals compared with that in 

the general population). Ls for T2DM in European populations is approximately 

3.5 (35% versus 10%)  [39]. The patterns of segregation in families with T2DM 

are (with rare exceptions, such as genetically determined maturity onset diabetes 

of the young – MODY) consistent with a complex, multifactorial inheritance [40].
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Several studies have shown higher concordance rates in monozygotic (MZ) twins 

than in dizygotic (DZ) twins  [41] for example, in a population-based cohort of 

twins in Finland, the concordance rate in MZ twins was 34% whereas in DZ twins 

it was 16% [42]. In a Japanese study these figures were 83% for MZ twins and 

40%  for  DZ  twins  [43].  Such  figures  show  the  difference  of  environmental 

influences within populations (i.e. the difference between MZ and DZ twins). The 

large variation in concordance rates between populations may be due to bias or a 

different  selection  from  the  populations  studied,  but  it  may  also  indicate 

differences in genetic susceptibility between these populations [44, 45].

Evidence  from  population  studies.  The  high  prevalence  of  T2DM  in  some 

populations, such as Nauruan Islanders and Pima Indians, is also consistent with a 

genetic aetiology [46, 47]. Migration studies provide additional evidence in favor 

of  the  genetic  basis  of  the  disease.  For  example,  individuals  from the  Indian 

subcontinent, for example, have high prevalence rates of T2D whether in urban 

India  [48]or as migrants  [49]. The prevalence of T2D in elderly Nauruans was 

reported  to  be  83%  in  full-blooded  islanders  but  only  17%  in  those  with 

(unsuspected)  foreign  genetic  admixture  [50].  Since  there  were  no  apparent 

cultural  differences  between  the  groups,  this  indicated  a  protective  effect  of 

foreign genotypes on diabetes risk. Similar findings have been reported in Pima 

Indians [33] and other Native American populations [51].

Obesity

Obesity can be described as an excess amount of fat tissue accumulated as a result 
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of  imbalance  between  energy intake  and  energy  expenditure.  There  are  large 

differences between countries in the prevalence of obesity [52]. However, obesity 

has become increasingly prevalent both in Western societies and in developing 

countries  [52-54].  The  prevalence  of  obesity  is  high  for  example  in  Eastern 

Europe, Eastern Mediterranean, North, Central and South America (especially in 

the US, Argentina, Chile, Paraguay and Mexico), as well as  in many Western 

European countries [52, 55, 56]. There are certain isolated Pacific Islands such as 

Samoa, Nauru, Tonga, the Cook Islands and French Polynesia where obesity is 

extremely common with a prevalence close to 75% [53]. Within some  of these 

ethnic groups large  physical size is still considered as a mark of beauty and social 

status.

The BMI is a crude measure of adiposity but correlates well with body fatness 

[57-59]. BMI is calculated by dividing person’s weight in kilograms by square of 

person’s  height  in  meters.  The  cut-off  points  proposed  by  the  World  Health 

Organization (WHO) for defining obesity is 30 Kg/m2, [60].

The marked increase in the prevalence of obesity in the US during the last 20 

years is well documented in the reports of the Behavioral Risk Factor Surveillance 

System, conducted annually in the US by the Centers for Disease Control and 

Prevention (http://www.cdc.gov/nccdphp/dnpa/obesity/trend/) [61]. Data collected 

for 1999-2002 estimates that 30.4% of the adult US population has a BMI more 

than 30 kg/m2 and is thus considered obese [62]. This number has almost doubled 

when compared to the results from the same survey in 1976-1980. 

In Italy, the data seem to confirm the worldwide trends. Recording of height and 
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weight in schools showed about 17 % of boys and 7 % of girls aged 15 years old 

to be nearing obesity, and 3 % of boys and 1 % of girls, obese. Italy has a ratio of 

pre-obese 15-year-olds that is even higher than the European average [63]. 

Body weight is the result of the complex interplay between genetic, environmental 

and psychosocial  factors  acting  through the  physiological  mediators  of  energy 

intake and energy expenditure. Environmental factors must play a significant role 

in obesity, as evidenced by increasing prevalence of obesity in the last decade. A 

sedentary life style and low physical activity promote obesity [64]. Body weight 

also increases with age  [65]. Of the dietary factors, high fat content and energy 

density have been associated with obesity  [66-69]. An association between low 

socioeconomic  status  and  obesity  has  also  been  reported  [64,  65,  70,  71].  In 

addition, overweight individuals more often have difficulties controlling eating, 

have stronger feeling of hunger, and they tend to engage in emotional eating [66, 

72]. However, in a similar, shared environment some people are likely to become 

obese, whereas others are not. Twin, family and adoption studies suggest a major 

genetic  component  in  the  determination  of  body  weight  [73-78]. Currently, 

obesity is thus seen as a complex disorder with an individual’s genetic background 

affecting the susceptibility, but ultimately genetic, physiological and psychosocial 

factors acting together to determine the body composition.

The increased public and scientific attention to obesity is largely due to its health 

consequences.  Total  mortality  associated  with  BMI  shows  a  J  shaped  curve, 

meaning that overweight and obesity, as well as underweight, are associated with 

increased total mortality [79].
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The increased death in obese individuals can be explained by chronic diseases that 

are more common in obese than in normal weight individuals  [80]. T2DM  [81, 

82], CHD [83-85], hypertension [86], cholelithiasis [87], and cancer [88, 89] are 

the most common disorders associated with obesity. 

Obese females with BMI > 31 kg/m2 have about 40 times higher risk for T2DM 

compared to lean individuals with BMI < 22 kg/m2 and more than 90 times higher 

risk when BMI exceeds 35 kg/m2 [82]. In males, the association between obesity 

and T2DM has  been detected,  too;  when BMI exceeds  35 kg/m2,  the  risk for 

T2DM is more than 40 times greater when compared to lean individuals [81]. The 

significant increase in risk for T2DM can be seen even in normal weight people, 

especially in the case of women; the risk for T2DM is increased five times with 

BMI 24-25 kg/m2 compared to women with BMI < 22 kg/m2 [81, 82]. The weight 

change also affects the risk for T2DM; loss of approximately 10 kg decreases the 

risk 1.4 times, whereas gaining the same amount of weight increases the risk 2.2 

times [90].

Because of the serious health consequences related to overweight and the large 

resources that the obesity-related diseases require on the health care system, it is 

of great interest to discover the mechanisms that predispose to obesity, as well as 

to create efficient prevention and treatment for obesity. 

Obese individuals often have elevated insulin levels and are insulin resistant . A 

major contributor to the insulin resistance is excess free fatty acids, FFA,  [91]. 

FFAs  are  derived  from  the  triglyceride  (TG)  stores  in  the  adipose  tissue. 

Normally, insulin inhibits the lipolysis in adipose tissue. Thus, more fatty acids 
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are  released  from  the  adipose  tissue  when  insulin  resistance  develops.  The 

lipotoxic effects  of excess FFAs may also affect  beta-cell  activity inducing an 

inhibition of the  insulin signaling [92].

Genetics of Obesity

Obesity aggregates in families, but the pattern of inheritance does not in most 

cases  follow  any  Mendelian  segregation.  This  suggests  a  complex  mode  of 

inheritance, and the proportion of obesity due to genes is somewhat difficult to 

predict. The risk for obesity (defined as 90th BMI percentile or BMI > 30 kg/m2) 

was two to three times higher for a person with family history of obesity and the 

risk increased with the severity of obesity. Studies on monozygotic and dizygotic 

twins or monozygotic twins reared apart give the highest heritability estimates, of 

the order of 70%  [73, 77, 93]. Adoption studies suggest the lowest heritability 

with  the  values  clustering  around  30%  [74-76,  94].  Results  from  the  family 

studies  are  intermediate  between  the  twin  and  adoption  studies  [78].  Certain 

diseases and traits that  co-occur with obesity also show high heritability.  Twin 

studies also suggest a considerable genetic component to eating behavior [95].

Multiple genome-wide scans have been performed for obesity and traits related to 

body composition [96]. Multiple genes have been associated with common forms 

of obesity, although only some of them have been replicated in other studies [96]. 

The genes for which at least five different studies found association with obesity 

or obesity related phenotypes include Adiponectin, Adrenergic, beta-2- and beta-

3-  receptors  (ADRB2  and  ADRB3),  Guanine  nucleotide  binding  protein  (G 
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protein),  beta  polypeptide  3  (GNB3),  Interleukin  6  (interferon,  beta  2)  (IL6), 

Insulin,  Leptin  (LEP),  Leptin  receptor  (LEPR),  Lamin  A/C  (LIPE),  Nuclear 

receptor  subfamily 3,  group C,  member  1  (NR3C1),  PPARG,  Tumor  necrosis 

factor TNF superfamily, member 2 (TNF), as well as Uncoupling protein  proteins 

1, 2 and 3 (mitochondrial, proton carrier) (UCP1, UCP2 and UCP3) [96]. 

Most  patients  with  T2DM are  obese,  which  led  to  the  finding  that  obesity  is 

associated with diminished insulin action both in the liver and in the periphery. 

The  association  between  T2DM  and  obesity  is  probably  due  to  multiple 

mechanisms,  including  elevations  in  plasma  free  fatty  acids  [97] and  tumour 

necrosis factor-alpha (TNFα) released from “full” adipocytes [98].

Thrift genotype hypothesis  

The ”thrifty gene” hypothesis was initially introduced by James Neel in 1962 as 

an attempt to explain the increase in T2DM prevalence  [99]. He suggested that 

genes or genotypes responsible for improved energy storage during famine and 

starvation provided a survival advantage at  a time when humans were hunter-

gatherers, and there have been periods of time when the food supply was plentiful 

followed  by  periods  of  famine.  All  food  in  the  stone-age  was  obtained  via 

extensive physical  activity.  Thus,  the lives of our ancestors alternated between 

shortage  and  abundance,  the  latter  possibly  occurring  after  successful  hunting 

tending to lead to reduced physical activity. Excessive energy consumed during 

this period was stored as TGs in adipose tissue (and glycogen in muscles) referred 

as thrifty storage. When this was followed by decreased amounts of food available 
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with possible famine, considerable physical activity was needed  to provide food 

again.  Individuals  with  maximal  energy  storing  capabilities  during  time  of 

abundance,  combined with their  economical usage of the stored energy during 

famine, were probably the most capable of surviving the physical rigors of life. 

Genes or genetic variations enhancing these features were restored in the human 

genome during the evolution. Dramatic changes have occurred in the  process of 

food supply within the last thousands of years, which is still a short  period in 

evolutionary terms. Nowadays food supply is constant and plentiful, obtainable 

with  minimal  physical  effort,  consequently  creating  a  so-called  “obesogenic” 

environment. Most of the job descriptions of people in Western societies do not 

include physical labor, as neither do leisure time activities. Therefore, the body of 

the human being designed to 34 function in the cycles of abundance and shortage 

have stalled to the abundance step prepared to take on the next shortage. When 

the shortage or extensive physical activity never arrives, the properties of efficient 

energy storage become detrimental,  predisposing to diseases typical to Western 

societies,  such  as  overweight,  obesity  and  T2DM.  Thus,  genes  previously 

beneficial  are  now  causing  diseases.  In  accordance  with  the  thrifty  gene 

hypothesis, it has been suggested that excess fat should not be considered as a 

disease, i.e., a biological abnormality of an individual, but instead as a collective 

adaptation to the pathological pressure of the environment to eat too much and 

exercise too little [100].
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Aim

The aim of my work was to identify and develop methods to overcome some of 

the  major  difficulties  imposed  by  complex  disease.  Firstly,  by  developing  a 

method, based on evolution, to prioritize candidate gene (chapter 2). Secondly, by 

proving  that  when jointly analysed  it  is  possible  to  identify gene-environment 

interactions (chapter 3). Thirdly by developing a statistical method that allows the 

identification  of  factors  involved  in  complex  disease,  overcoming  the  major 

problems of such diseases, as the sample size (chapter 4). 
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Chapter 2: Evolution-enhanced candidate 
gene method  identified association of ACO1 
gene with Type 2 Diabetes Mellitus

Introduction

The common disease-common variant (CDCV) hypothesis posits that common, 

interacting disease alleles underlie most common diseases, perhaps in association 

with  environmental  factors  [1,  2].  This  hypothesis  has  been  the  scientific 

paradigm for association studies that have been or are being conducted on many 

common diseases. Numbers of new susceptibility loci are being identified. For 

example,  the  recent  study  by  the  Wellcome  Trust  Case  Control  Consortium 

detected 24 independent association signals for 7 major diseases [3, 4].

