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Abstract 

Increased use of mouse models of cardiac abnormalities are becoming “state of art” tools 

to understand the mechanism of the cardiac rhythm disorders. Carefully regulated calcium 

cycling is critical for cardiac function, a variety of ion channels, ATP-dependent pumps, 

and transporter proteins serve as the major control points of calcium regulation in the 

heart, including L-type calcium channels and ryanodine receptors (RyR) for calcium. In 

this thesis, results from 2 genetically modified mouse models are presented: FKBP12.6 

knock-out mouse which exhibit stress induced arrhythmia; and alpha1D Knock-out mouse 

as model of atrial fibrillation which reveals new mechanisms during cell contraction, and 

heart impulse propagation.  

In vivo techniques have been used to study the cardiac phenotype. In addition, single 

cardiomyocytes were obtained from these mouse models. Calcium transient and ion 

channels activity were measured, in normal state and in pathological state with the use of 

optical and patch clamp techniques. New molecules (JTV519) are tested using FKBP12.6 

KO mouse to manipulate intracellular calcium preventing cardiac arrhythmias. 

The results presented here expands the current knowledge of cardiac physiology, illustrate 

new mechanisms of heart disease and new pharmacological strategies that could help to 

reduce disability and death from heart disease and stroke. 
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Introduction 

The cardiac beat disorders 

The normal human heart is a strong, muscular pump a little larger than a fist. It pumps 

blood continuously through the circulatory system. Each day the average heart beats 

(expands and contracts) 100,000 times and pumps about 2,000 gallons of blood. In a 70-

year lifetime, an average human heart beats more than 2.5 billion times (American Heart 

Association web site). 

The heart is classically described as a four 

pumping chambers, right and left atria’s, 

right and left ventricles, it beats when an 

electrical impulse from the heart's 

sinoatrial node “SA node” moves through 

the heart. The normal heart beat sequence, 

called the “sinus rhythm”, begins in the 

right atrium (RA), (Figure 1), spreads 

throughout the atria and to the atrioventricular node “AV node”. From the AV node, the 

impulses travel down a group of specialized fibers (the His-Purkinje system) to all parts of 

the ventricles. This exact route must be followed for the heart to pump properly. As long 

as the electrical impulse is transmitted normally, the heart pumps and beats at a regular 

pace. The “Cardiac rhythm disorders” is referred to several disorders that impair the 

cardiac functions with derangements that vary from mild symptoms to life-threatening 

complications known as “arrhythmias”. Arrhythmias are generally divided into two 

Figure 1. Diagrammatic view of the 
conducting system (source: the internet). 
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categories: ventricular and supraventricular. Ventricular arrhythmias occur in the lower 

chambers of the heart; it can be rapidly fatal commonly known as sudden cardiac death 

(SCD). SCD appears to be a degeneration of ventricular fibrillation (VF) during which 

disorganized contractions of the ventricles fails to eject blood effectively, often followed 

by a pulseless electrical activity. Often VF is associated with common cardiac diseases, 

most notably heart failure, in which approximately 50% of patients die from fatal cardiac 

arrhythmias and is estimated to kill about 600,000 individuals per year in Europe and the 

United States combined. However, these fatal arrhythmias can also occur in young, 

otherwise healthy individuals without known structural heart disease. 

Supraventricular arrhythmias occur in the area above the ventricles known as atrial 

fibrillation (AF) it manifest with a disorganized, ineffective quivering caused by chaotic 

conduction of electrical signals through the upper chambers of the heart. AF is the most 

common arrhythmia in the population; it is associated with increased mortality in case of 

mild-to-moderate heart failure. Atrial fibrillation is also associated with other forms of 

cardiovascular disease, including one or more of the following: congestive heart failure, 

rheumatic heart disease, coronary artery disease, left ventricular hypertrophy, 

cardiomyopathy and hypertension. Atrial fibrillation may cause up to a 30% reduction in 

cardiac output resulting in shortness of breath, fatigue and reduced exercise capacity and a 

reduction in cerebral blood flow during the fibrillation episode. Formation of blood pools 

in the chambers can lead to the formation of blood clots that can dislodge and travel to the 

brain resulting in stroke. 
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Where do we stand? 

Standard antiarrhythmic drug therapy has failed to reduce and in some instances has 

increased the incidence of SCD. Regarding therapeutic advances in cardiovascular 

research, Dr. Katz’s pose this paradox: at the present time our knowledge of the molecular 

basis of cardiac electrical activity is increasing by leaps bounds thanks to recombinant 

DNA technology and patch clamp electrophysiology, but application of this information to 

the development of effective new therapies for cardiac arrhythmia is decreasing. This 

paradox finds its explanation in the complexity of the electrical dysfunctions in the intact 

heart and the disappointment to date of preventive therapy for patient at risk from cardiac 

arrhythmias [Katz. al. 1995]. 

Impetus for new directions 

The nature of the immediate precipitating event that triggers the fatal ventricular 

tachyarrhythmia at a specific time in an otherwise stable patient remains as the major 

unanswered question. A result of regulatory guidelines for new drug development, the cost 

of bringing new drugs into the clinic appear prohibitive to the pharmaceutical industry, 

discouraging many from seeking solution to the problems of how to treat cardiac 

arrhythmias and reduce the incidence of sudden cardiac death. However, recent 

breakthroughs in research on cardiac electrophysiology have enabled us to focus on 

individual ion channel proteins, the molecules that generate excitatory and repolarizing 

currents in normal and diseased myocardial cells. Increased understanding of drug-channel 

protein interaction will ultimately allow us to develop newer and more effective drug to 

deal with this enormous public health problem [Spooner et. al. 1995]. 
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Origin of the heart beat 

Cardiac muscle has some similarities to neurons and skeletal muscle, as well as important 

unique properties. Like a neuron, a given myocardial cell has a negative membrane 

potential when at rest. Stimulation above a threshold value induces the opening of voltage-

gated ion channels and a flood of cations into the cell. When the threshold is met, an 

action potential initiates. This causes the positively charged ions to enter the cell 

[depolarization]. Like skeletal muscle, depolarization causes the opening of voltage-gated 

calcium channels and entry of Ca2+ from the t-tubules. This influx of calcium causes 

calcium-induced calcium-release (CICR) from the sarcoplasmic reticulum, and the 

increase in myoplasmic free Ca2+ concentration causes muscle contraction. After a delay 

(the absolute refractory period), potassium channels reopen and the resulting flow of K+ 

out of the cell causes repolarization to the resting state. The process whereby an action 

potential triggers a myocyte to contract is known as excitation-contraction coupling (ECC) 

(Figure 2). 

 

 

Figure 2. Ions fluxes generate the heart beat. 
A small amount of calcium enters cells 
through the L-type calcium channel (LTCC), 
triggering release of a much larger amount of 
calcium from the sarcoplasmic reticulum (SR) 
through ryanodine receptors (RyR). Most of 
the calcium is pumped back into the SR by 
SERCA2a, and the rest is extruded from the 
cell by the NCX. Calcium efflux must balance 
calcium influx. Bers DM Nature 415, 198-205 
(2002). 
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Role of calcium in cardiac arrhythmia 

As is shown in figure 2 calcium is central during the ECC and CICR of a single cell in the 

heart. Alteration in intracellular calcium homeostasis plays an important role in the 

development of the heart beats and ventricular tachyarrhythmia in the failing heart as well 

as in some inherited syndromes leading to SCD. Congenital Ca2+ handling abnormalities 

in the heart include defective function of the ryanodine receptor 2 (RYR2) in 

catecholaminergic polymorphic VT (CPVT), ankyrin-B mutation in long-QT syndrome, 

calsequestrin (CSQ) mutation, and intracellular calcium alteration. The role of abnormal 

calcium signaling in the genesis of cardiac arrhythmias has generated considerable interest 

over the past three decades; because of this key role, all aspects of calcium cycling are 

inviting targets for antiarrhythmic strategies. 

Here I am going to focus on two distinct components of the calcium cycling components, 

both are calcium channels: 1) the cardiac ryanodine receptor (RYR-2), an intracellular 

calcium channel localized in the sarcoplasmic reticulum that once opened release the 

calcium stored in the SR starting the contraction, it seems that mutation of this channel are 

associated with lethal forms of arrhythmias like stress induced arrhythmias. 2) The alpha 

1D calcium channel, It is a relatively new calcium channel that has been discovered to be 

expressed in the atria’s, up to date there is no evidences of the relative contribution of this 

channel in the heart, but it is very interesting the fact that mouse model of α1D genetically 

deleted (α1D KO)are prone to arrhythmias. 
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Part I 
 “The FKBP12.6 KO mouse model”. 
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Genetic of the cardiac arrhythmia 

Overview of the ryanodine receptor  

Three mammalian isoforms of ryanodine (RyR), each encoded by a specific gene, have 

been identified and cloned; they are named RYR1, RYR2, and RYR3. RYR1 is expressed 

predominantly in skeletal muscle, RYR2 is expressed predominantly in cardiac muscle, 

and RYR3 is expressed in the brain and other non-muscle as well as muscle tissues. RyR 

single channel are homotetramers 2.4 x 106 kDa located in the SR membrane. Each 

subunit (Figure 3) is structurally similar along the three isoforms, ~565 kDa with 6 

putative membrane-spanning domains that include the pore region and a large cytoplasmic 

N-terminal domain, termed the “foot 

structure” that spans the gap between the 

SR and transverse tubule (T-tubule). Several 

of the channel modulators bind to this 

cytoplasmic scaffold domain such as, 

calmodulin, FKBP12.6 1,2, PKA 3, 

phosphatases1 and 2A (PP1 and PP2A) 3, 

and sorcin. Triadin and junctin are involved 

in the membrane anchoring of RyR, and 

calsequestrin is involved in high-capacity 

intracellular calcium buffering.  

 

 

Figure 3. Structural domains of the cardiac 
ryanodine receptor and satellite proteins. 
The primary structure of a cardiac 
ryanodine receptor and binding domains of 
protein phosphatases 1 and 2A, protein 
kinase A, calmodulin and FKBP12.6 are 
indicated  
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Human arrhythmia disease associated with RYR mutations  

Two clinically distinct forms of SCD in children and young adults have recently been 

linked to autosomal-dominant mutations in RyR2 4,5. These disorders, known as 

catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right-

ventricular dysplasia/cardiomyopathy (ARVD/C) type 2 share the clinical characteristics 

of exercise-induced ventricular arrhythmias and sudden cardiac death 5-8. CPVT, a rare 

disorder, has a very high mortality rate (up to 50% by the age of 30 years)5,9, sudden 

cardiac death can be the presenting symptom. In 1999, Swan et al. 10 linked the disorder to 

the hRyR2 gene locus in two Finnish families. Subsequently, more than 16 missense 

mutations in hRyR2 have been linked to CPVT 6-8,11. ARVD/C is characterized by the 

progressive replacement of right-ventricular free wall with fibrous and fatty tissue 12. 

