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Abstract 
 

 

Unmanned Aerial Vehicles will have a safe access to the Civil Airspace only when they will 

be able to avoid collisions even with non cooperative flying obstacles. Thus, they need to 

replace the capability of human eye to detect potential mid-air collisions with other airframes 

and the pilot experience to find an adequate avoidance trajectory.  

This thesis deals with development and test of a fully autonomous system devoted to 

avoidance of non cooperative intruders. In particular, it focuses on sensors, and  processing 

logics and hardware, required on the unmanned system to acquire situational awareness. The 

study was carried out in collaboration with the Italian Aerospace Research Center within a 

research project named TECVOL, funded in the frame of National Aerospace Research 

Program. The performed activities covered all the steps in the development process from the 

analysis of requirements deriving from the application, to the real time implementation of 

designed logics. 

Designed prototype system is based on a multi-sensor architecture with a Ka-band pulsed 

radar as the main sensor, and four electro-optical cameras as aiding sensors. Proper logics and 

algorithms for real time sensor fusion have been developed, tested in off-line simulations, and 

later implemented on embedded systems to enable technology flight demonstration. 

Numerical results and flight data have shown the potential of the developed system. Also on 

the basis of the international scenario, this technology demonstration has gained a significant 

scientific value. 
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Introduction 
 

 

 

 

I.1. Unmanned Aerial Vehicles in the Civil Airspace: the 

Sense and Avoid problem 

 

In recent years, Unmanned Aerial Vehicles (UAVs) have experimented a great worldwide 

diffusion. Several institutions and manufacturers are developing or operating unmanned 

vehicles which cover a large range of dimensions, performance, and payload mass: from 

university aero-models to large aircrafts such as the Northrop GrummanTM RQ-4B Global 

HawkTM (figure 1) and the General AtomicsTM Predator-BTM (figure 2).    

 

Figure 1 – Northrop Grumman RQ-4B Global Hawk
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Figure 2 – General Atomics Predator-B  

While the current use of these systems is mainly in the military field, there has also been a 

growing interest in using UAVs for civil purposes. UAVs are in fact perfectly suited for many 

applications: their potential uses include from border and coastal surveillance, to drug 

interdiction, to checking the status of oil pipelines and power systems, to environmental 

surveillance and support during emergencies, crop assessment (farming), automotive traffic 

surveillance, and sky based communication networks.  

While autonomous control and payload technologies can be considered mature, one basic 

problem hinders the use of UAVs in civil scenarios: it is represented by flight safety in terms 

of collision risk with respect to other aircrafts. 

The need to overcome this problem led to a remarkable increase in worldwide research for 

integration of UAVs in the Civil Airspace [1-4]. The most important organizations for 

standard development were involved in writing the rules to allow UAVs for a safe access to 

flight [5, 6]. This effort was sponsored by FAA and was developed by important regulatory 

agencies such as ASTM and RTCA. Also the European Union with project USICO [2], Japan, 

and Australia were involved in this field of research.  

One of the basic principles of these analyses was that introduction of UAVs does not have to 

modify airspace regulations which already apply to manned aircrafts: otherwise, the cost to be 

paid (also in economic terms) in order to allow manned and unmanned aircrafts to coexist 

would be too high. In a few words, UAVs have to coexist with manned aircrafts, and not vice-

versa. 
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As a consequence of this approach, Federal Aviation Administration (FAA) 7610.4 regulation 

[7], stated that UAV flight in the Civil Airspace is allowed only if it guarantees “…an 

equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft”, 

both in the controlled and in the uncontrolled airspace.  

What is meant by equivalent level of safety will be clarified in the following. However, it is 

important to note since now that in order to satisfy the requirement, UAVs have to be 

endowed with two capabilities: a situational awareness capability on the one hand (sense), a 

decision making capability on the other hand (avoid). 

The solution to the “sense and avoid” problem can be considered today as the real key to 

enable massive usage of unmanned aircrafts for civil applications, thus allowing for a 

revolution in unmanned aviation (figure 3). 

 

 

Figure 3 – Aerospace America, June 2006 

 

This thesis will focus on the situational awareness aspect of the problem.  
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I.2. The CIRA TECVOL project 

 

All the study reported in this thesis has been conducted in the framework of project TECVOL 

(Technologies for Autonomous Flight) carried out by the Italian Aerospace Research Center 

(CIRA). 

CIRA holds the Italian Aerospace Research Program (PRORA) funded by the Italian 

Government. This program involves the realization of a High-Altitude Long-Endurance 

(HALE) UAV. Within this program, the TECVOL project aims at the development and flight 

demonstration of the technologies needed to support the HALE UAV flight autonomy, and 

will realize a hardware/software prototype that integrates the following functions: 

 

- Autonomous Flight Path Execution; 

- Autonomous Approach and Landing; 

- Obstacle Detect See & Avoid (DS&A); 

- Autonomous Runway Search and Lock; 

- Enhanced Remote Piloting. 

 

Regarding the sense and avoid function, the Department of Aerospace Engineering (DIAS) of 

the university of Naples “Federico II” has been in charge of developing and testing the anti-

collision sensing system and logics.  

The system prototype will be initially installed onboard a manned laboratory aircraft equipped 

for automatic control so that flight tests will verify the adequacy of attained performances for 

supporting fully autonomous flight. The optionally piloted laboratory aircraft is a Very Light 

Aircraft (a TECNAM P-92) and has been named FLARE, which means Flying Laboratory for 

Aeronautical Research. It is shown in figure 4. 
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Figure 4 – FLARE at  landing 

Airframe technical specifications are reported in table 1: 

TECHNICAL SPECIFICATIONS 

Wing span 8,70 m 

Length 6,40 m 

Height 2,50 m 

Wing Area 12 m2 

Engine Maximum Power at sea level 73,5 kW 

Propeller GT - 172/164 

MTOW 450 Kg 

Table 1 – TECNAM P-92 specifications 

 

FLARE is equipped with a general hardware configuration that includes: 

- A set of navigation sensors (Attitude and Heading Reference System, Laser Altimeter, 

Standalone GPS, and Air Data Sensor); 

- Sensors and Processing Units for Obstacle DS&A; 

- Electro-optical sensors for enhanced Remote Piloting; 

- A Flight Control computer. 

Some of these systems are shown in figure 5. 
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Figure 5 – FLARE internal view 

Sense and avoid planned flight tests will include sessions where a single intruder will enter 

the Field of Regard (FOR) of obstacle detection sensors. Initial tests will verify the capability 

of the designed system to detect and track the intruder, in different approaching geometries 

and weather/illumination conditions. Subsequently, real Collision Avoidance tests will be 

performed. 

 

I.3. Thesis objectives and outline 

 

The main objective of this thesis is to develop and test a prototype of a fully autonomous 

system devoted to avoidance of non cooperative flying obstacles. This requires the 

identification of a logical/hardware architecture to satisfy sensing requirements, the 

development of proper algorithms for real time fusion of the measurements from all the 

sensors needed to reach situational awareness, and the implementation of these algorithms on 

embedded systems to enable technology flight demonstration. All these activities are detailed 

in the thesis, on the basis of the following outline.   

 

Chapter 1 clarifies in more detail the sense and avoid problem by pointing out the 

consequences of the concept of  “equivalent level of safety”. Then, advantages and drawbacks 

of different possible sensor choices and architectures are pointed out, and a brief survey 
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covers methods and results of sense and avoid experiences performed in the United States. 

The last section of the chapter is dedicated to a study on detection algorithms based on 

electro-optical sensors only. This study was conducted to explore potential and limitations of 

this approach to the sense and avoid problem. 

 

The designed anti-collision system is treated in chapter 2. In particular, starting from 

requirements, selected sensors are described. Then, different possible data fusion techniques 

are analyzed in view of the constraints deriving from the application, and the logical 

architecture of the system is clarified, together with the hardware system that implements 

these logics.  

 

Data fusion algorithms are detailed in chapter 3 with particular regard to the tracking module, 

which can be considered as the core of the whole anti-collision system. First, basics of multi-

target tracking techniques are described. Then, the analysis is focused on state estimation 

algorithms to be used for obstacle relative position and velocity. A numerical analysis allows 

to point out main differences of different algorithm choices in terms of accuracy and 

reliability for collision avoidance.  

 

Chapter 4 reports a detailed numerical survey which was performed to estimate system 

performance in realistic collision scenarios. A proper software environment for off-line 

simulation was built to enable these analyses. The different scenarios are briefly described, 

then numerical results are reported which allow to estimate system accuracy in different 

phases, and to understand the main effects of navigation errors on tracking. 

 

The second part of the thesis is devoted to real time implementation. In particular, ground and 

on-board software architecture and design is clarified in chapter 5. Different functions are 

implemented by different operating systems and programming languages. Hardware in-the-

loop tests are described which regard on-board data handling and real time performance of 

developed system. 

 

Collision avoidance flight tests have not been performed yet, due to project delays related to 

other functions. However, some experimental activities have already been carried out. In 
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particular, a procedure has been designed to align the electro-optical sensors with the inertial 

unit. It is described in chapter 6, together with the results obtained in test campaigns. 

 

Preliminary flights for functional verification have also been performed. Relevant results and 

flight images from these tests are reported in chapter 7. 

 

Finally, conclusions and further research are pointed out in the last chapter of the thesis.  
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Chapter 1 

 

Sense and Avoid 
 

 

 

 

1.1. Autonomous obstacle detection as a prerequisite for 

integration of UAVs in the Civil Airspace 

 

FAA requires that unmanned aerial systems guarantee an equivalent level of safety with 

respect to manned aircrafts, both in the controlled and in the uncontrolled airspace. 

In the former, safety is guaranteed at a higher level by procedures and air traffic control 

systems. Moreover, every airliner has a TCAS (Traffic Alert and Collision Avoidance 

System) [8], which provides a highly reliable detection sensor for cooperative threats. TCAS 

is based on a transponder and transmits to the other aircrafts own-ship position. Moreover, it 

has a high grade of autonomy, since it is able to perform conflict detection and resolution by 

assigning proper avoidance maneuvers in the vertical plane. It is worth noting that the choice 

of vertical avoidance maneuvers is strictly dependant on the fact that TCAS range and altitude 

precision is relatively high, while there is a large bearing angle noise from directional antenna 

construction. 
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TCAS is required for all the airliners and it is generally installed on-board general aviation 

aircrafts. Of course, TCAS can not guarantee collision avoidance with respect to aircraft 

which do not carry it (which happens if uncontrolled airspace is considered), or in case of 

system failures. Thus, the last level of safety against collision is the human pilot capability to 

“see and avoid” other aircrafts, or more generally other flying objects (figure 1). On the basis 

of this line of reasoning, requiring an equivalent level of safety for UAVs means that an 

onboard system for autonomous obstacle Detect, Sense and Avoid (DS&A) has to be 

considered as mandatory. Of course, the non cooperative "see & avoid" function is 

complementary to collaborative anti-collision systems such as TCAS or ADS-B [9], also in 

view of an application of autonomous obstacle detection systems as auxiliary systems for 

manned aircrafts. In fact, research efforts are being carried out also on the integration between 

cooperative and non cooperative systems [10]. For example, this integration can give better 

bearing accuracy with respect to TCAS, thus allowing for different choices in avoidance 

maneuvers.  

  

 

Figure 1 – Flight safety levels 

At present, UAV autonomous anti-collision systems are at experimental level [11-15] and 

research studies are still being carried out to find out system requirements and sensing 

solutions. The trend is to consider different requirements and to develop a customized 

Obstacle DS&A system for each UAV category [16]. 

 

1.2. Sensing solutions and architectures for DS&A 

 

In general, different sensing architectures have been selected to be adopted onboard manned 

and unmanned aerial vehicles for implementing autonomous collision avoidance capabilities. 

In this framework, multi-sensor fusion is considered as a valuable tool. 

Basically, two sensor types are investigated: 
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A. Electro-Optical (EO) Sensors in the Visible (VIS) or Infrared (IR) bands [17,18]; 

B. Microwave (MW) sensors [13,19] from L-band to Millimeter Wavelenghts;   

 

EO sensors have some peculiarities, such as: 

 

a) Fast scan rate (10 Hz or more); 

b) Fine Angular resolution < 0.1°; 

c) Low cost; 

d) Small size and weight; 

e) Low electric power consumption. They are passive sensors; 

f) Reduced sensitivity to rain. 

 

However, EO sensors also have also several disadvantages with respect to radars: 

 

a) No range-to-obstacle information is provided; 

b) Infrared sensors must be installed to guarantee night flight coverage; 

c) Detection range can be much shorter than radars. The requirements on time-to-collision can 

not be met; 

d) Target detection performance is strongly dependant on background; 

e) Large sensitivity to fog; 

f) The resulting sense and avoid system is intrinsically non all time all weather. 

 

Some additional considerations are needed on EO sensors drawbacks. As for point a), range is 

clearly unobservable on the basis of angular-only measurements. However, range to obstacle 

can be estimated on the basis of a maneuver performed by the UAV and the consequent 

navigation measurements. The technique is known in literature as passive ranging collision 

avoidance [20] and is based on an Extended Kalman Filter as state estimation algorithm. 

However, it has some relevant issues which are connected to the time needed for the filter to 

give a reasonably accurate range estimation. Moreover, the maneuver requested for range 

estimation could last too much because of the aerodynamic characteristics of the UAV. For 

example, the Global Hawk has a configuration which does not allow for agile maneuvers.[20]   

Moreover, it must considered that for increasing resolution and thus pixel number, the 

computational load of detection algorithms increases. 
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A configuration composed by sole EO sensors (in one or more bandwidth) can be considered 

adequate when limited economical and/or dimensional resources are available, for example in 

the case of mini-UAVs. In the most compact configuration, it is composed by one or more 

cameras in the visible waveband and a fast Image Processing CPU that operates a search in 

the whole Field-Of-View (FOV) to extract elevation and azimuth angles of candidate 

obstacles and relevant angular rates.  

In these cases, the detection process can be carried out in different ways, according to typical 

operational conditions: in case of uniform or quasi uniform background (sky, large clouds, 

sea, etc.), which mainly occurs in the high-medium altitude region, or in very large and clean 

areas (flight over sea or over extended plains), in theory see-and-avoid algorithms can operate 

on single frames, adopting thresholding criteria. Typical techniques are global threshold, local 

adaptive threshold, segmentation by hue [21-24]. Instead, in case of non uniform or cluttered 

background, which mainly occurs in the low-medium altitude region, or during nap-of the-

earth flight over woody or bushy landscapes, these algorithms must operate on sequences of 

frames, and according to contrast or better correlation criteria, or to Optical Flow 

methodology [25-28]. 

As shown in the following section, up to now systems based on this technology have suffered 

from high levels of false or missed detections [18,29]. This is basically due to the fact that 

though optical flow is a well-assessed technique for image tracking, it has challenging 

detection issues to be solved, in order to be applied in the considered application. They 

concern the type of background of images that include the obstacles to be avoided. In 

particular, the Optical Flow algorithm is affected by the following background effects: 

 

- Sensitivity to aggressive attitude maneuvers; 

- Sensitivity to scene illumination conditions, even for obstacles that have the sky on 

their background; 

- Sensitivity to weather conditions; 

- Sensitivity to ground when the obstacle flies at an altitude that is lower then the one of 

the aircraft that is equipped with the cameras. 

 

Another important point of discussion related to optical flow-based detection algorithms is 

that frame rate has to be very high for reliable detection, which can pose hard requirements on 

the processing system. Moreover, the heavy computational  weight of these techniques 
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hinders their implementation in real time. These are some of the reasons why a purely EO 

approach to sense and avoid has been discarded in TECVOL. However, additional studies 

have been carried out on detection algorithms for an EO-only sensor system [30], and will be 

described in the last section of this chapter. 

 

In many senses radars are complementary sensors with respect to EO cameras. In fact, they 

provide direct range estimate, and also range rate if Doppler processing is used. Moreover, 

they can guarantee larger detection range, low levels of missed or false detection, and are 

much less affected by weather conditions: the all-time all-weather requirement can be 

satisfied. On the other hand, radars can hardly provide an angular resolution comparable to 

EO cameras: finer resolution essentially implies larger antenna dimensions. Moreover, in 

general radars are demanding in terms of cost, size, weight and required electric power. 

 

Other possible solutions are laser radar active systems, which provide at the same time range 

information and fine spatial accuracy. However, these systems are very limited by fog and if 

excessive power requirements have to be avoided, unacceptably low revisit rates are obtained.  

 

Considering radar and EO cameras, the shortcomings of the two sensors can be compensated 

by combining their data, so as to obtain a hybrid multi-sensor configuration. Of course, this 

configuration is more demanding in terms of onboard and economic resources than a purely 

EO sensor suite, but in theory it allows for all-weather and all-time coverage, low levels of 

missed or false detections, large detection range, high revisit rate and fine angular resolution. 

Moreover, the resulting system is intrinsically very reliable, because the different sensor 

answers are related to completely different physical phenomena [31].  

The two configurations (purely EO, integrated EO/radar) are illustrated conceptually in figure 

2. Both require a tracking software to be implemented thus allowing for proper obstacle 

dynamics estimation. This software should be capable to manage multiple obstacles in the 

system Field-Of-Regard (FOR). The tracking algorithm in the second architecture should be 

capable to handle sensor data fusion by properly using measurements from integrated sensors. 

In this case, two approaches can be pursued: 

− High-level sensor fusion. The two systems generates estimates of obstacle dynamics 

independently from each other. Subsequently, a proper real-time algorithm operates 

high-level measurements fusion; 
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− Hierarchical architecture. The system is composed by a “chief” sensor, i.e. the radar, 

and by the EO sensors that are “aiding” sensors. In this case, the “chief” sensor directs 

the search in the “aiding” sensors FOV and their measurement are used to refine 

obstacle estimates. 

 

Figure 2 - Baseline sensing configurations for DS&A systems: (a) sole EO and (b) integrated EO and 

radar 

 

1.3. International experiences and research 

 

Sense and Avoid is currently a very active area of research, both from theoretical and 

experimental point of view, as it is also demonstrated by the large number of papers and 

conference sessions on this theme [10-12, 15-18, 20, 32-38]. In particular, in the United States 

there is a flurry of research carried out by different industries and institutions. Experimental 

campaigns have been carried out by NASA Dryden Research Center, in the framework of 

ERAST project [13,14] and by Air Force Research Lab, in collaboration with Defense 

Research AssociatesTM (DRA) [15,18] and Northrop GrummanTM [10,11,20]. It is interesting 

to point out the main results of these campaigns also to have a reference point for comparing 

the designed anti-collision system.  



Chapter 1. Sense and Avoid.  15

In the NASA-ERAST project, a nose Ka-band pulsed radar was mounted onboard Proteus, an 

optionally piloted aircraft realized by Scaled CompositesTM (figure 3) 

 

 

Figura 3 – Nose radar on-board Proteus 

 

Besides the radar sensor, a cooperative system was installed on the Proteus and on some of 

the intruders. Several collision geometries were tested with different types of intruders, 

ranging from gliders to interceptors. In all these tests, collisions were avoided by maneuvers 

performed by the pilot on-board or the remote pilot in the ground station. In other words, 

obstacle detection sensors were used within a man-in-the-loop architecture. Basically, these 

tests were dedicated to experimental estimation of obstacle detection range. Radar detection 

range was demonstrated to be adequate for avoidance maneuvers except in the case of very 

fast intruder, i.e. F-18 Hornet.  

As for AFRL-DRA tests, they were based on a purely EO sensor system, made by three 

visible cameras in order to cover a 220° FOV in azimuth. The cameras were first mounted on 

the nose of a manned aircraft used as a surrogate UAV (figure 4). Detection was performed by 

optical flow-based methods: thus, a complex processing system had to be used to sustain the 

high frame rate and computational weight of detection algorithms. The basic result of the 

flight tests was that while missed detections were avoided, multiple false tracks were 

generated. In particular, the algorithm suffered because of small bright clouds (figure 5). 
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Anyway, detection performances were estimated as adequate for collision avoidance 

requirements [18]. 