It  is  possible  that  the  recent  increase  in  life  expectancy uncovered  the  latent 

genetic  susceptibility  to  diseases  with  post-reproductive  age  of  onset.  Hence, 

ancestral  disease  risk  variants  might  be  expected  not  to  have  had  fitness 

consequences;  this  scenario,  in  which  ancestral  or  derived  alleles  are  equally 

likely  to  increase  disease  risk,  might  easily  fit  within  the  common  disease–

common variant (CDCV) hypothesis. However, the evidence for natural selection 

favoring derived protective alleles might require more complex models for the 

evolution of the genes influencing the susceptibility to some common diseases. 

More specifically, it suggests not only that these genes did not evolve neutrally, 

but also that the environmental pressures acting on them changed during human 
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evolution. Indeed, it was hypothesized [5-7] that disease-susceptibility genotypes 

conferred a selective advantage in ancestral human populations. Also simulation 

studies provided support for the common disease–common variant hypothesis [8].

The  most  difficult  aspect  of  the  CVCD hypothesis  is  that  detrimental  genetic 

variants  should be negatively selected during the evolution,  leading to a small 

frequency. However, it is possible to argue that our species evolved in a different 

environment (i.e. hunter-gather scenario) that shaped our characteristics. After the 

industrial revolution, the environment in which we are living radically changed 

causing  a  conditions  of  un-adaptation.  In  its  simplest  incarnation,  the  thrifty 

genotype hypothesis [5] posits that the genetic predisposition to type 2 diabetes is 

the consequence of metabolic adaptations to an ancient lifestyle characterized by 

fluctuating and unpredictable  food supply and high levels  of  physical  activity. 

With  the  switch  to  a  sedentary  lifestyle  and  energy-dense  diets,  the  thrifty 

genotype is no longer advantageous and gives rise to disease phenotypes, such as 

type 2 diabetes and obesity [7]. An analogous evolutionary framework, sometimes 

referred  to  as  the  sodium-retention  hypothesis,  was  proposed  to  explain  the 

increased prevalence of essential hypertension in some ethnic groups [6]. Briefly, 

ancient human populations living in hot, humid areas adapted to their environment 

by retaining salt,  whereas populations in cooler,  temperate climates adapted to 

conditions  of  higher  sodium levels.  This  hypothesis  recently  received  support 

from the finding of a latitudinal cline of allele frequency for variants likely to 

influence  sodium  homeostasis  and/or  hypertension,  including  those  in  AGT, 

CYP3A5  ,  angiotensin  I  converting  enzyme  (ACE),  ENACa  (also  known  as 
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SCNN1A)  and  ENACg,  (also  known  as  SCNN1G),  which  encode  sodium 

channels [9, 10]. 

What these two hypotheses have in common is  a radical  and relatively recent 

change in the selective pressures acting on biological processes responsible for 

maintaining the correct balance between the organism and its environment. The 

recent  environmental  change  disrupts  this  balance  leading,  in  turn,  to  new 

detrimental phenotypes. Thus, these hypotheses, originally based only on disease 

physiology and epidemiology, can be translated into testable population genetics 

models of disease susceptibility. One such model could envision that the ancestral 

versions  of  genes  that  affect  susceptibility  to  common  diseases  today  reflect 

ancient  adaptations  [11,  12].  With  the  switch  in  lifestyle  and  environmental 

conditions,  the  ancestral  alleles  no  longer  confer  a  selective  advantage  and 

increase disease risk, whereas some derived alleles protect  against  disease and 

become either neutral or advantageous. Whether the selective advantage inferred 

for some of the derived variants is the direct consequence of disease protection or 

results from pleiotropic effects is currently a matter of speculation  [9]. Despite 

intense research, only a relatively small number of regions and genes have been 

directly implicated as targets of selection in the human genome [13-25]. 

To date rarely the evolutionary and natural selection information have been used 

to  aid  the  identification  of  gene  involved  in  complex  disease.  One  of  the 

limitations to this approach is that regions under selective pressure can have been 

selected for several reasons. Knowing that a region is under selective pressure do 

not imply straightforwardly its association with a specific disease. To overcome 
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this limit it is possible to cross information form selective pressure with others 

that  increases  the  likely  that  the  region  is  involved  in  the  studied  disease. 

Furthermore, this approach may be further valuable for metabolic disease where a 

strong selective pressure can have been acting. 

To candidate gene for the involvement in a disease many computational methods 

have been developed,  mainly mining several  different  data sources  containing, 

such  as  sequence  data,  biological  information,  functional  information  and 

expression data for candidate genes.  [26]. Because it is currently impossible to 

prove that a predicted candidate gene is not associated with the disease of interest, 

it is not possible to select one of them as the best. An alternative strategy may be 

to identify the genes most commonly selected by several methods. 

Mainly the candidate gene selection methods (CGMs) may be divided in two type: 

annotation-based  and  sequence-based.  The  annotation-base  rely  on  the 

information previously collected about a gene to guess if it can be implicated in 

the disease. In many cases this candidature process also extend to paralogs and 

hortologs  that  in  other  species  have  been  implicated  in  he  same 

disease/phenotype.  The weakness of this  approach is  that  if  a  gene have been 

never studied it never will be selected. To overcome this weakness the selection-

based CGMs have been developed. These methods rely on the assumption that 

genes  that  have  largest  chances  to  cause  disease  share  some  sequence 

characteristics.  In particular,  genes  involved in  disease have been harvested to 

identify  common  characteristics,  and  if  a  novel  genes  comply  with  them  is 

considered a candidate gene. The major weakness of this method is that the large 

32



majority of them are mendelian disease, thus is not straightforward that genes in 

complex disease have the same characteristics.

Therefore to select genes to study we crossed information about selective pressure 

with  those regarding  the  sequence  and the  annotation  of  a  candidate  gene.  In 

details, we collected evolutionary information by a genome-wide study conducted 

by Akey et al in 2002 [27] and a  sequence- and annotation-based candidate genes 

from a meta-study conducted by Tiffin et al. In 2006 [26]. By an ensemble method 

we put together these results and obtained an ordered list of genes to empirically 

test in a case-control cohort of T2DM. The first gene in our list was ACO1, SNP 

rs1041321.  When analyzed in  the  cohort  there  was  a  significant  difference  in 

frequencies between cases and controls. 
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Methods

The  main  strategies  to  identify  genes  in  complex  disease  are  genome-wide 

association  study  and  candidate  genes.  The  candidate  gene  approach  is  more 

suitable to study complex disease because overcome the multiple testing problem 

and allows the testing of gene-gene and gene-environment interactions (see first 

chapter). To select candidate genes we used an evolution-enhanced strategy that 

combined classical and evolutionary criteria.

Selective Pressure Information

In 2002 Akey et  al.  conducted a  geneme-wide study to identify regions under 

selective pressure. Although, one of the specific aim was to “guide selection of 

loci for inclusion in population genetic studies” [27], to date any association study 

have used these information to candidate genes. Their strategy was to examine the 

variation in SNP allele frequencies between populations and quantify them by the 

statistic FST [14, 16, 23-25, 28]. Under selective neutrality, FST is determined by 

genetic  drift,  which  will  affect  all  loci  across  the  genome  in  a  similar  and 

predictable fashion. On the other hand, natural selection is a locus-specific force 

that can cause systematic deviations in FST values for a selected gene and nearby 

genetic markers. For example, geographically restricted directional selection may 

lead to an increase in FST of a selected locus, whereas balancing or species-wide 

directional  selection  may lead  to  a  decrease  in  FST compared  with  neutrally 

evolving  loci  [29-31].  Previous  studies  that  have attempted to  identify natural 

selection based on patterns of population differentiation relied on simulations to 
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obtain the expected distribution of FST under selective neutrality [28, 31, 32]. In 

brief,  they studied the allele frequencies of 26,530 SNPs in  three populations: 

African-American, East Asian, and European-American. The density of this SNP 

allele frequency map were the highest at that time, today overcame only by the 

HapMap data  [33].  To examine interlocus  variation in  allele  frequencies,  they 

constructed  the  empirical  genome-wide  distribution  of  FST for  all  autosomal 

markers. The average FST for the 25,549 autosomal SNPs was 0.123, which was 

consisent  with  previous  estimates  [21,  31].  A high  proportion  of  markers  are 

located in the tails of the distribution and 6% of SNPs have FST >  0.40 [27].

Sequence- and Annotation-based Candidate Gene Selection

To increase the likelihood that a gene is involved in a disease and to candidate it 

for followig empirical analyses several Candidate Gene selection Methods (CGM) 

have been constructed. Because it is impossible to ascertain whether a CGM has 

good performances and because each CGM have specific peculiarity one soluion 

may be to use all the information that come from each CGM. 

To this aim, Tiffin et al. filtered a list of 9556 candidate gene for T2DM by using 

5 CGMs. The starting set of  9556 were derived by a bibliographic analysis of all 

linkage study for T2DM and resulted in the loci reported in box 2.1. The CGMs 

used  are  GeneSeeker,  eVOC-based,  DGP,  PROSPECTR/SUSPECTS,  G2D.  In 

following  sections  are  reported  a  brief  description  of  the  CGMs  and  the 

parameters used to identify T2DM.
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Box 2.1: genomic region associated by linkage with T2DM
1q21–25, 1p31, 2p11, 2p22–2p13, 2p25, 2q12, 2q24, 2q33–2q37, 3p12–

3p13, 3p24-22, 3p26, 3q11, 3q27–29, 4q27–4q28, 4q32–34, 5q13, 5q31–

5q32,  6p21–6p22,  6q12,  6q15–6q27,  7p15,  7p21–7p22,7q22,  7q36, 

8p21–8p22,  8p11–8p12,  8q11,  8q24,  9p13–p24,  9q31,  9q33,10p13, 

10q23, 10q26, 11p12–p14
For reference list see [26]

GeneSeeker

GeneSeeker  [34, 35] is a web tool that filters positional candidate disease genes 

based on expression and phenotypic data from both human and mouse. It queries 

several  online  databases  directly  through the  web,  guaranteeing  that  the  most 

recent data are used at all times and removing the need for local repositories. In a 

test using 10 syndromes, GeneSeeker reduced the candidate gene lists from an 

average of 163 position-based candidate genes to  an average of 22 candidates 

based on position and expression or phenotype. Though particularly well suited 

for syndromes in which the disease gene shows altered expression patterns in the 

affected tissues, it can also be applied to more complex diseases. 

In  the  search  for  T2DM genes,  GeneSeeker  was  run  in  batch  mode  with  the 

following expression/phenotypic profiles ‘(insulin OR glucose OR pancreas OR 

fat OR adipose OR liver OR kidney OR gut) OR (muscle AND glucose) NOT 

(eye OR bone OR skin OR hair)’. The term ‘brain’ was intentionally left out of the 

‘NOT’ section of both queries to avoid spuriously excluding valid genes that may 

also be expressed in the brain, given the broad expression profile of this organ 
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(e.g.  the  muscle  glucose  transporter  GLUT4  is  also  expressed  in  the  brain). 