Linkage studies have identified eight chromosomal loci in families with the disorder. 

ARVD/C type 2, caused by mutations in the hRyR2 gene, is characterized by a unique 

association with exercise-induced arrhythmias 7. ARVD/C mutations in RyR2 were 

mapped to the mutation hotspot regions linked to CPVT, and the analogous regions in 

RyR1 were linked to malignant hyperthermia and central core disease. The associations 

with exercise and stimulation of the sympathetic nervous system are notable because 

mutations in RyR2 are also linked to exercise and stress-induced sudden cardiac death in 

the absence of any structural heart disease. Recent findings in mice with recombinant 

CPVT-mutant RyR2 channels have contributed to a better understanding of this 

mechanism 13. Mutant forms of RyR2 found in CPVT patients 5 have a decreased binding 

affinity for FKBP12.6 13, which causes increased RyR2 activity after PKA 

phosphorylation. Six distinct and structurally unrelated RyR2 missense mutations found in 



 15

CPVT carriers all decrease the binding affinity of FKBP12.6 for RyR2 3,14. This finding 

suggests a common mechanism for the RyR2 gain-of-function defect associated with 

exercise-induced arrhythmias 3,14, because DADs and arrhythmia triggers occur in 

conjunction with diastolic sarcoplasmic reticulum (SR) Ca2+ leak in heart failure in which 

RyR2 are chronically depleted of FKBP12.6 15, and CPVT missense mutations decreases 

the FKBP12.6 binding affinity to RyR2 3,14. 

Outline of RYR project 

To elucidate the role of RYR-2 during arrhythmia we have used engineered mice with 

genetically deleted FKBP12.6 (FKBP12.6 -/-) known to be prone to stress induced 

arrhythmia. We investigate the cellular mechanism that leads to the disease and the role of 

calcium as a trigger for the arrhythmia. We hypothesized that FKBP12.6 depletion from 

the RyR2 complex during β-adrenergic stimulation (β-AR stimulation) constitutes a 

common mechanism of arrhythmia initiation for catecholaminergic VT. FKBP12.6 

deficiency may be directly responsible for promoting dynamic electrical tissue 

heterogeneity during β-AR stimulation leading to VT. Thus we examined how RyR2 

function is affected in absence of FKBP12.6 and how calcium homeostasis is changed in 

the heart at single cell level.  

The animal model used in this study was also a valuable tool to study a new 

cardioprotective16-18 drug, JTV-519 which blocks Na+ current and inwardly rectifying K+ 

current and inhibits Ca2+ current. However, its role in atrial electrophysiology is unknown. 

Our hypothesis is that JTV would facilitate the association of FKBP12.6 to RYR2 in 

diseased heart, for this second aim we used haploinsufficient FKBP12.6+/– mouse 

expressing a reduced amount of protein (50% FKBP12.6 reduction) that associate to 
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RYR2 therefore still developing arrhythmias. We also screened for more efficient and 

target specific JTV519-derivates. 
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Results 

FKBP12.6 KO cardiac phenotype and JTV509 treatment 

JTV519-treated WT, haploinsufficient FKBP12.6+/– and FKBP12.6–/–-deficient mice did 

not exhibit ventricular tachycardia (VT) under resting conditions, in agreement with 

previous results.5,9 Isoproterenol (ISO) (0.5 mg·kg–1 i.p.) produced a significant increase in 

maximal heart rate in all groups: WT, 750 ± 42 min–1; FKBP12.6+/–, 748 ± 38 min–1; or 

FKBP12.6–/–, 747 ± 44 min–1 (each P < 0.05 compared with baseline). JTV519 treatment 

(7-day continuous infusion of 0.5 mg·kg–1·hr–1 via osmotic minipump) did not affect the 

increase in heart rate due to ISO: FKBP12.6+/– plus JTV519, 732 ± 45 min–1; or 

FKBP12.6–/– plus JTV519, 728 ± 52 min–1 (each P < 0.05 compared with baseline).  

WT, FKBP12.6+/–, and FKBP12.6–/– mice underwent programmed electrical stimulation 

(PES) to test for arrhythmia susceptibility. Compared with untreated animals, JTV519-

treated conscious FKBP12.6+/– and FKBP12.6–/– mice revealed no significant differences 

in resting electrocardiographic parameters like PR, QRS intervals, and rate-corrected QT 

interval), Including heart rate* (RR interval). However, PES reproducibly induced 

bidirectional VT in FKBP12.6+/– mice but not in WT controls (Figure 4 A and C). 

Simultaneous epicardial monophasic action potential (MAP) recordings showed that PES-

induced sustained or nonsustained VT (sVT or nsVT, respectively) correlated closely with 

MAP instability (Figure 4A and B). After ISO treatment, pacing at short cycle lengths 

(CLs) or premature coupling intervals (S1–S2; S1–S2–S3) resulted in MAP alternans, 

which continued after pacing stopped (Figure 4B). Sustained MAP alternans occurred in 

100% of sVT in FKBP12.6+/– and FKBP12.6–/– mice but never in WT control (Figure 4C). 

Sustained VT was observed in 86% of the FKBP12.6+/– mice, which was not significantly 
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different from FKBP12.6–/– knockout mice (Figure 4C); however, sVT was never observed 

in WT mice, confirming earlier results. 13,19  

 
FKBP12.6+/– mice pretreated for 1 week with JTV519 (0.5 mg·kg–1·hr–1) developed 

significantly fewer exercise-induced arrhythmias (P < 0.05) (Figure 4C). In contrast, 

JTV519 caused no significant reduction of arrhythmias in FKBP12.6–/–-deficient mice, 

indicating that FKBP12.6 is required for the antiarrhythmic actions of JTV519 (Figure 

4C). JTV519-treated FKBP12.6+/– mice exhibited no sustained MAP alternans (Figure 

4C), indicating that JTV519 effectively increased the threshold for arrhythmia inducibility 

and MAP alternans. Arrhythmias and MAP alternans also occurred spontaneously in 

FKBP12.6+/– and FKBP12.6–/– mice, and were never observed in WT mice (Figure 5). 

JTV519 inhibited the occurrence of spontaneous arrhythmias and MAP alternans only in 

FKBP12.6+/– mice but not in FKBP12.6–/– mice (Figure 5B).  

 

Figure 4. FKBP12.6 deficiency causes pacing-
induced bidirectional VT and MAP alternans, 
which are prevented by JTV519. (A) 
Representative lead I and II ECG tracings and 
simultaneous left ventricular epicardial MAP 
recording from a placebo-treated FKBP12.6+/− 
mouse during overdrive pacing at CL 30 ms as 
documented by PES trace. Pacing triggered 
sustained bidirectional VT, as evidenced by 
simultaneous ECG and MAP recordings shown 
at higher resolution in B. Pacing stimuli (arrows) 
induced MAP alternans that continued after 
cessation of pacing in placebo-treated 
FKBP12.6+/− mice (CL 32 ms). (C) Bar graphs 
summarizing simultaneous occurrence of 
bidirectional MAP alternans (Left) and sustained 
VT (sVT) (Center) or nonsustained VT (nsVT) 
(Right) arrhythmias in placebo-treated (J−) or 
JTV519-treated (J+) FKBP12.6+/− (open bars) 
or FKBP12.6−/− (filled bars) mice during ISO 
stimulation (0.5 mg·kg−1 body weight). Mouse 
numbers and dimensions are as indicated. sVT, 
>10 beats (Center); nsVT, 3–10 arrhythmogenic 
beats (Right). GT, genotype. 
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Experiment in the heart (open chest procedure) 

To further test the hypothesis that FKBP12.6 deficiency promotes dynamic electrical 

tissue heterogeneity during β-AR stimulation, we positioned two MAP electrodes at a 

fixed distance of 4 mm apart on the left ventricular free wall. During sVT progression, 

FKBP12.6+/– mice exhibited a phase reversal of MAP alternans in the absence of pacing 

(Figure 5). Because the surface MAP traces reflect the integrated electrical activity of 

intramural and epicardial cells, 3D optical mapping would be necessary to further 

differentiate between arrhythmic mechanisms of focal delay after depolarization (DAD) 

activation versus automatic focus or breakthrough of reentrant waves. However, studies 

using optical mapping techniques 

have shown that discordant action 

potential alternans representing 

significant electrical instability 

precedes ventricular fibrillation. 20 

The fact that we observed 

discordant MAP alternans in FKBP12.6-deficient mice suggests that both spatial MAP 

heterogeneities and local MAP instabilities create a dynamic substrate for arrhythmias, 

none of which were observed in WT mice or FKBP12.6+/– mice after JTV519 treatment. 

Calcium dynamics in single ventricular myocytes 

To elucidate calcium dynamics and mechanisms of arrhythmia in FKBP12.6 engineered 

mice and gain insight on JTV519 action at cellular level we conducted studies in single 

isolated cardiac myocytes. Pilot experiments were necessary to establish the best approach 

of how to study calcium dynamic in our mouse model; since we cannot stimulate 

Figure 5. Spontaneous bidirectional 
VT and MAP alternans in a 
FKBP12.6+/− mouse (no pacing). (A) 
Simultaneous, representative ECG 
lead I tracing and left ventricular 
epicardial MAP recording from a 
placebo-treated FKBP12.6+/− mouse 
during early phase of sVT. CL, cycle 
length. Bidirectional ECG QRS 
alternans and MAP alternans are 
closely correlated. (B) Bar graphs 
summarizing alternans (Left), sVTs 
(Center), or nsVTs (Right) in placebo-
treated (J−) or JTV519-treated (J+) 
FKBP12.6+/− (open bars) or 
FKBP12.6−/− (filled bars) mice during 
ISO stimulation. GT, genotype.  
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arrhythmia/fibrillation in a single cell (arrhythmia in most cases is a multicellular 

phenomenon). It is now known that RyR2 open probability is affected by the calcium 

content in the SR, greater SR Ca2+ loading increases the probability that RYR2 will open 

while less complete loading leads to less RyR2 open probability.4 We showed with single 

channel experiment that RYR-2 without FKBP12.6 had alteration in the opening 

probability (gating) we than designed experiments to over-load the SR Ca2+ content and 

observe (measure) how calcium exit from the SR through RYR2 with and without 

FKBP12.6. Left ventricular myocytes were isolated with enzymatic digestion from three 

groups of mice (for these experiments mice were not treated with JTV519 neither injected 

with ISO), cells morphology was unchanged among the groups. Subsequently myocytes 

were loaded with fura-2 (10 mmol/L for 30 min). Calcium transient and contractions were 

evoked by electrical field stimulation. Cells were stimulated while continuously 

superfused in Tyrode`s solution enriched with (ISO 1 mmol/L) to simulate the high level 

of epinephrine, typical of an emotional stress situations.  
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Firstly we asses how SR Ca2+ loading is affected by intracellular calcium, for this purpose 

myocytes were stimulated at different and increasing frequency allowing few second of 

rest in between the different frequencies, during the rest period rapid application of 

caffeine cause the release of the total SR Ca2+ content. The SR Ca2+ loading increased 

proportionally to the frequency applied (we consider the amount of Ca2+ released coming 

totally from the SR since calcium influx was blocked by the absence of extra cellular Na+ 

and Ca2+). The amount of calcium stored in the SR was higher in the cell stimulated at 8 

Hz than the same cell stimulated at 4 Hz (9.95% increase), we conclude that, the SR Ca2+ 

load is not a fixed amount but it is subject to the amount of citoplasmatic calcium (Figure 

7) and this result was valid also in those cells where FKBP12.6 was genetically deleted.  