 
 

Figure 4 – DRA experimental setup (from [18] 

 

Figure 5 – Cloud phenomenology inducing false tracks ( from [18] ) 
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Subsequent tests were carried out on Predator UAV. Excessive false alarms were reported 

which caused “the acknowledged failure” [29] of the system. Infact, “…Intended as a near-

term sense-and-avoid solution for USAF MQ-1 Predator UAVs, the system was, says Colonel 

Larry Felder, commander of the USAF UAV Battlelab, a failure. It did not work. We had 

multiple false targets.” [29] . 

Integrated sense and avoid flight tests activities are now being carried out on the Aerostar 

UAV. Nevertheless, the final goal seems now to be an integrated radar/EO solution [39]. 

Finally, Northrop Grumman studies have been directed towards multiple sensor 

configurations and data fusion. In particular, most recent studies and experiments focused on 

the issues in the integration of TCAS and EO sensors [10,11]. 

 

1.4. Study on detection algorithms for an Electro-Optical 

based sense and avoid system 

 

Though, as it will be shown in the following chapter, a radar/EO multisensor architecture was 

selected in TECVOL for installation on FLARE, a study was carried out on obstacle detection 

techniques for EO sensors, in order to better understand potential and limitations of this 

approach to sense and avoid [30]. In particular, the analysis dealt with optical flow-based 

methods, which can be used for detection both in the case of uniform and non-uniform 

background. The performed study is detailed in this section.  

Optical flow is the 2-d motion field, which is the perspective projection onto the image plane 

of the true 3-D velocity field of moving surfaces in space [25], arising from the relative 

motion of objects and the viewer. Moving objects can be separated from the background by 

analyzing this motion [26]. It is worth noting that Optical flow only requires electro-optical 

sensors measurement to evaluate kinematical behavior of objects (with respect to the 

background), without any need of navigation system measures.  

In particular, two techniques were implemented and tested in this study, which are the most 

used according to literature [27]: the Horn and Schunck’s (HS) [28] and the Lucas and 

Kanade’s (LK) algorithms [27]. Both of them are based on differential solving schemes. In 

other words, they compute image velocity from numerical evaluation of spatiotemporal 

derivatives of image intensities. The image domain is consequently assumed to be 

differentiable in space and time. The basic assumption in measuring image motion is that the 
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intensity structures of local time-varying image regions are approximately constant for, at 

least, a short time duration. This assumption brings to the following condition, known as the 

“Optical Flow Constraint Equation”: 
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where E represents intensity, x and y the two spatial coordinates in the image, u and v the 

corresponding apparent velocity components, and t is time. 

This is an under-constrained equation, since only the motion component in the direction of the 

local gradient of the image intensity function may be estimated: this is known as “aperture 

problem”. Therefore, one more assumption is necessary. 

Horn and Schunck’s method assumes that the motion field is smooth over the entire image 

domain. Thus, it computes an estimation of the velocity field [u, v] that minimizes both the 

sum of the errors for the rate of change of image brightness in  eq. (1), and the measure of the 

departure from smoothness in the velocity flow [28]. Iterative equations are used to minimize 

equation (1) and thus to obtain velocity field: 
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where superscripts refer to the iteration number, subscripts refer to derivation, and α is a 

positive constant known as smoothness factor. 

Instead, Lucas and Kanade’s method divides the original image into smaller sections, Ω, 

assuming a constant velocity in each section. Then, it performs a weighted least-square fit of 

the optical flow constraint equation, to a constant model for [u, v] in each section, by 

minimizing the following equation: 
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where W is a weights function which basically gives more importance to the equations written 

near the center of the considered window Ω. 

The developed algorithm consists of mainly two components: an Optical Flow Solver, based 

on the algorithms described above, and a Target Detector, that selects point objects with a 

statistically different motion with respect to background. For each pair of adjacent frames, the 

system computes the global motion, then it extracts potential object pixels, computing their 

kinematical features. Schematically, autonomous target detection is performed in the 

following steps: 

1. Image pre-processing. Pre-filtering with a spatiotemporal Gaussian filter, it is possible 

to extract signal structure of interest and to enhance the signal-to-noise ratio. This attenuates 

temporal aliasing and quantization effects [26]. Temporal smoothing is achieved through a 

temporal 1-d Gaussian filter, g(t), centered in the considered frame, with standard deviation of 

1.5. Then, a 2-d Gaussian filter, G(x,y), performs spatial smoothing. G(x,y) is defined into a 

domain of 3x3 pixels, with a standard deviation of 1.5. 

2. Image pyramid representation. HS and LK differential techniques require image 

intensity to be nearly linear, with velocities less than about 1 pixel/frame [40]. For this reason, 

images are decomposed in different scales of resolution, in the form of Gaussian pyramids. 

The higher levels of the pyramid contain filtered and sub-sampled versions of the original 

image. Hence, velocity estimate is first produced at lower resolution scale, with velocities less 

than 1 pixel/frame (that is the so called “Coarse-to-fine strategy”). In this way, the optical 

flow constraint equation becomes applicable also in the case of large image motions. 

Unfortunately, the main drawback of this step is its high computational cost. 

3. Extraction of spatiotemporal derivatives. Temporal derivatives are computed with a 

backward scheme. The algorithm computes spatial derivatives using a 5-points finite-

difference central scheme for differentiation. 

4. Motion field resolution. Depending on the chosen technique, the solver integrates the 

above equations (2,3) or (4), to produce a 2-d motion field [u, v] (figure 6). 
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Figure 6 – Motion field resolution 

 

5. Decision step. After solving the 2-d motion field, the algorithm detects object pixels as 

those with a statistically different velocity from the background. The detection threshold TV is 

chosen dynamically, on the basis of a statistical mean: 

 

TV = |V|mean ± K σ     (5) 

 

where |V|mean  is the mean value of velocity distribution, σ is the standard deviation, K is a 

non-negative coefficient. Velocity of pixels potentially belonging to obstacles are given in 

output as in figure 7: 

 

Figure 7 - Decision Step (Threshold Criteria) 
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6. Observation merging and centroids determination. Nearby object pixels are grouped. 

Then, for each group, the algorithm calculates centroid coordinates and mean velocity (figure 

8). 

 

Figure 8 - Object grouping and centroid calculation 

 

Flow diagram of the overall algorithm is shown in figure 9.  

 
Figure 9 – Detection algorithm flow diagram 

 

In order to have a realistic test environment, developed algorithms were applied on real video 

sequences of flying aircrafts, acquired in test campaigns which were conducted in Naples, 
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imaging civil aircrafts approaching Capodichino airport, and in Castel Volturno (CE).The 

cameras used in these tests are the same that have been later mounted on FLARE for obstacle 

detection. 

The LK technique guaranteed better performances in performed tests. In fact, although it 

produced a less dense motion field, velocity estimation were, on average, more accurate. 

Furthermore, it required a constant number of computations for a given sequence, depending 

only on images dimensions in pixels. Thus, it resulted to be more suitable for real-time 

implementation, unlike the HS method which is based on an iterative scheme. In this second 

case it is not possible to a-priori estimate the required number of iterations. In fact, applying 

HS algorithm to different sequences  the number of iterations needed for convergence changes 

randomly. These results agree with literature suggestions [27]. For this reason it was decided 

to adopt the LK algorithm for all the other computations. 

In the second step of the analysis, the reliability level of the whole algorithm was evaluated, 

in terms of miss-detection (MD) and false alarm (FA) rate. FA rate is the ratio of the total 

number of false alarms throughout the sequence to the number of image frames in the 

sequence. MD rate is the ratio of the number of frames in which the target was missed, to the 

total number of frames. FA rate depends on the amount and motion of clutter in the images, 

whereas MD rate depends on the target size and contrast, and therefore, it generally increases 

with the target distance [41]. Another parameter which was evaluated is the number of object 

points, N, erroneously extracted by the algorithm (step 5), as a fraction of the number of 

image frames in the sequence: a high value of this parameter is connected to FA rate and 

moreover reduces the efficiency of  pixel objects grouping (step 6), since the latter requires 

more calculations. 

Considering our tests in Naples, they were performed with good weather and illumination, 

and in two different conditions: the first one is with fixed background, which was the real 

experimental situation (figure 10). Then, we simulated (off-line) a motion of the optical axis, 

in order to reproduce camera wobbling effects. 
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Figure 10- Target Detection on fixed background 
 

Table 1 reports the performance of the detection algorithm on a number of  8 image sequences 

(1100 frames in total), in the case of fixed background. If a suitable value is chosen for K 

(equation 5), no MD and FA can be noticed.  

 

MD FA N K 

0 3.5 6.6 1.5

0 2.14 3.6 2.5

0 0.76 1.5 5 

0 0.34 0.96 7.5

0 0.18 0.4 10 

0 0.04 0.08 15 

0 0.02 0.02 20 

0 0.02 0.02 25 

0 0 0 30 

Table 1 - Target Detection Algorithm: Miss-Detection Rate (MD), False Alarm Rate (FA), Number of 
erroneously extracted Object Points (N).  

 

Instead, in the case of moving optical axis, the parameter K was selected in order to keep MD 

as low as possible, and to reduce the FA rate. Figure 11 shows that increasing K, FA rate is 

reduced, while MD rate is increased. For K=1.5, zero MD were measured, while, on average, 

4.4 FA/frame were observed.  
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However, it is worth noting that this is not necessarily a suitable choice for every case. In fact, 

according to [41] characteristic parameters of the algorithm should be adjusted according to 

factors like the clutter level, or the scene lightening conditions. Then, the effects of increasing 

oscillation velocity on the algorithm performances were analyzed. As shown in figure 12, it 

maintains a good level of reliability for an oscillation velocity of 5 pixel/frame: MD is less 

than 2.5, while FA is less than 4.5. 

 

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

K

M
D

 [%
]

0

1

2

3

4

5

6

0 5 10 15 20 25 30

K

FA
 [N

/fr
am

e]

 

Figure 11 - Optical Axis Oscillation of 1 pixel/frame: FA and MD profiles with K. 
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Figure 12 - Optical Axis Oscillation: FA/MD as a function of optical axis oscillation velocity (K=1.5) 
 

In summary, the algorithm exhibited a good reliability level in conditions of nice weather, 

good illumination, and fixed background. However, imposing a motion of the optical axis in 

order to simulate camera wobbling effects, false detections and miss-detections were 

observed.  

Subsequent tests in Castel Volturno were carried out in more critical weather and 

illuminations conditions. In this case, the false alarm problem was much more dramatic, 

leading to a really hard trade-off in detection algorithm between sensitivity and reliability. An 

example is reported in figure 13. It is worth noting that these results are in agree with flight 

tests performed in USA. 
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Figure 13 – Multiple false alarms in critical illumination conditions 

 

From a practical point of view, the computational cost of the algorithm is high. Using a 

standard desktop computer with a 3GHz processor, on average 1 sec/frame is needed to 

realize velocity field estimation and target detection. Much time is required to produce 

velocity estimates at lower resolution scale, which is needed by the two differential 

techniques. These computations could be avoided if images were taken at very high frame rate 

in order to reduce targets apparent velocity, but this would also be very demanding for the 

point of view of processing resources.  

In summary, the limitations of an Optical Flow-only based approach made it not adequate to 

replace the main system architecture of the anti-collision system that includes a radar.  
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Chapter 2 

 

Integrated multi-sensor system architecture 
 

 

 

 

2.1. The Autonomous Collision Avoidance module 

 

In order to perform autonomous collision avoidance, as already anticipated an UAV has to be 

endowed with different capabilities: the capability to develop situational awareness and 

identify potential threats for flight safety (“sense”) and the capability to perform evasive 

maneuvers and then recover its nominal trajectory (“avoid”). From an engineering point of 

view, both capabilities require that own-ship dynamics is known in real time: navigation 

system plays a key role. Then, the autonomous collision avoidance module is connected to the 

flight control system: in case of predicted collision, it has to ask for trajectory modification 

and then nominal mission recovery. These considerations lead to the conceptual architecture 

which is reported in figure 1. It is clear that though the sense and the avoid function are 

conceptually independent, they deeply influence each other. This Ph.D. thesis is focused on 

the sense function: all the sensors, techniques, algorithms, and hardware needed to this aim, 

are treated.    
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Figure 1 – Autonomous collision avoidance module architecture 

2.2. Sensing Requirements 

 

Sensing requirements for a DS&A System are connected to achievable field of regard, to 

range and angular resolution, to the detection range (which is connected to the time-to-

collision by means of approaching speed) and to the system data rate. 

The process of understanding the requirements was carried out in previous studies and is 

illustrated in [42]. The focus was on mid-air flight, thus maximum considered approaching 

speed was 500 kts. The all-time all-weather requirement was also considered.  

In its initial configuration, TECVOL aims at demonstrating the capability to avoid one non 

cooperative flying obstacle in the search volume. In the final configuration, the system should 

be able to avoid up to four obstacles. 

Table 1 reports the assigned sensing requirements. They were derived mainly from flight 

mechanics considerations relative to the execution of avoidance maneuvers. It is worth noting 

that they are compliant with international standards [5,6], as it also results from table 2, 

considering field of regard requirements. 

Parameter Value 

Field of regard extent in azimuth -110°/+110° 

Field of regard extent in elevation -15°/+15° 

Range resolution 20 m 

Azimuth resolution 0.27° 

Elevation resolution 0.27° 

Minimum allowed time-to collision 19 s 

Data rate 10 Hz 

Table 1 – Sensing system requirements 
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Source Azimuth Elevation 

FAA P-8740-51: How to Avoid a Mid-

Air Collision 
+/- 60 degrees +/- 10 degrees 

International Standards, Rules of the 

Air, Section 3.2 (ICAO) 
+/- 110 degrees 

No guidance (ASTM reports 

+/- 15°) 

FAA Advisory Circular 25.773-1 

(Transport Aircraft Design) 
+/- 120 degrees 

Variable: +37 and -25 degrees 

(varies with azimuth) 

Table 2 – International references for field of regard requirements 

The first row of table 2 can be considered as a near term requirement, whereas the last line is 

the estimated reference for the far term. As it will be shown in the following, the near term 

requirement has been assumed as reference for flight demonstration in TECVOL project. 

 

2.3. Obstacle Detection Sensors 

 

One key point of sensor selection for autonomous collision avoidance is that no single sensor 

was found that is capable to fulfill all the requirements of table 1.  

For example, radars guarantee adequate detection range and all-time all-weather performance, 

but angular accuracy is unsatisfying and data rate is of the order of 1 Hz.  

Thus, a multiple sensor approach was selected by using sensors based on different 

technologies (i.e. active microwave, passive infrared, and visible cameras) in order to 

compensate the lack of performance of single sensors. 

Considering the radar, in the choice of wavelength, maximizing detection range, minimizing 

sensor dimensions to enable installation on-board a lightweight aircraft, and improving as 

much as possible angular resolution are contradicting requirements. 

In fact, radars operating at low frequencies are relatively unaffected by atmosphere, but are 

large in size and unable to provide required spatial resolution, due to main lobe width, which 

is directly proportional to operating wavelength, as shown in equation (1). 

 

l
KdB

λϑ =3      (1) 
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where K is a coefficient whose value depends on the considered aperture and feeding, and l is 

the antenna length in the considered direction.  

A higher frequency radar, instead, is smaller in size and provides better resolution for given 

aperture size, but is more susceptible to atmospheric and weather effects [31], and in 

particular to rain, as it results if we consider atmospheric attenuation produced by fog and rain 

(figure 2). 

 

 

 

Figure 2 – Atmospheric attenuation for different weather conditions 

 

 

A Ka-band radar (frequency 35 GHz, wavelength 0.9 cm) can be considered as a good 

compromise between the contradicting requirements. Thus, the selected radar was the AI-

130TM OASysTM  (Obstacle Awareness System) model produced by AmphitechTM. It is a 

pulsed radar operating with a carrier at 35 GHz. It has been already used for UAV 

anti-collision flight tests in NASA-ERAST flight tests [13,14]. As it was already reported in 

the previous chapter, OASys performance in terms of detection range was found to be 

adequate for collision avoidance requirements except in the cases of very fast intruders. 
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Figure 3 – Amphitech OASys Radar 

 

In the designed system, the radar is the main sensor and provides the all-time all-weather 

capability. It allows for demonstration of the sense and avoid capability in a field of regard of 

120° in azimuth.  

Its detection range as a function of target mean radar cross section (RCS) can be evaluated on 

the basis of radar equation [42] and is reported in figure 4: 
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Figure 4 – Estimated detection range for OASys radar ( from [42] ) 
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In order to improve angular accuracy and data rate, auxiliary electro-optical sensors have been 

considered, and in particular: 

 

- 2 visible cameras, one panchromatic, one color (figure 5); 

- 2 infrared cameras (figure 6); 

 

 

Figure 5 – Visibile cameras 

 

 

Figure 6 – Infrared cameras 

 

In particular, the visible cameras are the MarlinTM F145B2TM and F145C2TM, produced by 

Allied Vision Technologies GMBHTM (AVT). The former is a panchromatic camera, whereas 
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the latter is a color (Bayer tiled) camera. Both communicate via an IEEE1394 IIDC interface 

and are capable of producing color/panchromatic images up to 1392x1040 pixels. 

Furthermore, they can acquire images up to 10 Hz at full scale, with a resolution depth of 8/10 

bits per pixel. They were equipped with MV618TTM optics realized by AVT, with focal length 

of 6.5 mm and thus a field of view (FOV) of approximately 52.9° x 40.8°. 

The two visible cameras are installed parallel to the aircraft longitudinal axis to get 

simultaneously a high resolution panchromatic image and a color one of the same region. 

While the panchromatic camera was chosen basically for fusion with radar data, the color 

camera was considered to add a feature information useful for obstacle recognition. 

The infrared (IR) cameras are two Thermocam A40VTM produced by FLIRTM. They have a 

detector with 320 X 240 pixels, can acquire images up to 50 Hz, and are equipped with optics 

with focal length 35 mm, so that their FOV is 24 ° X 18 ° and the IFOV is of 0.075°. Thermal 

resolution is 0,08 °C at full frequency. The sensor is a Focal Plane Array (FPA), that is a non-

cooled micro-bolometer. The imaged spectrum is in the thermal infrared field: from 7.5 μm to 

13 μm. It is worth noting that the IR wavelength choice is due to the fact that spectral 

radiance has a broad peak in this region for temperatures near 300 K. In any case, the camera 

can cover a temperature field from -40 °C to 500 °C. Due to their limited angular aperture, the 

IR cameras are pointed slightly eccentric to get a field of view comparable to VIS cameras 

one. 

An approximate estimate of IR sensors detection range can be based on geometrical 

considerations only. In particular, it is connected to the linear dimension which corresponds to 

the Effective Instantaneous Field of View (EIFOV). EIFOV can be evaluated as EIFOV=1.5 * 

IFOV [43]. 

Following this line of reasoning, figure 7 is obtained. 
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Figure 7 – Infrared sensors EIFOV  in meters as a function of range 

 

Assuming an obstacle reference linear dimension of 5 m, one gets a detection range of 

approximately 3 km. It is worth noting that the same calculation can be applied to visible 

cameras, and it would lead to a larger (about double) detection range. However, it must be 

taken into account that while in the IR case it can be foreseen that a sufficient contrast is 

generated between intruder and the blue sky background, this does not hold in general for 

visible sensors. Detection range for these sensors is very much dependant on illumination 

conditions. In any case, it will be possible to estimate detection range for EO sensors in the 

planned flight tests.  

Sensors’ layout is shown in figure 8. It was designed to allow for a compact installation of the 

sensor system, and in order to minimize vibration effects. The radar is mounted in central 

position with respect to the EO cameras. All the sensors pack is installed on the top of the 

aircraft wing  (figure 9). 
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Figure 8 - Sensors’ layout  

 

 

 

Figure 9 - Obstacle detection sensors mounted on-board FLARE 
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2.4. Sensor and data fusion architectures 

 

A multi-sensor configuration, such as the one selected for autonomous collision avoidance, 

allows for integration of different, complementary measurements and information. The 

resulting system is intrinsically more reliable with respect to a single sensor configuration: the 

different sensors derive object signatures from different physical processes, and so they 

generally do not cause false alarms on the same artifacts. 