House-keeping  genes  were  not  filtered  out  since  glucose  metabolism  is  a 

fundamental cellular process. The remaining settings were left at their defaults (10 

cM  maximum  Oxford-grid  distance,  no  databases  excluded).  The  resulting 

candidate  genes  were  validated  against  their  respective  loci  using  Ensembl 

BioMart,  since  GeneSeeker  uses  (Oxford-grid)  chromosomal  synteny  for 

orthology determination and not per-gene orthology.

Analysis of candidate gene expression using eVOC annotation

This  method  performs  candidate  disease  gene  selection  using  the  eVOC  (a 

controlled  vocabulary for  unifying  gene expression data)  anatomy ontology.  It 

selects candidate disease genes according to their expression profiles, using the 

eVOC anatomical system ontology as a bridging vocabulary to integrate clinical 

and  molecular  data  through a  combination of  text-  and  data-mining  [35].  The 

method first  makes  an association between each eVOC anatomy term and the 

disease  name according  to  their  co-occurrence  in  PubMed abstracts,  and  then 

ranks the identified anatomy terms and selects candidate genes annotated with the 

top-ranking terms. Candidate disease genes are thus selected according to their 

expression profiles within tissues associated with the disease of interest. In a test 

of 20 known disease associated genes, the gene was present in the selected subset 

of candidate genes for 19/20 cases (95%), with an average reduction in size of the 

candidate gene set to 64.2% (±10.7%) of the original set size. Thus, genes selected 

as most likely candidates from the candidate gene list are those annotated with at 

least three eVOC terms that match the four top-scoring disease-associated eVOC 
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terms.

Disease Gene Prediction (DGP)

The genes that are already known to be involved in monogenic hereditary disease 

have been shown to follow specific sequence property patterns that would make 

them more likely to suffer pathogenic mutations. Based on these patterns, DGP is 

able to assign probabilities to all the genes that indicate their likelihood to mutate 

solely  based  on  their  sequence  properties  [36].  In  particular,  the  properties 

analyzed by DGP are protein length, degree of conservation, phylogenetic extent 

and  paralogy  pattern.  The  performance  of  this  method  has  been  assessed 

previously on a test dataset by building a model with a part of the data (learning 

set: 75%) and testing with the rest (test set: 25%). On average 70% of the disease 

genes in  the test  set  were predicted correctly with 67% precision  [36].  Genes 

involved in complex diseases, similarly to monogenic disease genes, need to have 

mutations or variations in the gene sequence that impair or modify the function or 

expression of the protein they encode, leading to a disease phenotype. Thus, we 

believe that,  although DGP has been designed for the prediction of mendelian 

diseases, it can also be useful for the identification of complex-disease genes as it 

will identify those genes with higher likelihood of suffering mutations.

A decision tree-based model was built based on sequence properties (i.e. protein 

length, phylogenetic extent, degree of conservation and paralogy). This model was 

then applied to all  the genes in the disease loci analyzed in order  to  obtain a 

probability score for these proteins to be involved in hereditary disease. Note that 
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this  probability  score  is  indicative  of  the  probability  of  the  genes  to  suffer 

mutations that impair the functionality of the protein encoded to cause a disease 

phenotype. It does not assume any particular phenotype and it does not account 

for specific phenotype features.

PROSPECTR/SUSPECTS

It can be shown that genes implicated in disease share certain patterns of sequence 

based  features  like  larger  gene  lengths  and  broader  conservation  through 

evolution. PROSPECTR is an alternating decision tree which has been trained to 

differentiate between genes likely to be involved in disease and genes unlikely to 

be involved in disease  [37]. By using sequence-based features like gene length, 

protein length and the percent identity of homologs in other species as input a 

score (ranging from 0 to 1) can be obtained for any gene of interest. Genes with 

scores over a certain threshold, 0.5, are classified as likely to be involved in some 

form of human hereditary disease while genes with scores under that threshold are 

classified as unlikely to be involved in disease. The score itself is a measure of 

confidence  in  the  classification.  PROSPECTR  requires  only  basic  sequence 

information  to  classify  genes  as  likely  or  unlikely  to  be  involved  in  disease. 

SUSPECTS builds on this by incorporating annotation data from Gene Ontology 

(GO), InterPro and expression libraries  [38]. Candidate genes are scored using 

PROSPECTR and also on how significantly similar their annotation is to a set of 

genes already implicated in the same disorder (the ‘training set’).  This enables 

SUSPECTS to rank genes according to the likelihood that they are involved in a 

particular disorder rather than human hereditary disease in general. SUSPECTS 
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leverages the structure of the GO, requiring GO terms to be closely enough related 

semantically speaking to be considered significant [39]. As a rank-based system, it 

requires  potential  candidates  to  share GO terms with other  disease genes  to  a 

greater extent than the other genes in the same region of interest. Performance of 

both PROSPECTR and SUSPECTS was tested separately with a set of oligogenic 

and complex disorders including Alzheimer’s disease, hypertension, autism and 

systemic lupus erythematosus. At least two implicated genes for each disease were 

available. For each implicated gene, a region of interest was created containing 

the implicated gene itself (the ‘target gene’) and every gene within 7.5 Mb on 

either side. On average each region of interest contained 155 genes. Associated 

training  sets  were  then  created  for  SUSPECTS  containing  the  remaining 

implicated genes for each disorder.  Using PROSPECTR, on average the target 

gene was in the top 31.23% of the resulting ranked lists of candidates and in the 

top 5% of those lists 20 times out of 156 (13%). In comparison, on average the 

target gene was in the top 12.93% of the ranked list from SUSPECTS, which took 

both the region of interest and the relevant training set as input in each case. The 

target gene was in the top 5% of the ranked list 87 times out of 156 (56%) [37, 

38]. 

In this study, the genes in each locus were scored by SUSPECTS first using a 

training set made up of genes already implicated in T2DM. The training set of 

genes  implicated  in  T2DM  was  composed  by:  PPARG,  GYS1,  IRS1,  INS, 

KCNJ11,  ABCC8,  CAPN10,  SLC2A1,  and  PPARGC1  [40].  The  top  10th 

percentile of each results set was then taken to represent a group of genes enriched 

40



for  good  candidates.  This  proportion,  providing  a  balance  of  sensitivity  and 

specificity, was chosen on the basis of tests using positive controls as described in 

Adie  et  al.  [38].  All  genes  were  also  scored  by PROSPECTR based  on  their 

sequence features. Genes with PROSPECTR scores >0.65 (8~% of the total) were 

selected as possible candidates. 

G2D

This system scores all terms in GO according to their relevance to each disease 

starting from MEDLINE queries featuring the name of the disease. This is done 

by  relating  symptoms  to  GO  terms  through  chemical  compounds,  combining 

fuzzy  binary  relations  between  them  previously  inferred  from  the  whole 

MEDLINE and RefSeq databases. Then, to identify candidate genes in a given a 

chromosomal region, G2D (genes to diseases) performs BLASTX searches  [41] 

of the region against all the (GO annotated) genes in RefSeq. All hits in the region 

with an E-value <10-10 are registered and sorted according to the GO-score of the 

RefSeq gene they hit (the average of the scores of their GO annotations). Note 

that hits in the genome might correspond to known or unknown genes, or to a 

pseudogene. In a test with 100 dis- eases chosen at random from OMIM (Online 

Mendelian Inheritance in Man)  [42], using bands of 30 Mb [the average size of 

linkage regions [43]], G2D detected the disease gene in 87 cases. In 39% of these 

it was among the best three candidates, and in 47% among the best 8 candidates 

[43, 44]. 

G2D makes predictions of candidates on chromosomal regions by defining and 
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scoring a number of BLASTX matches of that region against a scored database of 

genes. For the sake of the comparison presented in this work, the results had to be 

mapped to genes and not genomic locations, therefore the BLASTX hits that did 

not overlap with any current ENSEMBL gene prediction were filtered out (these 

can  be  obtained  using  the  G2D web server  [43,  44] for  a  particular  genomic 

region  and  disease).  The  final  result  is  an  ordered  list  of  candidates  for  each 

chromosomal  region  and  disease  with  a  score  that  depends  on  their  GO 

annotation. A second score have been added to the candidates, the R-score. This is 

the relative score of a sequence according to the distribution of GO scores of the 

RefSeq set used to characterize the region (the sequence ranking according to its 

GO-score minus one divided by the total number of sequences in the RefSeq set). 

R-score values close to zero indicate a strong possible relation of the sequence to 

the disease under consideration according to the current knowledge. The R-score 

allows comparing candidates for a given disease across different genomic regions 

linked  to  it;  that  is,  one  can  see  for  which  of  the  multiple  genomic  regions 

analyzed G2D obtained better candidates [44].

POCUS

POCUS [45] exploits the tendency for genes predisposing to the same disease to 

have  identifiable  similarities,  such  as  shared  GO  annotation,  shared  InterPro 

domains or a similar expression profile. Therefore where genes within different 

susceptibility regions for the same disease share GO or InterPro annotation and/or 

are co-expressed, these genes may be considered good candidates. Although genes 

may be selected as candidates on the basis of sharing only a single GO term or 
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InterPro domain, genes lacking this annotation completely will not be selected. 

Some polygenic/complex diseases may be caused by different genes that are not 

functionally related. In such cases this method would not be expected to select the 

disease genes as candidates, but may still, by chance, find functional similarities 

between some other genes in the regions (especially where there are many regions 

or the regions contain many genes). Each observed similarity between genes in 

different regions is given a score. The score is based on the probability of seeing 

such specific (or more specific) similarities between genes in different randomly 

chosen regions of the genome containing many genes. Where such a specific (or 

more specific) similarity would not be seen by chance in >5% of sets of randomly 

chosen region analyzed, the similar genes are considered to be good candidates. 

Therefore in  cases  where  disease genes  are  not  functionally related  (or  where 

there is no data to suggest the disease genes are functionally related) POCUS will 

select no candidate genes in 95% of cases. This means that POCUS is far more 

conservative  than  the  other  methods discussed.  Where many large  regions  are 

analyzed almost  any similarity between genes  in different  regions  will  have a 

considerable probability of being seen by chance. Therefore this method is not 

likely to be successful when many large regions are analyzed, so analysis should 

be restricted to the most tightly defined and best-supported regions available. 

The performance of POCUS was tested by using it to look for known disease 

genes. Test susceptibility regions were created containing known disease genes 

and the surrounding genes  [45]. Test susceptibility regions were created for 120 

diseases for which more than one associated gene appears in the OMIM database. 
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POCUS was then used to analyses the set of test regions corresponding to each 

disease.  The  performance  was  measured  by  the  percentage  of  known disease 

genes selected as candidates from the test  regions.  The enrichment for disease 

genes in the selected genes compared to the whole susceptibility region was also 

considered.  Enrichment  was  calculated  as  Enrichment  =  (disease  genes 

selected/non-disease  genes  selected)  /  (disease  genes  in  region/all  genes  in 

region).  Where  the  test  regions  contained  20  genes  in  total  the  percentage  of 

disease genes found was 41.7% and enrichment was 10.5-fold. For 100 genes the 

equivalent figures were 25.8% and 36.9, respectively, and for 200 genes 14.9% 

and 46.3. It is important to note that these results were obtained with no prior 

knowledge of disease pathogenesis. However, POCUS can also take into account 

prior  knowledge of the disease,  either  in  the form of  known disease genes  or 

preferred genes that are weighted during the analysis. Preferred genes could be 

genes expressed in  the affected tissue or  genes  selected by other  programs as 

being likely candidates. 

