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ABSTRACT

The contribution of microenvironment on DC differentiation and function
is critical for the outcome of the entire immune response. Here we study the
combined effect of tumor-derived factors (TDFs) and mycoplasma, a microbe
often detected in several human neoplasia, on monocyte derived DC development.
DC generated in the presence of mycoplasma-infected tumor cell lines-conditioned
medium express high amounts of CD83, CD86, CD80, markers typical of terminal
differentiated cells, namely mature DC. Upon the exposure to TLRs ligands,
including bacterial lypopolysaccaride (LPS) and polyriboinosinic polyribocytidylic
acid (Poly I:C), these cells lost the ability to secrete pro-inflammatory cytokines
(TNF, IL-12) through the classical p38/MAPK pathway and induce apoptosis of
memory/effector T cells. Neutralization of the well-known TDFs (IL-6, TGF-,
EGF, VEGF, IL-10, IDO) does not prevent these immunosuppressive effects. On
the contrary, treatment with mycoplasma antibiotic drug (Ciprofloxacin)
completely reverts the effects of TDFs. We propose that tumors would act as a
mycoplasma bio-reactor, promoting the persistence of the infection in local site to
drive the immune response toward the immunosuppressive pathway. In this
context, evaluation of mycoplasma infection and its pharmacological treatment
would be considered as a mandatory immunotherapeutic strategy to improve the
response against tumor cells.
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BACKGROUND

Dendritic Cells (DC) are a heterogeneous population of bone-marrow
derived cells that play a pivotal role in controlling both innate and adaptative
immune response (Steinman 1991). Beside precursors (pre-DC), dendritic cell
subsets contain conventional dendritic cells (cDC) and plasmacytoid pre-dendritic
cells (pDC). Both cDC and pDC are bone marrow derived cells. Although the
common functions of DC are antigen-processing and T-lymphocyte activation,
they differ in surface markers, migratory patterns, and cytokine output (Wu L.
2004, Shortman K et al. 2007).

Plasmacytoid dendritic cells (pDC) are present at low level in peripheral
blood, express TLR7 a TLR 9 and have the hallmark to produce high amount of
type I IFN after viral challenging (Colonna et al. 2004, Lanzavecchia et al. 2001,
Spits et al. 2000, Dzioneck et al. 2000, Cella et al.1999, Edwards et al. 2003).
Conventional DC are characterized in vivo by expression of CD11c, CD33 and
absence of CD45RA, CD123 and lineages markers (Kadowaki et al. 2001, Sieling
et al. 2002). Myeloid DC expresses a wide range of TLRs (TLR1, 2,3,4,5,6,8,10)
and secrete a variety of cytokines but not type I IFN upon activation (Steinman
RM 2006). They are distributed in blood, peripheral tissues and lymphoid organs
and show an unique ability to activate and polarize naive T-cells (Banchereau et al.
1998). In peripheral tissues, cDC exist in two functional and phenotypically
distinct states, immature (iDC) and mature (mDC). iDC are characterized by a
high rate of endocytosis and low antigen-presenting capability. This asset let them
to be a powerful microenvironment sensor highly active to capture extracellular
antigens during fluid phase pinocytosis and macropinocytosis. Although, the
terminal differentiation program of iDC includes a decrease in the “capturing”
activity, it generates mDC: specialized antigen presenting cells with the unique
ability to activate naïve T cells in lymphonode T-cells areas (Maldonado-Lopez et
al. 2001). mDC express on their surface high levels of a variety of molecules
involved in the activation process of T cell, including major histocompatibility
complex (MHC) class I and class II molecules, adhesion molecules, B7-family
members (CD80, CD86, PD-L2/B7-DC, ICOSL), TNF family members
(CD137/4-1BBL, CD 134/OX-40L, CD70). The activation program also involved
dramatic changes in the profile of chemokines receptors: among them, CCR5 and
CCR7, play a key role to re-locate mDC at the appropriate paracortical area of
secondary lymphoid tissue, namely the “traffic zone”, a strategic place to meet and
engage trafficking naïve T cell (Ebert LM 2005.).

A number of studies revealed terminal differentiation as a very plastic
process that can be oriented by a variety of microenvironment factors and can
generate mature DC showing a wide range of biological properties ranging from
inflammatory to tolerogenic phenotype (Lanzavecchia et al. 2001). Pathogens
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derivatives offer good examples of DC plasticity modulators: Toxoplasma gondii,
bacteria, viruses and mycoplasma drive DC toward a strong pro-inlammatory
phenotype. Again, prolonged exposure to LPS or Toxoplasma gondii lead to a
paralysis of IL-12 production (Karp et al. 1998, Reis 1999). Beside pathogen
derivatives, cytokines present in the microenvironment at the moment of
stimulation can also affect the production IL-12. IFN-gamma product by activated
lymphocytes enhances Il-12 production, while IL-10 and TGF-display opposite
effects (Snijders et al. 1998, Hochrein 2000, De Smedt et al. 1997). DC exposed to
IL-1, TNFα, colera toxin fail to produce IL-12 and generate DC favoring a Th2
response (Reis et al. 1999, Braun et al. 1999, Gagliardi et al. 2000, Rescigno et al.
2000, Kalinsky et al. 1999). Finally, a variety of agents elevating the intracellular
levels of cAMP, including prostaglandins, vasoactive intestinal peptide,
extracellular ATP, can drive DC toward a regulatory phenotype (Galgani M 2004).
Kinetic of DC activation is an additional relevant factor regulating the secretion of
Il-12: DC are able to produce IL-12 till 16 hours from the challenge, while at later
time points became refractory to further stimulation (Langenkamp et al. 2000).

DC can engulf apoptotic or necrotic tumor cells, process the tumor-
associated antigens and present them to CD4+ and CD8+ T cells. Dying cells have
been postulated to engage several mechanisms to signal the innate immune
system: (i) ‘find me’, (ii) ‘eat me’ and (iii) ‘stay away’ (Dhodapkar et al. 2007).
‘Find me’ signals are soluble factors, such as lysophosphatidylcholine, able to
induce migration of phagocytes to apoptotic cells (AC) (Lauber et al. 2003). ‘Eat
me’ signals are usually membrane bound and serve as markers for phagocytes to
recognize and ingest ACs. These include alterations in cell surface phospholipid
composition with exposure of phosphatidylserine (PS), alterations in cell surface
charge or expression of specific molecules (Fadok et al. 1998). A number of
receptors expressed on immature DC such as v5 integrin, complement receptors
and CD36 are thought to be involved in apoptotic cells uptake (Fadok et al. 2001,
Albert et al. 1998). Furthermore, ‘eat me’ signals might be indirect, that is,
mediated by serum or phagocyte-derived proteins, which can opsonize ACs, and
thereby promoting their capture (Verbovetski et al. 2002, Mevorach et al. 1998,
Hanayama et al. 2002, Anderson et al. 2003). Finally, the ‘Stay away’ (or ‘do not
eat me’) signals may be critical to prevent the uptake of activated but live cells and
include CD47 or CD31 (Brown et al. 2002). Although the adaptive immune
response should be able to eradicate tumors, this option represents a rare event.
The inability of tumor associated antigen (TAAs) to elicit an effective immune
response is not a passive process since tolerizating factors play an active role in the
tumor microenvironment (Curiel et al. 2004, Curiel et al. 2003, Gabrilovich et al.
1996, Munn et al. 2004a, Zou et al. 2001).