However, combining sensors’ information in an effective way, and respecting the strict real 

time requirements of the system, is not an easy task. 

Generally speaking, data fusion architectures can be classified in different ways [31], 

depending on the amount of data processing that occurs at sensors level, and the location of 

fusion processes. Basically, three architectures can be identified: sensor-level fusion, central-

level fusion, hybrid fusion. 

In sensor-level fusion, each sensor detects and estimates tracks of targets before data entry 

into the fusion processor. This means that computational power has to be available at sensor 

level. Moreover, from target kinematic state estimation point of view, sensor-level tracks, and 

not measurements, are to be fused. Track-to-track fusion is a complex task and requires a 

certain amount of computational expense [44,45]. Of course, sensor-level fusion reduces the 

exchange of data among nodes, paying the cost of a larger computational load. 

Central-level fusion is based on a completely different logic. In fact, each sensor provides to 

the fusion processor minimally processed data, which are combined to obtain a single set of 

tracks. Globally, the computational load is less than in sensor-level architecture, however 

generally more data have to be exchanged among network nodes. 

Regarding the accuracy of the tracking function, central-level fusion is proved to provide the 

best results [46]. Central-level fusion major drawback is that if a sensor measurement is 

degraded, it affects the entire estimation process. This degradation can be due to problems in 

sensors’ hardware, but above all to electronic counter-measures that affect, for example, radar 

range measurements. In the framework of TECVOL, both cases are not considered. In 

particular, it was not supposed to build a one-failure-tolerant architecture. Furthermore, 

diagnostic systems at software level have been designed to detect hardware problems at 

sensor level. Then, operating in a civil collision avoidance scenario electronic 

countermeasures have not been taken into account.  
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Hybrid fusion tries to combine the advantages of sensor and central level fusion. In fact, it is 

supposed that both raw sensor data and sensor-level tracks or high level information can be 

combined in the fusion processor. However, the disadvantage is in terms of increased 

processing complexity and possibly increased data transmission rates. 

As it will be clarified further in the next section, a central-level fusion architecture has been 

considered in this project. The main reason was to reduce the overall computational cost in 

order to respect the real time requirements of the system. The problem of raw data exchange 

was solved by decentralizing the detection function while keeping an unique central-level 

tracking module. 

 

2.5. Developed sensor fusion logical architecture 

 

In the first part of TECVOL experimentation it is foreseen to demonstrate the autonomous 

collision avoidance capability with a single obstacle. To reach this milestone, multi-sensor 

detection and tracking are needed. The following steps are related to the implementation of 

autonomous obstacle identification and collision avoidance with multiple obstacles. Thus, the 

identification function will be developed in detail in the near future. Anyway, at architectural 

level identification has already been considered. 

The sensor fusion logical architecture is depicted in figure 10. 

In particular, detection, tracking and identification modules are identified. Though 

identification logic has not been developed yet, it is foreseen that a two-way information 

exchange exists between the latter and the tracking module: while the ID information can be 

used to adjust the tracking filter bandwidth to obstacle typical dynamics, track behavior can 

be used as an additional identification feature.  

Basically, as anticipated the sensor fusion architecture is central-level: in fact, tracks are not 

produced at sensor level and minimally processed data are combined in an unique Kalman 

filter-based tracking algorithm. However, detection function is in some way decentralized, 

and a hierarchical sensor architecture is considered. 
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Figure 10 – Sensor fusion logical architecture
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This choice derives from the consideration that radar measurements are less sensitive to 

atmospheric effects and typically offer larger detection range with respect to EO cameras. 

Thus, the radar is considered as the main sensor, and the EO (both visible and infrared) 

cameras work as aiding sensors. 

This means that while target detection by radar is performed autonomously with a search in 

the whole sensor field of view, the object detection process is carried out in EO images on the 

basis of cues by the tracking module, considering a search window centered in the foreseen 

obstacle position. In particular, only firm tracks (generated on the basis of radar 

measurements) are used for EO object detection, in order to keep a reasonably low false alarm 

rate. 

Thus, the first step in obstacle detection by EO cameras is the selection of an area of interest 

in the latest acquired image on the basis of tracking predictions. An important point is the 

determination of the optimal area of interest dimensions. If the area is too small and does not 

take into account relevant uncertainties, then it is possible that the obstacle is found outside 

the area. On the other hand, if the area is too large, there is a negative effect on computational 

time for detection, but also reliability of the detection process can be reduced.  

In fact, the basic methods for obstacle detection in the area of interest are threshold criteria, 

which operate on the single frame and detect object pixels as those with a statistically 

different intensity from the background. For example, in global threshold techniques, as in the 

optical flow-based algorithm illustrated in the previous chapter, the detection threshold is 

usually chosen dynamically, on the basis of a statistical mean: 

 

T = μ  ± K σ                                                                (1) 

 

where μ is the mean value of intensity distribution in the area of interest, σ is the standard 

deviation, K is a non-negative coefficient which is chosen on the basis of requested false 

alarm rate and probability of detection. 

These techniques are based on the assumption of an uniform background. Enlarging the area 

of interest implies that a more heterogeneous area is imaged with a negative impact on 

detection performance. In the considered case, the area of interest is selected taking into 

account radar angular accuracy, tracker predicted accuracy (which is estimated in the tracks 

covariance matrices, as it will be clarified in the following), EO cameras alignment 

uncertainty, predicted aircraft attitude angles error noise. 
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After the pixel detection step, nearby object pixels are grouped and the algorithm calculates 

centre coordinates, which represent the synthetic estimate to be sent to the tracking module. In 

this phase, a control is applied on the number of object pixels: if it is too large, the 

measurement is discarded and treated as unreliable. Since only target estimates are sent to the 

tracking module, there is a really low data rate which is another positive aspect in view of real 

time implementation. The EO detection process is schematically described in figure 11. 
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Figure 11 – Logic of intruder detection by electro-optical sensors 

 

Figure 10 also reports, in the measurement formulation phase, the transformation of sensor 

data to a North-East-Down reference frame. This transformation depends on the tracking 

algorithm structure and has important consequences on it, as it will be shown in the next 

chapter.  

Tracking module constitutes the core of the entire system, and it is strongly related to the 

Guidance, Navigation and Control System. In fact, on the one hand it needs navigation data in 

real time to properly follow obstacle dynamics. On the other hand it has to transmit intruder 
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estimated to the flight control system, which has to decide eventual collision avoidance 

maneuvers in case of predicted collision.  

Tracking algorithm will be described in detail in the following. However, it is important to 

point out that EO sensors can be considered as auxiliary sensors also because their estimates 

do not influence tracks’ status, which is based on radar measurements only. This means that 

the system can work in case of a failure to the EO system, while it is strongly dependant on 

radar. In case of radar failure, the detect and sense module is useless. Of course, a partially 

radar failure tolerant system is considered among further developments. 

 

2.6. Sensor fusion hardware architecture 

 

The whole DS&A System hardware architecture (including the flight control computer with 

sensors and actuators) is reported in figure 12. Considering the sensing system, which is the 

subject of this thesis, it is made up by two separate processing units, which implement 

different functions with different operating systems (OSs). The Real Time Computer is based 

on a deterministic OS. It is directly connected with the radar sensor via an Ethernet link and 

the TCP/IP protocol, performs tracking (and identification in the future), and exchanges data 

with the Guidance, Navigation, and Control (GNC) system by a deterministic data bus, which 

is the Controller Area Network (CAN) bus. CAN bus is finding a growing diffusion in 

aerospace systems thanks to its simplicity, reliability, flexibility and low cost [47-49]. The EO 

sensors are connected via a Firewire link to the Image Processing Computer, based on a 

conventional OS, that has to process the visible and infrared images to find estimates of 

intruders’ position and shape (in view of the identification function). The two computers 

exchange data by an Ethernet connection and the User Datagram Protocol (UDP) [50]. In 

particular, firm tracks are sent in one direction, target estimates (in case of reliable detection) 

are sent in the other. The separation of the two processing units allows to reduce the 

computational load on both systems. All the architecture and the on-board software will be 

described in more detail in the following.  
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Figure 12 – DS&A System hardware architecture 
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Chapter 3 

 

Airborne multi-sensor tracking algorithm design 
 

 

 

 

3.1. Introduction 

 

Tracking module and its algorithm constitute the core of the whole DS&A system. In fact, 

tracking is based on fusion of information from the different sensors in order to autonomously 

reach required situational awareness for the UAV. Basically, tracking is needed: 

 

- to associate at the same intruder measurements gathered in different scans/frames; 

- to measure obstacle kinematics in order to identify a potential collision; 

- to increase measurement rate with respect to sensor raw data; 

- to eliminate false alarms and clutter returns. 

 

It is worth noting that, since the system is completely autonomous, it is mandatory to have 

reliable estimates not only of intruders’ positions, but also of their motion, since this latter 

information is needed by the collision avoidance logic to decide whether or not it is necessary 

to perform an evasive maneuver. 
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This chapter illustrates in some detail how does the tracking algorithm work, and the relevant 

design choices which derived from the considered application. Among these, one of the 

design drivers was to allow for real time implementation with standard computational 

resources. On the other hand, civil airspace features had to be taken into account.  

In the following sections, after an overview of multi-sensor multi-target tracking basics, the 

design process for the collision avoidance application is detailed. In particular, first of all 

relevant aspects deriving from operative scenario are clarified. Then, the mathematical 

structure is detailed by analyzing Kalman filtering, choice of dynamic models and tracking 

coordinates, inclusion of navigation system uncertainties. Finally, a numerical analysis is 

presented that puts into evidence the differences among different design choices. 

 

 

3.2. Basics of multi-sensor multi-target tracking 

 

The basic elements of a multi-target tracking system are shown in figure 1. 

 

Sensor Data 
Processing and 
Measurement 

formation

Observation-to-
track association

Track Maintenance 
(Initiation, Confirmation 

and Deletion)

Gating Filtering and Prediction

 

Figure 1 – Basic elements of a multi-target tracking system [46] 

 

Generally speaking, tracking foresees 4 main phases. The input to the algorithm are sensor 

measurements, which represent in general objects of interest, false alarms, and clutter. Of 

course, objects of interest and clutter depend on the considered application. In our case, most 

of clutter returns will likely come from ground echoes. The tracks can be defined as 

hypothetical constructs which represent in substance estimates of position and velocity (and 

acceleration), given a time-ordered sequence of measurements. Assuming that a set of tracks 
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is present in the system memory at a given time, incoming input measurements are first 

considered for the update of existing tracks. 

It is important to point out that a measurement formation phase has in general to be foreseen 

before data integration in the tracking algorithm. This is not only due to the necessity of 

registration in the case of multiple sensors, but also to the fact that tracking design is greatly 

simplified assuming that the sensors do not provide multiple simultaneous observations from 

the same source. In the developed anti-collision system (see previous chapter) this is obtained 

in the case of electro-optical sensors by mean of a centroiding operation, while observation 

merging does not seem to be necessary for the radar, due to its rough angular accuracy.   

Gating operation allows to determine “reasonable” observation-to-track pairings. It 

corresponds to build a volume in the state space around the predicted estimate, where valid 

observations are likely to fall. The logic is to compare predicted estimates with measured 

quantities by calculating the distance between them. If the latter is less than a maximum 

established limit, then the observation satisfies the gate and is a valid candidate for updating 

the track. Of course, gate dimensions constitute a key point. On the one hand, gate has to be 

large in order to reduce the risk that a valid measurement is rejected. On the other hand, it has 

to be small enough to avoid that undesired returns are considered for association to track, 

which can degrade a lot tracking performance.  

Usually, the distance between observations and predictions is evaluated in a statistical way, in 

the sense that it is normalized to take into account prediction and measurement accuracy. It is 

worth noting that this requires that both accuracies are to be known. Then, the maximum 

allowable error is usually set on the basis of statistical considerations.  

Gating allows to reduce subsequent computations. However, in general a further step is 

necessary in order to determine which observation-to-track assignments are actually made. 

This is usually named as association. 

Association takes the observation-to-track pairings that satisfied gating and solves the 

assignment problem. This is usually performed with the aim of minimizing a cost function, 

which can be for example the total summed distance. In mathematical terms, the problem can 

be formulated as the classical assignment problem for which optimal (Munkres algorithm 

[51]) and sub-optimal solutions [52-54] exist.  

Some simple solutions are represented by the global nearest neighbor (GNN), the nearest 

neighbor (NN), the greedy assignment. GNN minimizes the total summed distance under the 

constraint that at most one observation can be used to update a single track, and vice versa. 
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NN associates each track with the nearest observation, so that an observation can be used to 

update more than one track. The greedy assignment is the simplest technique, it foresees that 

the best possible assignments are made sequentially and observation and tracks are removed 

as they are assigned, so that an observation/track can not be used with more than one 

track/observation. 

It is worth noting that association needs to be increasingly more complex (and 

computationally expensive) if a more and more dense target environment is considered. In 

case of very dense multi-target environments, recent techniques such as multiple hypothesis 

tracking have to be used [55]. Indeed, the weight to be assigned to data association algorithms 

can be based on the relation between obstacle detection sensors angular accuracy, and typical 

obstacle separation. In fact, it comes out that miscorrelation (i.e., wrong observation-to-track 

association) frequently occurs when targets’ separation is less than five times the angular 

measurement-error standard deviation [56]. Moreover, miscorrelation in presence of a single 

target can occur because of false alarms or clutter. 

After the association phase, track status has to be properly handled. In particular, tracks are 

usually divided in the following categories: one-plot (single observation not associated to any 

existing track), tentative (at least two observations, but confirmation logic still required), firm 

(confirmed track). The transition tentative-firm can be based on different techniques without a 

great computational load. Tracks are deleted if they are not updated within a reasonable 

interval. 

The filtering and prediction phase allows for combination of track predictions and sensor 

measurements, and produces new track predictions. It is usually performed using Kalman 

filtering. One of the advantages in using Kalman filtering is that prediction uncertainty can be 

estimated from the covariance matrix, which is useful in the gating process. Of course, this 

implies that covariance estimate consistency must be properly assured. 

This section offered a brief overview of multi-target tracking algorithms. In the real world 

practice, tracker design must be tailored to the particular application. This influences the 

computational weight to be assigned to the different parts, and the mathematical models to be 

applied.  
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3.3. Tracking for collision avoidance in civil airspace 

 

In general, tracker design is the result of a trade-off between conflicting requirements: for 

example, the accuracy of tracks for non-maneuvering aircrafts versus maneuver detection and 

track continuity through maneuvers. Furthermore, in the case of civil airspace scenarios, there 

are some particular features that influence tracking logic. First of all, a dense multi-target 

environment has very low probability. Of course, depending on the sensors’ angular accuracy 

and detection range, it is possible that different flying obstacles produce miscorrelation 

though respecting the so-called bubble distance, established by Federal Aviation 

Administration (FAA) regulations (165 m) [6], but this can happen at high distances, when 

avoidance maneuvers are not initiated,  considering a nuisance-free approach.  

This fact greatly influences allocation of computational resources: the association phase can 

be kept at a relatively simple level, while a greater effort can be devoted to improve filtering 

and prediction performance by means of accurate dynamic modeling and optimal choices of 

tracking coordinates. This conclusion makes a big difference with respect to other scenarios 

(the military ones for example) where association is the most difficult task and filtering 

schemes are often kept simple to save computational resources [56]. 

Another aspect to be taken into account is that in the considered scenario the most important 

quality parameter of the tracker is its reliability at short distances, rather than its absolute 

accuracy, since this is the most critical situation for the entire system. Finally, it is worth 

noting that, regardless of  DS&A sensors’ resolution, navigation data are corrupted by their 

own errors. Since it is not possible to eliminate them, estimating navigation errors’ effects on 

the tracking accuracy and on the behavior of the entire DS&A system is certainly a very 

important subject. Of course, the latter analysis doesn’t make sense if navigation sensors are 

much more accurate than obstacle detection sensors (which is not our case if radar/EO fusion 

is considered). 
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3.4. Intruder state estimation: filtering and prediction 

3.4.1. Overview of Kalman filtering 

 

Tracking requires that track predictions and correlated measurements are properly combined 

in order to find an updated estimate. The simplest filters use fixed pre-computed gains for this 

combination; the alpha-beta and alpha-beta-gamma filters are typical examples in this 

category [57]. The computational and memory advantage of these filtering schemes has a cost 

in terms of accuracy, reliability (track continuity through maneuvers is hard to obtain) and 

flexibility  (the filter gains do no adapt to detection history). Also because of the progress in 

computer systems, most trackers today rely on Kalman filtering based algorithms. 

Kalman filter is a common algorithm for state estimation on the basis of sensor measurements 

[58-60]. It was originally developed for tracking [61,62], and since then it has found usage in 

several fields of applications. Kalman filter works on the basis of a prediction/correction 

scheme, as it is shown in figure 2 considering its discrete form. 

It is in general based on a few assumptions: the system state evolves according to a known 

linear equation driven by a known input and an additive process noise, which is zero-mean 

white (uncorrelated in time) with known covariance matrix Q(k). Moreover, measurements 

are a known function of the state with an additive measurement noise, which is again zero-

mean white with known covariance R(k). Required initial parameters are the initial state with 

its uncertainty (that is, its covariance). System and measurement noise are assumed to be 

uncorrelated.      
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Figure 2 – One cycle in the state estimation of a linear system by Kalman  filtering (from [44]) 

 

It can be demonstrated [57,58] that under the Gaussian assumption for all the errors and 

noises the Kalman filter is the minimum mean square error state estimator. Without the 

Gaussian assumption, the Kalman filter is the best within the class of linear estimators. 

Besides giving better accuracy in state estimates with respect to fixed gain filters, as 

anticipated above the use of Kalman filtering is particularly suited for tracking since it self 

estimates its accuracy through the covariance matrix. The accuracy estimation is required for 

the gating operation. Moreover, Kalman filter flexibility is very useful in the considered case, 

where multiple sensor measurements at different data rates have to be combined: different 

sensors can be accommodated using different measurement equations and covariance 

matrices, while the filter automatically adapts to any radar/EO detection history, and to 

variable sampling times.  

In practice, the Kalman filter produces accurate estimates if both sensors and obstacle 

dynamics are accurately modeled. Accurate sensor modeling is connected to a correct choice 
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of their covariance matrix R. As for target motion, this is obviously unknown and thus has to 

be modeled taking into account typical obstacle dynamics. Some options on the choice of 

dynamical models are described in the following section.  

 

3.4.2. Obstacle dynamics: the Singer model 

 

The problem of modeling aircraft motion has been widely studied from the origin of tracking 

systems,  in view for example of application in the air traffic control systems. In our case, the 

choice of dynamic model was not only very important for the accuracy of tracking in different 

phases, but also had to take into account the real time requirement of the anti-collision system, 

with a 10 Hz data rate: thus, excessively complex dynamic models were not suitable for the 

application.  

A comprehensive survey of dynamic models for tracking is reported in [63]. 

The most used models for random target motion are based on target acceleration. One of the 

most common among them is the Singer acceleration model [64]. It assumes that the target 

acceleration evolves in terms of a correlated noise process, so that, considering a one-

dimensional case with a scalar coordinate x, acceleration auto-correlation function is given by 

 

                                           ( ) ( ) ( ){ } ( )μτσττ −=+= etxtxEr mx
2                                          (1) 

 

where  

σm
2 is the acceleration instantaneous variance; 

μ is the inverse of target acceleration time constant. 