The  POCUS  method  is  sensitive  to  noise.  The  inclusion  of  poorly  defined 

susceptibility regions, or regions with a questionable association with the disease 

can  result  in  failure  to  select  similarities  between  disease  genes,  as  such 

similaritiesare  obscured  by  the  background  noise.  Therefore  the  analysis  was 

confined to the best supported and most tightly defined regions. These were 3p22–

p24, 3q27–q terminal, 10q26, 11p12–p14, 14q11–14q13, 15q13 and 18q22–p23 

[26]. Genes scoring above a threshold of 0.95 were considered good candidates. 

This stringent threshold is a direct reflection of the degree of statistical support for 

44



the candidate genes returned by POCUS, according to performance on positive 

controls (known disease genes) unrelated to the present data. At this threshold, 

spurious, non- disease genes are expected to be nominated as candidates for <5% 

of diseases analysed. Using more liberal thresholds results in only a small increase 

in true positives (correctly identified disease genes) but an accompanying large 

increase in false positives (non-disease genes) returned as candidates by POCUS 

[45].

Merging candidate gene lists

The result  CGMs study was a  list  of  genes  that  were identified  at  least  by a 

method.  We  joined  this  information  with  those  about  selective  pressure.  In 

particular  genes  that  had  a  high  likelihood  to  have  been  subject  of  selective 

pressure had an  FST > 0.40.  Then genes  that  were  present  in  both  lists  were 

selected. A score was assigned at each list, calculated by adding the FST value to 

0.2 for each CGM that identified it (we called the latter score as CGM*). In this 

way FST, that have range from 0 to 1, had broadly the same weight of the sum of 

the 5 methods. Finally, we obtained an ordered gene list, where at top positions 

were genes that have the higher likelihood to be involved in the disease. Because 

the evolutionary information were on SNPs and not on gene, in the following step 

we genotyped that SNP.

Collecting case-control cohort for T2DM

We  analyzed  a  dataset  of  a  case-control  study  on  T2DM.  The  sample  was 

randomly selected by the non-obese diabetic patients (BMI < 30 Kg/m2) viewed at 
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the  Diabetes  Outpatient  Clinic  of  the  University  “Federico  II”,  Naples.  The 

selection  of  non-obese  patients  increased  the  likelihood  to  detect  the  diabetes 

caused by genetic predisposition. A cohort of unrelated non-diabetic non-obese 

glucose-tolerant  control  subjects  were  randomly  selected  among  telephone 

company employees taking part  in  a company sponsored health screening.  All 

study participants were Caucasians of Italian origin, unrelated and residents of the 

same geographical area. The study was approved by the local ethics committee; 

informed  consent  was  obtained  from  all  participants.  No  intervention  was 

implemented;  the  prescribed  medications  were  not  modified  by  the  study 

investigators. Weight and height were measured with participants wearing light 

clothing and no shoes. BMI was calculated as body weight in kilograms divided 

by the square of height in meters. DNA were extracted by peripheral blood cells 

by using standard laboratory techniques,  and genotyping were performed by a 

genotyping service by the Kbioscience laboratory in Hoddesdon Herts, UK. The 

genetic variant analyzed was ACO1 (rs1041321).

Statistical Methods

Data are given as means and SDs or percentages. Proportions were compared by 

contingency tables and χ2 analysis. The χ2 goodness-of-fit test was used to assess 

deviation  from  Hardy-Weinberg  equilibrium  of  the  genotypic  frequency  by 

calculating expected frequencies of genotypes. A p value < 0.05 (two tailed) was 

considered  significant.  All  statistical  analyses  were  conducted  using  R  for 

Windows ver 2.7.
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Results

Twenty-seven  genes  were  selected  for  both  their  sequence-annotation 

characteristics and for their evolutionary history (table 2.1). In that list the genes 

were ordered on the basis of their potential involvement in T2DM. Any of the 

genes in the list have ever been associated with T2DM. Only the SNP C-634G  of 

VEGFC was associated with with development of diabetic macular edema and 

correlated with macular retinal thickness in type 2 diabetes [46].
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Tab 2.1: gene at high probability to be involved in T2DM, on the basis of 

evolutionary and sequence-annotation information. 
Genomic 
Region Gene Symbol GCM* GCMs FST Score

9p13-p24 ACO1 0,8
g2d eVOC suspects 
geneseeker 0,73 1,53

11q23 PCSK7 1
g2d eVOC suspects 
dgp65 prospectr 0,51 1,51

7p15 OSBPL3 0,6
g2d eVOC 
geneseeker 0,8 1,4

14q23-14q24 ACTN1 0,8
g2d eVOC dgp65 
geneseeker 0,57 1,37

8p21-8p22 DPYSL2 0,4 g2d eVOC 0,84 1,24
14q23-14q24 PRKCH 0,2 g2d 0,96 1,16

4q32-34 VEGFC 0,6
g2d suspects 
geneseeker 0,5 1,1

9q31 SMC2L1 0,6 g2d eVOC dgp65 0,48 1,08
12q15-12q21 PAWR 0,4 g2d eVOC 0,65 1,05
18q21-18q23 CDH19 0,4 g2d geneseeker 0,65 1,05
Xq23-27.3 CAPN6 0,4 g2d suspects 0,6 1
20q12-13 MYBL2 0,4 g2d eVOC 0,58 0,98
1p31 IL12RB2 0,4 g2d geneseeker 0,57 0,97
7q22 SRPK2 0,4 g2d eVOC 0,49 0,89
14q23-14q24 PPP2R5E 0,4 g2d eVOC 0,49 0,89
17p13-17q22 CHAD 0,2 g2d 0,68 0,88
9q31 INVS 0,4 dgp65 geneseeker 0,47 0,87
20q12-13 BMP7 0,2 g2d 0,67 0,87
6q15-6q27 VIL2 0,4 g2d eVOC 0,46 0,86
1p31 PDE4B 0,4 g2d eVOC 0,45 0,85
6p216p22 RNF8 0,2 eVOC 0,5 0,7
9q31 CDW92 0,2 eVOC 0,48 0,68
8q11 OPRK1 0,2 g2d 0,48 0,68
10p13 NMT2 0,2 g2d 0,47 0,67
6q15-6q27 IL20RA 0,2 eVOC 0,46 0,66
19q13 RPS11 0,2 g2d 0,46 0,66
2q24 GALNT5 0,2 g2d 0,45 0,65
Genomic region: genomic region where the gene is mapped, Gene Symbol: 
HUGO gene symbol, GCM*: arbitrary score derived by the sequence-annotation 
candidature process, GCMs: list of CGM that identified the gene, FST score of 
the SNP, Score: the arbitrary score of likelihood of been involved in the disease, 
calculated as the sum of GCM*+FST
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The first gene in the list was Aconitase Cytoplasmic 1 (ACO1). ACO1 has two 

functions: iron responsive element (IRE)-binding protein and cytoplasmic isoform 

of  aconitase  [47].  Aconitase  Cytoplasmic  1,  have  never  been  associated  with 

diabetes, nor with obesity or metabolic syndrome. However, the role of iron in the 

pathogenesis of diabetes is suggested by two evidence, an increased incidence of 

T2DM  in  diverse  causes  of  iron  overload  and  a  reversal  or  improvement  in 

diabetes (glycemic control) with a reduction in iron load achieved using either 

phlebotomy or iron chelation therapy [48]. The SNP  rs1041321 of ACO1 showed 

an FST of 0,73 implying that there are large differences in genotipic frequencies 

among ethnic groups. The CGM* score measured 0.8, implying that 4 CGMs have 

selected it,  namely G2D, eVOC, Prospectr/Suspects and GeneSeeker. The SNP 

rs1041321 of ACO1 was in a non-coding region, in the first intron, however it was 

in linkage with two non-synonymous SNPs, one (rs41313772) in the second and 

(rs41304757)  one  in  the  fourth  exon.  Nevertheless,  most  SNPs  associated  to 

disease are in non-coding region [3].

Characteristics  of  the  population  studied  are  reported  in  the  table  2.2  and 

genotypic  frequency  of  ACO1  SNP in  table  2.3.  The  genotypic  frequency  of 

ACO1 was in accord with the Hardy-Weinberg equilibrium. 
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Table 2.2: characteristics of the sample.
Cases Controls t-test p-value

N 292 227
Age (y) 58 ± 7.1 55 ± 6.2  < 0.001
Gender (% F) 31 39 0.31
BMI 26.1 ± 2.3 25.1 ± 2.8 < 0.001
N, number of individuals in the category, BMI, body mass index (m∙kg-2)

Table 2.3: genotypic frequencies of SNP rs1041321 of ACO1 in cases and 

controls.
TT TC CC

ACO1 Cases 135 (67%) 119 (57%) 24 (57%)
Controls 67 (33%) 89 (43%) 18 (43%)

Counts of individuals with that genotype are reported. In parenthesis are reported 
the percentage of individuals in that genotype that is affected or not-affected. 

 

While there was an equal distribution of CC and CT in cases and controls, the 

difference of these with TT was consistent (table 2.3 and figure 2.1). Indeed a χ2 

analyses  of  disease  frequency between these  two groups  was  significant  (p  < 

0.05).  Furthermore,  also  considering  the  role  of  age,  gender  and  BMI,  the 

association of ACO1 with the T2DM was still significant.  
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Figure 2.1: the frequencies of TT and CT&CC in cases and controls. 
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Conclusions

Common disease-common variant  (CDCV) hypothesis  suggested that  common 

alleles underlie most common diseases [1, 2]. Furthermore, according to the thrift  

genotype, such  alleles  have  been subjected to  selective pressure,  mainly those 

involved in metabolic disease such as T2DM and obesity  [5, 7]. Therefore, we 

defined an algorithm that prioritized the candidature of gene for T2DM on the 

basis of their evolutionary history. Indeed, after the prioritizing process, the gene 

with the highest probability, ACO1, resulted significantly associated with T2DM 

in  a  case-control  cohort.  Nevertheless,  although  this  proof  of  principle,  it  is 

needed  to  replicate  the  results  on  other  high  priority  genes  and  in  other 

populations. 
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Chapter 3: Pro12Ala polymorphism of the 
PPARγ locus modulates the relationship 
between energy intake and body weight in 
type 2 diabetic patients 

Introduction

Over the last two decades, the prevalence of overweight and obesity has increased 

worldwide [1]. Although the epidemic of obesity is largely caused by dietary and 

other  lifestyle-related  factors,  the  genetic  background  likely  plays  a  role  in 

determining the differences among individuals in gaining weight under the same 

environmental conditions.

Among the genetic factors potentially involved in the etiology of obesity, the gene 

encoding for the peroxisome proliferator–activated receptor (PPAR)γ, a nuclear 

receptor  that  regulates adipocyte  differentiation,  lipid storage,  fat-specific  gene 

expression, and insulin action, has attracted much attention. This genetic variation 

has  been  extensively  investigated  in  relation  to  obesity  with  apparently 

controversial  results  [2-4].  In  cross-sectional  studies,  the  Ala variant  has  been 

associated with lower or higher BMI, whereas the few available longitudinal data 

indicate  a  tendency  for  the  Ala  carriers  to  gain  more  weight  over  time  than 

noncarriers.  The  relationship  between  the  Pro12Ala  polymorphism  and 

environmental, lifestyle-related factors has been little explored. The few available 

studies have been conducted in nondiabetic individuals, and, although not entirely 
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consistent, they support the idea that the impact of this polymorphism on weight 

and metabolic features is modulated by lifestyle-related factors [5-11]. 

Obesity is a common feature of type 2 diabetes, and dietary treatment plays a key 

role in the management of these patients; it is therefore particularly relevant to 

explore the means to identify diabetic patients who are more sensitive to weight 

gain/loss under given conditions. 

