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Introduction

The thesis, entitled ”Chaotic dynamics in Solow-type growth models”, explores
some discrete time models of economic growth and research in them elements
of dynamic complexity. It consists of three chapters. In the first chapter we
recall the definitions and the results of the theory of Discrete Systems Dynam-
ics and Chaos Theory preliminary to the study of certain models of economic
growth in discrete time. In particular, we give a brief overview of the def-
initions of one-dimensional chaos more widely used in the literature; then we
present some significant one-dimensional discrete time models. Concerning two-
dimensional dynamical systems we describe a technique for the linearization of
a two-dimensional map and we study a Kaldorian model of business cycle that
presents aspects of complex dynamic such as the ”Arnold’s tongues”. In the
second chapter we review significant models of growth. The discussion begins
with the Solow model (1956) and continues with the study of the contribution by
R.H. Day (1982) in which chaotic dynamics emerges in a discrete time versions
of the Solow model through appropriate changes in the production function - or
in the propensity to save, which is no longer regarded as a constant parameter
but as a endogenous variable. Later we study a model of growth, due to V.
Böhm and L. Kass (2000), which extends the Solow model by introducing dif-
ferentiated propensities to save as in Kaldor (1955, 1956) and Pasinetti (1962).
The model of V. Böhm and L. Kass (2000), although has in common with the
Solow model the important characteristic of being a one-sector (only one good is
produced in the economy) and one-dimensional model (the law of accumulation
is represented by a single discrete time equation), it differs from it because it
assumes two different types of economic agents (the ”classes” of ”workers” and
”capitalists”) instead of a representative agent. A second aspect of differenti-
ation that is evident in the model of V. Böhm and L. Kass (2000) consists of
a production function, an approximation to the Leontief production function,
that unlike the Cobb-Douglas used in the Solow model, relaxes the Inada con-
dition by introducing weaker assumptions concerning its properties. Also while
in the Solow model representative agent save according to a unique constant
propensity to save - which corresponds to the aggregate average propensity to
save of the economy - in the model of V. Böhm and L. Kass (2000), following
Kaldor (1955; 1956) and Pasinetti’s (1962) approach, two saving propensities
are introduced, both constant and relating to the two classes considered. Fi-
nally, the authors show that their model meets the conditions of the theorem
of Li-Yorke (1975) and, therefore, that it can generate chaotic dynamics. The
discussion of the models of economic growth is followed by the presentation of
a recent model developed by P. Commendatore (2005), which represents a dis-
crete time version of the Solow model proposed by Samuelson and Modigliani
(1966). It is possible to note that even if it is a model with two classes, differs
significantly from the work of Böhm and Kass (2000). Distinctive features in-
volve in the first place the use of a CES production function, which does not
meet the ’weak’ conditions of Inada and that only asymptotically behaves like
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a Cobb-Douglas. A second element of differentiation is the time map describing
the accumulation of capital that is two-dimensional. The properties of this map
are studied by using some sophisticated techniques such as the linear approx-
imation theorem of Hartman and Grobman. Moreover, the author, following
Chiang (1973), introduces three saving propensities and studies the different
types of existing equilibria (the equilibrium of Pasinetti, the dual equilibrium
(or anti-Pasinetti equilibrium) and the trivial equilibrium) and the asymptotic
local and global stability properties of the system. The analysis of this model
proposed in this thesis it is not a mere exposition but it refines some demon-
strations and provides explanations for certain observations only mentioned by
the author and not fully investigated.

In the third chapter, which represents the most innovative part of the thesis,
a discrete time model of economic growth is presented. The model also repre-
sents a discrete time version of the Solow and Samuelson and Modigliani model.
However, unlike other models described in the second chapter, it assumes that
workers and capitalists save on the basis of a rational choice. Following Thomas
R. Michl (2005), we assume that workers’ saving choices, which are egoistic,
follow a pattern based on an overlapping generation structure, whereas capital-
ists behave like a dynasty a la Barro. The solutions of the model generates a
two-dimensional time map for the accumulation of capital. About this map, we
study in depth the local asymptotic stability properties.