σm and μ represent the input parameters for the model: σm is connected to the range of 

accelerations that can be foreseen for the target and can be determined for example on the 

basis of a ternary-uniform mixture [63], while μ is connected to how fast target dynamics 

changes, so that the time constant can be considered as a maneuver time duration. In 

continuous terms, the dynamic model is in the form 
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where w(t) is a white zero-mean gaussian process with variance σm
2. In discrete terms 

(considering a sampling interval equal to T), target acceleration is a first order Markov 

process of the form 
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where ρm = exp(-μT) and r(k) is a zero-mean unit-standard deviation Gaussian random 

variable. The resulting transition matrix is 
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while the exact solution for the system noise covariance matrix Q is given by 
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where 
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As it results from previous equations, the model is flexible in that it allows to take into 

account different dynamic environments by properly adjusting σm and μ. Regarding these 

parameters, and the resulting Q matrix, in practice a conservative approach has to be chosen. 

In fact, a relatively large Q allows to bound the Kalman gains from below, preventing the 

tracking filter from generating biases which can finally result in track loss [65]. Moreover, in 

the tracking practice it is often convenient to have a process noise that accounts for potential 

miscorrelation effects or for obstacle maneuvers [46]. In a few words, Q matrix results from a 

trade-off between tracking reliability (especially during intruder maneuvers) and track 

accuracy during non maneuvering phases.  

Singer acceleration model can assume some forms of interest on the basis of the ratio between 

sampling time and maneuver time constant. In particular, if sampling interval is much less 

that maneuver time, then acceleration is essentially seen as a constant with its derivative being 

a white noise process. This is known as constant acceleration model [66]  and Q matrix takes 

the limit form 
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When sampling interval is much larger that maneuver time, the acceleration is seen itself as 

white noise: the resulting model is known as constant velocity model [66] and its Q matrix is 
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These limiting cases put into evidence how Singer model allows to cover a wide range of 

dynamic environments, as a function of design choices. On the other hand, model success 

relies on the accuracy of these choices. 

The Singer model was detailed in this section in relation with a single state variable x. In the 

next section, modeling is extended in order to derive the real equations to be used on-board 

the UAV for real time obstacle motion estimation. 

  

3.4.3. Tracking coordinates and filtering schemes in airborne 
multiple sensor tracking 

 

The choice of tracking coordinate system and state components in airborne tracking is a non 

trivial problem [46, 56, 57, 63, 67].  

Before addressing in detail the algorithms’ choice and evaluation, it is important to underline 

that, on the basis of discussions with the developers of collision avoidance logic and software, 

it was decided that tracker outputs consist of estimated range, azimuth in the Body Reference 

Frame (BRF), elevation in the BRF, their first order time derivatives, and the same estimates 
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in a locally level reference frame, which is the North-East-Down (NED). The BRF can be 

assumed with axes along longitudinal, lateral and vertical aircraft axes and origin in the 

aircraft centre of mass, or in the inertial navigation unit if more convenient. The NED has the 

same origin of BRF, while its axes can be considered non rotating for aircraft platforms. It is 

worth noting that, due to the sensors’ layout on FLARE, there is a vertical separation of the 

order of 1 m between obstacle detection sensors and aircraft AHRS (which is located in close 

proximity to aircraft center of mass). This generates a parallax effect in tracking estimates 

both in BRF and in NED. This effect can certainly be neglected in tracking algorithm 

development and simulation, however it can give some additional angular track error in the 

real time functioning when the intruder is in close proximity. Thus, the last step in real time 

track prediction on-board the UAV will be a conversion to account for this parallax.  

In the considered case, tracking could be performed directly in the BRF, or in NED. The 

advantage of tracking in body coordinates is that the measurement conversion in NED is 

avoided, thus eliminating the effects of errors in attitude angles measurements. However, 

navigation errors would impact the tracker in any case since inertial measurements with their 

errors (accelerations and angular velocities) should be used also in this case. Moreover, the 

real drawback is that relative motion in BRF includes attitude dynamics, which makes it more 

difficult to track, unlike its projection in NED, which only depends on relative position 

dynamics. The difference between filtering in BRF or NED is somewhat similar to what 

happens in navigation, regarding the choice of stable platforms or strapdown systems. 

Furthermore, from a practical point of view, tracking in BRF can be heavily impacted by 

latencies in navigation data acquisition and reception by the tracker. Thus, in view of the 

considered application the NED was considered as the tracking reference system, while both 

body and stabilized estimates were considered to evaluate system performance and the impact 

on it of navigation errors. This comparative analysis is especially detailed in the following 

chapter.  

In general, in tracking applications, several applicable models exist [63], which differ first of 

all in the state variables’ choice [56,57]. In fact, it is possible to operate in Cartesian or in 

spherical coordinates.  

The two choices are in substance complementary in terms of advantages and drawbacks.  

Cartesian coordinates are useful in the prediction phase since relative dynamics is linear with 

good approximation in these coordinates in absence of intruder aggressive maneuvers. A 

common choice consists in considering as state variables the three NED coordinates of the 
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intruder, together with their first order time derivatives (which are the components of relative 

velocity), and possibly also the second and third order derivatives. Of course, tracking 

computational load increases as a function of the number of state vector components. 

On the other hand, cartesian coordinates have the inconvenient that measurement equation is 

non linear, since both radar and EO sensors provide measurements in spherical coordinates. 

The problem can be faced in different ways.  

A very efficient solution consists in considering in the measurements’ vector the sensor 

measurements converted in Cartesian coordinates [68]. The transformation that is performed 

must be debiased and consistent [69-71]. However, this transformation requires the existence 

of a range measure, which is not the case of videocameras’ measurements. It could be 

possible to derive the Cartesian “pseudo-measurements” by using the range prediction, but 

this introduces a potential for instability in the system, directly merging prediction and 

measures. From the computational point of view, in any case this procedure requires that 

measurement covariance matrix is calculated in real time.  

The alternative is to implement an Extended Kalman Filter (EKF), where the relation state 

vector-measurements is linearized at each time step on the basis of the latest state estimate. Of 

course, it requires on-line calculation of measurement matrix H through derivation. 

In detailed terms, a linear Kalman filter based on converted Cartesian coordinates can be 

developed as follows. Let us consider that the state vector is made up by 9 components, which 

are the obstacle NED coordinates with their first and second time derivatives.  

Thus, 
|.........

⎥⎦
⎤

⎢⎣
⎡= NEDNEDNEDNEDNEDNEDNEDNEDNED zzzyyyxxxx  

A classical Singer model can be assumed for the three target acceleration components. Thus, 

system dynamics is described by the equation 
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where the transition matrix is a 9 X 9 block diagonal matrix: 
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with the three f blocks in the form of equation (4). Each of them refers to a coordinate, so that 

different input parameters can be defined for the three components of target random 

acceleration.  

In the same way, Q matrix is a 9 X 9 block diagonal matrix 
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and each of the q blocks takes the form of equation (5). 

The deterministic input vector uk contains the UAV acceleration components (projected in 

NED) and thus allows for own-ship motion compensation: 
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The measurement equation (considering radar measurements) is in the standard linear form: 
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Converted measurements can be debiased with proper equations [68]. This procedure 

influences measurement covariance matrix, which is a full matrix in the form 
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Explicit expressions for entries are provided in [71]. It is important to point out that they 

depend on measurement values and so R has to be calculated in real time. It is also important 

to point out that Cartesian structure generates a coupling effect in measurement errors, even if 

it is supposed that original radar range and angular errors are uncorrelated. 

When only electro-optical measures are available, as already said the only way to obtain 

converted “pseudo-measurements” is to combine range prediction and angular measurements. 

As obvious, in the latter case the EO angular accuracy must be accounted for in the evaluation 

of R matrix. At the same time, range estimate accuracy can be taken from filter covariance 

matrix. 

When both radar and EO measurements are available, R becomes a 6 X 9 matrix with the 

entries evaluated as in the case of radar only/EO only updates. 

Initial state can be estimated on the basis of (radar) measurements and UAV velocity and 

acceleration as provided by the GPS system and by the inertial unit: 
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Initial covariance matrix P can be estimated based on R entries for obstacle position, while 

uncertainties on relative velocity and acceleration can be initially estimated on the basis of 

typical obstacle dynamic behavior. It makes sense to choose a large initial covariance matrix 

in order to give a large weight to radar measurements in the track initialization phase. 

An alternative approach for the introduction of angular-only estimates from EO sensors in a 

Cartesian model consists in adopting an Extended Kalman Filter. In this case, non linearity in 

measurement equation is handled by linearization around the latest state estimate. In detail, 

the EKF can be based on the same dynamic model as the previous filter. The measurement 

vector in case of radar detections is instead 

 

[ ]NEDNEDRy ϑϕ=      (17) 

 

where ϕNED and θNED represent, respectively, target azimuth and elevation as computed in 

NED, usually named “stabilized azimuth” and “stabilized elevation”. 

The measurement vector reduces to the second and the third coordinate of equation (17) in 

case of EO detections, while synchronous detection by radar and EO sensor can be accounted 

for by means of a five components vector. Obviously, in case of combined radar/EO 

detection, the filter will weight EO angular estimates more than the less accurate radar ones. 

The non-linear measurement equation (considering the radar) is 
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and can be linearized around the latest state prediction. Thus, in the EKF case H has to be 

evaluated in real time, while R is constant and assigned off-line on the basis of sensors 

specifications.  

Linearization can be performed on the basis of predicted state also in case of EO angular-only 

measurements: thus, introduction of EO sensors is made in EKF more simply.  

A totally different choice is to operate in spherical coordinates. It is worth noting that these 

coordinates are not the sensors’ coordinates, since it is supposed that tracking is performed in 

NED in any case. Nevertheless, the relevant advantage is in the linear measurement equation, 

both for radar and EO sensor measurements. However, since relative dynamics, even in non-

maneuvering phases, is characterized by strong non linearities in spherical coordinates (the 

so-called “pseudo-accelerations”, [57]), estimates of high order derivatives of the angles 

would be required. Following Blackman [56], it is possible to derive spherical filters that 

attenuate these effects, but it is worth noting that they grow for decreasing obstacle distance, 

since angular variations are very fast when intruder distance is, for example, less than 1 km. 

Usual implementations foresee the use of spherical coordinates for large target distances [65].  

The most important feature of spherical filters is that, under reasonable assumptions 

(essentially, elevation angle must be sufficiently small) it is possible to decouple the filters for 

range, azimuth and  elevation, obtaining a lighter algorithm from the computational point of 

view. In any case, range and angle filters have to exchange their estimates for range and angle 

extrapolation.  

Detailed derivation of spherical filters for airborne tracking is rather complex and is reported 

in [56]. The range filter uses range, range rate, and range acceleration as states, and the Singer 

model can be used for range acceleration. Own-ship acceleration is included in the model by 

projection in the RHV reference frame. The latter is a target-dependant reference frame with 
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one axis along the range vector, and the other two axes perpendicular to the range vector and 

in the horizontal and vertical plane, respectively (figure 3). 

V
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θNEDφNED

R

E
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Figure 3 – Definition of RHV reference frame 

 

RHV reference frame also allows to define the angle filters. In fact, the state components are 

not the stabilized angles with their time derivatives, but, in the case of stabilized azimuth for 

example 
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where vH and aH are, respectively, the relative velocity component perpendicular to the line of 

sight along the H axis of the RHV reference frame, and the horizontal relative acceleration. 

This choice allows for reduction of pseudo-acceleration effects.  

Analyzing the structure of spherical filters, it comes out that some information must be 

exchanged among range and angle filters in order to propagate system dynamics. In fact, as 

shown in equation (20), range filter transition matrix contains target angular rate 

perpendicular to its line of sight (ωp), which can be estimated on the basis of angle filters.  
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In equation (20), ( )TRaR μρ −= exp  where μR is the inverse of maneuver time constant for 

range dynamics. 

On the other hand, propagation of angle filters requires (again in the transition matrix) 

estimates of range and range rate, which are provided by the range filter. For example, 

transition matrix for the azimuth filter is reported in equation (21) 
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Moreover, Q matrices for azimuth and range have to be amplified for decreasing range, in 

order to take into account faster angular dynamics. 

For each of the three filters, the measurement equation is linear with 

 

[ ]001=H      (22) 
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and the definition of the three R matrices is straightforward. 

The computational advantage of the spherical filters relies on the fact that the three filters 

require handling and inversion of 3 X 3 matrices instead of a 9 X 9 matrix as before. 

However, unlike Cartesian filters these schemes require real time adjusting of the dynamic 

model, in terms of transition and noise matrices.  

On the other hand, it is worth noting that filter decoupling in the Cartesian coordinates case 

can be obtained only paying the cost of degraded performance, which is essentially due to the 

fact that the measurement errors in Cartesian coordinates are coupled even though radar errors 

on range and angles are independent. 

These filtering/prediction schemes have been tested in order to understand their advantages 

and drawbacks in view of the considered application. The results are reported in what follows. 

 

3.4.4. Inclusion of navigation uncertainties in track updating and 
gating 

 

Navigation estimates are in general very important for tracking, since they allow for own-ship 

motion compensation. Considering the mathematical structure of the filters introduced above, 

in particular, acceleration estimates are used for deterministic input, velocity estimates are 

used in track initialization phase, while angular velocity estimates are not used: their only 

function is to provide azimuth and elevation rate estimates in Body Reference Frame, starting 

from predicted angular rates in NED. Though attitude angles do not appear explicitly in the 

algorithms, they are the most important navigation parameters: in fact, as already said they are 

used for transformation of sensor raw measurements in NED. Attitude angles estimation is 

basically affected by a slow time-varying bias, and a noise. Of course, biases can not be 

removed and will affect tracking accuracy in NED. As for noise, it is important to point out 

that it must be accounted for in the tracking algorithm since it affects measurement covariance 

matrix. Otherwise, a too optimistic R estimate can result in a too optimistic P estimate, with 

the result of generation of biases in tracks. Moreover, the gating process can be negatively 

affected by these errors: the gate can become too small preventing from correct association 

and track updating. 
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Estimation of angular errors in NED based on uncertainty in azimuth and elevation in BRF, 

and on uncertainty in heading, pitch and yaw, can be performed analytically by first order 

approximations.  

In fact, transformation from BRF to NED is performed in the following steps: 

- φBRF and θBRF are used to evaluate components of target unit vector in BRF 
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- the vector is converted in NED through the attitude matrix 
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- the new unit vector components are used to calculate φNED and θNED 
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Analytical computation of angular errors in NED is based on these relations and for the sake 

of brevity is not reported; what is important is that errors depend not only on the uncertainties, 

but also on the target position and aircraft attitude. 

In theory, this would require that measurement uncertainties are computed in real time during 

track propagation, whatever filtering scheme is used. However, uncertainty variation is rather 

small, so that the approach for implementation has been to amplify R entries by fixed 

coefficients, which were evaluated off-line by means of extensive Monte Carlo simulations.  
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3.5. Numerical analysis of different intruder state estimation 

algorithms  

 

A numerical analysis has been carried out in order to point out the main differences in state 

estimation algorithms performance [72]. In particular, the three filters described above have 

been tested in a simplified dynamic environment. Since the primary interest was to establish 

the differences between different choices of tracking filters, no maneuvering handle logic 

(like Interacting Multiple Models, for example [46]) has been applied. Moreover, this choice 

is related to the necessity of keeping a light computational load, as it will be further explained 

in the following.   

The following simplified dynamic scenario has been chosen: UAV moves towards North with 

constant speed (40 m/s) and incidence angle (2°), and unperturbed attitude, whereas a flying 

obstacle is moving with almost the same speed (35 m/s) southward. There is no altitude 

separation between the two airplanes, and, in East direction, there is a constant offset equal to 

165 m, that is the previously recalled bubble distance. This can be considered as a near 

collision scenario, since the minimum distance between airplanes equals the bubble distance. 

The geometry is illustrated in figure 4. 

N

E

 

Figure 4 – Simulated near collision scenario 
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Both the UAV and the intruder aircraft are considered as Very Light Aircrafts (VLA), with a 

mean Radar Cross Section of 1 m2, and they are both Swerling 2 targets (propeller-driven 

airplanes) [73]. Swerling obstacle categories are further clarified in the following when 

describing the radar detection process simulator.  

As for navigation data, measures have been simulated by corrupting real values with a 

constant bias and a white zero mean Gaussian random noise. These parameters are reported in 

Table 1: 

 

Parameter Bias Noise standard deviation

Heading angle error 1° 0.15° 

Pitch angle error 1° 0.15° 

Roll angle error 1° 0.15° 

Acceleration components’ error (BRF) 0.1 m/s2 0.1 m/s2 

Angular velocity components’ error (BRF) 1·10-3 rad/s 5·10-3 rad/s 

Table 1 - Biases and noises of navigation errors 

 

The tracking filters are all designed to produce estimates at a frequency of 10 Hz, consistently 

with system requirements for the anti-collision system. As for obstacle detection sensors, in 

this numerical analysis it is supposed to have a pulse radar (range rate not available), plus an 

EO system. Radar range accuracy is 15 m, and its angular accuracy is 2° both in elevation and 

in azimuth, data rate is 1 Hz. These data are consistent with AmphitechTM OaSYSTM radar 

specifications. The radar detection process is simulated according to references [74, 75] 

through a radar detection process simulator which is briefly described in the next chapter. The 

radar Field Of View (FOV) dimensions are 120° in azimuth and 20° in elevation, whereas the 

EO FOV is supposed to be 50° in azimuth and 40° in elevation.  

Due to the difficulty in generating simulated images of the scenario as seen by the EO 

sensors, the latter have been simulated in a simplified way. In fact, it is supposed that the EO 

system gives angular measures with an accuracy of 0.1° (in the BRF) at a frequency of 2 Hz, 

when intruder distance is less than 3 km. It is worth pointing out that electro-optical sensors 

usually work at higher frequencies, nevertheless a low frequency was chosen to account for 

the time necessary for image processing, and to show the large improvement of  tracking 

performance that is obtained when accurate angular measures are achievable, even at this 



Chapter 3. Airborne multi-sensor tracking algorithm design.  66

frequency. Sensors’ mounting misalignment error is neglected. Details about obstacle 

detection sensors simulation are summarized in table 2. 

 

DS&A 

Sensors 

Detection 

range 

σ range 

(m) 

σ angles 

(BRF) (°) 

FOV 

azimuth (°) 

FOV 

elevation (°) 

Data rate 

(Hz) 

radar >3 km 15 2 120 20 1 

EO 3 km / 0.1 50 40 2 

Table 2 – Obstacle detection sensors simulation parameters 

 

The selected scenario allows to test the tracking filters in different phases. At first, the 

intruder is detected by the radar only, without detection misses, thus the system fast switches 

to firm tracking. After about 26 s, due to decreasing range (figure 5) the obstacle is detected 

by both sensors in some instants, by the EO system only in others. Intruder lies in the radar 

FOV for 65 s, then it is no more detectable because azimuth angle becomes larger than 60° 

(figure 6). 

 

Figure 5 – Range as a function of time in the considered scenario 
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Figure 6 – Azimuth angle as a function of time in the considered scenario 

 

Due to the non deterministic nature of sensors detection, both for radar and EO cameras, a 

statistical approach is needed to assess algorithm performance. Thus,  for this scenario 100 

Monte Carlo simulations have been performed regarding the generation of radar, EO and 

navigation measures, and then tracking filters have been applied to their output.  

Ellipsoidal gating (see next section) was taken into account in these simulations: that is, track 

was updated only if measurement satisfied gate. It is worth noting that no gating problems 

were observed, which is indirectly a confirmation of prediction and measurement covariance 

matrices consistency.   