The aim of  the study was to  explore,  in a  population-based sample of  type  2 

diabetic  patients,  the  relation  among  BMI,  habitual  diet,  and  the  Pro12Ala 

polymorphism in PPARγ2. 
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Methods

The study design was cross-sectional  and observational.  Participants were 343 

unrelated type 2 diabetic patients, aged 40–70 years, consecutively seen at the 

outpatient diabetes clinic of a health district of the province of Naples. The study 

was approved by the local ethics committee; informed consent was obtained from 

all participants. Patients with serum creatinine≥2mg/dl or cardiovascular events in 

the previous 6 months were excluded. All participants were regularly followed up 

at the clinic by their own doctors, according to current guidelines for good clinical 

practice.  The study investigations were conducted by ad hoc trained observers 

unaware of the participant’s genotype status. No intervention was implemented; 

the prescribed diet and medications were not modified by the study investigators. 

Weight, height, and waist circumference were measured with participants wearing 

light clothing and no shoes.  BMI was calculated as body weight in  kilograms 

divided by the square of height in meters. Dietary habits were investigated with 

the use of a 138-item semiquantitative food frequency questionnaire administered 

by trained dietitians and designed on the basis of previous validity and reliability 

studies [12, 13]. Briefly, participants were asked how often, on average, they had 

consumed a specified portion of a  given food during the previous year.  Daily 

nutrient intake was calculated by multiplying the nutrient content of the specified 

portion  of  a  food  item  by  the  frequency  of  its  daily  consumption  and  then 

summing the results of all the items. Food values for energy and nutrients were 

taken from the tables of the European Institute of Oncology [14]. Energy intake 

(kcal/day) and total saturated and polyunsaturated fat (g/day) were calculated; the 
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polyunsaturated-to-saturated fatty acid ratio (P/S) and the glycemic load of the 

diet  were  also  computed.  Energy  expenditure  due  to  physical  activity  was 

evaluated by a standardized questionnaire [15]. Participants were asked to fill in a 

questionnaire on habitual physical activity at work and during leisure time, which 

consisted of four increasing activity levels. 

Genomic DNA was isolated from whole blood using Biorobot EZ1 Qiagen. By 

PCR,  all  samples  were  genotyped  for  the  Pro12Ala  single  nucleotide 

polymorphism.  All  the  oligoprimers  were  tested  by gradient  PCR to  optimize 

melting  temperature.  Genotyping  was  performed  by  an  allele-specific 

amplification method using SYBR Green detection in a real-time ABI PRISM 

7000 apparatus (PE Applied Biosystem). 

Statistical analysis 

Data are given as means and SDs or percentages. For non–normally distributed 

variables, log-transformed values were used in the analyses; the original values 

are  given  in  the  text  and  tables  as  geometric  means  and  interquartile  ranges. 

Group  means  were  compared  by  unpaired  Student’s  t  test  or  ANOVA,  as 

appropriate.  Proportions were compared by contingency tables and  χ2 analysis. 

The separate and combined effect of the Pro12Ala polymorphism and diet on BMI 

was explored across quartiles of caloric intake using two-way ANOVA. Due to the 

different  distribution  of  energy  intake  between  men  and  women,  sex-specific 

quartiles  were  computed.  Multivariate  analysis  was  conducted  by  linear 

regression, with BMI as the outcome variable; the independent variables included 
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in the model were the Pro12Ala polymorphism, estimated daily energy intake, 

total fat, saturated fat, P/S, glycemic load, age, sex, hypoglycemic medications, 

A1C,  and  physical  activity.  The  χ2 goodness-of-fit  test  was  used  to  assess 

deviation  from  Hardy-Weinberg  equilibrium  of  the  genotypic  frequency  by 

calculating expected frequencies of genotypes. A p value < 0.05 (two tailed) was 

considered  significant.  All  statistical  analyses  were  conducted  using  SPSS for 

Windows version 12.0 
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RESULTS

The general characteristics of the study participants are shown in Table 1, together 

with the PPARγ2 genotype. As expected for type 2 diabetic patients, participants 

were middle aged and generally overweight. As for the PPARγ2 genotype, 301 

subjects (88%) were Pro homozygotes, 41 (11.7%) were Pro/Ala heterozygotes, 

and  only  1  was  a  homozygote  for  the  Ala  variant.  Therefore,  in  subsequent 

analyses,  those  with  the  Ala/Ala  or  Pro/Ala  genotype  were considered  as  one 

group and were referred to as “Ala carriers,” whereas individuals with the Pro/Pro 

genotype were referred to as “non-Ala carriers.” The genotype distribution is in 

Hardy-Weinberg equilibrium. Ala carriers and non-carriers were comparable with 

respect to age, diabetes duration (Table 3.1). 

Table 3.1: characteristics of the sample
Non-Ala carriers Ala carriere

n 301 42
Diabetes duration (y) 15.8 ± 8.9 14.06 ± 7.73 0.738
Age (y) 57.8 ± 8.6 58.9 ± 6.7 0.463
BMI (kg/m2) 31.3 ± 5.8 33.6 ± 7.1 0.022
BMI, Body Mass Index

BMI was significantly higher in carriers than non-carriers (p=0.02), whereas no 

significant  differences  were observed for  waist  circumference  and waist-to-hip 

ratio between the two groups (Table 3.1).  Differences in BMI were not explained 

by differences  in  dietary habits.  Estimated  energy intake  or  the  macronutrient 

composition of the diet (i.e., intake of total fat, saturated fat, polyunsaturated fat, 
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P/S, and carbohydrates) was not significantly different between the two groups. 

Medications for diabetes are known to affect body weight; however, we did not 

observe  any  significant  difference  in  the  proportion  of  patients  using  insulin, 

insulin  secretagogues,  or  insulin  sensitizers  (namely  metformin,  as  the 

thiazolidenidiones were not marketed in Italy at the time the study was conducted) 

between the two genotype groups (Table 3.2). Study participants were generally 

sedentary; the proportion of physically active participants was low in both groups, 

with no significant differences between Ala carriers and non-Ala carriers (13.3 vs. 

21.4%, respectively, χ2 p=0.24). 

Table 3.2: Nutrient intake and physical activity by genotype
Nutrient Intake Non-Ala carriers Ala carriere p
  Total Fat (g) 60.35 ± 20.84 60.2 ± 19.72 0.967
  Saturated fat (g) 20.42 ± 9.18 20.39 ± 8.20 0.986
  Glycemic load 131.30 ± 65.95 121.26 ± 30.1 0.172
  P/S 0.53 ± 0.20 0.56 ± 0.24 0.440
Physically active (%) 40 (13.3) 9 (21.4) 0.239
Data are means (SD) or n (%)

To explore the separate and combined effect of the Pro12Ala polymorphism and 

diet  on BMI,  participants  were stratified according to  sex-specific  quartiles  of 

energy intake and genotype. BMI increased progressively with increasing energy 

intake in  both genotype groups with a  significant  linear  trend (p=0.03 for the 

effect of energy intake; p=0.016 for the effect of genotype, with no significant 

interaction). 

Figure 3.1 clearly shows that in the first quartile of energy intake BMI was similar 

66



in carriers and non-carriers (30.0 vs. 30.1 kg/m2 , p = 0.1), whereas in the highest 

quartile of caloric intake the Ala carriers had a significantly greater BMI than Pro/

Pro homozygotes (36.0 vs. 32.1 kg/m2 , p = 0.016). Interestingly, average daily 

energy  intake  and  diet  composition  (i.e.,  total  fat,  saturated  fat,  P/S,  and 

carbohydrates) were comparable within each quartile for carriers or non-carriers 

of the Ala allele (Table 3.3).

Figure 3.1: BMI in Ala carriers and non-Ala carriers according to sex-specific 

quartiles of daily energy intake
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Table 3.3: Average daily intake of energy and macronutrients by sex-specific 

quartiles of energy intake and genotype

Quartile 1 Quartile 2 Quartile 3 Quartile 4 p

n

  Non-Ala carriers 75 75 76 76

  Ala carriers 11 11 10 10

Energy (kcal/day)

  Non-Ala carriers 1382 ± 202 1730 ± 132 2023 ± 171 2671 ± 449 Qp=0.001

  Ala carriers 1250 ± 276 1761 ± 154 2102 ± 116 2595 ± 517 Gp= 0.787
Energy (kcal/kg 
body wt)

  Non-Ala carriers 19.2  ± 3.9 22.6  ± 4.2 26.7  ± 5.0 33.6  ± 7.5 Qp=0.001

  Ala carriers 17.7  ± 4.0 22.0  ± 4.3 23.9  ± 4.7 30.7  ± 8.2 Gp= 0.04

Total fat (g/day)

  Non-Ala carriers 42 ± 9 53 ± 7 61 ± 10 83 ± 17 Qp=0.001

  Ala carriers 41 ± 14 54 ± 9 64 ± 7 79 ± 19 Gp= 909

Saturated fat (g/day)

  Non-Ala carriers 12 ± 3 13 ± 3 20 ± 5 30 ± 8 Qp=0.001

  Ala carriers 12 ± 4 18 ± 4 21 ± 4 28 ± 8 Gp= 0.903

P/S

  Non-Ala carriers 0.62 ± 0.24 0.53 ± 0.17 0.51 ± 0.17 0.44 ± 0.16 Qp=0.001

  Ala carriers 0.66 ± 0.22 0.54 ± 0.33 0.56 ± 0.16 0.47 ± 0.16 Gp= 0.317

Glycemic load

  Non-Ala carriers 103 ± 37 120 ± 24 138 ± 63 164 ± 99 Qp=0.05

  Ala carriers 76 ± 18 117 ± 16 134 ± 36 156 ± 29 Gp= 0.298
Data are means (SD),  Qp = p value for the quantile classification, Gp = p value 

for the Ala/Non-Ala carriers classification

Relative to the non-carriers, Ala carriers had a significantly lower energy intake 
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per kilogram of bodyweight, thus suggesting that the Ala allele is associated with 

a higher food efficiency (i.e., for the same body weight, a lower energy intake is 

required to maintain a stable body weight). Possible confounders such as glycemic 

control, physical activity, and proportion of patients on insulin, sulfonylureas, or 

metformin  were  comparable  between Ala  carriers  and  non-Ala  carriers  within 

quartiles. 

Multivariate  regression  analysis  (Table  3.4)  was  performed  to  explore  the 

independent  effect  on  BMI  of  energy  intake,  diet  composition,  and  genotype 

(presence/absence of the Ala allele); since age and sex are associated with both 

BMI and energy intake, these two variables were included in the model. Among 

the  variables  included  in  the  model,  only  energy  intake  and  presence  of  the 

Pro12Ala  polymorphism were  significantly  and  independently  associated  with 

BMI. This finding did not change when type of hypoglycemic medications and 

physical activity were also included in the model. 