In the early 1990s, there was the surprising observations that most antigens
expressed by tumor cells were not necessarily neo-antigens uniquely present in
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cancer cells but, maybe most important for an immunological point of view,
tissue-differentiation antigens also expressed in normal cells (Boon at al. 2006,
Rosenberg 1999). These unexpected findings supported the concept that tumors
are able to escape the immune system surveillance in subtlest ways, because
malignant cells are very difficult to dissect from normal cells (Sotomayor et al.
1996). Several experimental evidences supported this hypothesis. Bogen and
Levitsky independently demonstrated that antigen-specific CD4+ T cells were
indeed rendered tolerant during tumor growth (Bogen 1996, Staveley-O’Carroll et
al. 1998). Following the initial report of this phenomenon, termed as tumor-
induced anergy, several studies showed that this state of T cell unresponsiveness
also occurs during the growth of hematologic or solid tumors expressing model or
true tumor antigens during the progression of spontaneously arising tumors and,
most importantly, during the progression of human cancers (Cuenca et al. 2003,
Morgan et al. 1998, Overwijk et al. 2003, Lee et al. 1999, Willimsky et al. 2005,
Noonan et al. 2005). After the understanding of the tumor-induced tolerance, the
first question that arises from was about the role of antigen presenting cells in the
instauration of this phenomenon. Utilizing parent-into-F1 bone marrow chimeras,
researchers demonstrated that tumor antigen processing and presentation by APCs
(not direct presentation by tumor cells) is the dominant mechanism underlying the
development of tumor antigen–specific CD4+ T cell tolerance. This critical role of
APCs was operative not only in mice challenged with tumor cells that have
intrinsic antigen-presentation capabilities (B cell lymphoma), but also in mice
challenged with solid tumors that are ill-equipped to present cognate antigen to
CD4+ T cells. These studies therefore demonstrated that the intrinsic APC
capacity of tumor cells has little influence over T cell priming versus tolerance, a
critical decision that is regulated at the level of bone marrow–derived APCs. It has
been reported that TAA-priming might happen not only in the draining lymph
nodes, but also in the tumor microenvironment to some degree, where naïve T
cells and DC can be found. The first tumors in which DC has been found are renal
cell carcinomas, head and neck cancer (Thurnher et al. 1996, Tas et al. 1993). It
has been found that within the tumor, primarily iDC not mDC are present, while
mDC were detected only in the marginal zones (Troy et al. 1998, Troy et al. 1998,
Sandel et al. 2005). Furthermore, labeling experiments revealed that most of the
intratumoral DC remain inside the tumor instead to migrate out (Fejoo et al. 2005).
From this point of view the tumor is a false lymphoid organ, and T-cell priming in
the tumor microenvironment is compromised by the fact that APC present in the
tumor are either dysfunctional or induce T cell tolerance. One important raison
why the tumor microenvironment have the ability to influence the DC function,
reside in his ability to produce different factor with immunosuppressing activity on
DC. Below, we provide a short description of the most well known Tumor Derived
Factors.
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VEGF. The first identified factor with immunomodulatory effects on DC
was vascular endothelial growth factor (VEGF) (Ellis et al. 1996, Toi, et al. 1996,
Carmeliet et al. 2000, Kryczek et al. 2005, Gabrilovich et al. 1998). Its
physiological role is linked to neo-vascularization and hematopoiesis during
embryogenesis. However VEGF is produced by most tumors and its plasma
amount increase in cancer patients correlate with an unfavorable prognosis.
Furthermore, expression of VEGF inversely correlated with DC number in tumor
tissues and in the peripheral blood (Saito et al. 1998, Almand et al. 2000). The
initial findings above the immunosuppressing role of VEGF on DC function,
derive from in vitro experiments that demonstrate the ability of VEGF
neutralization to revert the negative effects of tumor conditioned media. These
evidences was supported by in vivo experiments on tumors bearing mice treated
with anti-VEGF antibodies, that achieved a better DC differentiation as well as
number rescue (Gabrilovich et al. 1999, Ishida et al. 1998).

M-CSF and IL-6. Macrophage colony-stimulating factor (M-CSF) and IL-
6 are produced by a large number of tumors and have also been reported to be
involved in the tumor-mediated regulation of DC differentiation (Gabrilovich et al.
1996, Menetrier-Caux et al. 1998). Renal carcinoma cell lines were shown to
release soluble factors that inhibit the differentiation of CD34+ progenitor cells
into DC and instead trigger their differentiation towards monocytic cells. Both
neutralizing IL-6- and M-CSF-specific antibodies abolished the impact of renal
cell carcinoma conditioned medium on DC and the combination of IL-6 and M-
CSF displayed a similar effect on inhibition of DC differentiation (Menetrier-Caux
et al. 2001). IL-6 plays an important role in abnormal DC differentiation in
multiple myeloma (Ratta et al. 2002). Furthermore, sera from patients with
multiple myeloma inhibited the generation of DC, which could be reverted by anti-
VEGF and/or anti-IL-6 antibodies (Hayashi et al. 2003). In another recent study,
IL-6 was found to suppress DC maturation in vivo and play a major role in
maintaining immature DC (Park et al. 2004). The suppressive role of IL-6 could be
attributed to activation of the transcription factor STAT3.

IL-10. IL-10 plays an important role in DC defects in cancer. DC derived
from transgenic mice with IL-10 over-expression have suppressed ability to
stimulate allogeneic T-cell and CTL responses as well as IL-12 production
(Sharma et al. 1999). IL-10 might contribute to the conversion of iDC into
tolerogenic APCs by decreasing the expression of co-stimulatory molecules
(Steinbrink et al. 1997). Treatment of human DC with IL-10 was found to induce
suppression of antigen-specific proliferation of CD4+ and CD8+ T cells via cell-
cell contact (Steinbrink et al. 2002). Furthermore, the blockade of differentiation
of monocytes to DC could be attributed to IL-10, which drives the differentiation
process towards a macrophage cell type rather than DC (Allavena et al. 1998,
Buelens et al. 1997). IL-10 also inhibits the function of Langerhans cells,
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monocyte derived DC, or CD34+ progenitors (Beissert et al. 1995, Enk et al. 1993,
Peguet-Navarro et al. 1994, Caux et al. 1994, Steinbrink et al. 1997). A mouse
tumor model revealed that tumor derived IL-10 was responsible for DC
dysfunction in vivo. DC function was not affected in IL-10 deficient tumor bearing
mice (Yang et al. 2003). Even though different tumor cells might produce and
release IL-10, the majority of IL-10 is probably produced by tumor-associated
macrophages (TAM) with some contribution from tumor-infiltrating lymphocytes
(Seo et al. 2001, Sica et al. 2000).