Figure 7. Relationship between SR Ca2+ content and sarcolemmal Ca2+ fluxes. 
A,Original data. Trace shows measurements of [Ca2+]i.transient evoked by electrical 
stimuli followed by a Caffeine [Ca2+]i.transient (10 mmol/L), that empty the SR. Ca2+ 
content for each of the three exposures to 10 mM caffeine in B. panel representing 
average result of Caffeine [Ca2+]I transient amplitude after electrical stimulation at three 
different frequencies. 
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The SR Ca2+ overload is returned to the cytoplasm and extracellular environment if the 

cell is not electrically stimulated, a phenomenon described as spontaneous Ca2+ release. 

The Ca2+ released from the SR through RYR2 was dependent from RYR2 gating 

properties, Ca2+ released spontaneously (i.e., calcium waves) was able to start mechanical 

contraction-like activity (Figure 8).  

We then test if increasing the SR Ca2+ loading has a different outcome in our mouse model 

were we know the RyR2 gating is defective because FKBP12.6 deprived. We isolated  

Programmed field stimulation in the presence of 1 µM ISO was followed by a pause, to 

monitor for aberrant intracellular Ca2+ release events and associated after-contractions 

(AFCs)21. At 0.5 s–1 pacing frequency, aberrant Ca2+ release and AFCs were observed in 

<1% of WT, FKBP12.6+/–, or FKBP12.6–/– cardiomyocytes in the presence of 1 µM ISO. 

Pacing at higher frequencies increased aberrant diastolic Ca2+ release and AFCs in 92% of 

FKBP12.6+/– and in 95% of FKBP12.6–/– cardiomyocytes at 6 s–1 (show calcium aberrant 

in WT and KO). Previously, we reported that rapid pacing combined with -AR 

2  se c

No Pacing

Figure 8 Aftercontractions induced in presence of isoproterenol (1 µmol/L) in 
isolated myocytes (arrow heads on the left). A train of 20 field-stimulated 
contractions (last three are shown) in a FKBP -/- myocytes (right) induce an 
aftercontractions. After exposure to 1 µmol/L isoproterenol (Iso) the same protocol 
results in an aftercontraction (arrow). In both cases, the stimulation frequency was 
0.5 Hz and [Ca2+]o=2 mmol/L.
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stimulation induced DADs in FKBP12.6–/– cardiomyocytes 13. It is therefore likely that 

these DADs are triggered by aberrant intracellular Ca2+ release in the setting of -AR 

stimulation and rapid pacing. 30 to 45 minutes preincubation of haploinsufficient 

FKBP12.6+/– cardiomyocytes with 1 µM JTV519 significantly reduced the number of 

aberrant diastolic Ca2+ release events and AFCs after rapid pacing in FKBP12.6+/–, but not 

FKBP12.6–/–, knockout cardiomyocytes (P < 0.05) (Figure 9B and D). Application of 

caffeine indicated that SR Ca2+ store content was significantly reduced by 9 ± 0.3% or 10 

± 0.4% in ISO-treated FKBP12.6+/– and FKBP12.6–/– cardiomyocytes compared with WT 

(1-Hz preconditioning; P < 0.05) (Figure 9E), indicating that FKBP12.6 deficiency 

promotes a net SR Ca2+ leak during -AR stimulation. 

 

To prove our hypothesis that PKA phosphorylation induce FKBP12.6 to dissociate, 

myocytes enriched suspension was treated with isoproterenol, we also investigate if the 

presence of the new compound JTV519 was able to prevent the FKBP12.6-RYR2 

Figure 9. FKBP12.6 deficiency causes 
aberrant diastolic Ca2+ release and 
after-contractions (AFCs) that are 
prevented by JTV519. (A) Alternating 
(indicated by “A”/“B”) intracellular 
Ca2+ transients and AFCs in 
FKBP12.6+/− cardiomyocyte paced at 
0.5 Hz and aberrant Ca2+ release 
events after 6-Hz pacing. (B) JTV519 
treatment prevented intracellular Ca2+ 
oscillations and AFCs in FKBP12.6+/− 
cardiomyocytes after rapid pacing. (C) 
Ca2+ oscillations (min−1 cell−1) are 
significantly increased at higher pacing 
rates in FKBP12.6+/− or FKBP12.6−/− 
cardiomyocytes compared with WT. 
(D) JTV519 treatment significantly 
decreased aberrant Ca2+ oscillations 
in heterozygous FKBP12.6+/−, but not 
FKBP12.6−/−, cardiomyocytes. (E) SR 
Ca2+ load measured by local caffeine 
application was significantly reduced in 
FKBP12.6-deficient cardiomyocytes.  
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complex from dissociating even after phosphorylation and prevent calcium aberrant 

events. Incubation of isolated cardiomyocytes with ISO for 30 min in the presence of 

sodium fluoride (1 mmol/L) resulted in maximal RyR2 PKA phosphorylation and 

significant depletion of FKBP12.6 from the RyR2 complex (Figure 10A). JTV519 

significantly increased FKBP12.6 binding to PKA- phosphorylation RyR2 in FKBP12.6+/– 

cardiomyocytes (Figure. 10B). Diastolic SR Ca2+ release may activate a Ca2+-dependent 

transient inward current (ITI) that triggers DADs in FKBP12.6–/– cardiomyocytes.13 

Calcium waves originate from random point and propagate throughout the cell as calcium 

waves that can be visualized in fluo-4 loaded cells (Figure11).Using combined confocal 

Ca2+ imaging and patch-clamp (Figure 12A), a depolarizing step after preconditioning and 

stimulation with 1 µM ISO revealed no aberrant Ca2+ release events in WT 

cardiomyocytes. However, repeating the same protocol during ISO stimulation in 

FKBP12.6+/– cardiomyocytes promoted Ca2+ sparks and Ca2+ waves (Figure 12B), which 

coincided with the depolarizing ITI and thus are a potential source of DADs and electrical 

instability (8). 

Figure 10. JTV519 increased FKBP12.6 
binding to RyR2 in cardiomyocytes during 
β-AR stimulation. (A) RyR2 
immunoprecipitation from FKBP12.6+/− 
cardiomyocyte lysate demonstrating 
increased PKA phosphorylation of RyR2 
at Ser-2808 and FKBP12.6 depletion after 
a 30-min exposure to 100 nM 
isoproterenol (ISO). Pretreatment with 1 
µM JTV519 prevented FKBP12.6 release 
from RyR2 despite PKA Ser-2808 
phosphorylation. (B) Bar graphs 
summarizing results from three myocyte 
isolations each assessed in triplicate. 
*P<0.05
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After rapid pacing at 10 s–1, plasma membrane current traces from isolated FKBP12.6+/– 

cardiomyocytes dialyzed with 11 mM EGTA to clamp intracellular [Ca2+]i at low 

concentrations showed no ITI before or 4 min after 1 µM ISO treatment (Figure 12C). 

However, FKBP12.6+/– cardiomyocytes dialyzed with 1 mM EGTA to clamp [Ca2+]i at 

100 nM, which is characteristic for resting cells in diastole, exhibited a low number of ITI
 

events after pacing that were greater than 5-fold increased by ISO treatment (P < 0.05) 

(Figure 12D). When the identical protocol was repeated in cardiomyocytes pretreated with 

1 µM JTV519 and dialyzed with 1 mM EGTA, ITIs were inhibited (Figure 12 E and F). 

Thus, either [Ca2+]i clamp with 11 mM EGTA or JTV519 treatment resulted in significant 

inhibition of ITIs (Figure 12F)  
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Figure 11 Detection of a sequence of fluorescence ratio metric recordings at rest conditions 
of a single myocyte after a train of electrical stimuli. The figures show typical spatial profiles 
of a Ca2+ wave. Montages of images corresponding to ~0.1 second, the cell images were 
captured at 32 msec. interval. Recording of ratio metric images revealed different subcellular 
calcium propagation. Localized Ca2+ signals preceding Ca2+ waves characterized by red 
spots. Ca2+ release propagate at a velocity of – as seen in C and D On the right 
pseudocolor indicate low (L) and high (h) calcium concentration. 
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Figure 12.Inhibition of calcium-dependent transient inward current (ITI) in haploinsufficient 
FKBP12.6+/− cardiomyocytes by JTV519. (A) Confocal Ca2+ line scan image of isolated WT 
cardiomyocyte current trace during 1 µM isoproterenol (ISO). After a depolarization–repolarization 
step, the ICa tail current rapidly activated a homogeneous intracellular [Ca2+]i transient followed by 
a long electrically stable resting phase. (B) In contrast, in FKBP12.6+/− cardiomyocytes, 
intracellular Ca2+ sparks and Ca2+ waves (arrows) were frequent, and Ca2+ waves coincide with ITI 
(arrows) under the same conditions. Scales are the same as in A. (C) Typical current traces were 
recorded at −75 mV after a preconditioning depolarization train under control conditions (CO) or 
after 4 min of 1 µM ISO in cells dialyzed with 11 or 1 mM EGTA (D) or 1 mM EGTA and 1 µM 
JTV519 pretreatment (E). Scales in C–E are as indicated. (F) Bar graph summarizes average 
number of ITIs per cell under indicated experimental conditions. No ITI was detected in cells 
dialyzed with 11 mM EGTA (n = 4, each CO and ISO). In FKBP12.6+/− cells dialyzed with 1 mm 
EGTA, ISO significantly increased the number of ITIs per cell (CO, n = 6; ISO, n = 5; P < 0.05). 
The number of ITIs in FKBP12.6+/− cells treated with 1 µM JTV519 and dialyzed with 1 mM EGTA 
was not significantly increased by ISO (CO, n = 7; ISO, n = 11). 
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JTV519 mechanism of action and more selective derivates 

JTV519 is known to act on multiple targets 16-18 remained possible that the inhibitory 

effect of JTV519 on AFCs resulted from its impact on Ca2+ handling proteins other than 

RyR2. Thus it was important to assess if JTV519 has any effect on calcium transient. 