Next figures report estimation errors for the three filters, considering both mean and standard 

deviation values, as a function of time to collision. Collision is considered to happen when 

intruder distance becomes equal to the bubble distance. In particular, range error is reported in 

figures 7-9, azimuth error is reported in figures 10-12, elevation error is reported in figures 

13-15. 
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Figure 7 – Error in range estimate for Cartesian filter, in terms of mean and standard deviation 

 

Figure 8 - Error in range estimate for Cartesian EKF, in terms of mean and standard deviation 



Chapter 3. Airborne multi-sensor tracking algorithm design.  69

 

Figure 9 - Error in range estimate for spherical filters, in terms of mean and standard deviation 

 

Figure 10 - Error in azimuth estimate for Cartesian filter, in terms of mean and standard deviation 



Chapter 3. Airborne multi-sensor tracking algorithm design.  70

 

Figure 11 - Error in azimuth estimate for Cartesian EKF, in terms of mean and standard deviation 

 

Figure 12 - Error in azimuth estimate for spherical filters, in terms of mean and standard deviation 
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Figure 13 - Error in elevation estimate for Cartesian filter, in terms of mean and standard deviation 

 

Figure 14 - Error in elevation estimate for Cartesian EKF, in terms of mean and standard deviation 
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Figure 15 - Error in elevation estimate for spherical filters, in terms of mean and standard deviation 

 

The analysis of these figures allows to appreciate that the three filtering schemes exhibit 

similar performances in terms of global accuracy. The different modes of the tracking 

algorithm are put into evidence by vertical separation lines. When firm radar tracking is 

activated, the error decreases for decreasing intruder distance, which is due to the fact that 

angular errors are stable. However a great drop of the positioning error is achieved only when 

the fusion radar/EO is activated. This happens whatever filtering scheme is used, and is due to 

the possibility to use accurate angular measures, even at relatively low frequencies. In fact, it 

is worth underlining that angular estimates are produced at a frequency of 10 Hz, while EO 

measurements are simulated at a frequency of 2 Hz. On the other hand, range error is not 

influenced so much by EO activation.  

Though some differences in tracking accuracy can be noted in firm radar and firm radar/EO 

phases, the difference between the filters appears only when intruder distance is really low. In 

fact, at this point the high angular rates (especially in azimuth), combined to the fact that 

spherical filters tend to be less precise in absence of frequent updates, produce a greater error 
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for the latter ones. In particular, figure 12 puts into evidence unstable behavior in azimuth 

estimation process.  

Instability in azimuth estimates is reflected also in the range and elevation filters (figures 9 

and 15), because of the exchange of information on which state prediction is based in 

spherical filters.  

It is worth noting that the considered situation is a limit case, with a time to collision of a few 

seconds and no avoidance maneuvers. However, it is evident that spherical filters are less 

reliable at very low distances, or in case of detection misses.  

A different behavior is shown in both Cartesian filters. In fact, an increase in error standard 

deviation is observed, which is due to the lack of measurements by the sensors (the obstacle 

goes out of their FOV). However, in these cases, average range and angular errors are very 

stable around zero even in the last seconds before collision. This result is due to the fact that 

the fast angular dynamics due to relative motion does not affect at all these algorithms,  since 

the state vector is expressed in terms of relative coordinates and not angles.  

Considering the case of the Cartesian filters with de-biased converted measurements, no 

unstable phenomena were observed when updating tracks only by EO measures. It is useful to 

point out that, to be more conservative, the accuracy estimate for predicted range was taken to 

be constant and equal to 12 m, that is of the order of the estimated standard deviation of range 

error in the one sensor configuration. However, as already said the reliability of this 

procedure, which directly merges prediction and measure, still needs to be verified.  

In summary, the best compromise between reliability, computational load and accuracy seems 

to be the Extended Kalman Filter, as it results considering mean obstacle positioning error, 

which is reported in figure 16 for the three filters. Thus, the EKF in Cartesian coordinates has 

been selected for real time implementation and is considered in the following. 
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Figure 16 – Positioning mean error as a function of time for the different considered filters 

  

3.6. Further elements and considerations about tracking 

algorithm  

 

The previous study allowed to identify potential choices for the obstacle kinematic state 

estimation algorithm. This section reports design choices relevant to the other tracking 

algorithm modules.  

First of all, ellipsoidal gating has been considered for the anti-collision system. This means 

that, in order to perform measurement-to-track association, the following decision statistics is 

considered: 
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where 
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x is the track state prediction at time of detection, P is the predicted state estimation 

covariance matrix at time of detection, and 
^
y  is predicted measurement at time of detection 

on the basis of predicted state and measurement equation. 

This is a normalized distance between measurement and prediction. Normalization is made on 

the basis of measurement and prediction uncertainties (that is, covariances). This answers to 

the very intuitive principle that the more the track and the measurement are believed to be 

accurate, the more the measurement-to-track distance will be expected to be small. This also 

implies that an excessively optimistic covariance estimate (both for state and measurement) 

can be dangerous and can definitely lead to track deletion. The statistic ξ is distributed as a 

chi-squared normal variable with a number of degrees of freedom that equals the dimension 

of the measurement vector. Thus, in the considered system (radar measurement) n=3. The 

upper limit for the statistic can be defined to yield a given (low) probability of rejecting the 

correct measurement when present. Assuming for example this probability equal to 0.01, from 

chi-square tables the gate limit is 11.34. This limit establishes in the state space an ellipsoidal 

region, hence the definition of ellipsoidal gating. 

  

As for association, given the civil scenario considerations (section 2) and the sense and avoid 

flight tests planning (first experiments with a single intruder in UAV field of regard), it is 

believed that it can be kept at a very simple level in the on-board software first version. In 

fact, it will be based on nearest neighbor logic. 

   

Another point to be analyzed is the possibility to use more complex dynamic models, not only 

based on a priori information. Singer model, as already stated, has been considered as a 

suitable choice for the application since it covers a wide range of obstacle dynamics. Of 

course, as already stated before its accuracy depends on input parameters for the 

accelerations, which basically establish the filter bandwidth. This is clearly a non-optimal 

choice if obstacle behavior changes a lot with time. In this case, different approaches can be 

followed, such as state augmentation or system noise adaptation [56], but the most effective 

solution is to use a multiple model approach, in particular the Interacting Multiple Model 

(IMM) estimator [44].  

IMM is based on a bank of Kalman filters running in parallel. Intruder state estimation can be 

based on a weighted average of estimates from the different models, where the weights are 
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evaluated on-line on the basis of different modes probabilities (i.e., on the basis of sensor 

measurements). In IMM implementation, it makes sense to use dynamics models which are 

sufficiently different from each other, so that it is easier to establish which one is better 

related to measurements. The obvious drawback of IMM, compared to classical single 

Kalman filter implementation, is in the computational weight.  

Since all the study described in this thesis was focused on real time implementation and flight 

demonstration, IMM has not been implemented on the on-board unit. Nevertheless, a research 

effort to establish which advantage can derive in the collision avoidance application from 

IMM usage is considered among future developments.  
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Chapter 4 

 

Tracking system performance assessment 
 

 

 

 

4.1. Introduction 

 

The analysis proposed in the previous chapter allowed to identify candidate solutions for 

multiple sensor integration in the tracking module. In particular, the Extended Kalman filter in 

Cartesian NED coordinates was found to be a reasonable compromise in view of the collision 

avoidance application. In this chapter, a detailed analysis about EKF behavior in real collision 

avoidance scenarios will be proposed [76].  

This numerical study was carried out in collaboration with the Flight Systems Department at 

CIRA, which is responsible for development of collision avoidance logic and software. Thus, 

CIRA provided the collision scenarios to be given as input to the tracking algorithm. 

Among the scopes of this activity, one was to establish tracking sensitivity to different 

avoidance maneuver choices. In fact, obstacle avoidance can be performed in different ways, 

depending on how aggressive is the UAV maneuver. Aggressive maneuvers are basically 

characterized by a larger attitude and position dynamics, which directly impacts the sensor 

system which is, of course, body fixed.  
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On the other hand, avoidance can be obtained by gradual small changes in trajectory (and 

attitude). Moreover, maneuvers can be performed in the horizontal plane, in the vertical plane, 

or in a combination of the two. The performed numerical analysis allowed to point out the 

main differences among the different maneuvers from the tracking point of view. 

Another goal of the study was to provide a realistic assessment of tracking system 

performance, to be also provided as input for Monte Carlo simulations dealing with avoidance 

maneuvers execution. What has been obtained can be considered as a realistic estimate of 

tracking system accuracy in absence of real time implementation issues such as latencies in 

navigation data exchange and sensor measurements transmission. Nevertheless, as it is 

explained in the following chapter, the on-board system has been designed to minimize these 

effects.    

 

4.2. Simulation software environment 

 

Obstacle detection and tracking performance was tested following the line of reasoning shown 

in figure 1. It also reports the software tools which were used.  

 

Collision Scenario Collision Scenario 
Dynamic SimulatorDynamic Simulator

Flying laboratory simulator 
(6 DOF)

Intruder simulator (3 DOF)

Navigation sensors Navigation sensors 
simulatorsimulator

Obstacle detection Obstacle detection 
sensors simulatorsensors simulator

Radar simulator

EO simulator

Tracking algorithm Tracking algorithm 
simulatorsimulator

Tracking error estimationTracking error estimation  

Figure 1 – Logic of tracking performance estimation 
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Given the off-line nature of the simulation, all the tools were developed in the 

MatlabTM/SimulinkTM environment. The collision scenario dynamic simulator includes the 

flying laboratory simulator and the intruder simulator. The first is based on a 6 Degrees of 

Freedom (DOF) dynamic model with related aerodynamic and inertial uncertainties, and the 

outside environment with Von-Karman turbulence and wind-shear models. The intruder 

dynamics is based on a 3 DOF model which however takes into account some dynamic 

limitations.   

Navigation sensors have been simulated on the basis of referenced models [77]. In particular, 

AHRS and GPS measurements have been simulated by considering the lever arm effect and 

sensors’ biases and noises. The latter have been assigned based on datasheets for the sensors 

installed on-board FLARE [78, 79]. 

Regarding obstacle detection sensors, as already stated in the previous chapter the EO system 

has been simulated in a simplified way by assuming a given angular accuracy and detection 

range. The radar sensor, instead, has been simulated by computing probability of detection for 

the target as a function of its range from the UAV. Of course, since the detection process is 

intrinsically non deterministic, a Monte Carlo approach is required for radar simulation. 

Radar simulator computes obstacle probability of detection if the intruder lies in the radar 

Field of Regard. In this case, first of all radar equation allows to evaluate one pulse signal to 

noise ratio (SNR).  

Radar equation can be expressed as follows: 
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where the following parameters depend on the sensor: 

- Pt: peak transmitted power; 

- Gt, Gr: antenna gain in transmission/reception; 

- λ: wavelength; 

- τ: impulse duration; 

- Fn: receiver noise figure. 
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L represents atmospheric losses, k is the Boltzmann constant, R represents range and σ is the 

obstacle radar cross section (RCS). 

Regarding the latter, it is important to point out that the value in (1) is, in statistical terms, the 

RCS mean value: RCS, in fact, is an aleatory variable. RCS statistical properties do not 

influence one pulse SNR, but do influence probability of detection.  

Radar targets can be classified on the basis of the classical Swerling classification [73], 

according to which they can be divided in five categories, as reported in table 1: 

 

Swerling case 
Scan to scan 

fluctuations 

Pulse to pulse 

fluctuations 
Example 

0 No No Sphere 

1 Yes-Complex No Jet Aircraft 

2 Yes-Complex Yes Propelled Aircraft 

3 Yes-Simple No Small missile 

4 Yes-Simple Yes Small prop missile 

Table 1 – Swerling classification 

 

Swerling type influences probability of detection since typically radars can integrate 

consecutive impulses in order to increase this probability: thus, RCS autocorrelation 

properties influence the probability density for the receiver output, which is made by signal 

plus noise. Probability of detection can be evaluating integrating the (signal+noise) 

probability density function from the threshold to infinite. Threshold value depends on the 

assumed false alarm probability. When probability of detection is computed, detection is 

simulated by extracting a random number from the [0,1] uniform distribution. In case of 

detection, measurement is generated by corrupting true range and angles with an additive 

white Gaussian noise with zero mean and a given standard deviation. In particular, in the 

considered case, range standard deviation is considered to be 15 m, while angular accuracy is 

2°. It is worth noting that more accurate models of radar measurement generation exist 

[65,80], where measurement accuracy is expressed as a function of SNR. However, the 

adopted choice can be considered conservative (also in view of the collision avoidance 

application) and in fact it is typically adopted in simulation for tracking systems. Figure 2 

shows the flux diagram for the radar simulator. 
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Figure 2 – Flux diagram for the radar simulator 

 

Key parameters for sensors simulation have already been reported in chapter 3 (table 2). It is 

worth recalling that, in view of planned flight tests, the intruder has been simulated as a 

Swerling 2 target (propeller-driven airplane) with a mean Radar Cross Section of 1 m2. 

Both for radar and EO cameras, sensors’ mounting misalignment error has been neglected. 

However, a calibration phase is foreseen before of the first collision avoidance flight tests and 

has already been positively tested, showing the capability to estimate cameras’ alignment with 

respect to the AHRS with a residual error of the order of 0.3°. This alignment technique is 

detailed in the following. 

Also, cameras’ vibration has been neglected, due to the fact that EO images taken during first 

preliminary flights devoted to system identification and EO sensors functional verification 

have shown that image quality is not affected by these phenomena. 
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4.3. Collision scenarios 

 

Ten collision scenarios have been generated as follows: 

 

1. The two airplanes fly at an altitude of 300 m, initial distance among them is 3.5 nm 

and they are moving towards each other. The UAV avoids collision by means of a maneuver 

in horizontal plane near the safety bubble (figure 3). 

 

2. The two airplanes fly at an altitude of 300 m, initial distance among them is 3.5 nm 

and they are moving towards each other. The UAV avoids collision by means of an 

aggressive maneuver in horizontal plane with maximum roll angle (40°), changing track angle 

of 90° with respect to nominal trajectory. 

  

3. The two airplanes fly at an altitude of 300 m, initial distance among them is 3.5 nm 

and they are moving towards each other. The UAV avoids collision by means of a maneuver 

in vertical plane near the safety bubble. 

  

4. The two airplanes fly at an altitude of 300 m, initial distance among them is 3.5 nm 

and they are moving towards each other. The UAV avoids collision by means of an 

aggressive maneuver in vertical plane, changing slope angle of 8° with respect to nominal 

trajectory. 

 

5. The two airplanes fly at an altitude of 300 m, initial distance among them is 3.5 nm 

and they are initially moving on parallel trajectories. After 28.4 s the intruder performs a 

maneuver in the horizontal plane, changing its direction of 20 ° towards the UAV. The latter 

avoids collision by means of a maneuver in the horizontal plane near the safety bubble (figure 

4). 

 

6. The two airplanes fly at an altitude of 300 m, initial distance among them is 3.5 nm 

and they are initially moving on parallel trajectories. After 28.4 s the intruder performs a 

maneuver in the horizontal plane, changing its direction of 20 ° towards the UAV. The latter 

avoids collision by means of an aggressive maneuver in the horizontal plane. In fact, UAV 
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performs a turn with maximum roll angle (40°) changing its direction of 90° with respect to 

nominal trajectory. 
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Figure 3 – Graphical description of scenario no. 1   

   

7. The UAV is initially flying at an altitude of 300 m, while the intruder is flying at an 

altitude of 463 m, initial distance among them is 3.5 nm and they are initially moving on 

parallel trajectories. After 30.78 s the intruder performs a maneuver in the vertical plane, 
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changing its direction of 5° in slope towards the UAV. The latter avoids collision by means of 

a maneuver in the vertical plane near the safety bubble. 
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Figure 4 - Graphical description of scenario no. 5  

 

8. The UAV is initially flying at an altitude of 300 m, while the intruder is flying at an 

altitude of 463 m, initial distance among them is 3.5 nm and they are initially moving on 

parallel trajectories. After 30.78 s the intruder performs a maneuver in the vertical plane, 

changing its direction of 5° in slope towards the UAV. The latter avoids collision by means of 
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an aggressive maneuver in the vertical plane, changing its slope angle of 8° with respect to 

nominal trajectory.  

  

9. The UAV is initially flying at an altitude of 300 m, while the intruder is flying at an 

altitude of 137 m, initial distance among them is 3.5 nm and they are initially moving on 

parallel trajectories. After 30.78 s the intruder performs a maneuver in the vertical plane, 

changing its direction of 5° in slope towards the UAV. The latter avoids collision by means of 

a maneuver in the vertical plane near the safety bubble. 

  

10. The UAV is initially flying at an altitude of 300 m, while the intruder is flying at an 

altitude of 137 m, initial distance among them is 3.5 nm and they are initially moving on 

parallel trajectories. After 30.78 s the intruder performs a maneuver in the vertical plane, 

changing its direction of 5° in slope towards the UAV. The latter avoids collision by means of 

an aggressive maneuver in the vertical plane, changing its slope angle of 8° with respect to 

nominal trajectory. 

 

4.4. Numerical results 

 

As in the analysis proposed in the previous chapter, also in this case for each scenario 100 

Monte Carlo simulations have been performed regarding the generation of radar and EO 

measures, and then tracking filters have been applied to their output. In summary, a set of 

1000 complete detection/tracking simulations have been performed.  

In all the considered scenarios, initial range is of about 6 km. As a consequence, for the given 

radar parameters, probability of detection is high and there are very few detection misses. 

Thus, after the first intruder detection, the system fast switches from tentative radar tracking 

to firm radar tracking. On the basis of how EO sensors have been simulated, this tracking 

phase lasts until the obstacle goes out of the sensors FOV or the distance between the UAV 

and the intruder becomes smaller than 3 km. If this is the case, the system switches to 

combined radar/EO tracking with a dramatic improvement in angular accuracy, as it has 

already been shown in the simplified scenario of chapter 3 and it is confirmed in the 

following. In all cases tracking ends when the intruder is no more detectable by radar/EO 

sensors because it is out of their FOV. When this happens, after a few seconds the track is 
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lost. It is worth pointing out that since tracking filter is based on a linear dynamic model in 

Cartesian NED coordinates, and the intruder follows a straight trajectory, even when the 

obstacle is no more detectable the accuracy of obstacle positioning is very stable for many 

seconds. This behavior can be considered as another advantage in terms of reliability with 

respect to spherical filters implementation. Of course, from the point of view of autonomous 

collision avoidance module operation it must be considered that these estimates are affected 

by a large uncertainty.  

In the following, for the sake of brevity only one collision scenario will be examined in detail. 

Then, statistic data of the simulations performed on all the scenarios will be provided. The 

considered scenario for detailed analysis is the scenario 1, which is depicted in figure 3. 

Exact values for range, azimuth and elevation with respect to the radar sensor (i.e., in Body 

Reference Frame) are provided in figures 5, 6 and 7. It can be seen that the minimum distance 

between the airplanes is of about 165 m , and that the intruder goes out of the radar FOV after 

a time of approximately 70 s.  

It is worth recalling that the radar is the main sensor and it is the only sensor used for 

association and track status definition. This also means that EO detection does not influence 

track status but only track update in terms of state and covariance estimate. Moreover, EO 

measurements are not used in the data association process.  

Figure 7 shows that elevation dynamics in body is very perturbed following in substance 

UAV pitch dynamics. In fact, relative dynamics in NED is much less perturbed, as shown by 

the trend of stabilized elevation, reported in figure 8. 
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Figure 5 – Range in the considered scenario as  function of time  
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Figure 6 - Azimuth (in BRF) in the considered scenario as a function of time 
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Figure 7 - Elevation (in BRF) in the considered scenario as a function of time 
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Figure 8 - Stabilized elevation in the considered scenario as a function of time 
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Focusing now on tracking estimates, let us consider first of all tracking performance in a 

single simulation. Figures 9, 10 and 11 report errors with respect to exact values in range, 

azimuth and elevation (in BRF). Tracking estimation error (sampled at 10 Hz) is reported in 

blue, whereas radar measurement error (sampled at 1 Hz) is reported in red.  