TGF-β(transforming growth factor-β). Cytokines of the TGF-βfamily
are essential factors in embryonic development and tissue repair. This family
includes three types of TGF-β(β1, β2 and β3), inhibins and activins, as well as
various bone morphogenetic proteins (BMPs) and mullerian inhibiting substance.
Activin βA and TGF-β1 share functions in inflammatory reactions including tissue
repair and suppression of immune response (Munz et al. 1999, Rosendahl et al.
2001). Both cytokines share SMAD2/3 and SMAD4 as intracellular signaling
targets of their receptors (Itoh et al. 2000). In an adoptive transfer model TGF-β
revealed its capability of inducing suppressive regulatory T cells (Treg) by its
ability to generate DC that promote tolerance in a manner dependent on MHC
class II molecules (Alard et al. 2004). Specifically, generation of Treg cells was
attributed to immature DC, and TGF-βprevents the maturation of DC by
maintaining a low expression of co-stimulatory molecules (Geissmann et al. 1999,
Roncarolo et al. 2001)

Indoleamine-2,3-deoxigenase (IDO). This is a heme-containing enzyme
that catalyzes the oxidative breakdown of the essential amino acid tryptophan via
the kynurenine pathway (Mellor et al. 2000). Munn and colleagues (1998)
provided the first evidence showing that IDO may play a role in the establishment
of immune privilege; they demonstrated that IDO preserves the feto-placental unit
from T cell attack. IDO expression has been documented in murine as well as in
human DC. IDO catalyzes the oxidative catabolism of tryptophan, an aminoacid
essential for T cell proliferation and differentiation, IDO+ DC reduce the access of
lymphocytes to free Trp blocking in such a way cell cycle progression. T cells are
inhibited in their clonal expansion and subsequently are inducted to undergo
apoptosis. Uyttenhove (2003) found that immunogenic tumors engineered to over-
express IDO growth more aggressively: this effect correlated with a decreased
accumulation of activated T cells at the tumor site. Importantly, in vivo
administration of the IDO inhibitor 1-methyltryptophan resulted in reduced tumor
mass and stimulation of anti-tumor CTL responses. Although the precise
mechanisms that regulate IDO expression still remain to be ascertained, Muller
and colleagues (2005) recently showed that IDO is under the genetic control of the
tumor suppression gene Bin1, which is attenuated in many human tumors. IDO+
DC can be generated in vitro from human monocytes, but has been found in vivo,
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in patients affect by breast tumor and in draining lymph nodes in patients with
melanoma and patients with lung, colon, breast, pancreatic cancer.

EGF. The epidermal growth factor receptor (EGFR; HER1/erbB-1) has
recently been identified as a target for cancer therapy in multiple human tumors
(Bellone et al. 2007, Arteaga 2002 Baselga 2000, Raymond et al 2000, Baselga
2001, O'Dwyer and Benson 2002, Mendelsohn and Baselga 2000). On
endogenous ligand binding, EGFR activation occurs, with receptor homo or
heterodimerization and autophosphorylation of the intracellular tyrosine kinase
domain (Schlessinger 2002, Sako et al. 2000). Subsequently, a complex network
of signal transduction pathways is induced, which plays a key role in regulating
cell proliferation, differentiation, motility, invasion and angiogenesis (Schlessinger
2002, Sako et al. 2000, Schlessinger 2000, Olayioye et al.1999, Kim and Muller
1999). EGFR is expressed in a variety of human malignancies and its high level of
expression has been previously correlated with poor patient prognosis and
resistance to treatment in many tumor entities including cervical carcinoma (Kim
and Muller 1999, Nicholson et al 2001, Mendelsohn and Fan 1997, Corvo et al
2001, Kersemaekers et al. 1999, Kim et al. 2004).

Mycoplasma. Mycoplasmas are distinguished phenotypically from other
bacteria for the minute size and the total lack of a cell wall (Shmuel et al.1998), a
property taxonomically used to classify mycoplasmas as classe Mollicutes (from
latin Mollis, soft; Cutis, Skin). Mycoplasmas are widely distributed in nature as
parasites of humans, mammals, reptiles, fish, arthropods and plants, but the list of
host that harbor mycoplasma is destined to increase. The major difficulty for
mycoplasma research is the difficulty to growth in vitro. This is due to the
requirement of exogenous supplies. Mycoplasmas apparently lost almost all the
genes involved in the biosynthesis of amino acids, fatty acids, cofactors, and
vitamins and therefore depend on the host microenvironment to supply the full
spectrum of biochemical precursors required for the biosynthesis of
macromolecules. Competition for these biosynthetic precursors by mycoplasmas
may disrupt host cell integrity and alter host cell function. Many animal
mycoplasmas depend on adhesion to host tissues for colonization and infection.
Adherence is one of the most important virulence factors for mycoplasma. M.
pneumoniae is the model for the study of adhesin and its receptors. A surface 169
kDa protein designated P1 and a 30kDa called P30 are providing polarity to the
cytoadherence event (Inamine et al. 1988, Dallo et al. 1990). Both proteins elicit a
strong immunological response in convalescent-phase sera from humans and
experimentally infected hamsters, and anti-P1 or anti-P30 monoclonal antibodies
block this cytadherence (Balish et al. 2002, Razin and Jacobs 1992, Krause 1996
Su et al. 1989). Currently theories propose that mycoplasmas remain attached to
the surface of epithelial cells, although some mycoplasma have evolved
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mechanisms for entering host cells that are not naturally phagocytic. The
intracellular localization is a privileged niche, well protected from immune system
and from the action of many antibiotics. Mycoplasmas known to be surface
parasites as M. penetrans, fermentans, genitalium and gallisepticum under certain
circumnstances can reside within non-phagocytic cells. The lack of a rigid cell
wall allows direct and intimate contact of the mycoplasma membrane with the
cytoplasmic membrane of the host cell, and under appropriate conditions, such
contact may lead to cell fusion. Mycoplasma fermentans is known as one of the
most fusogenic mycoplasma competent to target a variety of cells. It has been
shown that the polar lipid fraction of this organism is able to enhance the fusion of
small, unilamellar phosphatidylcholine-cholesterol (1:1 molar ratio) vesicles with
Molt-3 lymphocytes in a dose-dependent manner, suggesting that a lipid
component acts as a fusogen. During the fusion process, mycoplasma components
are delivered into the host cell and affect the normal cell functions. A whole array
of potent hydrolytic enzymes has been identified in mycoplasmas. Most
remarkable are the mycoplasmal nucleases that may degrade host cell DNA
(Paddenberg et al. 1998). It has recently been shown that M. fermentans contains a
potent phosphoprotein phosphatase. The delivery of an active phosphoprotein
phosphatase into the eukaryotic cell upon fusion may interfere with the normal
signal transduction cascade of the host cell. In addition to delivery of the
mycoplasmal cell content into the host cell, fusion also allows insertion of
mycoplasmal membrane components into the membrane of the eukaryotic host
cell. This could alter receptor recognition sites as well as affect the induction and
expression of cytokines and alter the cross-talk between the various cells in an
infected tissue. It is documented that Mycoplasma can exert different effects on
DC differentiation and immunomodulatory activity, through mechanisms not yet
completely investigated, but involving the ability of mycoplasma PAMPs to bind
TLRs. (Link C et al. 2004, Mariolina et al. 2000, Quah BJ and O'neill HC 2007).
The involvement of mycoplasmas in cancer progression is now well documented.
Prolonged mycoplasma infection is responsible for irreversible malignant
transformation, including the ability to form tumors in vivo and high soft agar
cloning efficiency in vitro (Shaw-Huey et al. 1999). In this context it has been also
proposed that the mycoplasma protein p37 would promote invasiveness and
promote genomic instability on tumor cells (Schmidhauser C et al. 1990; Shien T
et al. 1995). Furthermore, the presence of mycoplasma in tumor cell lines
positively correlates with aberrant expression of oncogenes and tumor suppressor
genes (Zhang S et al 2006). Several studies have shown that mycoplasma infection
correlates positively with a large spectrum of human cancers and negatively with
the prognosis (Chan PJ et al. 1996, Huang S et al. 2001, Pehlivan M et al 2005).
Finally, PCR and immunohistochemistry analysis showed mycoplasma in several
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human cancer including gastric carcinoma, renal cell carcinoma, ovarian, lung,
breast, esophageal and glioma cancers.
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AIM OF THE STUDY