Isolated cardiac myocytes perfused with even low concentration of JTV519 (3µM) shows 

a marked decrease of intracellular calcium transient (50.61% calcium transient amplitude 

reduction) (figure 13)  

 

 

 

 

 

 

 

 

 

 

Figure 13. Superimposed calcium transient in Fura-2 electrically 
stimulated cells (0.5Hz) in red myocytes isolated from an 
FKBP12.6 +/- in black the same cell after treatment with JTV519 
(3µM for 5 minutes) which clearly reduce the calcium influx. 
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Calcium flux reduction may reflect the action of JTV519 on the calcium channels. To test 

this hypothesis we employed whole-cell voltage-clamp technique which allows a 

quantitative analysis of the JTV519 on cellular ion currents. Results in isolated myocytes 

(figure 14) shows a significant inhibitory effect of JTV on calcium channel that partially 

confirm the decreased calcium transient (Figure13). 

 

Figure14. Calcium current measured in single ventricular 
myocytes. Voltage clamped myocytes was injected with step 
current from a resting potential of -80 mV to +10 mV. The 
figure show that JTV block calcium current by~50% while a 
JTV derivate (S26) had only 10% inhibitory effect on the 
calcium current. 
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TO increase specificity we biochemically “dissected” JTV519 aiming to isolate the 

portion of the molecule that interact and associate with RyR2 and cut the portion that has 

no specific effect. We screened for new JTV519 derivates on isolated myocytes. One 

compound among many meets the requirement of high affinity for RYR2. We measured 

the impact of the new compound (that here we call S26 shown in Figure 15) on calcium 

channel compared to JTV519 using whole-cell patch clamp configuration. The new JTV 

derivate S26 had a less inhibitory effect of calcium channel, if compared with JTV519 

(Figure 14) it remains to be studied if S26 retain the beneficial characteristics we saw in 

JTV509. 
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Conclusions 

In the present study we have shown that FKBP12.6 deficiency is associated with aberrant 

SR Ca2+ release, Ca2+-dependent ITIs, MAP alternans, and bidirectional VTs, all of which 

can be prevented by JTV519 a newly synthesized agent that exert cardioprotective effects.  

Our study extends earlier reports showing that intracellular [Ca2+]i alternans (Figure 9A) 

gives rise to action potential alternans at the in vivo level. 22,23 We have documented 

diastolic SR Ca2+ leak induced by rapid pacing and β-AR stimulation in FKBP12.6+/– mice 

as a mechanism of MAP alternans and bidirectional VT. Spatially discordant MAP 

alternans was observed during sustained arrhythmias in FKBP12.6+/– mice, suggesting 

diastolic SR Ca2+ leak as a mechanism underlying electrical tissue heterogeneity, as 

described previously by using optical mapping 20. SR Ca2+ wave fronts in FKBP12.6+/– 

cardiomyocytes consistently activated ITI as a source of electrical membrane instability. In 

ISO-treated FKBP12.6+/– cardiomyocytes, aberrant diastolic SR Ca2+ release correlated 

closely with the pacing frequency (Figure 9C). Earlier studies showed a relationship 

between plasma membrane action potential oscillations and [Ca2+]i alternans. 22,23 Because 

six distinct CPVT-linked RyR2 mutations exhibited significantly reduced FKBP12.6 

binding to RyR2 9,13, FKBP12.6+/– cardiomyocytes may represent a model for CPVT. 

Indeed, the RyR2-R4496C knockin CPVT mouse 24 shows a similar phenotype to that 

observed in FKBP12.6+/– mice, catecholaminergic bidirectional VT. Because the 

bidirectional VT in the FKBP12.6+/– mice was closely associated with MAP alternans 

throughout the arrhythmia, it seems likely that the alternating bidirectional ECG pattern 

observed in CPVT is directly related to MAP and [Ca2+]i alternans. Importantly, enhanced 

FKBP12.6 binding to PKA-phosphorylated RyR2 prevented MAP alternans, ITIs, and 
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arrhythmias only in FKBP12.6+/– mice, further implicating FKBP12.6 depletion and 

diastolic SR Ca2+ leak as key antiarrhythmic targets.19  

Treatment of FKBP12.6+/– mice with JTV519 suppressed MAP alternans and cellular ITIs, 

preventing initiation of ventricular arrhythmias during all pacing protocols. These data 

indicate that MAP alternans and (as previously shown) DADs in FKBP12.6–/– 

cardiomyocytes 13 may induce propagation of arrhythmic excitation waves. Inhibition of 

RyR2-mediated diastolic SR Ca2+ leak by JTV519 represents a previously unrecognized 

treatment opportunity for prevention of sudden cardiac death in patients with CPVT and 

heart failure. 

This data suggest that small molecules that increase the affinity of RyR2 for FKBP12.6 to 

prevent the Ca2+ leaks that trigger arrhythmias could be used to prevent arrhythmia in 

humans with the same genetic defect, as well as in those suffering from heart failure. Most 

of the currently available antiarrhythmia drugs have toxic side effects and other 

therapies—like implanted defibrillators or heart transplants—are expensive and invasive. 

It would be preferable to take a pill rather than spend hundreds of thousands of dollars on 

an implant or a heart transplant. New and improved synthesis of JTV519—derived by 

Columbia Synthetic Organic Chemistry is necessary to eliminate the many non-specific 

effect of JTV519, the new compounds like the one presented here (S26) needs to be tested 

to see if the beneficial effect on RyR-2 preventing arrhythmia are retained. 
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Part II 
 “The α1D KO mouse model”. 
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Introduction 

The α1D KO mouse a model for AF 

Atria fibrillation is the most common sustained arrhythmia in adult, it is ironic then 

mechanisms and effective treatments remain incompletely understood and poorly treated. 

Because no unifying mechanisms of AF have been proven, here we describe the intriguing 

aspect of a new, recently discovered α1D calcium channel find to be expressed only in the 

atria. For this goal we used a mouse model where α1D calcium channel was genetically 

deleted. This will defy the role of the new channel in the atria function, unveil important 

concept behind current mechanistic theories of AF that will improve our clinical 

understanding of AF. 

 

The L-Voltage dependent calcium channels (L-VDCCs) are heterotetrameric polypeptide 

complexes comprising the 1, 2/ , ß, and, in some tissues, subunits (Figure 1) that allow 

Figure 1. L-Voltage dependent calcium channels A) (L-VDCCs) are heterotetrameric 
polypeptide complexes comprising. B) Biophysical differences between α1C and α1D in tsA 
cells. 
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depolarization-induced calcium influx into the cytosol. These are considered the functional 

minimum core for Ca2+ channel assembly. The accessory subunits (ß, 2/ ) are tightly but 

not covalently bound to the 1 subunit (Figure 1A) and modulate the biophysical 

properties and trafficking of the 1 subunit to the membrane. The Ca2+ channel 1 subunit 

(170–240 kDa) consists of 4 homologous motifs (I–IV), each composed of 6 membrane-

spanning -helices (termed S1 to S6) linked by variable cytoplasmic loops (linkers) 

between the S5 and S6 segments (Figure 1A). To date, 10 1 subunits genes have been 

identified and separated into 4 classes: Cav1.1 ( 1S), 1.2 ( 1C), 1.3 ( 1D), and 1.4 ( 1F). The 

1D and 1C have different biophysical characteristics. Patched clamp of tsA201 cells 

transfected with different (α1D and α1C) subunits reveal that 1D has different voltage-

current relationship by activating (opening) before α1C does (Figure 1B). 

The voltage-gated  α1D Ca2+ channel was previously considered to be expressed only in 

neuroendocrine cells 25. Recent studies reported that the α1D gene deletion in mice leads to 

sinus bradycardia and various degree of AV-block 26,27. The evidence presented indicated 

a critical role of the α1D Ca2+ channel in diastolic depolarization and in the rate of 

discharge in sinoatrial (SA) node cells. The expression of α1D Ca2+ channel was 

demonstrated in the SA-node, AV-node and atria, but not in the ventricles of adult 

hearts28-30. Therefore, abnormalities of α1D Ca2+ channel could play an important role in 

altering the normal activity in the atrium and might also result in arrhythmias, such as 

atrial fibrillation (AF). A decreased L-type Ca2+ current (ICa-L) density results in a 

shortening of the action potential (AP) and therefore of the effective refractory period, 

which occur also in AF 31,32.  
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A unique property of atrial cells is that both α1C and α1D Ca2+ channels contribute 

to the total ICa-L
28. While a decrease in ICa-L density, a reduction in mRNA and protein 

level of the α1C Ca2+ channel in AF has been reported 33,34, the role of α1D Ca2+ channel in 

AF remains unclear. One report from a gene microarray study demonstrated a significant 

reduction in α1D Ca2+ channel mRNA (as well as a reduction of α1C Ca2+ channel mRNA) 

in atrial samples from patients with AF 35, supporting an important role of α1D L-type Ca2+ 

channel in the genesis of AF. 

However, there are no available pharmacological agents or biophysical approaches to 

determine the relative contribution of α1D Ca2+ channel to the total ICa-L. The aim of this 

study was to use the atrial tissues of α1D Ca2+ channel deficient mouse (α1D Ca2+ channel 

KO) to investigate the role of α1D Ca2+ channel in: (1) the electrocardiographic atrial 

abnormaliets; (2) the contribution of α1D Ca2+ channel to the total ICa-L; (3) the behavior of 

the intracellular Ca2+ transient; (4) the Ca2+  handling by the sarcoplasmic reticulum (SR); 

and (4) the inducibility of atrial fibrillation (AF).  