It can be seen how the algorithm filters sensor noise though preserving its reliability, in fact 

no biases are produced. EO sensors detection corresponds in the simulated scenario to a time 

of about 39s. Since cameras provide only angular measures, their effect on range error is not 

so much evident, though an improvement can be observed and is due to the coupling between 

range and angles produced by the Cartesian EKF structure. EO effect can be better 

appreciated in figure 10 and figure 11, with a large improvement in tracking accuracy. It is 

worth pointing out that the more “perturbed” trend of azimuth and elevation estimates with 

respect to the range ones is due to the UAV attitude dynamics more than on the tracker (which 

operates in NED, as stated before).  
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Figure 9 - Radar and track range error as a function of time 
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Figure 10 - Radar and track azimuth error as a function of time 
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Figure 11 - Radar and track elevation error as a function of time  
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Figure 12 reports range rate tracker estimation compared with true range rate from the 

scenario. Of course, since the radar gives no Doppler information, tracker estimates can not be 

compared with measurements. This estimate is important since it allows to evaluate obstacle 

velocity: before the maneuver, relative velocity has components only in the range direction. It 

can be appreciated how the filter estimate converges towards the true value. In figure 13, 

considered time interval lasts more than 70 s (which corresponds to sensors visibility time in 

this scenario). This allows to appreciate the filter estimate stability without updates: this is 

connected to the good approximation of the dynamic model with respect to the simulated 

scenario.  
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Figure 12 – Tracking range rate estimate compared with true range rate in the considered scenario 

 

Following figures report range and angular errors for the considered scenario as a function of 

time, considering all the 100 Monte Carlo simulations and the statistical mean and standard 

deviation calculated on them. The different tracking phases (firm radar and firm radar/EO) are 

explicitly indicated. During firm radar tracking phase, the tracker follows intruder trajectory 

with a positioning accuracy which improves in time due in substance to the reducing distance 

between the airplanes. EO detection is not so much visible in range error diagram (figure 13), 
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whereas it reduces so much standard deviation of errors on the angles that the three diagrams 

(mean, mean plus standard deviation, mean minus standard deviation) are hard to distinguish 

(figures 14 and 15). If we consider NED estimates (figures 16 and 17), then a less perturbed 

trend is obtained (no effects of attitude dynamics) and it is easier to estimate reduction of 

standard deviation in angular errors.  

Furthermore, it is interesting to observe that biases are produce both in stabilized azimuth and 

in stabilized elevation. This is closely connected to the AHRS errors in estimating attitude 

angles. In fact, stabilized azimuth error mean equals in substance the bias in heading estimate, 

whereas a smaller error mean is observed on stabilized elevation, which is of the same order 

of magnitude of biases in estimates of roll and pitch angles. These relations are due to the fact 

that an almost non maneuvering flight segment is considered.  In a few words, biases in 

navigation errors are almost completely filtered in body angular estimates, and thus corrupt 

only NED estimates.   
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Figure 13 - Error in range estimate, in terms of mean and standard deviation 
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Figure 14 - Error in azimuth estimate, in terms of mean and standard deviation 

0 10 20 30 40 50 60 70
-3

-2

-1

0

1

2

3

4

5

time (s)

el
ev

at
io

n 
er

ro
r (

°)

firm radar tracking firm radar/EO tracking 

 

Figure 15 - Error in elevation estimate, in terms of mean and standard deviation 
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Figure 16 - Error in stabilized azimuth estimate, in terms of mean and standard deviation 
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Figure 17 - Error in stabilized elevation estimate, in terms of mean and standard deviation 
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Rate estimates allow for similar considerations. Range rate estimates are very stable and 

increasingly more and more accurate for decreasing distance (figure 18). Body angular rate 

estimates (figures 19 and 20) are influenced by attitude dynamics, especially regarding 

elevation.  

Stabilized angular rate estimates (figures 21 and 22) allow to appreciate the reduction in 

standard deviation due to radar/EO fusion 
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Figure 18 - Error in range rate estimate, in terms of mean and standard deviation 
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Figure 19 - Error in azimuth rate estimate, in terms of mean and standard deviation 
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Figure 20 - Error in elevation rate estimate, in terms of mean and standard deviation 
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Figure 21 - Error in stabilized azimuth rate estimate, in terms of mean and standard deviation 
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Figure 22 - Error in stabilized elevation rate estimate, in terms of mean and standard deviation 



Chapter 4. Tracking system performance assessment.   98

 

It is also interesting to point out that, regarding the accuracy of gating operation, as in the 

simplified scenario presented in previous chapter, no track loss phenomena have been 

observed in all the performed simulations. 

Considering numerical results for all the 10 scenarios, it is worth noting that performed 

simulations for the different avoidance maneuvers held very similar results in tracking 

performance, showing that tracking algorithm is robust with respect to UAV flight dynamics 

and collision avoidance maneuver choice. Furthermore, this is also due to the fact that the 

obstacle is tracked mostly before the avoidance maneuver and in the first few seconds after 

maneuver initiation. Then, the execution of avoidance maneuver, both because of trajectory 

and attitude modification, brings the obstacle outside of the FOV of the sensors, which are of 

course body fixed.  

However, visibility time for both radar and EO sensors does depend on the avoidance 

strategy, and is longer for minimum deviation maneuvers: this constitutes a key point for 

collision avoidance maneuver planning.  

Synthetic results are reported in table 2, table 3, table 4, and table 5. In particular, Table 2 

reports time averaged values of statistical mean errors for all the scenarios and the different 

estimates related to obstacle position, whereas Table 3 reports time averaged values of 

statistical standard deviations for these estimates. Table 4 and table 5 report time averaged 

values of errors’ statistical mean and standard deviation, considering estimates related to 

obstacle velocity. 

 

Mean errors 
Range 

(m) 

Azimuth 

BODY (°) 

Azimuth 

NED (°) 

Elevation 

BODY (°) 

Elevation 

NED (°) 

Firm radar 

tracking 
-0.24 -0.02 -0.75 0.03 -0.21 

Firm radar/EO 

tracking 
1.54 0.07 -0.64 0.02 -0.23 

Table 2 - Mean (position) errors for the available tracking modes 
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Standard deviation 

of errors 

Range 

(m) 

Azimuth 

BODY (°) 

Azimuth  

NED (°) 

Elevation 

BODY (°) 

Elevation 

NED (°) 

Firm radar 

tracking 
10.30 1.11 1.10 1.09 1.09 

Firm radar/EO 

tracking 
5.90 0.085 0.085 0.071 0.071 

Table 3 - Standard deviation of (position) errors for the available tracking modes 

 

Mean errors 
Range rate 

(m/s) 

Azimuth 

rate BODY 

(°/s) 

Azimuth rate 

NED (°/s) 

Elevation rate 

BODY (°/s) 

Elevation rate 

NED (°/s) 

Firm radar 

tracking 
0.76 0.022 -0.012 0.036 -0.0050 

Firm radar/EO 

tracking 
0.35 0.077 0.026 0.066 0.013 

Table 4 - Mean (velocity) errors for the available tracking modes 

 
Standard 

deviation of 

errors 

Range 

rate (m/s) 

Azimuth rate 

BODY (°/s) 

Azimuth rate   

NED (°/s) 

Elevation rate 

BODY (°/s) 

Elevation rate  

NED (°/s) 

Firm radar 

tracking 
3.03 0.21 0.20 0.19 0.19 

Firm radar/EO 

tracking 
0.47 0.044 0.044 0.031 0.031 

Table 5 - Standard deviation of (velocity) errors for the available tracking modes 

 

Synthetic data for all the simulations confirm some results which have already been pointed 

out for scenario 1. Considering mean errors (table 2), body angular estimates are in substance 

zero-mean  whereas biases in attitude angles estimation are reflected in non-zero mean errors 

for NED angular estimates.  It can be observed that a small bias in range error is generated in 
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firm radar/EO tracking. This is due to the fact that because of track update with EO cameras 

measurements, track covariance reduces and so also the weight of radar range measurements 

does. Nevertheless, as it appears analyzing also table 3, RMS error reduces in firm radar/EO 

phase also in range estimate.   

Finally, it is worth noting that standard deviations in angular/angular rate errors do not depend 

on the considered reference frame, because the origin of the variability is in both cases in the 

radar/EO detection process. This fact results also in the previously presented diagrams. 

 

In summary, it can be concluded that on the basis of off-line simulations, developed 

hardware/software for obstacle detection and tracking is compliant with the requirements 

indicated in the preliminary studies of TECVOL project.  
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Chapter 5 

 

System development and real time issues 
 

 

 

 

5.1. Introduction 

 

The previous chapters dealt with anti-collision system architecture and algorithms. Since the 

goal of performed activities is sense and avoid flight demonstration, real time implementation 

of developed logics has been considered as a very important subject. It is detailed in this 

chapter.  

For the sake of clarity, however, first it is necessary to clarify how the ground and the flight 

segments are connected, in particular for what regards the sense and avoid function. Ground 

control station is made up by a number of workstations which are connected on an Ethernet 

bus and communicate by means of the User Datagram Protocol [50]. In particular, it is 

foreseen that a workstation is dedicated to obstacle detection and tracking experiments 

monitoring. The obstacle detection ground station sends commands and receives data in real 

time from a computer which acts as the ground communication controller. The latter is 

devoted to communication with FLARE.  
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In particular, it communicates with an on-board communication controller by means of a full 

duplex Radio Frequency (RF) data link. This latter computer communicates with the flight 

control computer and the real time computer by means of the CAN bus. This architecture is 

shown in figure 1. 
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On-board 
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Flight control 
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Figure 1 – Physical architecture relevant to obstacle detection function 

 

The software development process was performed with different approaches and languages 

for the real time computer and the image processing computer [81]. The two units are 

described sequentially in the following sections, together with the ground station software.  

Then, communication with Amphitech radar is described. It is based on a customized 

protocol, and allows to remotely control the radar from the ground station and to choose 

among different operative modes. Hardware-in-the-loop tests have been performed to test 

reliability and latency of communications. The relevant results are pointed out. 

Then, in the last section an analysis is presented dealing with real time tracking issues. In fact, 

on the one hand it must be considered that radar measurements are received with a time delay, 

so that tracks have likely been predicted for a later instant. On the other hand, a pre-
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processing phase is necessary for eliminating ground echoes. In particular, this allows to 

identify an uncertainty region where tentative tracking is required for echo rejection. 

5.2. Real time computer and software 

 

The real time unit is based on a single board PCI computer , the Emcore i-6419TM (figure 2). 

The board is equipped with a Celeron M 1.5 GHz processor. It has been assembled in a 

compact configuration including an Ethernet card for debugging function and a 2-port CAN 

interface card (figure 3). 

 

Figure 2 – Board layout for real time computer 

CAN interface

Debug Ethernet

Radar 
Ethernet

 

Figure 3 – Real time computer: front and rear view 
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The real time computer operating system (OS) is a customized OS based on MicrosoftTM 

Windows CE 5.0TM, which is a 32 bit hard real time OS with a very small footprint [82].  

Real time system is programmed in target-host configuration. In this configuration, a desktop 

computer is used as development station, and an Ethernet connection (on the debug Ethernet 

card) allows to download the operating system and the applications to the target unit, and to 

control it. The operating system has been customized by means of the Platform BuilderTM 

software (figure 4), which allows to choose which modules are to be added to the target 

operating system. Then, it performs operating system compiling and target control. 

Customized OS footprint is of the order of 6 MB. 

 

 

Figure 4 – Example  from development workstation software 

 

The on board software for the real time computer was developed to be remotely controlled 

from the ground station while keeping high autonomy in operations and accurate real time 

performances. Basically, it is made up by different modules whose activation/deactivation is 

performed on the basis of timing and received commands/data. The software has to interface 
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with the image processing system, the radar and the CAN bus, from which it receives both 

navigation sensors data (generated by the GNC computer) and commands from ground (sent 

by the on-board communication controller). On the other hand, it provides tracking estimates, 

diagnostic messages, and raw targets data from radar. The entire architecture is depicted in 

figure 5. 
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Figure 5 - Real Time software architecture 

 

 A comprehensive description of CAN bus can be found in [47]. CAN handles real time 

requirements by assigning different priorities to the messages. In particular, each message is 

characterized by an integer identifier (ID) which determines priority (higher identifier means 

lower priority). In case of collision between two packets, the highest priority message is 

transmitted first. Each computer on the bus can filter the messages on the basis of their ID, so 

that only data of interest are received and treated at application level. Among the other 

features, CAN is very flexible: if a node is added or subtracted from the network, no changes 

are required to the other nodes, except if other messages are to be received. In TECVOL, 

priorities were assigned to the messages on the basis of impact of latencies on system 

performance and safety.    
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As it can be seen in figure 5, the system control module commands the activation/deactivation 

of the tracking system, based on commands from ground, and of all the other modules, based 

on the CPU clock. This ensures that the highest priority task is always performed with 

minimum uncompensated latencies.  

Communication with radar is performed by means of an Ethernet link and the TCP/IP 

protocol [83], and will be detailed further in a following section. The radar control module is 

activated only when configuration changes are commanded from the ground station. It allows 

to activate/deactivate RF emission by the radar and to change field of regard (and 

consequently the scan time), max unambiguous range, and center of scan volume with respect 

to aircraft body axes. The read radar module is activated depending on system clock and 

provides raw data for the tracking algorithm and for downlink.  

Communication between real time and image processing computer is based on the UDP 

protocol. Since this is a point-to-point communication with very low data rate, no loss of data 

are caused by using this connectionless protocol. On the other hand, UDP allows to minimize 

latencies and simplify communication. From application programming point of view, 

communication is performed by means of sockets [84], which are classical low-level 

communication interfaces. Messages from real time computer  to image processing computer 

regard cameras control parameters and the estimates of firm tracks, to be used for windowing 

by the image processing software. All these information are contained with a fixed order in a 

single UDP packet, so that message identifiers are not necessary.  

A navigation data handling module has been introduced to store navigation data (which are 

received from flight control computer at a frequency of 10 Hz) as a function of elapsed time, 

because radar scan rate is of the order of 1 Hz, and tracking algorithm requires track 

initialization and coordinate transformation of raw data (from body reference frame to NED 

reference frame) to be performed with the best possible accuracy. Of course, it makes sense to 

store navigation data which only refer to radar scan time.  

Diagnostic module is a low priority module used to evaluate in real time the correct 

functioning of the system. In particular, it evaluates latencies of the different communication 

channels, verifying that no anomalous values are generated. This allows to evaluate the 

correct functioning of the radar, of the image processing system with all the cameras, and the 

correct reception of navigation data. For example, in case of CAN data the interface card 

autonomously stores time of reception of latest packets, so that communication latency can be 
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easily kept under control. All the software for the real time unit has been programmed in C 

language.  

5.3. Image processing computer and software 

 

From the hardware point of view, the image processing computer is very similar to the other 

unit, except that it is equipped with a Pentium MTM processor, and the CAN interface card is 

replaced by a Firewire 3-port card. Regarding the software, it was developed in a 

conventional OS, namely Windows XP EmbeddedTM sp2, in order to interface to Firewire 

cameras. XP Embedded is a componentized version of Windows XPTM which allows to 

reduce footprint by maintaining only those modules which are required by the selected 

hardware and application [85]. Of course, resulting OS is much more time-efficient than 

Windows XP. In fact, resulting footprint is typically of the order of 250 MB. The customized 

version of the OS can be developed and built in the Target DesignerTM environment (figure 

6). The process is highly automated thanks to a software utility (Target Analyzer, [86]) which 

allows to identify all the OS modules required for the considered hardware. Then, software 

components needed for the application can be added, and Target Designer builds the 

customized OS. It is worth noting that, thanks to the choice of the OS, image processing 

system development has been carried out in a standard Windows XP environment.  

Image Processing software architecture is shown in figure 7. Each camera is managed by 

means of an ActiveX Control. The system is commanded by the real time computer by means 

of the UDP link. When firm tracks are present, intruder state predictions are sent to the image 

processing software. After initialization phase, which foresees connection to the cameras, the 

image processing system works trying to answer the requests from the real time computer. 

The UDP read module commands the cameras to provide their latest images to the Object 

Detection module, which tries to detect obstacles by applying threshold criteria to a windows 

centered on predicted obstacle position. From programming point of view, the Object 

detection module operates on the memory buffers containing the latest images. This detection 

logic allows to reduce processing time and save the real time requirements of the system. Of 

course, the same logic could not be applied with success and in a reasonably short time to the 

whole images produced by the cameras. Thus, as already pointed out before, radar detection is 

essential also in view of EO detection. Diagnostic module periodically checks cameras 

connection status.  The software has been programmed in the Visual Basic.Net environment. 



Chapter 5. System development and real time issues.   108

 

Figure 6 – Target designer graphical interface 
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5.4. Ground station software 

 

Ground station software is used to monitor test status by means of information reported in 

graphical displays and numerical output, and to send commands. Data are transferred by 

means of the radio downlink and the ground Communication Controller CPU. A preliminary 

version of graphical interface is depicted in figure 8. 

 

 

Figure 8 - Typical Ground Station output 

 

5.5. Communication with Amphitech OASys radar 

 

Communication with radar is performed by the Real Time computer by means of an Ethernet 

connection and the TCP/IP protocol. This is a connection-oriented protocol [83] and thus 

assures the required reliability to this critical connection. 
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Indeed, from the software point of view, the developed system interfaces with an Amphitech 

proprietary software, the OWSInterface application (figure 9). The latter receives raw data 

from the radar and sends relevant information to the real time system. This choice allowed to 

develop a customized information protocol without impacting the radar hardware unit. From 

programming point of view, OWSInterface acts as a TCP/IP server, while the real time 

software acts as a TCP/IP client, asking for connection in system initialization phase. 

 

Figure 9 – OWSInterface graphical output 

The high level protocol was defined on the basis of several interactions with the radar 

manufacturer. It allows the send the following commands to the radar: 

- required operating mode for radar output; 

- unambiguous range; 

- scan height and width; 

- azimuth and elevation of the center of scan volume with respect to aircraft body axes;      

Of course, scan time is affected by changing scan volume parameters. 

As for the radar output, three outputs can be received independently from each other: 

- targets data; 

- raw sectors; 

- radar images. 

Targets data are used for the tracking filter. They derive from an observation merging 

operation that is performed at hardware level. Targets data include range, azimuth, elevation, 

intensity, and delay of data transmission with respect to detection. This latter parameter is 

very important for tracking accuracy since it allows for correct time referencing of measures. 

Besides being processed in the tracking module, targets data are sent to ground through CAN 

and the radio data link.  
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Raw sectors constitute the non processed radar output. They represent a huge amount of data, 

and will be recorded to be examined off-line. The same operation will be performed on radar 

images. Both raw sectors and radar images will not be used for real time tracking.  

Communication with radar was tested by means of a hardware unit, the OWS simulator 

(figure 10). 

 

Figure 10 – OWS simulator 

 The OWS simulator is a low level simulator which can work with pre-loaded scenarios, as 

the one showed in figure 11.  
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Figure 11 – Example of OWS simulator output 
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5.6. Hardware-in-the-loop tests 

 

Laboratory tests have been performed to verify hardware real time capability and 

communication among the different computing units. Tests were performed in collaboration 

with the CIRA Flight Systems Department (which is responsible for the GNC computer) and 

the CIRA Test Systems Department (which is responsible for the Communication 

Controllers). In particular, first tests have been performed to verify CAN bus reliability and 

performance, since latency in data exchange between the flight control computer and the real 

time computer plays a key role for the sense and avoid function. Though the average data rate 

is of the order of only one tenth of CAN bus throughput (1 Mbps), data are transmitted in 

burst mode at a frequency of 10 Hz and the bus has to solve collision phenomena between 

packets. Tests were performed to analyze communication links and loops as reported for 

example in figure 12. 

On board

Ground

Termination Termination

 

Figure 12 – On board data handling tests 

  

A conservative approach was followed, in order to estimate latency and eventual loss of 

messages in a worst case situation. For example, the real time obstacle detection computer 

sent data as in the case of four intruders and eight radar targets detected in each scan. 

Moreover, loops were structured so as to quantitatively evaluate priority effects on latencies. 