In the last decade, a number of reports have investigated the
immunomodulatory role of cancer identifying a variety of tumor-derived factors
capable to interfere with the immune response and more specifically with the
differentiation programs of Dendritic Cells. Although these studies contributed to
improve our knowledge on this field, only few of them have take in account the
possibility that a frequently detected intracellular parasite like mycoplasma plays a
major role in the immunomodulatory process. Mycoplasma is the most frequent
parasite of tumor cell lines and has been detected in several human tumor lesions
including gastric, ovarian and breast carcinoma. This microbe has been proposed
to be involved in the oncogenetic mechanisms and, more recently, an increasing
number of evidences have shown its powerful immunomodulatory properties. Our
study has been aimed to define the role of mycoplasma infection in the
immunomodulatory thyroid tumor. Specifically, we have analyzed the role of
mycoplasma infection in the immunoregulatory effects exerted by a large number
of thyroid tumor cell lines on the activation program of monocyted-derived DC.
Our results shade new light about the role of mycoplasma infection in the outcome
of the anti-tumoral immune response and would open novel perspective for
immunotherapeutical intervention in human cancer.
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MATERIALS AND METHODS

Media and Reagents
DC were generated in RPMI 1640 (Invitrogen Life Technologies),

supplemented with 2 mM L-glutamine, 50 ng/ml streptomycin, 50 units/ml
penicillin, and 10% heat-inactivated fetal calf serum (Hyclone Laboratories,
Logan, UT), 50 ng/ml GM-CSF (Schering-Plough, Kenilworth, NJ) and 1000U/ml
IL-4 (ImmunoTools, Germany). Phenotype was evaluated by cytometry. LPS was
from Sigma (Sigma, Milano, Italia).

Cell lines
Human thyroid cancer cell lines conditioned medium from (TPC-1, FB2,

NIM, BHP10-3, BHP17-10, BHP14-9, BC-PAP, BHP2-7, BHP5-16, Cal-62, 850-
5c, Fro, ARO) and from normal thyroid cells, were provided from Dr RM Melillo.
Cell culture method has been described previously (Cerutti et al.,1996; Ohta et al.,
2001; Basolo et al., 2002). Briefly, they were maintained in DMEM supplemented
with 10% foetal bovine serum, 1% penicillin–streptomicin, and 1% glutamine.

Mycoplasma detection
The mycoplasma infection was tested by microbiological assay at Section

of Microbiology of Department of Clinical Pathology, University of Naples
Federico II and verified by PCR amplification of mycoplasma genome
(MycoProbe® Mycoplasma Detection Kit, R&D System)

To eradicate mycoplasma from cell culture, Ciprofloxacin was added to
medium for 7-21 days. Spent medium of each cell line culture was replaced with
fresh medium containing one of the various antibiotics during the treatment period.
Cultures were always thoroughly mixed in order to ensure optimal distribution and
access of the reagents to the mycoplasma cells commonly attached to the
eukaryotic cell membrane. It is particularly important to break up clumps and
clusters because these may represent sanctuaries to which the antibiotics do not
have access. At the end of the treatment periods of 7–21 d, the cells were washed
twice and left in fresh complete medium without antibiotics. Cells were then
grown antibiotic free for at least 2 wk in order to enrich any residual mycoplasmas
up to detectable levels or to get rid of residual mycoplasmal DNA. Ciprofloxacin
(Ciprobay 100) is from Bayer (Leverkusen, Germany). The original ready-to-use
solution of 100 mg/ml of the quinolone enrofloxacin (Baytril from Bayer) was
diluted 1:100 with RPMI1640 medium.

In vitro Generation and Culture of Human DC
DC were generated from peripheral blood mononuclear cells, as described

(Sallusto, F., and Lanzavecchia, A. (1994) J. Exp. Med. 179, 1109–1118), with
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some modification. Briefly, peripheral blood mononuclear cells were obtained
from 30 ml of leukocyte-enriched buffy coat from healthy donors by centrifugation
with F Lymphoprep gradient (Axis-Shield PoC AS, Oslo, Norway), and the light
density fraction was recovered. Monocytes were purified by positive selection
using anti-CD14 conjugated magnetic microbeads (Miltenyi Biotec, Bologna,
Italy). CD14+ cells were cultured at a concentration of 1 x 106 cells/ml in RPMI
1640 supplemented with 10% fetal calf serum or, and 2 mM glutamine (complete
medium) , 50 ng/ml streptomycin, 50 units/ml penicillin, containing 50 ng/ml
granulocytes monocytes-colony stimulating factor (Schering-Plough, Kenilworth,
NJ) and 1000U/ml IL-4 (Immunotools, Friesoythe, Germany). Cells were cultured
for 4–5 days to obtain a population of iDC. For preparation of mDC, iDC were
cultured for 24–48 h in the presence of 1 mg/ml LPS (Sigma).

Neutralization of cytokines and enzymes
For neutralization of cytokines in culture, goat anti-human IL-6 from

Sigma-Aldrich was used (cat no AF-206-NA), anti Il-10 was from BD Pharmingen
(cat.no 559076), anti TGF-was from R&D system (cat.no MAB1835). For IDO
neutralization 1-Methyl-DL-Triptophan from Sigma Aldrich was used.
Bevacizumab and Cetuximab were kindly provided by Dr. Giampaolo Tortora.

Lymphocytes proliferation and dead cells evaluation
PBL were isolated from peripheral blood of healthy donors by

Lymphoprep (Nyegaard, Oslo, Norway) density gradient centrifugation. PBL was
obtained as plastic non-adherent fraction. The adherence was performed in RPMI
serum-free, at 37C for 1 hour.

CD4 and CD8 cells were separated by negative selection using anti-Ig-
coated magnetic beads (Dynabeads, Dynal; Oslo, Norway). The CD4+CD45RA
cells were separated by negatively selected CD4 T cells and anti-Ig-coated
magnetic beads (Dynabeads, Dynal; Oslo, Norway). All protocols were performed
following the manufacturer’s instruction. Purity of the lymphoid population was
tested by flow cytometry.