The results obtained indicate that the elimination of the α1D Ca2+ channel results in 

abnormalities of intracellular calcium homeostasis which in turn affects several 

electrophysiological functions and facilitate the induction of atrial fibrillation. 
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Results 

Electrocardiograms from mice 

Surface ECGs were recorded from a total of 15 α1D KO and 15 WT anesthetized mice. 

Examples of the ECG recordings are illustrated in Figure 2. The recording from the WT 

mouse shows a sinus rhythm with regular P-QRS complex and with a detectable P-wave 

(Figure 2A). The ECG from the α1D KO mice shows sinus bradycardia, and pulses not 

propagated in the ventricle (A-V block) (Figure 2B, arrow heads). Three out of 15 KO 

mice showed spontaneous episodes of atrial arrhythmia. The mean QRS-duration was no 

different in the two groups. 
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Figure 2. Representative surface ECG recordings from anesthetized mice. (A) ECG showing a 
sinus rhythm (heart rate of 571 beats/min) with a regular P-QRS complex. (B) ECG from an 
α1D KO mouse with pronounced sinus bradycardia (375 beats/min). AV-block is illustrated by 
arrow-heads. (C) Superimposition of a single P-QRS complex from a WT (solid line) and KO 
mice (dotted line) shows a prolonged PR-interval. (D) Distribution of the P-R interval and 
average is represented in solid and dotted lines. 
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Averaged data demonstrated significant sinus bradycardia in the α1D KO mice (551.2 ± 

58.5 beats/min in WT vs. 303.5 ± 72.4 beats/min in α1D KO mice, P < 0.01). In the α1D 

KO mice the P-wave amplitude was significantly depressed (1.26 + 0.06 mV in KO vs. 

2.24 + 0.03 mV in WT mice, P<0.05), the P-wave duration was also prolonged (25.3 + 

1.0 ms in WT mice vs. 30.8 + 1.0 ms in α1D KO mice, P<0.05), P-R interval was also 

prolonged (33.5 ± 2.02 ms in WT vs. 45.07 ± 1.96 ms in the α1D KO mice, P < 0.05) 

(Figs. 2A and 2B). Superimposition of a single P-QRS complex, from a WT and a KO 

mouse clearly illustrates these differences in the P-wave morphology and the P-R interval 

between the two groups (Fig. 2A). 

Electrocardiograms from isolated hearts and induction of AF in the α1D KO mice 

To further explore the cardiac phenotype, we conducted studies in isolated Langendorf-

perfused hearts to rule-out interferences from of the autonomic innervations. All the 

cardiac dysfunctions observed in vivo were still present in isolated the α1D Ca2+ channel 

KO mice hearts (n=5), but not WT mice hearts (n=5), meaning: evidence of SA- and AV-

node dysfunctions, sinus bradycardia with an average heart rate of 205 ± 17 beat/min in 

the α1D Ca2+ channel KO heats (n=5) compared with 309 ± 20 beat/min in the WT mice 

hearts (n=8, P< 0.01). 

Using the programmed rapid pacing (PRP) protocol, AF was readily inducible in all α1D 

Ca2+ channel KO hearts but in none of the WT mice hearts analyzed. A representative 

ECG from a WT mouse heart in sinus rhythm is shown in Figure 3A before and after burst 

stimulation. In contrast, the use of the same burst stimulation protocol resulted in 

inducible AF/tachycardia in all the α1D Ca2+ channel KO mice hearts (5 out of 5) (Figure 

3B). Episodes of AF spontaneously converted to sinus rhythm after 125 + 66 seconds. 
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During AF, the atrial rate is clearly faster than the ventricular rate with a median 

fibrillation interval of ~80 millisecond corresponding to an atrial rate of ~960 beats/minute 

(Figure 3B). 
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Figure 3. Induction of atrial arrhythmias by rapid pacing in isolated hearts. PRP applied at the 
S1 cycle length of 40 ms followed by 3 extra-stimuli S1-S2-S3 at 30 ms. (A) Representative 
epicardial ECG recording from a WT mouse heart, sinus rhythm returned immediately after the 
burst stimulation. (B) PRP of α1D Ca2+ channel KO heart resulted in an episode of AF with slow 
and irregular ventricular response both of which spontaneously terminated and converted, into 
sinus rhythm. 
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Patch Clamp Recordings from Atrial Cells 

To determine the relative contribution of the α1D Ca2+ channel to the total ICa-L in the 

atrium single cells, RA cells were isolated and the whole cell recording of ICa-L was 

performed. The capacitance of atrial cells from the KO mice cells was slightly but 

significantly smaller as compared to the WT cells (42.13 + 2.22 pF in KO cells vs. 50.75 + 

3.25 in WT cells, n=26 p=0.05). The recording of peak ICa-L revealed a positive shift (13 

mV) in the KO mice cells as shown in the I-V curve (Fig. 4B). Overall atrial myocytes 

from the KO mice demonstrated a reduced peak of ICa-L density as compared with WT 

(3.51 + 0.2 pA/pF in KO mice cells (n=18) vs. 4.65 + 0.3 pA/pF in WT mice cells (n=25), 

p<0.05 for WT). The current was normalized with the respective cell capacitance and 

shown in Figure 4C.  

 

To investigate whether the deletion of α1D Ca2+ channel may have resulted in changes (i.e, 

compensatory mechanisms) of other major atrial ion currents, we recorded INa, ICa-T, IK, If 

and Ito  from both groups of animals. Current densities between WT and KO mice were not 

significantly different indicating that deletion of α1D Ca2+ channel did not result in 
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Figure 4. Membrane ion currents 
in single RA cell from WT and KO 
mice. (A) Selected ICa-L tracings 
from WT and KO myocytes. (B) 
Averaged I-V curves shows a 
reduction of the ICa-L in KO cells 
(red line) compared with the WT 
(black line). I-V relationship is 
clearly shifted rightward in KO 
cells (13 mV). (C) Summary of 
membrane currents measured in 
single atrial myocytes. (D) 
Summary of different membrane 
current measured in single RA 
cells. (*P<0.05). 
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compensation from the currents studied (Figure 4C). To asses the possibility that deletion 

of α1D Ca2+ channel altered the expression of the remaining α1C Ca2+ channel, we 

conducted real-time PCR experiments, (Figure 5) shows that the abundance of mRNA 

encoding the α1C Ca2+ gene is unaltered in α1D KO mice. Thus supporting the idea that the 

absence of α1D subunit was responsible for the decreased ICa-L. The transcript for α1D was 

detected in atria whereas α1D KO mice had none as expected. 

 

Figure 5. Real Time PCR analysis for relative 
quantification of α1C and α1D mRNA transcript in 
WT (white) and Cav1.3-/- (black) in mouse atria (n=2 
each) indicate no compensatory mechanisms fron 
α1C at mRNA level.
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Intracellular [Ca2+]i Measurements in Atrial Myocytes  

The [Ca2+]i transient was monitored in single right atrial cells loaded with fura-2 and 

electrically field-stimulated. Representative traces of a single atrial cell from a WT and a 

KO mouse are shown (Figure 6A). A significant reduction of the [Ca2+]i peck amplitude 

was observed in all the α1D KO mice atrial cells compared to the WT atrial cells (40.48 + 

5.02%, n=13, p<0.05). Calcium transient reduction was associated with an increase of the 

time to peak in the KO mice cells without altering the [Ca2+]i decay time (Figure 6B). 

 

 

SR Ca2+ loading and function in the WT and KO mice atrial myocytes 

The SR is the main calcium contributor during the calcium transient in mice, we 

postulated that a decrease in systolic Ca2+ might reflect a decrease in SR Ca2+ content. To 

assess our hypothesis we measured SR Ca2+ content and the fractional SR Ca2+ release. 

For this purpose, single atrial cells were exposed to rapid caffeine application (10 mM) to 

empty the intracellular Ca2+ store (Fig. 6A). The analysis of the caffeine-induced [Ca2+]iT 
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from fura-2 loaded cells electrically 
stimulated at 0.5 Hz. (A) [Ca2+]i transient 
original records from WT and KO atria 
cells. (B) Normalized and superimposed 
individual [Ca2+]i transient from a WT and 
from KO show a reduced systolic [Ca2+]i 
peak in KO atrial cells. (C) Average bar 
graph showing data for [Ca2+]i transient 
amplitude, time to peak, and time to 50% 
relaxation, (*P<0.05). 
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amplitude reveals a significant reduction of (SR) Ca2+ content 17 + 2 % (n=8, p<0.05) in 

the α1D KO cells compared with the WT cells. 

Fractional release, defined as the fraction (%) of Ca2+ release during a transient twitch 

electrically induced, compared with the total releasable caffeine-induced [Ca2+]iT ([Ca2+]iT 

twitch/[Ca2+]iT,caffeine) was also calculated. The average fractional release in the KO atrial 

cells decreased significantly (72 + 3 %; n=6, p<0.05) (Fig. 7C). This result suggests that in 

the α1D Ca2+ channel KO atrial cells the function of the CICR is indeed impaired. 

 

 

Figure 7. Sarcoplasmic (SR) Ca2+ content measured by caffeine 
application. (A) Original traces showing SR Ca2+ content measured by 
caffeine induced calcium release. Cells were electrically field-stimulated 
followed by caffeine pulse (10 mM). (B) Superimposed individual caffeine-
induced Ca2+ transient from a WT and from a KO cell indicating that the 
SR Ca2+ content in KO cells is less than in WT. (C) Average data of 
caffeine-induced calcium release peak. (D) SR fractional calcium 
released. Data are normalized to facilitate comparison. Data represented 
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Conclusions 

 
The α1D Ca2+ channel is expressed together with the conventional α1C Ca2+ channel in the 

supraventricular tissue of many species 28-30. The unique role of the α1D Ca2+ channel in 

the heart has been recently emphasized with the generation of α1D Ca2+ channel KO 

mouse. These mice present electrocardiographic abnormalities in absence of any cardiac 

structural abnormalities.27 We demonstrate here that α1D Ca2+ channel deletion produces 

cardiac dysfunctions and AF vulnerability. Further we have identified a reduction of ICa-L 

and, abnormal intracellular calcium transient and impaired CICR in the α1D Ca2+ channel 

KO mouse atrial myocytes. These findings may account for the electrocardiographic 

abnormalities, including AF vulnerability described in these mice. 