Regarding the red-blue loop of figure 12, figure 13 reports the measured delay times. On 
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average, a two-way latency of 20 ms was estimated. Figure 14 points out the effects of 

messages priority: the different colors refer to different ID, in particular blue, green, black and 

red curves refer to increasing ID (which means decreasing priority). As expected loop time 

increases for decreasing priority.  
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Figure 13 – Loop time for all the CAN packets 
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Figure 14 – Loop time for messages with different priority 
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In order to reduce communication latencies due to burst transmission, an inter-message time 

of 280 μs has been later introduced. As shown in figure 15 for all the messages, and in figure 

16 for 4 identifiers, this slight transmission delay (which does not impact significantly the 

time required for sending all the messages) allows to reduce collision phenomena between 

packets, thus reducing latencies.  
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Figure 15 – Loop time for all the CAN packets with introduction of an inter-message time of 280 μs 
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Figure 16 – Loop time for messages with different priority with introduction of an inter-message time of 
280 μs 
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Similarly, a latency of a few ms was estimated in the communication between the real time 

and the flight control computer. Moreover, a small drift was observed in latencies which is 

due to non perfect synchronization between the clocks of the two computers. As a systematic 

effect, it can be easily removed. Anyway, the estimated drift was of the order of 15 ms for a 

30 minutes test.  

Complete hardware-in-the-loop tests are currently in progress. As shown in figure 17, they are 

performed to verify the entire flight and ground architecture, except for the radio data link. 

 

 

 

Figure 17 – Architecture for complete hardware-in-the-loop tests 

 

 

First tests, including the OWS simulator and a dummy processing of its data, have pointed out 

that real time performance is achieved. For example, figure 18 reports time between 

consecutive sendings of a CAN packet which represents one of the tracker outputs.  
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Figure 18 – Time difference between subsequent sendings of a CAN message representing a tracker 
output parameter 

 

5.7. Real time implementation issues 

 

This section details some real time implementation issues for tracking. The first is related to 

the fact that the radar system sends its measures with a delay with respect to data acquisition. 

Since the tracking algorithm generates estimates at 10 Hz frequency, and this delay is likely 

larger than 0.1 s (it can be of the order of 1 s), this means that state and covariance have to be 

updated with a measurement at time t1 after they have been propagated to a later time tn. Also, 

gating and association have to be performed with the values of state and covariance at time t1. 

It is important to note that, even though collision avoidance logic did not request it, in any 

case the system should work at 10 Hz frequency in order to properly follow UAV dynamics 

through the deterministic input (see chapter 3).   

In order to understand how is the problem treated, first of all it is important to point out that in 

the developed system a measurement is assigned a time stamp which is the nearest time on the 

tracker 0.1 s scale.  
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To perform gating, association and track updating, the solution is to keep a sliding window 

where navigation and track data are stored. The considered time window dimensions 

correspond to the largest possible radar data latency. However, it is important to evaluate 

which navigation and track parameters have to be stored. Thus, let us consider a starting time 

t1 when state is x1 and covariance is P1. State and covariance are propagated in time on the 

basis of transition matrix, process noise matrix and deterministic input (that is, own-ship 

accelerations converted in NED). After n tenths of seconds (predicted state is xn and predicted 

covariance is Pn), a radar measurement is sent to the tracker, which refers to time t1. The 

problem is how to produce an updated state and covariance estimate at time tn given the 

measurement at time t1. First of all, in order to perform gating and association, state and 

covariance at time t1 have to be known: thus, they are supposed to have been stored. 

Moreover, attitude angles must be stored to perform measurement conversion in NED. Then, 

updated estimates at time t1 can be calculated on the basis of standard Kalman filter equations.  

Let us define as xi and Pi the state and covariance estimates at time ti  before measurement 

inclusion, ix  and iP  the filtered estimates at time ti, and iii xxx −=δ , iii PPP −=δ . 

If iu represents deterministic input at time ti, following equations describe state prediction: 

112 uxx +Φ=      (1) 

211
2

223 uuxuxx +Φ+Φ=+Φ=     (2) 

… 

… 

122
3

1
2

1
1 ... −−

−−− +Φ++Φ+Φ+Φ= nn
nnn

n uuuuxx    (3) 

 

In the same way, covariance prediction is described by 

 

( ) ( ) ( ) ( ) QQPP
nnnnn

n ++ΦΦ+ΦΦ=
−−−−− ...

2|221|
1

1    (4) 

 

State and covariance predictions are linear functions of x1 and P1, respectively. Thus, nx  and 

nP can be evaluated as follows: 

 

1
1 xxx n

nn δ−Φ+=      (5) 
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( ) ( ) 1|
1

1 −− ΦΦ+=
nn

nn PPP δ    (6) 

 

This implies that acceleration data must not be stored to provide filtered estimates of a track 

with delayed measurements, since xn already contains this information. At the same time, 

since covariance propagation depends only on the transition matrix and the process noise 

matrix, supposing that a non adaptive model is used (both matrices are constant) it is possible 

for each track to keep in memory only the current covariance. In this case, P has to be 

extrapolated back in time when necessary, using a-priori known matrices.  

However, it is worth noting that acceleration and velocity estimates are needed for 

initialization of one-plot tracks. Thus, it can be concluded that they do not need to be stored if 

a firm track is already present, in collision avoidance flight tests with a single intruder.   

 

Another relevant problem for real time implementation is connected to ground echoes 

removal. In fact, due to the types of aircrafts that are used in tests (very light aircrafts) flight 

altitude can be very low, so that ground metal objects can give, also depending on relative 

geometry, big signal reflections. Ground objects can be identified on the basis of their 

velocity; however, since the radar gives no Doppler information, this requires a tentative 

tracking phase, which means that at least two subsequent echoes from ground have to be 

associated with negative consequences on computational time. In order to avoid wasting time 

with useless calculations, single scan criteria are also required to separate ground objects.  

Of course, the most immediate criteria can be based on apparent intruder altitude. It is easily 

calculated on the basis of radar measurement, UAV altitude and attitude angles. A simple 

logic is to eliminate a return if altitude is below a given threshold. For the sake of 

concreteness, let us consider that this threshold is 100 m. Unluckily, this solution is too simple 

and unreliable, since it does not take into account the uncertainties in intruder altitude 

estimation: a valid intruder echo can be eliminated.  

A more appropriate solution can be to eliminate a return only if it is, with a high confidence 

level, a ground object. In case of uncertainty, tentative tracking has to be performed and 

combined altitude/velocity estimation can be used.  

A simplified approach can be followed if only pitch angle is considered for the UAV. In this 

case, apparent altitude of a radar detected object is given by 

 



Chapter 5. System development and real time issues.   119

NEDUAVobject Rhh ϑsin+=     (7) 

 

where R is the measured range, and θNED is the stabilized elevation, which includes pitch and 

object elevation with respect to the radar.  

Uncertainty on relative altitude measurement can be evaluated by the following formula: 

 

( ) ( ) ( )NEDNEDNEDNED RRR ϑσϑσϑϑσ 222222 cossinsin +=   (8) 

 

while global uncertainty on object altitude is given by  

 

( ) ( ) ( ) ( )NEDNEDNEDUAVobject RRhh ϑσϑσϑσσ 2222222 cossin ++=  (9) 

 

The impact of the second term can be likely neglected, due to the fact that elevation is 

typically small and the radar is very accurate in range. Moreover, NEDϑcos  can be 

approximated to 1. Thus,  

 

( ) ( ) ( )NEDUAVobject Rhh ϑσσσ 222 +≈    (10) 

 

The most important of the two terms is the second contribution, which combines uncertainty 

on object elevation, radar alignment, and pitch estimation. 

Since ( )objecthσ   depends on range, a single scan criterium can be based on object apparent 

position in the range-altitude plane. In particular, if ( )objectthreshold hhh σ+> , then the 

object is with high confidence a flying object. Inversely, if  ( )objectthreshold hhh σ−< , the 

object is on ground. In other cases, uncertainty remains and tentative tracking is required. 

Criterium in the range-altitude plane is shown in figure 19. For the sake of concreteness, 

( )NEDϑσ  has been assumed equal to 2.5°, and values of 10 m (standalone GPS) and 1 m 

(differential GPS) have been considered for ( )UAVhσ  . 
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Figure 19 – Range-altitude plane for ground echoes rejection 

  

Since the most important contribution to altitude uncertainty comes from stabilized elevation 

accuracy, the difference between standalone and differential GPS appears only al very low 

ranges. It is also worth noting that low altitude returns at large distances in substance can not 

be filtered because of the effects of angular uncertainty. However, probability of ground 

object detection reduces for increasing distance. On the other hand, in the range-altitude plane 

it has to be supposed that an upper threshold is considered on range axis, which corresponds 

to maximum estimated detection range for the largest possible intruder. All echoes with larger 

measured range are automatically eliminated.  

This logic can also used to understand the effects of UAV altitude for sense and avoid flight 

tests. For increasing UAV altitude, minimum slant range to ground obviously increases, thus 

reducing ground clutter effects. In particular, figure 20 refers to a 10° (negative) stabilized 

elevation angle. 
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Figure 20 – Minimum slant range to ground as a function of UAV altitude (-10° elevation angle)  

Considering for example a maximum range for detection of 8 km, and the lower range 

threshold from figure 19 (2.2 km), it is then possible to calculate which part of the field of 

regard in elevation can give “ambiguous” ground returns, that is echoes that can not be 

eliminated with the simple range-altitude logic. It is depicted in gray in figure 21.  

 

Figure 21 – Range of angles in elevation that correspond to ambiguous ground echoes 
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It is worth noting that the ambiguous region at first increases, due to the fact that at low 

altitude distance from ground is less than 2.2 km in a large part of the radar FOR, and so 

ground echoes can be eliminated on the range-altitude plane. Then, after a maximum, it 

decreases for increasing altitude.  

Nevertheless, it can be estimated that due to probability of detection effect, computational 

load for ground echoes removal decreases for increasing altitude in any condition. In any 

case, the threshold parameters for ground echoes rejection will be set after the first flight tests 

with the radar, on the basis of sensor returns.  
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6.1. Introduction 

 

As demonstrated in the previous chapters, one of the most important features of the electro-

optical sensors is the high accuracy angular information they can provide thanks to their high 

resolution in pixels.  

Of course, besides being dependant on the sensor resolution, overall angular error is also due 

to sensors mounting errors which introduce biases. It is worth noting since now that 

conceptually, in this application alignment error refers to the error computed with respect to 

the body reference frame as individuated by the attitude heading reference system (AHRS). In 

fact, navigation data as provided by the AHRS are used for autonomous flight by the flight 

control computer. 

Indeed, obstacle detection for collision avoidance is not the only application that requires this 

kind of alignment. For example, an other case where it is very important to accurately 

estimate EO sensors orientation with respect to the AHRS defined body reference frame is in 

real time surveillance, for example for natural disasters monitoring [87]. 
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In these cases, navigation sensors information is essential for correct geo-registration of 

acquired multispectral/thermal/hyperspectral images, and the error in geo-location depends on 

navigation, image processing and EO sensors alignment errors. Moreover, it is worth noting 

that in these applications it is unlikely to have the possibility to use ground control points for 

geo-registration and geo-location.  

In general, several techniques can be used for EO sensors alignment which are based on 

interferometric, mechanical, or image processing techniques [88]. For example, a stereoscopic 

couple can be calibrated on the basis of analysis of a sample pattern, and relative translation 

and rotation between cameras are some of the extrinsic parameters that are calculated [89]. 

However, traditional methods or algorithms are hard to use to provide calibration directly 

with respect to the AHRS. In the considered case, instead, a low-cost and relatively fast 

procedure is needed, also to evaluate cameras’ angular displacement caused by successive 

flights. 

In this chapter, a procedure is illustrated to provide fast and accurate geometric calibration of 

EO sensors taking advantage of the navigation instrumentation, namely AHRS and GPS, 

which are very accurate in static mode and in carrier phase differential Real Time Kinematic 

mode, respectively.  

The chapter is organized as follows. The following section describes the hardware setup 

(navigation) which was used to test the alignment technique. In the third section, the 

calibration procedure is illustrated in detail, pointing out both theoretical and practical issues. 

Then, in the forth section results achieved during different calibration sessions are illustrated 

and reported in detail. Potential and limitations of the designed procedure, as well as the 

lessons learned, are finally analyzed. 

 

6.2. Navigation hardware 

 

Electro-optical sensors have been described in chapter 2. As for navigation sensors, the 

central unit is the AHRS400CCTM manufactured by CrossbowTM. The AHRS400CC is a high-

performance solid-state attitude and heading reference system. In static mode, by averaging 

sensors output for some seconds (data rate is 100 Hz), it is possible to reach an accuracy of 

the order of 0.1°. 
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The ground GPS antenna is the LegAntTM manufactured by TopconTM, whereas other two 

GPS antennas are located on the aircraft wings. 

The measurement technique is the Real Time Kinematic (RTK) carrier-phase differential 

mode. This is the highest accuracy mode available with GPS signal [90,91]. In particular, 

accuracy can be within 1 cm. RTK is a process where GPS signal corrections are transmitted 

in real time from a reference receiver at a known location to another receiver. The use of an 

RTK capable GPS system can compensate for atmospheric delay, orbital errors and other 

variables in GPS geometry, increasing positioning accuracy. Using the code phase of GPS 

signals, as well as the carrier phase, which delivers the most accurate GPS information, RTK 

provides differential corrections to produce the most precise GPS positioning. 

Navigation hardware is reported in table 1. 

 

AHRS 

 

GPS ground antenna 

 

Table 1 – Navigation hardware for alignment procedure 

 

6.3. Procedure description 

 

The developed procedure allows to calibrate all the EO sensors together, at the same time. In 

fact, it needs in substance that a number of images of a target (at least 2) are acquired by all 

the cameras, while at the same time aircraft attitude is measured by the AHRS and target 

position is measured by CDGPS in RTK mode. At the end of the acquisitions, cameras’ 

positions must be measured by CDGPS with the same level of accuracy. A phase of the 

measurement procedure is illustrated in figure 1. 
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Figure 1 - Measurement procedure 

 

In order to establish how many targets positions are to be measured, and at what distance the 

target must be placed, both CDGPS accuracy and sensors IFOV must be taken into account.  

In fact, in theory the best solution would be to place the target as far as possible from the 

sensor, so that the GPS error falls below single pixel angular dimensions. However, this 

makes target positioning harder to realize. In fact, in order to have a globally accurate 

alignment, the test points should be selected uniformly in the cameras field of view. In the 

considered case, the relevant accuracies are shown in table 2. 

 

Measurement Precision of GPS TOPCON Legacy-H in carrier-phase 

mode 

3 mm + 1 ppm 

Visibile cameras Instantaneous Field Of View (IFOV) 0.041° 

IR cameras Instantaneous Field Of View (IFOV) 0.074° 

VIS cameras Field Of View (FOV) (at res. 1280 X 960) 48.6° (H) x 37.6° (V) 

IR cameras Field Of View (FOV) (for each camera) 24° (H) x 18° (V) 

Table 2 - Relevant accuracies and fields of view 
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By a simple geometric relationship, it is possible to determine at what distance the GPS 

precision equals the linear dimension which corresponds to the cameras IFOV. Some 

numerical data for the considered case are shown in table 3. 

 

Distance [m] 2 4 5 10 20 

Width FOV VIS [m] 1,805 3,610 4,513 9,025 18,050 
Height FOV VIS [m] 1,361 2,722 3,402 6,805 13,610 
Width FOV IR [m] 0,850 1,700 2,124 4,249 8,498 
Height FOV IR [m] 0,633 1,266 1,583 3,166 6,332 

Length IFOV VIS [m] 0,001 0,003 0,004 0,007 0,014 
Length IFOV IR [m] 0,003 0,005 0,006 0,013 0,026 

Table 3 - Linear dimensions corresponding to FOV and IFOV at different distances 

From table 3, it can be concluded that in the considered case the procedure can be 

implemented by locating the target at a distance of about 4 meters from the focal plane of the 

sensors and moving it in a rectangle of about 4 m X 3 m. Thus, this distance was selected in 

the performed calibration tests. A picture describing a phase of a calibration session is shown 

in figure 4.  

 

Figure 2 - Calibration procedure: acquisition of target images and position 
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In order to determine the rotation matrix between sensors’ reference frames and aircraft body 

reference frame (X-nose, Y-right wing, Z-down), a classical least squares technique was 

adopted (the Wahba method), which estimates the transformation matrix on the basis of a 

series of vectorial observations of the same points in the two reference frames [92]. In what 

follows, body reference frame will be considered as a synonym of AHRS-defined reference 

frame.  

The basic assumption of Whaba method is that the main component of the error of the single 

observations is random, thus it is supposed that the camera is perfectly calibrated. This means, 

among other things, that optical distortion is neglected. It can be stated that this assumption 

can be considered consistent with the scopes of this application, also because of the narrow 

field of view of the cameras. On the other hand, the validity of this assumption can be verified 

by analyzing the residual errors after camera alignment, which is reported in the following. 

Given the target and the camera position in the Earth Centered Earth Fixed (ECEF) Reference 

Frame, it is possible to evaluate target position with respect to the East North Up (ENU) 

reference frame with origin in the camera, through an exact transformation, if the Earth geoid 

model is known [93]. 

Then, the target position in camera-based ENU iENUr  can be transformed in the Body 

reference frame (again, with origin in the considered camera), on the basis of the attitude 

angles measured by the AHRS, by equation 1: 

 

( ) iENUiBRF rMr αβγ ,,321=     (1) 

 

where γ, β and α are, respectively, the yaw, pitch and roll angle, and the matrix M321 is 

obtained as follows: 
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By dividing rBRFi by its modulus, it is possible to evaluate cosine directors of target in BRF 

with origin in a given camera. Let us call iBRFr
^

 the computed unit vector. 

On the other hand, image analysis allows to find target centre pixel and thus its cosine 

directors in the camera reference frame. In order to derive cosine directors, a classical pinhole 

camera model can be assumed [94]. In particular, pixel coordinates are converted in linear 

coordinates on the image plane on the basis of pixel dimensions, then target direction is 

computed through the focal distance. Considered geometry is depicted in figure 3, where the 

image plane is represented in front of the projection center, in order to avoid sign inversion. 

f

To target

Zcamera

Xcamera

Ycamera

image plane

projection 
center  

Figure 3 – Pinhole camera model 

 

Let us call iSENSr
^

 the unit vector representing target direction in the camera based reference 

frame. It is worth noting that camera reference frames have been chosen with the same 

convention of BRF (X nose-Y right-Z down). 

It is now possible to define a loss function  

 

∑ =
−= n

i iBRFCAMiSENSiCAM rMrwMJ 1

2^^
)(    (3) 
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where n is the number of collected images/positions, wi is the weight of measurement i, MCAM 

is the attitude matrix of the considered camera with respect to the aircraft, and as stated before 

iSENSr
^

is the unit vector of the target in image i with respect to the considered sensor and 

iBRFr
^

 is the unit vector of target in image i with respect to the BRF with origin in the sensor 

position, which is computed by means of GPS/AHRS measurements. The camera attitude 

matrix MCAM can be computed to minimize the loss function by means of the elegant 

algorithm developed by Wahba [92]. In the considered case, all the measurements have the 

same weight. 

It is worth noting that since the considered procedure extracts only the rotation matrices 

between the cameras and the AHRS reference frame, it does not consider the so called 

parallax error, due to the distance among EO sensors and inertial unit.  The parallax effect 

depends on the distance of a given target: thus, when using EO data for real time tracking, this 

error has to be corrected on the basis of range measurement.  

 

6.4. Test results  

 

Two different calibration campaigns were conducted in order to evaluate developed procedure 

accuracy and also to verify stability of cameras’ orientation after flight operations. In fact, the 

two calibration sessions were performed before and after some FLARE flights devoted to 

other TECVOL functions. 