Lymphocytes (1x106/ml) were cultured in 24-well, flat-bottomed plates
(Falcon) with anti-CD3/CD28 antibody covered beads (Dynabeads, Dynal; Oslo,
Norway) (0.5 beads/cell). To analyze the proliferation, lymphocytes were labeled
with 5,6-carboxyfluorescein-diacetate-succinimidyl ester (CFSE; Molecular
Probes, Eugene, OR) and than stimulated with anti-CD3/CD28 beads (Lyons, A.
B. (1999). Proliferating cells can be tracked by flow cytometry, based on the
sequential loss of fluorescence intensity. Dead cells were identified by using the
propidium iodide staining and the Annexin VFITC Apoptosis Detection kit; Beckton
Dickinson, according to the manufacturer’s directions.
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Flow Cytometry
We used the following monoclonal antibodies conjugated to FITC or

phycoerythrin for direct staining: PE-anti-CD86, PE-anti-CD1a, FITC-anti-CD83,
FITC-anti-CD14 from BD Biosciences. The cells were also stained with the
corresponding FITC- or phycoerythrin-conjugated isotype-matched control
antibody from BD Biosciences. All incubations were in the presence of 10 µg/ml
human IgG to prevent binding through the Fc portion of antibodies. For
intracellular cytokine detection, Brefeldin A (5 µg/ml; Sigma) was added to the
culture medium. Cells were then fixed and permeabilized by using a cytokine
staining kit following the manufacturer's instructions (Caltag Laboratories,
Burlingame, CA). Intracellular TNFα, IL-10, IL12 were detected by using PE-
conjugated antibodies (BD Biosciences) and analyzed by FACSCalibur flow
cytometer and Cellquest software (BD Biosciences).

Immunoenzymatic Detection of Cytokines
TNFα, IL-12, and IL-10 were measured by an ELISA developed in our

laboratory using cytokine-specific capture and detection antibodies (BD
Pharmingen) according to the manufacturer's instructions (monoclonal antibody 11
for detection of TNFα; antibody JES3-12G8 for detection of IL-10, and antibody
C11.5 for detection of IL-12). Standard curves were generated by using
corresponding human recombinant cytokines (BD Pharmingen). The concentration
of cytokines in the cell supernatants was determined by extrapolation from the
appropriate standard curve.

Western Blot
Total cell lysates were obtained in 50 mM HEPES (pH 7.5), 250 mM NaCl,

1 mM EDTA, 0.5% Triton X-100, 10 mM sodium fluoride, 1 mM sodium
orthovanadate, and 2 µg/ml aprotinin, leupeptin, and pepstatin. 50 µg of total
proteins from each lysate was subjected to SDS-PAGE under reducing conditions.
After electrophoresis proteins were transferred on a nitrocellulose filter membrane
(Protan, Schleicher & Schuell) by using a Trans-Blot Cell (Bio-Rad) and transfer
buffer containing 25 mM Tris, 192 mM glycine, 20% methanol. Membranes were
placed in 5% nonfat milk in phosphate-buffered saline, 0.5% Tween 20 (PBST) at
4 °C for 2 h to block the nonspecific binding sites. For detection of phospho-p38,
phospho-ERK-1/2, tubulin, phospho-CREB, phospho-JNK, phospho-STAT-3,
IKB specific antibodies from Santa Cruz Biotechnology (Santa Cruz, CA) were
used. Filters were incubated with specific antibodies before being washed three
times in TBST and then incubated with a peroxidase-conjugated secondary
antibody (Amersham Biosciences). After further washing with PBST, peroxidase
activity was detected by using the ECL system (Amersham Biosciences).
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RESULTS AND DISCUSSION

Thyroid TDFs interfere with differentiation program of monocyte-derived DC.

18 human thyroid tumor cell lines (15 tumoral and 3 untrasformed) were
growth at 80% of confluence in regular cell medium before being washed and
cultured for additional 24 hours in fresh medium. After 18 hours, tumor-

conditioned media were collected and tested for the presence of Mycoplasma
infection and for their ability to affect differentiation of monocytes toward DC
lineage. The results of the coltural biological assay documented the presence of
mycoplasma fermentans in all conditioned medium derived from thyroid tumor
cell lines with the exception of that derived from normal thyroid cell lines (tab. 1).
To evaluate the ability of TDFs to interfere with differentiation program of
dendritic cells, freshly isolated CD14+ monocytes were cultured in optimal

Tab.1 Mycoplasma detection in thyroid cell lines
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amount of GM-CSF and IL-4 for 7 days in the
presence or absence of TDFs. At this time point,
the expression of typical differentiation markers of
DC was evaluate by cytometry. We found that the
exposure of monocytes to TDFs strongly interfered
with generation of cells displaying the classical
phenotype of immature DC (Fig. 1a). On the
contrary, a detectable increase of CD83, CD86,
CD80, CD40, MHC II was detected (Fig.1a).
Notably, the most prominent effects were exerted
by cell lines with a level of mycoplasma infection
>100.000 U/ml, while BHP 5-10, BHP 10-3, BHP
14-9, BHP 2-7 and BC-PAP (mycoplasma
infection level <10.000 U/ml) did not interfere with
the generation of typical iDC (Fig.1b).

Fig.1 Effects of TDFs on DC immunophenotype
(a) FACS profiles of DC generated from monocytes cultured for 7 days with GM-CSF and
IL-4 in the presence or absence of 10% TPC conditioned medium. Results are
representative of five independent experiments. (Gray, filled histograms: untreated; black,
open: TPC; dotted, open: isotype control ). Panel b reports the results expressed as the
percentage of untreated values measured in DC cultured in regular medium (100%=Mean
Fluorescence Units of DC generated in the absence of TDF).
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TDFs interfere with terminal differentiation of DC induced by TLRs
ligands4.

Fig.2 Effects of TDFs phenotypical maturation and TLRs signaling.
a) iDC generated in presence of TPC cell line conditioned medium were collected,
washed and exposed to LPS (1g/ml) or Poly I:C (1oog/ml). After 24 hours, cells were
analyzed by double-staining cytofluorimetric assay for the expression of the indicated
surface markers. The data shown are representative of three independent experiments.
b) Bars histogram represent the percentage of double positive CD83/CD86 DC, generated
from 7 days culture of monocytes in the presence or absence of 10% conditioned medium
of indicated cell lines and exposed to bacterial endotoxin (1g/ml) or Poly I:C (1oog/ml).
After 24 hours, cells were analyzed by double-staining cytofluorimetric assay for the
expression of the indicated surface markers. The results are representative of three
independent experiments.

iDC generated in the presence or absence of TDFs were washed and
exposed for additional twenty-four hours to TLR4 and TLR3 ligands, namely
Lipopolysaccaride (LPS) and Polyinosinic: polycytidylic acid (poly I:C) and
immunophenotype were evaluated by cytometry. As expected, TLRs ligands
induced a marked increase in double positive CD86/CD83 in DC growth in regular
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medium supplemented with optimal amount of GM-CSF/IL-4. Otherwise, TDFs-
DC expressed high levels of CD83 and CD86 even in the absence of TLRs ligands
and addition of LPS or poly I:C did not induced any significant increase of double
positive DC (Fig.2a). Notably, CD83 and CD86 levels positively correlate with the
presence of mycoplasma in conditioned media (Fig.2b).