Electrocardiographic Abnormalities of the α1D Ca2+ Channel KO Mice 

During ECG recordings in KO mice, spontaneous arrhythmias could be present in addition 

to sinus bradycardia, P wave changes and first and second degrees AV-block. The smaller 

and longer P waves suggest a slower impulse atrial propagation in the α1D Ca2+ channel 

KO mouse atria compared to WT. Isolated hearts Langendorff-perfused hearts (which lack 

the influence of the autonomic innervations) showed the same abnormalities seen in the 

EGC, indicating that the dysfunctions are likely to be intrinsic in the heart Furthermore, 

these isolated hearts were prone to AF/tachycardia upon burst stimulation of the right 

atrium. Although the arrhythmia in intact KO mice does not necessarily have the same 

mechanism of the AF induced in an isolated heart, the important point is that AF 

vulnerability of KO mouse is associated (and presumably a consequence) of the α1D Ca2+ 
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channel disruption. Taken all together, the present findings indicate that the α1D Ca2+ 

channel is an obligatory component for the maintenance of normal atrial functions. 

Ion Currents in the α1D Ca2+ Channel KO Atrial Cells 

Reduction of the global RA ICa-L, which is represented only by α1C in our KO mouse 

model, indirectly shows that α1D actively contributes to the calcium influx in atrial 

myocytes for either subsarcolemmal calcium regulation or calcium-induced calcium 

release (CICR) mechanism. Patch clamp results unmasked the different biophysical 

characteristics between α1C and α1D channels. The latter activates at more negative 

potential, consistent with the properties of α1D Ca2+ channel characterized in heterologous 

expression systems.26,36 That the α1C expression is not altered in α1D Ca2+ channel KO 

mice is indicated by real time PCR results, which show that α1C mRNA is not significantly 

different in KO mice. Moreover INa, ICa-T, IK, If and Ito current densities are not affected by 

the deletion of α1D Ca2+ channel in the atrial cells.  

These results are consistent with a reduced total ICa-L density in the SA node cells of the 

α1D Ca2+ channel KO mice30 (with no compensatory changes from other currents), but are 

in contrast with no changes in total ICa-L of the α1D Ca2+ channel in KO mice atrium.28 The 

use of different stimulation/conditioning used to evoke ICa-L and differences in the genetic 

background of the mice used between the two studies37 may account for the different 

outcome. 
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Intracellular [Ca2+]i transient in the α1D Ca2+ Channel KO Atrial Cells 

No data are available in the literature regarding the role of α1D Ca2+ channel in the calcium 

transient event in single atrial myocytes. The ICa-L reduction in our animal model may 

account, at least in part, for the significant reduction of the [Ca2+]i transient in single atrial 

cells. Since the main source of calcium during CICR is the SR, the smaller ICa-L can not be 

solely responsible for the large calcium transient decrease> in fact, our results show a 

concomitant SR Ca2+ load reduction and a smaller fractional release. The results obtained 

indicated that α1D Ca2+ deletion introduces significant intracellular calcium perturbations 

that are reflected in abnormal electrophysiological functions. Moreover, reduced calcium 

channel availability may result in an inefficient CICR. 

Pathophysiological Significance 

One possible mechanism that explain the cardiac abnormalities in α1D Ca2+ channel KO 

mice is related to the trigger activity of ICa-L. Because cardiac RYRs are under local 

control of single L-type Ca2+ channels, a change in properties of the L-type channel may 

have profound consequences on the normal function of CICR. The decrease in L-type 

channel availability and the positive shift of the I-V curve in the α1D Ca2+ channel KO 

mice could be responsible for asynchronous SR Ca2+ release that might create 

microdomains of refractoriness, supporting a critical and unique role of α1D Ca2+ channel 

in the normal and pathological atria. Specifically the present data support the hypothesis 

that a reduction in ICa-L current density may be involved in the initiation of AF, since 

deletion of this channel makes the mice prone to AF, unlike the reported reduction of ICa-L 

(and Ito) current density due to remodeling after AF is in place. The data from present 
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study contribute information on the characteristic features of the α1D Ca2+ channel in the 

supraventricular tissue which may be useful for the development for potential atrial 

specific therapeutics targeted towards the management of atrial arrhythmias especially AF. 



 47

Methods 

Electrocardiographic recordings 

Mice were gently removed from their cages and positioned on the ECG recording 

platform. An array of gel-coated ECG electrodes were embedded in the floor of the 

platform and spaced to provide contact between the electrodes and animals' paws. the 

spacing between electrodes was 3 cm, and for nurslings, the spacing was reduced to 2.5 

cm. Filter paper, with openings for the electrodes, prevented mouse urine from short-

circuiting the signals. The electrodes were connected to an amplifier (MP100 data 

acquisition system, Biopac). Since even modest handling of mice may induce alterations 

in heart rate, each mouse was permitted to acclimatize for 10 min prior to collection of 

baseline data. The signals were digitized with 16-bit precision (Acqknowledge, Biopac) at 

a sampling rate of 200 samples/second. When mice were sitting or otherwise positioned 

such that the paws were not in contact with three electrodes, the output from the amplifier 

was discarded. Only data from continuous recordings of 20-30 ECG signals were used in 

the analyses. Data were analyzed for heart rhythm, P-wave duration, P-wave amplitude, 

and QRS duration, first and second heart block. 

Epicardial ECG in mouse heart 

Hearts were removed and quickly cannulated through the aorta and langendorff-perfused 

with Krebs-Henseleit buffer containing (mM): 118 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 

MgSO4, 1.8 CaCl2, 25 NaHCO3, and 11.1 glucose, (pH=7.4), bubbled with 95% O2 - 5% 

CO2 at 35 + 1 οC. Bi-modular amplifier (Biopac. MP system) was used to record 

independently epicardial ECG from ventricles and atria from a total of 6 chlorinated 
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electrodes gently placed on the heart. A third module was a stimulator controlled by a 

computer to deliver programmed fast pacing stimuli with S1 cycle length ranging from 80 

to 40 ms followed by 3 extra-stimuli S1-S2-S3 delivered at a coupling interval of 30 to 20 

ms. Stimuli were delivered at the right atrium (RA) at several interval but never more than 

1 min continue to induce AF. AF was reordered as spontaneous fast atrial fibrillation not 

transmitted to the ventricle. 

Basic system for heart retrograde perfusion mode (Langendorff) for stimulation and 
epicardial ECG recordings. 

 

ECG analysis 

Each signal was analyzed using Acqknowledge (Biopac) software specialized in 

physiologic waveform analysis. Digital filtering of frequencies below 2 Hz and above 100 

Hz was applied to minimize environmental signal disturbances. The software uses a peak 

detection algorithm to find the peak of the R-waves and to calculate heart rate. Heart rate 

variability was calculated as the mean of the differences between sequential heart rates for 

A BA B
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the complete set of ECG signals. The T-wave is not separate from the QRS in rodent 

ECG`s. We defined the end of the T-wave of each signal as the point where the signal 

returned to the isoelectric line. The mean voltage between the preceding P-wave and QRS 

interval.  

Removal of the heart 

After inducing anesthesia with halothane or isofluorane (4-2% mixed with oxygen), the 

mouse was placed in a dissecting tray near the isolated heart apparatus. To facilitate fast 

removal and mounting of the organ, extra sets of sutures and instruments was positioned 

close at hand. Cardiac removal was performed as a surgical procedure, after exposing the 

heart by a sternotomy cutting and retracting the rib cage, two loose ties are placed around 

the aorta. One tie is used to manipulate the aorta and the other to secure the aorta to the 

cannula (custom made plastic cannula). An extension catheter with perfusate solution is 

placed on the cannula for ease of preparation. This cannula can be connected to the 

perfusion apparatus and a slow stream of perfusate is permitted to flow through the aortic 

cannula, air bubbles must be absent since their will not allow complete and homogeneity 

during heart perfusion. The pulmonary artery is then cut, followed by a partial cut across 

the aorta. The cannula is then inserted and secured with the ties. The tip of the aortic 

cannula should not be inserted below the base of the aorta, as the ostium may be occluded 

(coronary perfusion restricted) or the aortic valve may be damaged. Once perfusion has 

commenced, the heart may be removed from the animal and the cannula disconnected 

from the extension tube and placed in the apparatus. As the heart is a highly metabolically 

active organ, it requires a constant supply of oxygen and nutrients. Therefore, the time in 

which it takes to remove and mount the heart is very important. An extended period (> 30 
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seconds) of reduced oxygen and/or nutrients will significantly affect cardiac tissue (at 

body temperature), in particular its survival and experimental responses. 

 

 

Epicardial ECG in mouse heart 

Hearts were removed and quickly cannulated through the aorta and langendorff-perfused 

with Krebs-Henseleit buffer containing (mM): 118 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 

MgSO4, 1.8 CaCl2, 25 NaHCO3, and 11.1 glucose, (pH=7.4), bubbled with 95% O2 - 5% 

CO2 at 35 + 1 οC. Bi-modular amplifier (Biopac. MP system) was used to record 

independently epicardial ECG from ventricles and atria from a total of 6 chlorinated 

electrodes gently placed on the heart. A third module was a stimulator controlled by a 

computer to deliver fast pacing stimuli with S1 cycle length ranging from 80 to 40 ms 

followed by 3 extra-stimuli S1-S2-S3 delivered at a coupling interval of 30 to 20 ms. 

Stimuli were delivered at the right atrium (RA) at several interval but never more than 1 

Cannula 

heart 

Mouse langendorff preparation 
consists of a retrograde system 
which perfuses the coronary 
vascular system of an isolated heart 
via the aorta through a cannula with 
oxygenated fluid (such as Krebs-
Henseleit) from a reservoir to study 
coronary flow during cardiac activity. 
Models are maintained at constant 
mean flow (using an in-line 
flowprobe inserted into the perfusion 
line).  
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min continue to induce AF. AF was recorganized by spontaneous fast atrial fibrillation 

with a typical saw tooth configuration not completely transmitted to the ventricle. 

Isolation of mouse ventricular myocytes. 

Cardiomyocytes from WT, calstabin-2+/-, or calstabin- 2-/- mice were enzymatically 

dissociated and isolated as described: 

Dissection: 

1. Inject heparin 0.25 ml/mouse (5000 U/I) 

2. After at least 30 min inject (xylazine 20 mg kg-1 plus ketamine 100 mg kg-1) 

an alternative could be anesthesia with isofluorane/ halothane 4% inductance, 

1.5 % maintenance + 100% oxygen. Open the thorax by serotomy and the heart 

was quickly excised and cannulated at the bottom of a Langendorf perfusion 

system. Wash for 5 min with Basic Buffer/tyrode solution* Ca2+- free at 

constant volume 3ml/min. 

3. Change the perfusion solution to Digestion Solution (Perfusion solution + 20 

mg collagenase. Type II act 275 + 5 mg protease. Type XIV + Hyaluronidase). 