Next figures report some examples of images taken during calibration sessions. In particular, 

figures 4, 5, 6, and 7 report images taken by the panchromatic camera, the color camera, the 

left IR camera, and the right IR camera, respectively. 
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Figure 4 – Example of a color image taken during a calibration session  

 

 

Figure 5 - Example of a panchromatic image taken during a calibration session 
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Figure 6 – Example of an IR image taken during a calibration session (left camera) 

 

 

Figure 7 – Example of an IR image taken during a calibration session (right camera) 

 

6.4.1. First calibration session 

 

Next figure reports the time variation of panchromatic camera position ECEF components. It 

can be seen that these variations are of the order of a few cm. They have been averaged to 

increase position measurements accuracy. 
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Figure 8 – Variation of measured ECEF components during acquisition of panchromatic camera position  

 

On the basis of estimated attitude matrices and the Whaba algorithm, the Euler angles of 

cameras with respect to the body reference frame as given by AHRS have been estimated and 

are given by table 4. Only one of the two IR cameras is considered because the other camera 

was not installed at the time of this calibration session. 

 

Estimated Angle (°) Panchromatic Color IR 

Roll 8.393249 5.310281 -0.380102 

Pitch 1.078569 0.461661 -0.151451 

Yaw -1.211358 4.311618 -1.589749 

Table 4 - Estimated cameras attitude angles (1st session) 

 

Next figures report targets positions in panchromatic (figure 7), color (figure 8) and IR (figure 

9) images for the first acquisition session as measured by GPS/AHRS and converted through 

the calculated rotation matrix (in red) and as obtained by image analysis (in blue): 
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Figure 9 - Target positions as extracted from images (blue) and from GPS/AHRS measurements and 
computed rotation matrix (red) : panchromatic camera, 1st calibration session 
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Figure 10 - Target positions as extracted from images (blue) and from GPS/AHRS measurements and 
computed rotation matrix (red) : color camera, 1st calibration session 
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Figure 11 - Target positions as extracted from images (blue) and from GPS/AHRS measurements and 
computed rotation matrix (red) : infrared camera, 1st calibration session 

 

 

 

Residual angular errors on test points are reported in the following. For the sake of brevity, 

only the panchromatic camera is considered. Angular errors are reported in figure 12. Vector 

representation of angular errors on the azimuth-elevation plane shows no significant 

systematic effects (figure 13). On the other hand, the normality of the distribution can be 

verified by applying a normal probability plot to the angular residuals, as shown in figure 14.  
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Figure 12 - Residual angular errors for panchromatic camera (1st session) 

-20 -15 -10 -5 0 5 10 15 20
-2

0

2

4

6

8

10

12

14

16

azimuth (°)

el
ev

at
io

n 
(°

)

 
Figure 13 – Vector representation of azimuth and elevation differences (panchromatic camera, 1st session) 
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Figure 14 - Normal probability plot for angular residuals: panchromatic camera, 1st session 

 

It can be seen that the error is of the order of 0.3° RMS. This value can be attributed to the 

low contrast in some images and can reasonably be reduced if better quality images are 

recorded. Due to the normality of the errors distribution, higher order calibration laws don’t 

seem to be necessary. 

 

6.4.2. Second calibration session 

 

The second calibration session was conducted after flight activities. The procedure was 

carried out exactly in the same way as in the first session.  

AHRS (averaged) attitude estimation as a function of sample number is reported in figure 15. 

It can be appreciated that maximum variation is of the order of 0.1°.  
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Figure 15 – Estimated aircraft attitude angles as a function of sample number 

 

In this case, the Euler angles of cameras with respect to body reference frame as given by 

AHRS are reported in table 5 : 

 

 
Estimated Angle (°) Panchromatic Color IR 

Roll 8.752124 4.717738 0.031195 
Pitch 1.146022 0.780936 -0.109817 
Yaw -1.220175 3.982433 -1.723170 

Table 5 – Estimated cameras attitude angles (2nd session) 

 

 

Next figures report targets positions in panchromatic (figure 16), color (figure 17) and IR 

(figure 18) images for the second acquisition session as measured by GPS/AHRS and 

converted through the calculated rotation matrix (in red) and as obtained by image analysis (in 

blue): 
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Figure 16 - Target positions as extracted from images (blue) and from GPS/AHRS measurements and 
computed rotation matrix (red) : panchromatic camera, 2nd calibration session 
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Figure 17 - Target positions as extracted from images (blue) and from GPS/AHRS measurements and 
computed rotation matrix (red) : color camera, 2nd calibration session 



Chapter 6. Accurate EO sensors alignment by means of DGPS, AHRS and image analysis. 140

0 2 4 6 8 10 12 14 16 18
-20

-10

0

10

20

A
zi

m
ut

h 
[°

]

0 2 4 6 8 10 12 14 16 18
-10

-5

0

5

10

Samples

E
le

va
tio

n 
[°

]

 

Figure 18 - Target positions as extracted from images (blue) and from GPS/AHRS measurements and 
computed rotation matrix (red) : IR camera, 2nd  calibration session 

 

Residual angular errors on test points are reported in the following, considering for the sake of 

brevity only the color camera (figure 19). Also in this case no systematic effects appear on the 

azimuth-elevation plane (figure 20) and the normality of the residuals can be simply verified. 
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Figure 19 - Residual angular errors for color camera (2nd session) 
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Figure 20 - Vector representation of azimuth and elevation differences (color camera, 2nd session) 

 

Synthetic results for the two calibration sessions are reported in table 6. 

 

Calibration session Camera RMS Error 
1st Panchromatic 0,34° 
1st Color 0,38° 
1st Infrared 0,27° 
2nd Panchromatic 0,48° 
2nd Color 0,45° 
2nd Infrared 0,42° 

Table 6 – RMS error for the different cameras in the two calibration sessions 

 

The second calibration session showed a slightly large error which is believed to be due to 

weather conditions (wind which produced system and target oscillation). 

Future alignment sessions will be performed before of the sense and avoid flights. It is 

believed that alignment can be performed with better accuracy with respect to the data 

reported in this chapter, because a number of improvements will be applied,  such as better 

contrast of the target with respect to the background, and strict control on GPS accuracy both 

for the target and the cameras. 
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The angular displacements between cameras axes considering 1st and 2nd session are reported 

in table 7. It can be seen that the rotations fall in the measurements error range, thus flights 

impact on calibration can be considered as negligible. 

 

Camera X Axis [°] Y Axis [°] Z Axis [°] 

Color 0.36 0.36 0.07 

Panchromatic 0.66 0.69 0.46 

Infrared 0.41 0.43 0.14 

Table 7 - Angular displacements of cameras’ axes between the two calibration sessions 
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Chapter 7 

 

Preliminary flight data and collision avoidance tests 
planning 
 

 

 

 

7.1. Introduction 

 

Due to project delays non dependant on the anti-collision system, sense and avoid flight tests 

have not been performed yet. However, flight activities have been carried out, in parallel with 

other functions developed in TECVOL project, in order to provide functional verification of 

EO sensors. In particular, the interest was in evaluating the impact on image quality of 

vibrations and in general of all the disturbances coming from the aircraft. For the infrared 

cameras, there was a particular interest in evaluating the thermal influence of aircraft engine, 

and the image quality in day hours.  

Visible and infrared cameras flight images, and the relevant considerations in view of future 

sense and avoid tests,  are reported in the following sections.  

Furthermore, a schedule for sense and avoid flights has been defined and it is briefly 

described in the last section. 
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7.2. Flight tests: visible cameras 

 

Tests for functional verification of EO sensors were performed with a different hardware 

configuration with respect to the architecture described in chapter 2. In fact, the software 

developed for cameras acquisition was installed on a laptop which was connected to the 

cameras, with no interfaces with the on-board flight control system. FLARE trajectory during 

one of the flight tests is reported on the map in figure 1. Images acquired by the visible 

cameras in the three positions signaled by the circles are shown in the following. In particular, 

point 1 is in correspondence of a left turn; color and panchromatic images are reported in 

figure 2 and figure 3, respectively. Propeller appears as a still object in figure 3, due to very 

low shutter time. In the same conditions, it “spreads” a little when it appears in color images 

due to Bayes filtering and consequent longer shutter time required for a given level of 

absorbed electromagnetic energy. It is worth noting that quality in panchromatic images was 

affected in these tests by non correct installation, regarding in particular non precise assembly 

of optics. This is the reason why panchromatic images show a little defocusing effect.  

For the sake of brevity, only color images are shown for the other reference points on figure 1. 

Figure 4 shown an image acquired during a right turn (point 2), while figure 5 reports the 

runway as seen in point 3 with the sun in the back. It is worth noting that the grass runway is 

undetectable from the rest of the image, on the basis of the intensity information, in color (and 

panchromatic) images, even with a favorable geometry with respect to sun.   
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Figure 1 – FLARE trajectory during one of the performed flight tests. 
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Figure 2 – Image taken by the color camera during a left turn (point 1 in figure 1) 

 

 

Figure 3 - Image taken by the panchromatic camera during a left turn (point 1 in figure 1) 
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Figure 4 – Image taken by the color camera during a right turn (point 2 in figure 1) 

 

Figure 5 – Runway as seen by the color camera (point 3 in figure 1) 
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All the previous images show the high quality of images, with negligible effects of vibrations. 

They all refer to geometries with the sun in back or in lateral position. An example of images 

with the sun in front in reported in figure 6. It can be appreciated that only about 30% of the 

images is completely saturated and thus is useless for obstacle detection. This is the minimum 

possible saturation with the sun in the FOV since the image has been taken with the minimum 

aperture. Detection range as a function of visible sensors orientation with respect to sun will 

be evaluated in flight tests with an intruder aircraft. 

 

 

Figure 6 – Effect on image of sun presence in FOV 

7.3. Flight tests: infrared cameras 

 

Flight tests with infrared cameras were devoted to estimating IR image quality in daytime 

conditions in different orientations with respect to sun, and eventual thermal disturbance by 

the aircraft engine. All the gathered images showed high quality and contrast in daytime hours 

and in any orientation with respect to sun. Some images are reported in the following. In all 

the images, the small rectangle on the left part of the figure represents mean image intensity. 

Figure 7 is a low altitude image that allows to point out the detail and radiometric resolution 

of the sensor: differences in ground temperature due to shadows are detectable. Figure 8 is 
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taken with the sun in front (though not in the FOV which is narrow if compared to visible 

cameras): contrast is not affected by sun and hot objects (for example, the road) are well 

detectable with respect to the rest of the image.  Figure 9 confirms high sensitivity of the 

sensor, and a river (at lower temperature than land) is clearly detectable. 

 

Figure 7 – Low altitude image taken by the Infrared camera 

 

 

Figure 8 – Image taken by the Infrared camera with the sun in front 
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Figure 9 – High contrast image taken by the infrared camera 

 

Figure 10 (again, taken with the sun in front) shows that in infrared images the grass runway 

is detectable in the image. Because of this result, it is now foreseen to use IR cameras in 

TECVOL also for the runway detection function. 

 

Figure 10 – Runway as seen by the infrared camera 
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Figure 11 shows the propeller effect in IR images. Because of the shutter time required by the 

sensor, the propeller spreads in the image. Thus, the main effect for obstacle detection is a 

reduction of signal-to-noise ratio in a part of the image. Nevertheless, it must be considered 

that in preliminary flights the IR cameras were mounted forward-looking without eccentricity 

with respect to aircraft longitudinal axis. Applying the required divergent angle, propeller 

impacts only a very small part of IR sensors FOV.   

 

 

Figure 11 – Image taken at take-off showing propeller effect 

 

The following two figures are very important in view of the collision avoidance application. 

In fact, as already said detection range for EO sensors could not be evaluated experimentally 

because of absence of intruders. However, some images of other small aircrafts have been 

taken by the IR cameras when FLARE was on ground and image recording had already been 

activated. Figure 12 shows a TECNAM P-2002 during take-off. The engine area is very bright 

compared to the rest of the aircraft. It is believed that engine temperature will be very 

important for intruder detection in near collision geometries. The same result is confirmed in 

figure 13, where a P-92 is imaged during landing. The engine temperature makes it detectable 

even on a cluttered background. Detection of an intruder flying over the horizon is a more 

favorable situation since, as observed in all the images, the sky appears as a dark background 

in any geometry with respect to sun. In summary, preliminary flights gave high confidence on 
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the possibility to use EO sensors information for obstacle detection and tracking in the 

designed radar-driven anti-collision system.  

 

 

Figure 12 – A TECNAM P-2002 during take-off in an image taken by the IR camera 

 

 

 

Figure 13 - A TECNAM P-92 during landing in an image taken by the IR camera 
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7.4. Sense and Avoid flight tests 

 

Sense and avoid flight tests will be performed in the next few months with the following 

logic. First of all, flights for radar acceptance will be performed. These tests will require that 

the entire architecture described in this thesis is properly installed on board FLARE, except 

for the EO sensors. The radar will be remotely commanded from the ground station, by means 

of the radio link, the CAN bus and the real time computer. A proper ground/on board software 

has been developed for these flights. Different tests will allow to validate the different 

operating modes for the radar, ant to evaluate detection range for a VLA intruder.  

As for sense and avoid flight tests, they are divided in two main categories: obstacle detection 

and tracking flight performance assessment, combined autonomous collision avoidance. 

In the first category automatic control will not be activated. In particular, in the first tests the 

flying laboratory will follow an intruder aircraft at higher altitude to keep it in its field of 

regard for a long time without safety problems (Fig. 14-1). This will enable to verify tracking 

capabilities with different sets of sensors activated. Intruder at higher altitude will reduce 

problems due to land clutter. Then, the flying laboratory will fly several “near collision” 

“quasi frontal” trajectories with an intruder again at higher altitude (Fig. 14-2). Finally, the 

same tests will be conducted with the intruder at lower altitude, which is the hardest situation 

for the necessity to remove land clutter (Fig. 14-3). 

Tests will be repeated for several weather and illumination conditions, and flying altitude will 

be chosen on the basis of the considerations reported in chapter 5 and of experimental radar 

data acquired in acceptance flights. 

In a subsequent phase, collision avoidance tests will be performed. Preliminary collision 

avoidance tests will deal with simulated fixed obstacles to verify correct engagement of 

autonomous collision avoidance system. Thus, the sensing system will be bypassed. 

Then, real collision avoidance tests will take place. In these tests, the flying laboratory, with 

all systems on, will fly several near collision trajectories with a single intruder in its field of 

regard. On the basis of detection and tracking system estimates, flight control computer will 

generate and follow in real time a proper escape trajectory in case of predicted collision. A 

flight plan developed for these tests is shown in figure 15 that depicts the area selected for 

flights. 
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Figure 14 - Obstacle detection and tracking flight tests 

 

 
Figure 15 - Flight area for Collision Avoidance tests 
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Conclusions and further research 

 

 

 

 
This thesis was devoted to the development of an integrated multi-sensor based non 

cooperative anti-collision system for UAVs. The performed activities covered all the steps in 

the development process from the analysis of requirements deriving from the application, to 

the real time implementation of designed logics. 

Advantages and drawbacks of different sensors were analyzed. The all-time all-weather 

requirement, together with theoretical and experimental analyses of limitations of a purely 

electro-optical approach to the collision avoidance problem, led to a multiple sensor 

architecture where a Ka-band pulsed radar acts as the main sensor. Four electro-optical 

cameras (two in the visible band, two in the infrared band) were selected as aiding sensors.  

A logical/hardware architecture was designed in order to perform real time sensor fusion and 

object tracking within the sensors field of view. It is based on the use of two processing units 

and on communication via CAN bus with the flight control computer.  

Models and algorithms for airborne multiple sensor tracking were analyzed in detail by means 

of numerical simulation of collision scenarios dynamics, and of navigation and obstacle 

detection sensors output.  
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A tracking algorithm based on Extended Kalman filtering in Cartesian North-East-Down 

coordinates, and Singer model for acceleration components, was estimated to be a good 

compromise between tracking accuracy and reliability at very short distances, which is 

considered to be the worst case condition for the anti-collision system. 

Radar/electro-optical fusion was demonstrated to hold a dramatic improvement in tracking 

accuracy, besides augmenting system reliability thanks to the fact that detection for the 

different sensors is based on completely different physical phenomena.  

Extensive off-line numerical simulations were carried out considering realistic collision 

scenarios and the execution of different avoidance maneuvers. It was demonstrated that 

tracking performance is in substance unaffected by the choice of collision avoidance logic. A 

residual rms error of about 10.5 m in range and 1.1° in (body-referenced) azimuth and 

elevation resulted for intruders detected only by the radar. Instead, rms errors for range and 

angles when performing radar/EO fusion were estimated to be of the order of 6.1 m and  

0.11°, respectively.  Navigation system effects on tracking accuracy were pointed out. In 

particular,  biases in attitude angles errors are filtered in body referenced angular estimates 

and their effect can be seen only on stabilized (that is, NED) angular estimates. Attitude 

angles errors’ noise influences also body estimates.  

All the developed logics and methods were implemented on the on board processing units for 

flight technology demonstration. The two computers are based on a deterministic (Microsoft 

Windows CE) and a conventional (Microsoft Windows XP Embedded) operating system, and 

were programmed in different languages (Embedded C and Visual Basic.Net). Both the two 

developed software packages are based on modules that perform the different communication 

and processing functions. Communication with the radar system for data acquisition and 

sensor command is based on TCP/IP and a customized interface protocol that allows to 

choose among different operating modes. Extensive hardware-in-the-loop tests were 

performed to estimate latency in data exchange and accuracy of real time performance. In 

particular, latency in the communication via CAN bus between the obstacle detection real 

time unit and the flight control computer was estimated to be of the order of a few ms. It is 

largely compatible with application requirements.  

A procedure for electro-optical sensors alignment with respect to the navigation unit was 

designed and tested. It is based on use of carrier-phase differential GPS in Real Time 

Kinematic mode, accuracy of the AHRS in static mode, and analysis of sample images with 

target pixel extraction. First calibration sessions demonstrated an alignment accuracy of the 
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order of 0.3° rms, while the effect of flights on alignment results was found to be of the same 

order of measurement accuracy. It is believed that calibration accuracy can be improved in 

future tests thanks to higher target contrast with respect to the background, and to more stable 

GPS estimates of targets and cameras’ positions.  

Preliminary flights were performed for electro-optical sensors functional verification. 

Acquired images show that disturbances induced by the platform are negligible, in terms of 

vibrations, propeller impact, and thermal noise for the infrared sensors. Visible images taken 

with the sun in the back  or in lateral position show high detail and contrast. Instead, the effect 

of sun presence in the field of view makes completely useless for obstacle detection about 

30% of the image. Infrared sensors performance in any geometry with respect to sun are 

largely satisfying in terms of contrast and radiometric resolution. Thus, the flight data 

confirmed the good potential of electro-optical sensors for target detection, especially for 

intruders flying over the horizon.  

Due to project delays, sense and avoid flight tests have not been performed yet. These tests 

can be considered both as the appropriate conclusion of all the activities performed in this 

study, and as a starting point for further research and development. Flight tests with real time 

integration of microwave and electro-optical sensors, and with contemporary object detection 

and tracking on the one hand, and collision avoidance maneuvers execution on the other hand, 

within a fully autonomous architecture, have never been performed until today. Thus, the 

scientific value of this technology demonstration would be significant.  

Moreover, flight tests will be very important in view of future evolution of sense and avoid 

studies and systems. Experimental evaluation of radar performance will allow to understand 

the critical improvements needed to design a new generation microwave sensor especially 

suited for sense and avoid. Demonstration of collision avoidance capability with a single 

intruder will be the starting point for collision avoidance with more than one intruder. It is 

worth noting that from tracking point of view, considering multiple intruders will have an 

impact more in terms of computational cost than system approach.  

The availability of multiple sensor flight data will be the key for other future developments 

and researches. In fact, first of all they will be exploited for design and implementation of 

intruder classification algorithms. Moreover, electro-optical flight images will be used for 

further analysis and development of image based techniques for detection and tracking. In this 

framework, real time integration of images and navigation data seems to be the roadmap for a 

significant performance improvement.      
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