Fig.3. TDFs-exposed DC are tolerant to LPS.
a) iDC generated in presence of 10% of TPC-TDF were collected, washed and exposed
for additional 24 hours to LPS (1g/ml) in the presence or absence of 5µg/ml Brefeldine A
(a and b panels, respectively). After 24 hours, cells were analyzed by intracellular staining
(a) and levels of cytokines evaluated by ELISA in supernatants (b). Panel a reports a
typical FACS profile of intracellular cytokines staining. In panel b, bar graphs report mean
and standard deviation of 6 independent experiments.

To analyze the effects of TDFs on cytokines synthesis we evaluate the
intracellular levels as well as the concentration in DC supernatants of TNF, IL-12
and IL-10. As expected, the exposure to LPS induced the synthesis and secretion
of all three analyzed cytokines (fig. 3). On the contrary and regardless to the
presence of TLRs ligands in the culture media, TDFs-exposed DC failed to
synthesize and release any cytokines (Fig3a).
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DC generated in the presence of TDFs induce lymphocytes cell death.

To analyze the effect exerted by TDFs-generated DC on T cells, we co-cultured
these cells with CSFE-labeled purified T cells DC and in the presence or absence of
anti-CD3/CD28 conjugated beads. After 3 days, cells were stained with Propidium
Iodide (PI) and analyzed by flow cytometry (Fig.4a). Results shown a significant
increase in the percentage of death cells in lymphocytes cultured in the presence of
TPC-TDFs DC . In addition, we found a positive correlation between the percentage of
cell death and the activation stage of lymphocytes. A time course analysis of this
phenomenon, demonstrate that after 7 days of culture, the percentage of live (PI
negative)/CFSE positive lymphocytes activated with anti CD3/CD28 was less than 5%
(Fig.4b). On the contrary, normal thyroid conditioned medium didn’t induce cytotoxic
DC (Fig.4b). Furthermore, we analyzed, with the same experimental model, the
sensitivity to TDFs-DC induced cell death of the different lymphocytes subsets. Thus,
CD4, CD8 and CD4CD45RA naïve T lymphocytes were separated from peripheral
blood and stained with CFSE before being co-cultured with DC (ratio DC:PBL 1:25).
These experiments revealed that CD4CD45 lymphocytes were resistant to the DC-
induced death. Otherwise, no differences were observed in CD4 and CD8 subsets.
(Fig.4c).



Fig.4 TDFs induce DC with cytotoxic activity against activated T lymphocytes
a) iDC generated in presence of TPC cell line conditioned medium were collected, washed co-cultured with
CFSE labeled Peripheral Blood Lymphocytes (PBL) in a 1:25 ratio, in the presence or absence of anti-
CD23/CD28-coated beads (0.5 beads/cell). After 3 days, cells were analyze for CFSE dilution and stained
with Propidium Iodide (PI). A typical dot plot analysis has been shown in panel a. Panel b reports mean and
SD of viable T-cell calculated on 5 independent experiments.
c) Histograms report mean and SD of the percentage of viable T cells calculated for five independent
experiments.
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Neutralization of IL-6, IL-10, TGF-, VEGF, EGF, IDO do not revert the
effects induced by TDFs on DC.

To verify the contribute of well known TDFs on DC differentiation, we
added neutral izing antibodies to TDFs before being added to monocytes
culture. IDO activity was blocked by using the anti-metabolite drug 1-methyl -
DL-tryptophan. None of the above mentioned treatment s were able to interfere
with the immunomodulatory activity of TDFs (fig. 5).
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Fig.5 Neutralization of IL-6, IL-10, TGF-, VEGF, EGF and IDO activity does not interfere
with the immnuomodulatory activity of TDFs.
iDC were generated in the presence or absence of 10% TPC cell line or normal thyroid
conditioned medium in the presence or absence of 5g/ml of the reported neutralizing
antibodies . After 7 days culture cells were collected, washed and exposed to LPS for 24
hours to induce maturation. BFA (5g/ml) was added to cells to detect TNFproduction.
iDC were analyzed for expression of CD1a and CD86. mDC were analyzed by double
staining for CD83/CD86, and intracellular staining for TNFproduction. All molecules
were detected by cytofluorimetric assay. Data shown are representative of three similar
experiments. b) Typical dot plot analysis of T cells cultured for 3 days with anti-CD3/CD28
beads and in the presence of DC generated in the presence of 10% of TPC conditioned
medium in the presence or absence of anti-IL-6. PBL alone and with anti CD3/CD28 was
used as control (not shown). Data shown are representative of three independent
experiments. c) Tabel c report the results of the neutralization of TDFs in the presence of
the indicated molecule. Data shown are representative of three independent experiments.
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Ciprofloxacin treatment completely reverts TDFs immunomodulatory
activity

Fig.6 Mycoplasma eradication abrogates the immunomodulatory activity of TDFs.
Typical immunophenotype of DC generated in the presence of the reported conditioned
medium. b) Typical dot plot analysis of T cells cultured for 3 days with anti-CD3/CD28
beads and in the presence of DC generated in the presence of 10% of Ciprofloxacin-
treated or untreated TPC conditioned medium.
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TPC cell line was treated with antibiotic drug Ciprofloxacin for 15 days, and
after a washout time were growth at 80% of confluence in regular cell medium
before being washed and cultured for additional 24 hours in fresh medium. After
18 hours, tumor-conditioned media were collected and tested for the presence of
Mycoplasma infection and for the ability to affect differentiation of monocytes
toward DC lineage. The biological assay confirmed the eradication of mycoplasma
from TPC. CD14+ monocytes were cultured in the presence of Treated-treated
conditioned TPC medium, in the presence of DC lineage differentiating cytokines.
After 7 days culture, iDC were analyzed for their immunophenotype (Fig.6a) and
were stimulated with LPS to induce terminal differentiation. After 24 hours,
expression of activation markers, production of pro-inflammatory cytokines and
ability to induce death of CD3/CD28 stimulated PBL were analyzed by flow
cytometry (Fig.6b). iDC generated in the presence of treated TPC conditioned
medium displayed an immunophenotype comparable to the normal thyroid and
untreated DC, with restoration of CD1a expression, low CD86 basal level and
undetectable CD83 (Fig.6a). Up-regulation of CD83 and CD86 after a 24 hours
bacterial LPS stimulation is up to 90% and the production of TNFαwas perfectly
restored (Fig.6a). Co-culture of DC with CFSE-stained PBL shown PI positively
lower than 1% after 3 days culture (Fig.6b).