Table 3.4: Multivariate regression analysis of the association between genotype, 

diet variables, and BMI
β SE β p

Energy (kcal) 0.004 0.001 0.004
Sex 4.967 0.667 <0.001
Genotype (Ala/non-Ala) 2.356 0.954 0.014
Age (y) -0.014 0.039 0.709
Total fat (g) 0.025 0.070 0.721
Saturated fat (g) -0.194 0.162 0.230
P/S 0.761 2.203 0.730
Glycemic load -0.002 0.006 0.661
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CONCLUSIONS

This  study  shows  that  type  2  diabetic  patients  carrying  the  Pro12Ala 

polymorphism  of  PPAR2  have  a  significantly  higher  BMI  than  non-carriers 

despite a similar energy intake. As a matter of fact, BMI increases progressively 

with  increasing  energy  intake  in  both  groups;  however,  Ala  carriers  had  a 

significantly lower energy intake per kilogram body weight, thus suggesting that 

the Ala allele is associated with a higher food efficiency. The confounding effect 

of hypoglycemic medications, glycemic control, and physical activity was ruled 

out, thus conferring consistency to the finding. Very few studies have assessed the 

impact  of genetic polymorphisms and diet  on weight,  and none of these were 

performed in diabetic individuals. PPARγ2 is one of the most promising candidate 

genes of common obesity, although so far results of association studies have been 

somewhat  inconsistent.  Cross-sectional  studies  have  shown no difference  or  a 

lower or modestly greater BMI in Ala carriers compared with non-carriers; the 

few  available  prospective  studies  suggest  that  the  Pro12Ala  polymorphism is 

associated with higher insulin sensitivity and may confer increased susceptibility 

to  weight  gain  over  time,  particularly  in  obese  individuals  [4].  However,  no 

information on habitual diet was collected in these studies. Results of intervention 

studies  in  non diabetic  patients  indicate  that  the Pro12Ala polymorphism may 

modulate physiological responses to dietary fat intake in humans  [5-11]. In the 

Quebec Family Study, the Ala carriers had higher BMI, waist circumference, and 

fat mass than non carriers but were more resistant to weight gain and metabolic 

deterioration when exposed to a high fat intake  [6]. At least three other studies 
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have confirmed that the weight response to the amount and type of dietary fat 

differs according to the PPAR2 genotype  [5, 7, 9]. In our study, the Pro12Ala 

polymorphism did not seem to modulate the impact of the fat content of the diet 

on BMI. It is relevant to note in this regard that the present study was conducted 

in a Mediterranean region where on average the habitual dietary fat intake is lower 

than in Northern European and American countries. Furthermore, the study was 

conducted  in  diabetic  patients  who  are  usually  prescribed,  as  part  of  their 

treatment,  a diet  reduced in both total  and saturated fat.  All  study participants 

were regularly attending a diabetes clinic, and, although most patients were not 

fully  compliant  with  the  prescribed  diet,  the  average  intake  of  total  fat  and 

saturated fat was substantially lower in this sample than in previous studies (i.e., 

average total fat intake was 60 g in our study, 90 g in the Canadian study [6], and 

72 g in  the finnish study  [7]).  Likewise,  P/S was higher  in our  study than in 

others. It is possible that the modifying effect of the Pro12Ala variation on the 

relationship between dietary fat intake and BMI may not be evident for a low total 

fat intake, predominantly of the unsaturated type. 

The results are compatible with the hypothesis that Ala carriers have a higher food 

efficiency (i.e., for the same body weight, they need a lower energy intake to keep 

their  weight  stable).  As  to  mechanisms  responsible  for  the  effects  of  the  Ala 

variant  on  individual  weight  regulation,  we  can  only  make  speculations.  The 

cellular and molecular mechanisms by which PPAR affects adipogenesis are not 

entirely clear; it has been suggested that the Pro12Ala polymorphism is associated 

with greater insulin sensitivity, and this could be linked to a greater increase in 
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bodyweight [16-19]. 

 The role of a combined gene-environment effect in the etiology of complex traits 

such as obesity and insulin  resistance needs to  be further  explored,  as  it  may 

provide a basis for identifying at-risk individuals at a young age and enable the 

selection  of  more  responders  to  preventive  measures  based  on  lifestyle 

modifications.
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Chapter 4: Statistical method to identify gene-
environment interaction

Introduction

Although mapping strategies,  as linkage analysis, had allowed identification of 

many  genes  implicated  in  monogenic  conditions,  they  are  less  efficient  in 

identifying genes that are involved in the complex forms of disease [1]. Moreover, 

other approaches as candidate-gene and genome-wide association find it hard in 

identifying genetic predisposition of complex diseases [2, 3]. One of the reasons 

of this failure could be that studies in this area basically examined the relationship 

between  genetic  factors  and  traits,  without  jointly  considering  environmental 

determinants [4]. 

The study of Gene-Environment Interactions (hereafter denoted by GxE) could be 

useful for several reasons. First, if only the separate contributions of genes and 

environment  is  estimated,  ignoring  their  interactions,  it  may  be  incorrectly 

estimate the effects of genes also leading to inconsistence of replication. Second, 

the  identification  of  GxE  provides  direct  evidence  that  involved  biological 

pathways are relevant to specific traits allowing further focused researches. Third, 

understanding GxE might focus medical intervention, identifying sub-groups of 

individuals who are differently sensible to defined environmental exposure  [4]. 

For example,  in  classical  complex traits,  like in the metabolic  disorders,  there 

have been positive reports that, beside the pharmaceutical therapies, intensive diet 
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and exercise interventions reduce the incidence of T2DM [5]. Indeed, studies have 

demonstrated that each lifestyle intervention is not effective for all obese patients 

[6] then, in order to provide the best treatment, could be of great interest to know 

which group of individuals will benefit from each intervention. Ultimately, from 

an  epidemiological  point  of  view,  not  considering  the  gene-environment 

interaction could lead to a serious underestimation of the disease risk. In fact, a 

low relative risk for single genetic marker does not imply its irrelevance, since it 

could be involved in an interaction with an environmental trigger resulting in a 

high risk interplay.

Despite  a  lot  of  information  have  been  collected  about  both  genetic  and 

environmental risk factors, there are relatively few examples of gene-environment 

interaction in epidemiological literature. The main reason is that the majority of 

the studies have been designed to examine the main effect of single factors instead 

of examining the interactions [4]. This is also due to the limitations of statistical 

methods. They would require very large case-control data sets to identify gene-

gene and gene-environment interactions, considering the loss of statistical power 

caused by the increasing dimensionality of the data [7, 8]. 

The Feature Selection Methods (FSMs) are statistical  tools aimed to point out 

among all observed variables the ones more correlated to the status of individuals. 

Presently, some of the mainly used FSMs are Logistic Regression [9, 10], Linear 

Discriminant Analysis  [11],  and MDR  [7]. We expect that  not all  methods are 

equally sensitive to detect the whole phenomenon. Some of them, in fact, could be 

more  prone  to  reveal  additive  behavior  though  could  not  detect  epistatic  or 
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complex interactions, whereas others could be good to detect complex interaction 

but  fail  to point out simple single factor  effect.  For example,  BLR can detect 

interactions between factors only if they of linear type. For this reason it would be 

important  to  determine  the  power  of  each  specific  method  in  this  field  of 

application.  Hence,  to accomplish this purpose one would need a considerably 

large number of trial data sets to test the methods response, for example against 

benchmarks or synthetic populations [12].

A method to overcome the weakness of single FSMs may be to joint them in an 

ensemble. An ensemble of FSMs is a set of FSMs whose individual decisions are 

combined to analyze new example. Ensemble are often much more accurate that 

the individual elements that make them up. One condition to make an ensemble 

accurate is that its individual members use different strategies [13]. In the case of 

FSMs the strategies are very different, thus the ensemble should greatly improve 

the overall ability to identify involved factors. 

Therefore,  a  representative  set  of  FSMs  were  selected  among  those  more 

frequently used in biomedical studies. Then a set of simulated populations were 

created and each single FSM were challenged against them. Further, an ensemble 

of  these  FSMs  were  defined  and  were  challenged  against  the  simulated 

populations. Finally the ensemble were used to identify genetic and environmental 

factors  involved  in  a  real  sample  of  Type  2  Diabetes  Mellitus.  The  ensemble 

successfully  individuated  among  a  set  of  four  genes  and  three  environmental 

factors, the gene TCF7L2, age, and BMI as associated with T2DM. 

79



Methods

Feature Selection Methods

FSMs  have  the  aim  to  point  out,  among  many  genetic  and  environmental 

variables, the relevant ones in determining the disease occurrence. 

The  main  techniques  adopted  in  epidemiological  biomedical  studies  are 

Univariate  methods  (UNI),  Backward  stepwise  Logistic  Regression  (BLR), 

Multifactor Dimensionality Reduction (MDR), and Linear Discriminant Analysis 

(LDA). 

Univariate methods

Although univariate methods are not able to detect interactions, they can detect 

marginal effect  of each single factor.  Univariate methods can be, nevertheless, 

considered the reference methods of analyses able to identify with reliability the 

involvement of a factors in a phenomenon. For this reason, I performed a χ2 on 

genetic, discrete, variables and t-test on environmental,  continuous, ones. After 

that, I consider as final answer the subset of variables which have passed the tests 

at a given confidence level. 

Backward stepwise logistic regression

Logistic Regression is a classical statistical method used to select from a set of 

variables those that predict the dependent, binary, variable. The goal of logistic 

regression is to correctly provide the category (in this case, affected/not affected) 

of an individual using the most parsimonious model. To accomplish this goal, a 
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model is created that includes the predictor variables that are useful in leading the 

response  variable.  Logistic  regression  directly  models  the  probability  of  one 

individual to belong to a given class. In particular, for a two-class problem (Y ∈ 

{0, 1}), the conditioned probabilities for a set of N observations x ≡ (x1, ..., xN) are

The  unknown  parameters  βi are  usually  estimated  by  Maximum  Likelihood 

method. 

Backward stepwise regression begins with a full or saturated model (i.e. including 

all  the predictor  variables)  and subsequently variables are  eliminated from the 

model, one by one, in an iterative process. The fit of the model is tested after the 

elimination of each variable to ensure that the model still adequately fits the data. 

When  no  more  variables  can  be  eliminated  from  the  model  without  loosing 

prediction power, the analysis is over. 

Multifactor Dimensionality Reduction

Multifactor  Dimensionality  Reduction  (MDR)  is  an  interesting  approach  for 

detecting  combinations  of  variables  that  affect  the  dependent  variable.  In 

particular, MDR was designed specifically to identify interactions among discrete 

variables that influence a binary outcome. It can be considered as a nonparametric 

alternative to traditional statistical methods such as logistic regression. 

81



MDR is a constructive induction algorithm that,  at  each step,  converts  two or 

more variables in a single one that, possibly, is a better predictor for the outcome 

variable. First of all, a set of n variable is selected from the pool of all factors and 

all the possible combinations of their values are computed. Then, the ratio of the 

number of cases to the number of controls is estimated within each combination. 

Next step is labeling each of that ratio as ”high-risk” if the cases/controls ratio 

meets or exceeds some threshold (e.g. 1.0), or as ”low-risk” if that threshold is not 

exceeded. In this way, a new attribute is formed by pooling high-risk cells into 

one group and low-risk cells into another group. This reduces the n-dimensional 

model to a one-dimensional model.  Among all  of  the n-factor combinations,  a 

single  model  that  maximizes  the  cases/controls  ratio  of  the high-risk group is 

selected, namely the one that will have the minimum classification error among 

the n-locus models. 

To decide which subset of n variables better predicts the outcome variable, the 

prediction error of each model is estimated by a 10-fold cross-validation. Here, 

the  data  are  randomly  partitioned  into  10  equipopulated  parts.  The  model  is 

developed  for  each  possible  9/10  of  the  subjects  and  then  is  used  to  make 

predictions about the disease status of each possible 1/10 of the subjects excluded. 

The  proportion  of  subjects  for  which  an  incorrect  prediction  was  made  is  an 

estimation of the prediction error. To reduce the possibility of poor estimates of 

the prediction error that are due to chance divisions of the data set, the 10-fold 

cross-validation is repeated 10 times. To choose the final model, for each of the 10 

repetitions  and  for  each  of  the  10  models  (due  to  cross-validation)  of  each 
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repetition,  the  number  of  occurrences  of  each  model  is  counted  and  it  is 

considered as the ”best” the one satisfying, in this order, the criteria of being more 

frequent, with the lower classification error and having the minimum number of 

variables. 