4. Place the heart in a clean dish with Digestion Buffer, remove the right ventricle 

and the supraventricular tissue, and after mechanic agitation transfer the cell 

and tissue in a 15 ml tube add 0.5% serum FCS or BSA to inactivate the 

enzymes. 

5.  Remove the supernatant, wash 3 times with Ca2+ restore solution (I-II-III). 

6. Finally resuspend in Tyrode solution (1.2 mM Ca2+). 

(All the solution must be pre-warmed before use)  
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Solution for single myocytes isolation and culture 

 

Basic Buffer.  1000 ml   pH 7.4 

COMPOUND  CODE  QUANTITY 
 
MEM    SIGMA  M-0518  1 BOTTLE 

HEPES   SIGMA  H-3375  0.7 gr 

L-GLUTAMINE  SIGMA  G-7029  0.3 gr 

TAURINE   SIGMA  T-0625   1.25 gr 

INSULINE*   SIGMA  I-5500   20 U (ITSSMS, 

I-1884 10 ML)* 

ANTIBIOTIC*  SIGMA  P-3539   10 ml* 

H2O DISTILLED  

You can add BDM sigma B-0753 10 µM for adult 1 µM for neonatal. 

• only for cell culture. 

 

Incubation Buffer. 50ml pH 7.4 

 

I.B. mL      100  300  500 

Basic Baffer + B.S.A. gr (0.5%)   0.5  1.5  2.5 

Albumin Sigma A-4503 or fraction IV Sigma 2153. Check the pH 7.4, filter (for cell culture) before use. 
 

Digestion Buffer. 
Basic Buffer   50 ml 

Collagenase type II Activity 317 worthington 20 mg/ml for 18-20 min for adult 
mouse + 0.15 mg Protease XIV (sigma). 

 
CaCl2 Stock solution (10 mM) in 10 ml of Tyrode or basic buffer 

   Final conc. 
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(I) 2.5 ul  25 uMol 

(II) 10 ul  0.1 mmol 

(III) 50.0 ul  0.5 mmol  

 

Tyrode solution  pH 7.4 (1 liter) 
 

120 NaCl 8.4 gr 

5.4 KCl 0.402 

5 MgSO4 1.0 ml 

20 glucose 1.8 gr 

10 HEPES 2.2 gr  

Add CaCl2 pH 7.4, pre-oxygenated with 100% O2 for 5 min. 

 

 

 
 

Isolation of mouse atrial myocytes 

Atrial cells were isolated from Langendorff-perfused hearts. The heart was perfused with 

nominally Ca2+-free Tyrode’s solution containing (mM): 137 NaCl, 5.4 KCl, 1 MgCl2, 

10X 40X10X

Enzymatically isolated calcium tolerant cardiomyocytes from mouse left ventricle at 2 different 
magnifications. 
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0.33 NaH2PO4, 10 HEPES and 10 glucose (pH=7.4) equilibrated with 100% O2 (35 + 1 

οC). After the blood was washed out. Digestion beging with 5 minutes digestion wit 

DNAsa and trypsin (0.5 and 1 mg/ml respectively). After the heart was perfused with  

0.3 cm

A B

In A) Isolated mice heart, the right atrium is indicated 
by the white arrow in B) cells isolated from the right 
atrium at 40X, note the different morphology

0.3 cm

A B

0.3 cm

A B

In A) Isolated mice heart, the right atrium is indicated 
by the white arrow in B) cells isolated from the right 
atrium at 40X, note the different morphology  

perfusion solution containing: collagenase type-2 (1 mg/mL, Worthington, Biochemical 

Corp.), protease type XIV (0.02 mg/mL; Sigma), and elastase (0.2 mg/mL, Worthington, 

Biochemical Corp.). When the hearts became swollen, the right atrium was quickly 

removed and the tissue was allowed to digest for an additional 5-15 minutes in the 

solution containing the enzymes. Never agitate or add bsa prior to cell separation The 

tissue was than transferred into the KB-recovery solution and cells were dispersed after 40 

minutes of incubation. Na+ and Ca2+ were re-introduced by the addition of a solution 

containing (mM): 10 NaCl, 1.8 CaCl2, and BSA (1mg/mL). Cells were finally stored in a 

solution containing (mM): 100 NaCl, 35 KCl, 1.3 CaCl2, 0.7 MgCl2, 14 L-glutamic acid, 

β-OH butyric acid, 2 KH2PO4, 2 taurine and BSA 1 mg/ml, (pH=7.4) and were used 

within 4 hours after the isolation.  
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Intracellular Ca2+ measurement and imaging in isolated ventricle myocytes. 

Calcium indicator - Fura-2 

The most widely used method of Ca2+ monitoring is by the use of fluorescent Ca2+ 

indicators, a technique pioneered by professor Roger Tsien and colleagues (Tsien, R. in 

Methods in Cell Biology, Vol. 30, Taylor, D.L. and Wang, Y-L, Eds., Academic Press 

(1989) pp. 127-156). These indicators probe Ca2+ concentration via their fluorescent 

spectral changes upon Ca2+ binding. These products are available in both the membrane-

impermeant salt forms and the membrane-permeant AM ester forms. The AM esters of the 

indicators are membrane-permeant and thus can be loaded into cells by simple incubation 

of the cell or tissue preparation in a buffer containing the AM ester. Pluronic F-127, a mild 

nonionic detergent that can facilitate the loading of the AM esters must be present during 

the incubation. The AM esters themselves do not bind Ca2+ . However, once they have 

entered the cells, they are readily hydrolyzed by intracellular esterases into the parent 

Ca2+ indicators, thus becoming responsive to Ca2+. 

One of the widely used is Fura-2 a UV-excitable fluorescent calcium indicator. Upon 

calcium binding, the fluorescent excitation maximum of the indicator undergoes a blue 

shift from 363 nm (Ca2+-free) to 335 nm (Ca2+-saturated), while the fluorescence emission 

maximum is relatively unchanged at ~510 nm. Measurement of the bound/unbound Fura-2 

emission light from a single cell is an indirect measurement of the amount of calcium 

within that cell citoplasmatic calcium content. Fura-2 is typically excited at 340 nm and 

380 nm respectively and the ratio of the fluorescent intensities corresponding to the two 

excitations is used in calculating the intracellular concentrations. Measurement of calcium 

concentration using this rationing method avoids interference due to uneven dye 
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distribution and photobleaching (Bright, G.R., et al, in Fluorescence Microscopy of Living 

Cells in Culture, Part B, (Methods in Cell Biology, Vol. 30), Academic Press (1989) p. 

157). Fura-2 has been used in many cellular systems and applications, particularly in 

microscopic imaging as well all the experiments in this thesis. 

 

 

 

 

System I set up for fluorescence, imaging and ion channel activity in living cells. Panel 1: A) 
Fluorescence detectors for emission shifted dyes. B) Intensified CCD camera. C) 
Microperfusion system. D) Microelectrode holder for patch. E) Micromanipulator. Computer 
patch clamp set-up. Panel 2: A) Microperfusion controller. B) Amplifier. C) Micromanipulator 
controller. D) Digitizer  
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Calcium transient measurement 

Ventricular or atria single cells were incubated in a 10 µM solution of fura-2 AM 

acetoxymethylester ester (Invitrogen) (3 µM in case of the atria cells) dissolved in DMSO 

in presence of pluronic F-127 (5 µl/ml) 30 min at room temperature, followed by 

resuspension in fura-2-free solution for 30 min to allow de-esterification. Cells were plated 

in a perfusion chamber placed on the stage of an inverted microscope (Nikon) coupled to a 

video camera. Cell length was monitored with a video-edge detector. For [Ca2+]i 

measurements, fura-2 fluorescence was measured by using a photomultiplier (DeltaRam; 

PTI, South Brunswick, NJ). The ratio of emitted fluorescence at 340 and 380 nm was 

converted to [Ca2+]i units. Cardiomyocytes were field-stimulated with 3-ms pulses at 

increasing frequencies (0.5–8 s–1) by programmed field stimulation (ALA Scientific 

Instruments, Westbury, NY) in the presence of 100 nM ISO at 37°C. Some cells were 

pretreated with 1 µM JTV519 or the carrier solution (0.1% DMSO) for 2 h.  

As for measurements ventricular myocytes were viewed with a 40 oil-immersion objective 

(Fluor, N.A. 1.3, Nikon) and loaded with the dye and excited (PTI Delta ram system) at 72 

W intensity on the cell. The fluorescence was detected at 515 + 15 nm with an 

photomultiplier (PTI) operated by an algorithm in the photon counting mode. The 

recording chamber was connected to a barrel to ensure continues superfusion of the cell 

(200 µl volume) stimulator electrodes were at the extremes and the bottom was thin glass 

(0.01 mm).The acquiring velocity was set to 100 points per second. 

Amplitude, time course and Ca2+ concentration was calculated from fluorescence images 

using an established self-ratio calibration procedure. Graph plots were generated from 

Felix (PTI software and Origin). 
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Figure Isolated ventricular myocytes loaded with fluorescent dye and UV-excited (indo-1 
in this case) 
 

SR Ca2+ loading measurement 

Caffeine was applied in a solution of the following composition: (in mM) 10 caffeine, 140 

LiCl, 4 KCl, 10 glucose, 5 HEPES, 1 MgCl2, 4 4-aminopyridine. Caffeine was used to 

release SR Ca2+ content and thus estimate SR Ca2+ loading after a period of pacing (0.5 

Hz). Na+ and Ca2+ were not included in the caffeine solution to minimize extrusion of Ca2+ 

by the Na+/Ca2+ exchanger. Caffeine was applied by pressure-ejection through a pipette 

positioned near the cell (200 µmeter) that empties the SR Ca2+ store after cells were 

electrically stimulated at steady state. 

Confocal Ca2+ measurements 

For imaging studies ventricular myocytes were viewed with a 40 oil-immersion objective 

(Fluor, N.A. 1.3, Nikon) and loaded with Fluo-4 was excited with the 488 nm line of an 

Mercury lamp (PTI Delta ram system) at 72 W intensity on the cell. The fluorescence was 

detected at 515 + 15 nm with an intensified camera (PMT IC. 300) operated by an 
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algorithm in the photon counting mode. The recording chamber was connected to a barrel 

to ensure continues superfusion of the cell (200 µl volume) stimulator electrodes were at 

the extremes and the bottom was thin glass (0.01 mm).The acquiring velocity was set to 

100 points per second. Amplitude and time course of Ca2+ signals due to Ca2+ influx were 

computed off-line using a the NIH Image software (NIH, Bethesda,MD). The spatial 

profiles of [Ca2+]i are limited by optical diffraction. Ca2+ concentration was calculated 

from fluorescence images using an established self-ratio calibration procedure (Cheng et 

al., 1993). Surface plots were generated from Felix (PTI software and Origin). 