Thyroid TDFs induce loss of function of TLR4 signaling

DC obtained culturing for 7 days monocytes with GM-CSF and IL-4 in
presence or absence of TPC tumor conditioned medium were washed and exposed
to LPS. The expression of proteins related to TLR-4 signaling pathway, were
analyzed by western blot at the time point indicated in Fig.7. LPS binding to TLR-
4 induce a complex event of intracellular signaling, leading to the activation of
MAPK cascade and NF-Kb activation. We found that JNK and p38
phosphorylation is widely impaired, while accumulation of the phosphorylated
form of ERK and CREB were not affected by in TDFs-exposed DC (Fig.7). On the
other hand, TDFs-exposed DC loss the ability to decrease IkB levels upon
stimulation with LPS (Fig.7). Moreover, we investigate the role of STAT-3.
Furthermore, phospho-STAT-3 was undetectable in unstimulated DC, while
unstimulated TDFs-exposed DC show higher p-STAT3 levels compared to DC
generated in the presence of normal thyroid supernatants of just in regular medium
supplemented with the differentiating cytokines cocktail.
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Fig.7 Thyroid TDFs induce loss of function of TLR4
Typical immunoblot of DC generated in the presence or absence of TPC-TDFs and left in
regular medium for the reported time in the presence or absence of LPS. The results are
representative of four independent experiments.
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The capability of human tumor cells to interfere with the differentiation
program of DC has been shown in a variety of experimental models, either in vivo
or in vitro. Notably, a large fraction of these studies documented the ability of
cancer cells to dissociate the terminal differentiation program by generating the
unconventional CD1alow CD86high DC phenotype that fail to respond appropriately
to TLRs ligands with secretion of pro-inflammatory cytokines (Roth P 2000). In
the present study, we confirm and extend these data to thyroid cell lines
recapitulating almost all alterations previously described by other authors,
including the defect in TLRs signaling and alterations in phospho-STAT-3
accumulation, a hallmark of DC generated in the presence of TDFs (Nefedova Y
2005, Nefedova Y 2004, Wang T 2004). However, our study takes into account,
beside TDFs, an additional factor that has been poorly investigated by most of the
previous studies: the presence of mycoplasma in cancer cells. Unexpectedly, and
in agreement with a few other reports, this parasite seems to play a crucial role in
the mechanism leading to the generation of unconventional immunosuppressive
DC. The biological significance of this finding is crucial to understand the exact
contribute of TDFs and mycoplasma in the orchestration of the immune response
against tumors.

Mycoplasmas infection per se is able to induce alterations of dendritic cells
differentiation and functions. Several reports documented the ability of DC to
sense mycoplasma infection, displaying up-regulation of maturation markers
CD83 and CD86 (Salio M 2000, Link C 2004) and, more specifically, the
capability of M. fermentans to activate cells of the monocytes/macrophages
lineage (Muhlradt PF 1997). In addition, there are evidences that suggest that
M.fermentans could act as accessory factors in the activation of AIDS (Blanchard
A 1994, Lo SC 1990). The ability of Mycoplasma to interfere with monocyte
toward DC differentiation is related, at least in part, to proteins that act as TLR
ligands, as the lypoprotein M161Ag of M.fermentans that can bind and activate
TLR2 (Nishiguchi M 2001). Actually, Mycoplasma is considered as maturation
inducer factor for human monocyte-derived DC (Salio M 2000, Nishiguchi M
2001) as well as for murine DC (Link C 2004). At the same extent of previous
reports, we find that DC exposed to mycoplasma-infected thyroid tumors
conditioned medium exhibit a CD83+CD86high phenotype which is considered
characteristic of terminal differentiation. In accord to previous observations (Salio
M 2000), we also show that they fail to further up-regulate CD83 and CD86 upon
LPS exposure. Moreover, it is reported that M.fermentans is a strong inducer of
pro-inflammatory cytokines release by monocytes and DC (Link C 2004, Weigt H
2003).

The presence of mycoplasma in our experimental model is not conceived
to investigate the role of this parasite per se, but as a symbiont of tumor. As a
conditional pathogenic organism, mycoplasmas have been associated with a
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variety of diseases, but the association with cancer remains still unclear. Persistent
infection on mammalian host is capable to induce irreversible transformation of
cell lines, increase tumor invasiveness and induce alteration in gene expression
with features of classical carcinogens. In the initial phases of this interaction, there
is a reversible stage during which removal of the mycoplasma cell culture
infection leads to a restoration of eukaryotic cell function; there is no apparent
chromosomal loss or translocation. After chronic infection, the transformation may
become irreversible, and it is then associated with chromosomal alterations. With
M. fermentans as the initial activator, cells develop altered morphology and
unrestricted growth. This may require several weeks of interplay between cell and
bacterium. When the transformation reaches the irreversible phase, removal of the
mycoplasma does not have beneficial effects (Feng SH 1999, Zhang 2006, Tsai
1995). These reports suggest the hypothesis that mycoplasma could be considered
an oncogenic factor for itself. Today, evidences linking cancer to mycoplasma
infection are accumulating (Huang S 2001, Chan PJ 1996) and suggest the
possibility of an association between the two, given also the data that support
highest mycoplasma presence in the more advanced stadiums of cancers (Huang S
2001). Parasites as cofactors of human diseases are not a novel concept. One
example concerns the well known relationship between Helicobacter pylori and
gastric cancer (Cimolai N 1995).

Perhaps of lesser apparent importance, however, is the potential for
microbes to act as cofactors, even weak ones, in disease causation (Pagano 1999).
The study of cancer is complete with many examples where cofactors may work in
concert to increase the risk for a given disease (Shirai 1993). In the course of either
mycoplasma infections or other primary infections, a role for mycoplasmas as
cofactors is recognized (Cimolai et al. 1995). Could this also be translated into the
possibility that mycoplasmas may act as cofactors in malignancy? For example,
certain human papillomaviruses are associated with the progression of pre-
malignant changes that lead to cervical cancer. Could genital mycoplasmas modify
the rate of progression when the virus is present (Kidder et al. 1998)?
Our study analyzes for the first time the interplay between mycoplasma and
tumors from an immunological point of view, focusing on DC role in this
symbiosis.

Conditioned medium of mycoplasma-infected thyroid tumor cells lines
represent the microenvironment to which monocytes are exposed during the
migration to the tumor site and the subsequent differentiation toward DC pathway.
According to previous reports, we obtained unconventional DC, characterized by
early up-regulation of CD83, CD86, CD80, HLA-DR and low expression of CD1a
(Roth P 2000). However, this maturation process was ultimately defective,
resulting in DC that failed to produce TNFand IL-12 after stimulation by LPS,
failed to activate TLR-4 and TLR-2, and stimulate rapid apoptosis of
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effector/memory T lymphocytes.
Recent studies have demonstrated an important role of the STAT-3

pathway in DC differentiation under physiological conditions and in cancers.
Laouar et al reported, using conditional knockout mice, that STAT-3 is required
for Flt-3 ligan-depend DC differentiation (Laouar 2003). At the same time Yu and
Gabrilovich research groups demonstrated the hyperactivation of STAT-3
signaling is directly involved in the abnormal DC differentiation in cancer (Wang
T 2004, Nefedova Y 2004). At the present state STAT-3 is recognized as negative
regulator of DC activation and a hallmark of cancer induced DC defects.
Consistent with these previous reports, we found that TDF of mycoplasma-
infected thyroid cell lines induce a basal hyperactivation of STAT-3. We further
extended these observations, investigating for the first time the role of this
molecule upon LPS induced terminal differentiation. Our findings demonstrated
that activation of STAT-3 strongly occurs after 24 hours from exposure to
bacterial endotoxin, and that TDFs induce a dramatic loss in the ability of DC to
phosphorilate this molecule.