Linear Discriminant Analysis

Linear discriminant methods determine linear functions, which divide the domain 

space into two regions. Learning processes adjust the parameters of linear models 

to obtain an optimal correspondence between the half-spaces of the feature space 

and the data  categories  (classes).  Linear  discriminants  are  numerical  functions 

defined by linear combinations of the argument vector components, namely a set 

of N observations x ≡ (x1, ..., xN):

where w is a weight vector and b stands for a threshold. If x satisfies the condition 

f(x) > 0, then the model assigns the label of the positive category to it, otherwise 

the label of the negative class is assigned. The instances for which f(x) = 0 define 

the  hyperplane,  which splits  the whole space  into the two regions.  The  linear 

discriminant function can be determined in different ways. The idea of Fisher’s 

linear discriminant lies in the choose of w that maximizes the separation between 

the two classes i.e. the ratio of the variance between the classes to the variance 

within the classes. This can be interpreted as maximizing the total scatter of the 
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data while minimizing the within scatter of the classes. 

In the cases of association study, it can be used for feature selection combining a 

backward  feature  selection  with  an  LDA classifier.  At  each  step,  one  of  the 

variables is excluded, an LDA classifier is trained and tested using a 10-fold cross 

validation and an averaged empirical risk is estimated. To reduce the possibility of 

poor  estimation  due  to  chance  divisions  of  the  data  set,  the  10-fold  cross-

validation  is  repeated  10  times  and  the  final  model  chosen  is  the  one  more 

frequent. 

Population simulator

Gene-Environment  iNteraction  Simulator  (GENS)  is  a  software  generating 

simulated  populations  for  case-control  studies.  In  these  populations  a  gene-

environment  interaction  between  two  factors  modulates  the  disease  risk.  In 

complex disease involved factors only increase or decrease the disease risk, being 

very far  to  be a  deterministic  process.  For  this  reason in GENS, the involved 

factors  only increase  or  decrease  the  disease  risk,  but  do  not  controls  all  the 

disease probability. 

GENS allows to evaluate the power and the minimal sample size of a method of 

analysis. This is performed by generating a set of populations having the same 

underlying  interaction  model,  but  with  different  strength  of  interaction  and/or 

different size. 

By GENS it is possible to simulate all the way genetic and environmental factors 

can  interact,  allowing  complex,  non-linear  and  epistatic  relationships,  though 
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respecting the biological constraints. In GENS the main effort designing it was to 

respect the standard epidemiological biomedical parameters, like Relative Risk of 

a population with respect to another one (hereafter denoted by RR), and the type 

of genetic dominance (dominant, co-dominant, and recessive). 

The main purpose of the present study was to determine the performances of a set 

of statistical methods in terms of ability to identify interacting factors involved in 

a complex disease. For this reason we have restricted  the analysis to a realistic, 

relatively simple situation: a one gene-one environment interaction. Furthermore, 

we  have  select two  type  of  interactions,  an  additive  model  (ADD)  and  a 

modulative (MOD). As depicted in the figure 4.1, panel A, in the ADD model, 

both gene and environmental exposure influence the risk, but in an independent 

way. In this scenario the resulting risk is the sum of the genetic and environmental 

risk. While in MOD model (figure 4.1, panel B) the gene modules the response to 

the  environmental  exposure.  In  this  scenario,  the  effect  of  the  environmental 

depends  by  the  genotype  and  at  the  same  environmental  exposure  can  lead 

different levels of disease risk on the basis of the genotype. 
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Fig 4.1: disease risk by environmental exposure and genotype. In both graphs, 

each  line  represent  the  relationship  environmental  exposure-disease  risk  for 

individuals  with  a  specific  genotype.  On  the  X  axis  is  represented  the 

environmental  exposure and on the Y axis the disease risk.  In the panel A, is 

represented  the  ADD  model,  when  the  amount  of  environmental  exposure 

increases, the risk increases of the same amount for each genotype. In panel B, is 

represented  the  MOD  model,  where  the  increase  of  the  same  amount  of 

environmental  factor  exposure leads  to  different  variations  of  risk in  different 

genotypes.

In  details,  each  individual  in  the  simulated  population  randomly  receives  its 
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genotype and levels of environmental exposure. These variables are assigned in 

order  to obey,  at  the population level,  to  user defined genetic frequencies and 

environmental distributions. To define the risk of an individual, see figure 4.1, is 

necessary to know the type of GxE interaction (MOD or ADD), the genotype 

(AA, AB or BB), and the level of environmental exposure. These information let 

identify the risk on the Y axis of the graph. Furthermore, a random number is 

generated, from 0 to 1, and if the number is higher that the risk calculated for the 

individual then he is considered affected otherwise is not-affected. Further, at each 

individual beside those involved in the disease a set of environmental and genetic 

factors are assigned that behave as noise. 

To compute the Disease Risk (R) we imply a multi-logistic method that allows 

both epidemiologically well accepted definitions of disease risk and modeling of 

free  non-linear  interactions.  By a  mathematical  point  of  view,  disease  risk  in 

individuals, carrying a specific genotype, is function of a basal constant risk in 

addition to an environment-based component. The first one is the basal genetic 

risk (Rg), while the second one is the risk, in individuals carrying that genotype, in 

response to the environmental exposure level (Re). 

R∝RgRe

To allow the non-linear interactions among factors, we designed a relationship for 

each genotype:

Genotype AA : RAA∝Rg , AARe , AA

Genotype AB : RAB∝Rg , ABRe , AB
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Genotype BB : RBB∝Rg , BBRe , BB

According to this approach, ADD model have same Re and different Rg in each 

genotype, whether MOD model have same Rg and different Re in each genotype. 

In other terms, in the ADD case individual carrying different genotype have the 

different basal genetic risk. However among different genotype the contribution of 

the environment is the same, thus, the two factors act additively. In the MOD case, 

the  basal  genetic  risk  is  the  same  among  genotypes,  however  it  is  the 

environmental risk that is different in each genotype. 

We based our approach on a logistic expression for the disease risk. In particular, 

the  logit  (log-odds)  of  being  affected  is  defined  as  a  linear  function  of 

environmental  variable.  We  selected  the  logistic  function  because  that  the 

intensity of a biological  response is  often proportional to the logarithm of the 

stimulus extent, according to the Weber–Fechner law [14]. Moreover, the logistic 

function naturally leads to risk values ranging from 0 to 1. Furthermore, from an 

epidemiological point of view, the coefficients of the logistic function correspond 

to the logarithm of the relative risks due to a one-unit increase in the covariate 

value [9]. 

The main design effort was to allow the user to generate simulate populations 

according  to  provided  epidemiological  parameters,  but  respecting  a  set  of 

constraints to make the simulator behavior biologically meaningful. 

To produce a simulated population GENS needs a set of basal data: 

• The total number of individuals in the population.
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It  is  possible  to  simulate  population  of  any  sample  size,  in  order  to  test,  for 

instance, the ability of a FSM to correctly identify factors in condition of different 

sample sizes.

• The fraction of overall affected individuals in the populations.

It  is  possible  to  simulate  populations  with  the  desired  proportion  of  affected 

individuals, to check whether the case/control ratio could affect the ability of the 

FSMs.

• The number of genetic markers of each individual.

By this  value  is  possible  to  set  the  total  number  of  genetic  factors  that  were 

assigned  to  an  individual.  Only  a  fraction  of  them (one  in  present  case)  are 

involved in the disease, whereas the others act as noisy background.

• The number of environmental exposures of each individual.

By this value is possible to set the total number of environmental exposure that 

were assigned to an individual. Only a fraction of them (one in present case) are 

involved in the disease, whereas the others act as noisy background.

• The allelic or genotypic frequency of gene.

For each genetic factor,  either involved in the disease or noisy background, is 

possible to define the allelic or the genotypic frequency. 

• The distribution of the environmental exposure (i.e. gaussian).

For each environmental factor, either involved in the disease or noisy background, 

is possible to define the distribution in the population.
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• The risk associated to the genetic factor

At the  genetic  factor  involved in  the  disease  is  associated  a  value  of  risk.  In 

particular, it is always considered as reference an homozygote genotype (i.e. AA) 

and this values represent the Relative Risk the other homozygote genotype (i.e. 

BB)

• The type of genetic dominance (dominant, co-dominant, recessive)

By this values, it possible to modulate the risk of the heterozygothe individuals. In 

details is possible to have a dominant, recessive o co-dominant behavior.

• The risk associated to the environmental factor

By this value is possible to define the value of Odds Ratio of a one-unit increase 

of the value of the environmental factor. 

• The type of GxE interaction.

All the parameter above can be combined in different ways, by this parameter is 

possible  to  decide  if  the  the  genetic  and  environmental  factors  interact  in  a 

additive (ADD) or modulative (MOD) way.

Analysis strategy

To analyze the ability of different FSMs to identify factors involved in complex 

disease we challenged FSMs against  populations  with  different  characteristics. 

For this purpose, we developed a software that recursively performed an analysis 

of each method on each simulated population.  Furthermore,  the computational 

power necessary for the analyses required to adopt a parallel computing strategy. 
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The first  step to  allow a comparison among methods was to  identify a  set  of 

parameters for each methods that resulted in a 90% specificity. The specificity of a 

test is the reliability of the test. In other terms, when a test identify a factor how is 

reliable this result? The specificity is calculated as:

We considered “True Positive” the factors that were considered involved by FSM 

and were set as involved during the process of population simulation. While we 

considered “False Positive” factors that were identified by FSM and were not set 

as involved during the process of population simulation. On the contrary, “True 

Negative” were factors not identified by FSM and were not set as involved, while 

“False Negative” were factors that the FSM did not considered involved but were 

set as involved. 

To this aim we performed all analyses with different parameters and afterward 

selected those that allowed 90% specificity. The parameters range were:

BLR, single factor remove p-value  =  {0.1, 0.05, 0.01, 0.001}

Univariate, p-value =  {0.1, 0.05, 0.01, 0.001}

LDA, Cross Validation = {2, 3, 4, 5, 6, 7, 8, 9}

MDR Cross Validation = {2, 3, 4, 5, 6, 7, 8, 9}

The second step was to use collect the results of the analyses with the selected 

parameters and calculate the sensibility. The sensibility is the ability of a test to 

identify the largest number of involved factors, and is calculated:
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In this way we challenged all the FSMs using a common maximum 10% of false 

positive results. 

Ensemble

In order to overcome limits of single FSMs we developed a simple ensemble of 

these methods. An ensemble of FSMs is a set of FSMs whose individual decisions 

are combined to classify new example. 

In this study we adopted a simple unweighted bayesian ensemble. This method is 

also called voting method, because each FSM in the ensemble acts as a voters and, 

in particular, votes the involvement of each factors in the disease. The factors that 

reach the majority is considered involved in the disease. Shortly, each FSM votes 

the involvement of a factor in the disease, if three FSMs (of four) vote a factors 

that factors is considered involved by the ensemble.  

Although  further  ensemble  methods  have  been  developed  that  have  greatest 

performance than unweighted bayesian, the purpose of this study was to prove the 

principle that an ensemble of FSMs could improve the statistical ability to identify 

factors involved in complex disease. Beside, it is not possible to define whether a 

factors was incorrectly associated to a disease, then is also conceptually difficult 

to define a weight system for FSMs. 

Real World sample

To use FSMs and the ensemble in a real world case, we analyzed a dataset of a 
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case-control  study  on  T2DM.  T2DM  is  a  complex  disease  where  the  GxE 

interactions are considered frequent [15]. 