Gene expression analysis for α1C and α1D transcripts using real time PCR 

Total cellular RNA was isolated from atrial tissue of WT and α1D KO mice (n=2 each) 

using Trizol LS Reagent (Invitrogen) according to the manufacturer’s recommendations. 

RNA was quantified by spectrophotometry at 260 nm and the ratio of absorbance at 260 

nm to that of 280 nm was > 1.8 for all samples. Degradation of RNA was monitored by 

the observation of appropriate 28S to 18S ribosomal RNA ratios as determined by 

ethidium bromide staining of agarose gels. First strand cDNA synthesis was carried out 

using RETROscript reverse transcriptase kit (Ambion). Gene specific Taqman primers 

(Applied Biosystems) were used to quantify the relative changes in mRNA levels of α1C 

and α1D in WT and α1D KO mice using ABI PRISM 7500 Real Time PCR (Applied 

Biosystems). All Real-Time PCR reactions were done in triplicates and the CT values 

normalized against the endogenous control 18S. 
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Simultaneous Recording of ITIs and Confocal Imaging of Ca2+ Sparks and Ca2+ 
Waves 

To simultaneously measure ICa-induced Ca2+ release from the SR, fluo-4 was excited at 

488 nm, and the fluorescence was detected at 510 nm with a laser scanning confocal 

microscope (LSM 510; Zeiss). Cell capacitance and ICa density were calculated with 

CLAMPEX 9.0 (Axon Instruments). Global Ca2+ release was analyzed by routines 

compiled with IDL 6.0 (Research Systems, Boulder, CO). Myocytes were incubated with 

fluo-4 acetoxymethylester (10 µM) and, after a 20-min period, were superfused with an 

extracellular solution containing 1.8 mM Ca2+. Cells were field-stimulated at 1.0 Hz to 

produce steady-state conditions. Within the first 10 s after the last depolarization of a 15-

pulse train, spontaneous non propagating Ca2+ release was recorded for the next three to 

four image frames at high resolution (800 lines per frame, 1.92 ms per line) and identified 

as "diastolic Ca2+ sparks." The recording sequence was repeated three times in each cell. 

Line-scan images were analyzed and Ca2+ sparks were detected offline with a computer-

based detection algorithm.  

In vivo electrical mapping 

Subcutaneous six-lead ECG recordings were obtained (model VR12; Electronics for 

Medicine, Pleasantville, NY). An MAP contact electrode was gently placed on the left 

ventricular anterior free wall by using a 3D micromanipulator and digitized MAP 

recording was used to monitor changes in epicardial membrane potential. A small 

platinum electrode was placed on the right ventricular free wall for PES. Pacing (S1–S2) 

at CLs between 70 and 200 ms, interpolating a single premature stimulus every 10 beats, 

was performed to determine effective refractory period at twice diastolic threshold 
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strength. Rapid pacing was increased until 2:1 block. In a subset of mice, two MAP 

electrodes were gently placed on the left anterior free wall during sustained VTs. Animals 

were treated with either JTV519 (7-day continuous infusion 0.5 mg·kg–1·hr–1) or placebo 

(carrier). ISO was administered by i.p. injection (0.5 mg·kg–1) 19. CL was averaged from 

10 consecutive RR intervals.  

Transfection of tsA201 cell line 

The mammalian cell line tsA201 is derived from human embryonic kidney HEK-293 cells 

by stable transfection with SV40 large-T antigen. Cells were grown in high-glucose 

DMEM supplemented with 10% fetal bovine serum, L-glutamine (2 mM), penicillin G 

(100 U/ml), and streptomycin (10 mg/ml; GIBCO BRL Life Technologies). Cells were 

incubated in a 5% CO2 humidified atmosphere. The tsA201 cells were transfected using 

the Ca2+ phosphate method with the following modification: to identify transfected cells, 7 

µg of EBO/CD8 plasmid was cotransfected with 7 µg of each of α1D, β2a and α2δ cDNAs. 

Transfected cells that bind beads generally also express Ca2+ channels. For patch-clamp 

experiments, cells 2–3 days posttransfection were incubated for 2 min in medium 

containing anti-CD8-a coated beads (M-450 CD8-a; Dynabeads). The unattached beads 

were removed by washing with extracellular solution. Beads were prepared according to 

the manufacturer's instructions (Dynal Biotech, Brown Beer, WI). Cells expressing CD8-a, 

and therefore binding beads, were distinguished from nontransfected cells by light 

microscopy. 
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Patch clamp technique 

Patch clamp traditionally uses a glass pipette, with an open tip diameter of about one 

micrometer, and is made such that the tip forms a smooth surfaced circle, rather than a 

sharp point. This style of electrode is known as a 

"patch clamp electrode" and is distinct from the 

"sharp microelectrode" used to impale cells in 

traditional intracellular recordings. The interior 

of the pipette is filled with different solutions 

(usually called the pipette solution) depending on 

the specific technique or variation used (see 

following). For example, with whole cell 

recordings, a solution that approximates the 

intracellular fluid is used. A metal electrode in 

contact with this solution conducts the electrical changes to a voltage clamp amplifier. The 

researcher can change the composition of this solution or add drugs to study the ion 

channels under different conditions. The patch clamp electrode is pressed against a cell 

membrane and suction is applied to the inside of the electrode to pull the cell's membrane 

inside the tip of the electrode. The suction causes the cell to form a tight seal with the 

electrode (a so-called "gigaohm seal", since the electrical resistance of that seal is in 

excess of a gigaohm). Unlike traditional voltage clamp recordings, the patch clamp 

recording uses a single electrode to voltage clamp a cell. This allows a researcher to keep 

the voltage constant while observing changes in current. Alternately, the cell can be 

current clamped, keeping current constant while observing changes in membrane voltage. 

Enzymatically isolated myocytes impaled with a 
patch clamp pipette (whole-cell configuration)
Enzymatically isolated myocytes impaled with a 
patch clamp pipette (whole-cell configuration)
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Recording of α1D ICa-L in tsA201 cells.  

Whole cell voltage-clamp recording was performed with the Axopatch 200B (Axon 

Instruments) with recording patch pipettes resistance of 1.5–2 MΩ. The internal solution 

contained (in mM) 135 CsCl, 4 MgCl2, 4 ATP, 10 HEPES, 10 EGTA, and 1 EDTA; 

adjusted to pH 7.2 with tetraethylammonium (TEA)-OH. The bath solution contains (in 

mM) 135 choline Cl, 1 MgCl2, 2 CaCl2, and 10 HEPES; adjusted to pH 7.4 with TEA-OH. 

Signals were sampled at 20 kHz and low pass filtered at 2 kHz. Data were leak subtracted 

on-line using the P/4 protocol and analyzed using pCLAMP V8.0 (Axon Instruments). 

Junction potentials were always compensated and were <5 mV. For α1D ICa-L current-

voltage relations, tsA201 cells were depolarized from a holding potential of –100 mV to 

test potentials between –80 and 60 mV with increments of 10 mV. For the time course, 

α1D ICa-L was continuously recorded at a test potential of –10 mV from a holding potential 

of –100 mV. 

Whole-cell recording of ionic currents in atrial cells 

Whole-cell voltage-clamp was used for current recordings.  Cells were first superfused 

with Tyrode’s solution, then the perfusion was switched to the appropriate solution for 

each current studied. Experiment were conducted at room temperature, briefly, for ICa-L 

and ICa-T, Na+ and K+ were substituted by equimolar concentration of tetraethylammonium 

(TEA-) and Cs+ respectively. Niflumic acid (30 µM), and 4-aminopyridine (4-AP, 1 mM), 

were added to block chloride and K+ outwards currents; cobalt (5mM) was added during 

ICa-T recording. The pipette solution used for ICa-L and ICa-T was similar, and contained 

(mM): 110 Cs-aspartate, 20 CsCl, 1 MgCl2, 10 EGTA, 10 HEPES, 5 Mg-ATP and 0.5 tris-

GTP, pH 7.4 with CsOH. The ICa-L was activated by a series of 200-ms depolarization 
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pulses from -90 mV holding potential (HP) to test potentials ranging from -50 mV to +60 

(10 mV step) at 10-second intervals. ICa-T was elicited by 250 ms depolarizing pluses (10 

mV step) from a HP of -90 mV to +60 mV. For INa recordings, external solution contained 

(in mM): 60 N-Methyl glucosamine, 60 NaCl, 10 CsCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES, 

and 10 glucose (pH=7.4, with CsOH). ICa-L and ICa-T were blocked by CoCl2 (5 mM) and 

NiCl2 (1 mM), respectively. The internal solution contained (mM) 135 CsOH, 135 L-

aspartic acid, 1 MgCl2, 10 EGTA, 10 HEPES, 5 Mg-ATP, and 0.1 Na-GTP (pH 7.2, 

CsOH). INa was evoked with 30 ms duration pulses to +30 mV from a HP of -90 mV at 5-

second intervals.  

For K+ currents family, the extracellular solution was adjusted as follows. For the classic 

delayed rectifier current (IK), 4-AP (0.5 mM) and verapamil (10 µM) was used to block 

the transient outward current (Ito), and ICa-L respectively. IK was elicited by step membrane 

depolarization from -50 mV to +60 mV. Ito
 was studied in the presence of TEA-Cl and 

CdCl2 (200 µM) and current was elicited by step depolarization from -50 mV to +60 mV. 

The pacemaker current (If) was studied by adding BaCl2 (1 mM) to the external solution 

and the membrane was then hyperpolarized from -20 mV to -130 mV. The standard 

pipette solution contained (mM): 110 K-aspartate, 20 KCl, 2 CaCl2, 1 MgCl2, 0.1 GTP, 5 

Mg2-ATP, 5 Na2-phosphocreatine, EGTA 10, and HEPES 10, (pH=7.3, with KOH). Data 

were sampled with an A/D converter (Digital 1320A, Axon Instruments) and stored on the 

hard disk of a computer for subsequent analysis. Data were acquired by using PCLAMP 

8.0 software (Axon Instruments, Union City, CA) and analyzed with ORIGIN 7.0 software 

(OriginLab, Northampton, MA) and CLAMPFIT 8.2 (Axon Instruments).  
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