Bacterial endotoxin induced maturation is tightly regulated at the level of
the TLR-4 signaling pathway. On the basis of the inability of DC generated in the
presence of mycoplasma infected thyroid cell lines conditioned medium to
properly respond to LPS, we analyzed the integrity of the signal transduction
pathway of TLR-4. We showed that, although normal expression of TLR4 mRNA
(data not shown), the signaling through this receptor is disrupted, with little or no
activation of classical MAPK/p38 pathway and failure to degrade the inhibitory
subunity of NF-kB, IKB. Therefore, it is demonstrated that DC can assume an
endotoxin tolerogenic phenotype when they are exposed to maturation signals
during their differentiation process. Resulting cells display high Il-10, low IL-12
secretory phenotype after a second exposure to the same maturation stimulus.
(Jiang HR 2002, Rieser C 1998)

Previous reports shown that DC exposed to TDFs promote the
development of early, but ultimately less potent, allostimulatory activity in
monocyte-derived DC (Roth P 2000). Recent evidences described generalized
suppression of CTL anamnestic response in mice bearing large tumor nodules,
ascribing these anomalies to the activity of Myeloid Suppressor Cells (MSC)
(Apolloni E 2000). We analyzed the ability of DC generated in the presence of
mycoplasma infected thyroid tumor cell lines conditioned medium to activate
allogeneic lymphocytes and induce activation-dependent cell death. We found that
TDFs induce a potent cytotoxic activity in DC, leading to clonal deletion of
CD3/CD28 activated effector/memory T lymphocytes. The mechanism by which
DC induce lymphocyte death is not contact dependent, as clearly demonstrated by
transwell experiments (data not shown).
To dissect the relative contribution of thyroid TDFs and mycoplasma to the defects
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induced in DC differentiation and function, we tried to neutralize the most well
know TDFs, that are shown to have a broad influence on DC differentiation, and,
on the other hand, to eradicate mycoplasma infection from cell lines by
ciprofloxacin treatment. Despite the big number of evidences that support the
critical role of TDF on DC tumor-induced defect, neutralization of IL-6, IL-10,
VEGF, EGFR, TGF-, IDO was completely ineffective in the rescue of phenotype
and function. At the contrary, conditioned medium obtained from cells treated
with ciprofloxacin lead to complete restoration of DC classical features.

The finding that mycoplasma contribute exerts a dominant effect with the
respect to TDFs, open new speculations regard the symbiosis between
mycoplasma and tumors. We hypothesize that tumors act as a mycoplasma
bioreactor.

Thyroid tumors are the most common malignancies of the endocrine
system and include a broad variety of lesions with different biological and clinical
behavior: benign adenomas and well differentiated (papillary and follicular),
poorly differentiated and undifferentiated (anaplastic) carcinomas (Kroll et al.,
2002). In 2002 (Batistatou et al. 2002) has been demonstrated that S100+ DC are
present in thyroid tumors, with an inverse correlation with the respect to the
prognosis and the onset of disease. Papillary Thyroid Carcinoma (PTC) is the most
DC infiltrated tumors, while Poorly Differentiated Carcinoma (PDC) and
Undifferentiated Carcinoma (UC) are poor of S100+ DC. More recently, an
extensive characterization of DC infiltrating thyroid tumors shown that tumors
with poor prognosis (PDC, UCs) were characterized by markedly reduced DC
CD1a+infiltrates, strongly suggesting that the presence of fully differentiated DC
exerts a protective role. In addition, they demonstrate that S100+ and CD1a+ DC
localize preferentially in the thyroid nodule, not outside the tumor nodule. Thyroid
tumors in vivo produce a number of DC chemoattractant molecules, such as
RANTES, IP-10, MIP-1A, MIP-1B, MIP-3a. We can hypothesize that DC
recruited in the mycoplasma infected tumor site are skewed to an
immunosuppressing route by exposure to mycoplasma and mycoplasma-derived
factors. Immunosuppressive rather than immunostimulatory DC induce death of
activated T lymphocytes, inhibiting the subsequent clonal expansion and the
immune response. Presence of a mycoplasma in tumors might be a function of the
potential for opportunism with the bacterium entering systemically during the
immunosuppression of the acute malignancy. Mycoplasma indoved in the tumor
tissue could easily survive due to the abundance of metabolites derived from the
accelerated growth of tumor cells, and at the same time might be efficacy
protected from the activity of the immune sytem. At the same time, it can exploit
the tumoral privileged niche to exert immunosuppressive functions, allowing new
strategies for immune escape, based on DC alterations.

Despite the many publications that have discussed mycoplasmas in the
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context of cancer, it is evident that this area has suffered from a lack of attention.
In part, mycoplasmas have been seen by some as fastidious bacteria that are
difficult to work with. Others in the context of biology laboratories may shun work
with mycoplasmas because of the potential for mycoplasmas to contaminate cell
cultures.

Our study shed new light about the synergy between malignancies and
mycoplasma infection, underlying the potent immunosuppressive effect that this
symbios could exert and suggesting that pharmacological treatment of
mycoplasma infection would be considered as a mandatory immunotherapeutic
strategy to improve the response against tumor cells.
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CONCLUSIONS

Given the role of DC in the initiation and outcome of immune response, the
effects that thyroid tumors conditioned medium exert on this cellular population
spare on the entire ongoing of immune response. DC are not only enabled to
initiate a correct immune response, but are also skewed to an immunosuppressing
route. The immunosuppression is mediated by an aberrant cytokine pattern, and by
target killing of activated T lymphocytes. From this point of view, tumors are
mycoplasma incubators,that allow the growth and spread of this microorganism.
Mycoplasma use tumors as “Troy Horse”, by the fact that can easily survive in the
glucose rich and metabolically hyperactive tumor environment, which is also a
privilegiate niche that can protect it from the immune system defence. By the way,
tumors, that are themselves able to escape the immune surveillance, exploit
mycoplasma immunosuppressing effect which improve this capacity in a synergic
fashion.

We can ask if tumors develop from mycoplasma-dependent oncogenic
activity, or if mycoplasma infection established on an already present neoplastic
environment accelerate transformation progress. Most likely, the infection
develops on the neoplastic environment owing of the low immune system activity.
In this environment mycoplasma established a symbiontic relationship with tumor,
which induce an increased escape of immune system activity and an improvement
of neoplastic effect derived by mycoplasma.

So our study shows for the first time a synergic effect between
mycoplasma and tumor on DC cells immunosuppressive activity. This result could
be relevant for the in vivo progression of tumor and suggest that pharmacological
treatment of mycoplasma infection could be a strategy to improve the immune
response to tumor chemotherapy.
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