Chapter 1

1.1 Contents

• Introduction

• Preliminaries

• Various notions of chaos for dynamical systems

• Additional notions of chaos

• Comparison among notions of chaos

• Discrete one-dimensional dynamical systems

• Discrete dynamical systems in the plane

• Stability of planar and discrete systems

• Planar systems: stability triangle and bifurcations

• The Lyapunov characteristic exponents

• Dynamic Complexity: Arnold tongues in a discrete nonlinear business
cycle model

• Appendix: Basic Concepts on the Family of Logistic Maps

• Appendix: The Li-Yorke Theorem
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1.2 Introduction

Few branches of mathematics can boast exact origins as Chaos Theory. As a
matter of fact its history begins in 18891, when, in order to commemorate the
60th birthday of King Oscar II of Sweden and Norway (Jan. 21, 1889), a com-
petition was held to produce the best research in celestial mechanics concerning
the stability of the solar system, a particularly relevant n-body problem. The
contest was organized by Magnus Gösta Mittag-Leffler, editor of the journal
of Acta Mathematica and supported as judges by two mathematicians, Charles
Hermite and Karl Weierstrass. The prize was a gold medal, a sum of 2500
crowns and the publication of the work on the journal of Acta Mathematica.
The winner was declared to be Jules Henri Poincaré, a young 2 professor at the
University of Paris. Poincaré submitted a memory about the three-body prob-
lem, making the following assumptions: the three bodies move in a plane, two
of the bodies are massive and the third has negligible mass in comparison, so
small not affecting the motion of the others two (planar restricted three-body
problem). Moreover the two bodies move in circles, at a constant speed, circling
around their combined mass centre of mass. Among the many seminal ideas
in the entry of the winner there were the crucial notions of ”stable and unsta-
ble manifolds”. However a colleague of Mittag-Leffler, Lars Edvard Phragmen,
”after Poincaré was declared the winner but before his memory was published”3,
detected a serious mistake in a proof of Poincaré’s entry. Poincaré did not en-
tirely understand the nature of the stable and the unstable manifolds: these
manifolds may cross each other in a so-called homoclinic point. The Poincaré’s
article, Sur les équations de la dinamique et le probleme des trois corps, re-
vised, was published in 1890. Recently Poincaré’ s ideas were applied by NASA
”to send a spacecraft with a minimal fuel through the tail of a comet. In this
application the three bodies were Earth, Moon, and a spacecraft” (Kennedy, Ko-
cak, Yorke, 2001)4. We encounter the notions of stable and unstable manifolds
into several economic models (Brock, Hommess (1997); Grandmont, Pintus, de
Vilder (1998); Yokoo (2000); Onozaki, Sieg, Yokoo (2003); Puu (2003), Agliari,
Dieci, Gardini (2005)).

1For this reconstruction we follow Alligood et al. (1996) and June Barrow-Green (1997)
2Poincaré (1854-1912) became professor at the age of 27.
3Alligood et alt.(1996), or ”. . . (the) long process of editing, typesetting, printing took place

from July to November 1889”. Ivars Petersons, The Prophet of Chaos, MathTrek.
4See also Koon, Lo, Marsden and Ross (1999).
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1.3 Preliminaries

Let (X, d) a compact metric space without isolated points and f : X → X a
continuous map.

Definition 3.15 Let A = {tj} be an increasing sequence of positive integers,
let m > 0 be an integer and ε > 0. A set E ⊂ X is an (A,m, f, ε)−span, if for
any x ∈ X there is some y ∈ X such that

d(f tj (x), f tj (y)) < ε, for 1 ≤ j ≤ m.

Let S(A,m, f, ε) be an (A,m, f, ε)−span with a minimal possible number of
points.

Definition 3.2 The topological sequence entropy of f with respect to A is

hA(f) = limε→0 lim supm→∞
1
m log#S(A,m, f, ε)

where #{·} means ’the number of elements in the set’. In the case A = N =
{0, 1, . . .} we obtain the topological entropy h(f) of f .