The sample was randomly selected by those viewed at the Diabetes Outpatient 

Clinic of the University “Federico II”, Naples. A cohort of unrelated non-diabetic 

glucose-tolerant  control  subjects  were  randomly  selected  among  telephone 

company employees  taking part  in a company sponsored health  screening.  All 

study participants were Caucasians of Italian origin, unrelated and residents of the 

same geographical area. The study was approved by the local ethics committee; 

informed  consent  was  obtained  from  all  participants.  No  intervention  was 

implemented;  the  prescribed  medications  were  not  modified  by  the  study 

investigators. Weight and height were measured with participants wearing light 

clothing and no shoes. BMI was calculated as body weight in kilograms divided 

by the square of height in meters. DNA were extracted by peripheral blood cells 

by using standard laboratory techniques,  and genotyping were performed by a 

genotyping service by the Kbioscience laboratory in Hoddesdon Herts, UK.

The  genetic  factors  analyzed  were:  TCF7L2  (rs7903146),  UCP3  (rs1800849), 

PPARγ (rs1801282), FTO (rs9939609). The environmental factors collected were: 

age, BMI, systolic blood pressure, gender.
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Results

Comparison of different FSM against simulated populations

In order to analyzed the behavior of different FSMs we challenged each method 

against  a  set  of simulated population where the factors  involved were already 

known. In these populations further characteristics were already known, as the 

type of genetic dominance, the type GxE, the entity of risk associated to genetic 

and environmental factors. 

To create the simulated populations we adopted the parameters reported in table 

4.1, that could be considered reasonably similar to those of real populations. 

Table 4.1: parameters used in the creation of simulated populations. 
Parameter Values
Number of individuals 500, 1500, 4500, 13500
Frequency of disease 50 %
Number of gene factors 20, 1 involved in disease risk
Number of environmental 

factors

20, 1 involved in disease risk

Allelic frequencies For the involved gene factor: 0.12, 0.25, 0.5

For others: random > 0.1
Distribution of environmental 

exposure

Gaussian, mean = 0, standard deviation  = 1

Risk of genetic factor (RR) 1.1, 1.2, 1.5, 2.0, 3.0
Type of genetic dominance Dominant, recessive, co-dominant
Risk of the environmental 

exposure (OR)

1.2

Type of GxE interaction ADD, MOD
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In  particular,  we  created  100  populations  with  each  combination  of  the 

characteristics reported in table 4.1, obtaining a set 3600 populations. Being the 

creation of populations based on a random process, each population was different 

by others also if they shared the same characteristics.

The FSMs that we selected for the analysis were those mostly used in biomedical 

studies,  namely  backward  stepwise  logistic  regression  (BLR),  multifactorial 

dimensionality reduction (MDR), linear discriminant analysis (LDA),  χ2, and t-

test.  Although  the  two  latter  are  univariate  methods,  they  are  widely  used  in 

association study. The χ2 designed for discrete factors (like genetic ones) and the t-

test for continue factors (like environmental factors). 

To analyze the simulated populations with FSMs we  developed a software that 

allowed the  comprehensive analysis  of  all  the 3600 populations.  Requiring  an 

high  computational  power,  the  analysis  were performed on the  GRID parallel 

computing facility of the University of Naples “Federico II”.

FSMs are conceptually different among them, and each one may be performed 

using different parameters. We had to set up starting conditions for each FSM to 

allow further comparisons. Thus, we firstly identified the parameters that allowed 

an equal specificity among them. To this  aim,  we recursively analyzed all  the 

populations with a wide et of parameters of each FSM and, afterward, we selected 

those parameters that allowed a minimum of 90% of specificity. Results of this 

preliminary analyses are reported in figure 4.2. 

According  to  these  results  the  following  analysis  were  performed  with  the 
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parameters reported in table 4.2. In this way we could compare the sensibility of 

each methods, allowing a maximum of 10% false positive results. 

Figure 4.2: In this figure are showed the results of 86400 analyses, performed to 

set up common conditions for each FSM.. On the Y axis is reported the specificity 

of FSM, and on the X axis the range of the parameter checked. For each FSM, the 

minim value of the parameter that allowed a specificity > 90 % were selected. 

Table 4.2: parameters of the FSMs used in the analysis of simulated populations 

and on the real world dataset. These parameters warrantied a specificity higher 

that 90 %
FSM parameter value
BLR, single factor remove p-value 0.05

Univariate, p-value 0.1

LDA, Cross Validation 7

MDR Cross Validation 5
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In  figure  4.3  are  reported  sensibility  of  FSMs,  clustered  for  sample  size.  As 

expected  all  FSMs  increased  in  sensibility  when  the  sample  size  increased. 

However  the  performance  of  the  BLR  was  better  of  any  others.  Moreover, 

although MDR and LDA had an overall lower sensibility,  seemed to be lessen 

influenced by sample size. Indeed, should be highlighted that BLR is based on 

logistic functions and this could give some advantage to BLR than other FSMs. 

However our simulator is based on a multi-logistic model that made relationship 

among factors quite different from simple logistic ones.

To overcome the limits of single FSMs we developed an ensemble. The ensemble 

of FSMs is a set of FSMs whose individual decisions are combined to classify 

new example. We adopted a simple unweighted bayesian ensemble. The results of 

the ensemble sensibility are reported in the figure 4.5 together with those of the 

single FSMs. The ensemble had better performance in each sample size, except 

that in 13500 individuals, where the results were similar to those of RBL. FSMs, 

different  from BLR,  had  an  important  role  in  low sample  sizes  and  in  these 

conditions the ensemble can more benefit of their role. Indeed, MDR have been 

developed  to  analyze  situations  with  many factors  and  low sample  size  [16]. 

However the situations largely more frequent in real world are those with 500-

1500 samples. Thus, in these conditions the ensemble may effectively aids the 

identifications of factors involved in complex disease. 
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Figure 4.3:  Sensibility of FSMs on the simulated populations. On the Y axis is 

reported  the  sensibility  and  on  the  X  axis  the  sample  size  of  the  analyzed 

populations. In total are represented data from 3600 population analyzed by each 

FSM. BLR: backward stepwise logistic  regression,  UNI:  t-test  and  χ2,  MDR: 

multifactorial dimensionality reduction, LDA: linear discriminant analysis.
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Figure 4.5: Sensibility of FSMs on the simulated populations. On the Y axis is 

reported  the  sensibility  and  on  the  X  axis  the  sample  size  of  the  analyzed 

populations. In total are represented data from 3600 population analyzed by each 

FSM. BLR: backward stepwise logistic  regression,  UNI:  t-test  and  χ2,  MDR: 

multifactorial dimensionality reduction, LDA: linear discriminant analysis.

Real World Sample

We analyzed a  real  case-control  cohort  of   Type 2 Diabetes  Mellitus  by each 

FSMs and by ensemble. The patients were collected by the Diabetes Outpatient 
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Clinic  of  the  University  “Federico  II”,  Naples  and  the  non-diabetic  glucose-

tolerant controlss were randomly selected among telephone company employees 

taking part in a company sponsored health screening. Principal characteristic are 

reported in table 4.3. As expected, T2DM patients were generally older and had an 

higher BMI than controls.

The  genetic  factors  analyzed  were:  TCF7L2  (rs7903146),  UCP3 (rs1800849), 

PPARγ (rs1801282),  FTO (rs9939609).  TCF7L2 is  the  most  important  T2DM 

susceptibility  gene  identified  to  date,  with  common  intronic  variants  strongly 

associated with diabetes in all major racial groups [17]. PPARgamma belong to a 

subfamily of nuclear receptors that form heterodimers with retinoid X receptors 

(RXRs) and these heterodimers regulate transcription of various genes.  PPAR-

gamma  is  a  regulator  of  adipocyte  differentiation.  It  have  been  implicated  in 

T2DM in several association study  [18, 19] and is the target of the antidiabetic 

drugs thiazolidinediones  [20]. FTO is an unknown function gene that have been 

associated with T2DM in several genome-wide association studies  [18, 19, 21]. 

With the capacity to participate in thermogenesis and energy balance, UCP3 is an 

important  obesity  candidate  gene  [22,  23] that  have  been  associated  with  the 

disease in candidate gene studies  [24].  In table 4.4 are  reported the genotypic 

frequencies found in cases and controls. 
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Table 4.3: characteristics of the sample
Cases Controls t-test p-value

N 448 305
Age (y) 59 ± 7.4 54 ± 6.6  < 0.001
Gender (% F) 39 38 0.31
BMI 29 ± 4.5 27 ± 4.5 < 0.001
N, number of individuals in the category, BMI, body mass index (m∙kg-2)

Table 4.4: Genotipic frequencies in cases and controls.
Gene Genotype 1 Genotype 2 Genotype 3 χ2 p-value
FTO Cases 90 213 117 0.23

Controls 47 107 80
PPARγ Cases 368 47 3 0.52

Controls 209 21 3
UCP3 Cases 13 97 311 0.069

Controls 2 67 166
TCF7L2 Cases 110 214 93 <0.001

Controls 93 112 26
For TCF7L2 (rs7903146) genotype 1, 2 and 3 are respectively TT, CT and CC; 

for UCP3 (rs1800849) AA, AG, and GG, for PPARγ (rs1801282) CC, CG, and 

GG, for FTO (rs9939609) AA, TA, and TT

The sample was analyzed by the FSMs and by the ensamble. Results are reported 

in table 4.5. Univariate and BLR both found an association between a genetic 

factor, the TCF7L2, and two environmental factors, age and gender. MDR found 

that the three environmental  factors were associated with the disease.  Whereas 

LDA found associated TCF7L2 and the three environmental factors (age, gender, 

and  BMI).  The  ensemble  summarized  the  results  in  indicating  as  associated 

TCF7L2, age, and BMI.
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Table 4.5: results of FSMs and ensmble on the T2DM cohort
FSM Factors associated
Univariate Age, BMI, TCF7L2
BLR Age, BMI, TCF7L2
MDR Age, BMI, Geneder
LDA Age, BMI, Geneder, TCF7L2
Ensemble Age, BMI, TCF7L2

In order to assess the performances of FSMs and ensemble while decreasing the 

sample  size,  we  made  subsample  of  the  whole  dataset  by  a  random  picking 

process. We made four subpopulations of 90%, 50%, 25% and 10% of the whole 

sample size and, to avoid biases, we made ten subpopulations of each size. In total 

we obtained 40 populations to analyze with the 4 FSMs and the ensemble. We 

checked the performances of the FSMs and of the ensemble by comparing each 

result with the result of the ensemble on whole dataset (Age, BMI, TCF7L2). In 

this way we could demonstrate that ensemble have better performances of other 

FSMs when the sample size decreased, see figure 4.6. Te overall performance of 

the ensemble is similar to to that of the BLR where the sample size was relatively 

high  (90%  and  50%).  However,  when  the  sample  size  further  decreased  the 

ensemble gave better results, probably thanks to MDR and LDA. It is noteworthy 

that MDR performance that was bad in higher sample size was poorly affected by 

the sample reduction, indeed in the smallest sample size (10%) MDR had better 

performances  than  other  FSMs.  Nevertheless  MDR  were  designed  with  the 

specific purpose to works in low-sample size situations [7]. 
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Figure  4.6: Analysis  of  subsample  of  the  whole  dataset.  On  the  Y axis  is 

reported the sensibility calculated as the ability to replicate the same result of the 

ensemble on the whole dataset. On the X axis are reported decreasing size of the 

subsample.  BLR:  backward  stepwise  logistic  regression,  UNI:  t-test  and  χ2, 

MDR:  multifactorial  dimensionality  reduction,  LDA:  linear  discriminant 

analysis.
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Conclusion

The strategy of simulations can be useful to select feature selection methods, and 

to  check  their  characteristic.  For  example,  backward  stepwire  regression  had 

better performance when the sample size was larger, both in simulated populations 

than in the real sample. On the contrary, MDR and LDA, had lower performances 

in larger sample size, however their performances increased in small sample size, 

both  in  simulated  populations  than  in  the  real  sample.  The  ensemble  had 

performances  higher  or  equal  to  the  best  FSM  in  each  situations,  because  it 

collected the strength of each method in each situation. 
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