Definition 3.3 F
(n)(t)
xy = 1

n#{m : 0 ≤ m ≤ n− 1, δxy(m) < t}

The definition of the lower distribution is

F (t) = lim infn→∞ F
(n)
xy (t)

and of the upper distribution is

F ∗xy(t) = lim supn→∞ F
(n)
xy (t)

5Forti (2005) defines the topological entropy in the sense of Bowen (1971) and Dinaburg
(1970). The original definition was given by Adler, Koneheim and McAndrew (1965).
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Definition 3.4 A set S ⊂ X (which has at least two point) such that for any
x, y ∈ S, x 6= y,

lim supn→∞ d(fn(x), fn(y)) > 0,

lim infn→∞ d(fn(x), fn(y)) = 0,

is called a scrambled set.

Let ωf (x) be the set of limit points of the sequence fn(x).

Definition 3.5 A set S ⊂ X (which has at least two point) such that for any
x, y ∈ S, x 6= y,

i) ωf (x) \ ωf (y) is uncountable,

ii) ωf (x) ∩ ωf (y) is non-empty,

iii) ωf (x) is not contained in the set of periodic points

is called an ω−scrambled set.

Definition 3.6 The orbit of a point x ∈ X is said to be unstable if there exists
r > 0 such that for every ε > 0 there are y ∈ X and n ≤ 1 satisfying the
inequalities d(x, y) < ε and d(fn(x), fn(y)) > r.

Definition 3.7 Let ε > 0. The map f is called Lyapunov ε-unstable at a
point x ∈ X if for every neighbourhood U of x, there is y ∈ U and n ≥ 0 with
d(fn(x), fn(y)) > ε. The map is called unstable at a point x (or the point x
itself is called unstable) if there is ε > 0 such that f is Lyapunov ε-unstable at
x.

Definition 3.8 The map f is topologically transitive if for every pair of non-
empty open sets U and V in X there is a positive integer k such that fn(U)∩V 6=
∅.

Definition 3.9 The map f is called sensitive on initial conditions in X if exists
r > 0 such that for every x0 ∈ X and every ε > 0, we can find a y0 ∈ X such
that d(x0, y0) < ε and, for some integer m, d(fn(x0), fn(y0)) > r.
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Definition 3.10 A map f is called accessible if for every pair of non-empty
open sets U and V of X, there exist points x ∈ U , y ∈ V and a positive integer
n such that d(fn(x), fn(y)) < ε.

1.4 Various notions of chaos for dynamical sys-
tems

Following Martelli, Dang and Seph (1998), Forti (2005), Alligood (1996) and
other authors, we will present and compare various definitions of chaos and we
will observe that someone of them are equivalent under particular conditions.
We begin from Martelli, Dang and Seph (1998) and from now on we will shortly
refer to it as MDS (1998). The author tell us that, in the last thirty years,
different definitions of chaos have been proposed by scientists belonging to dis-
tinct fields of research: Chemistry, Physics, Biology, Medicine, Engineering and
Economics, leading to the ”non desiderable situation” in which ”there are as
many definitions of chaos as experts in this new area of knowledge”. Every
definition of chaos tries to capture the peculiar characteristic of the discipline
that originated it. However, MDS (1998) notices that there is a trade-off be-
tween the needs of the experimentalist and the theoretician: the former requires
that the chaos’ definition may be tested in laboratory instead the latter cares
for ”characterizing chaotic behaviour uniquely”. According to MDS (1998), the
more common6definitions of chaos in literature are: the Li-Yorke chaos, the ex-
perimentalist’ definition of chaos, the Devaney’s chaos, the Wigging’s chaos and
the Martelli’s chaos. To compare the previous definitions of chaos, MDS (1998)
use the following table:

6and ”easily accessible to undergraduates”, says MDS (1998), p. 112.
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Definition map domain requirements advantages weak
points

Li-Yorke continuous bounded
interval

periodic
orbit of
period 3

easy to
check

can be
used only
in <

Experimentalist’ continuous X ⊂ <q,
bounded,
closed,
invariant

sensitivity
on initial
conditions

easy to
check

defines as
chaotic
systems
which are
not

Devaney continuous X ⊂ <q,
bounded,
closed,
invariant

sensitivity,
transitiv-
ity, dense
periodic
orbits

goes to
the roots
of chaotic
behaviour

redundancy

Wiggins continuous X ⊂ <q,
bounded,
closed,
invariant

sensitivity,
transitiv-
ity

goes to
the roots
of chaotic
behaviour

admits
degen-
erate
chaos

Martelli continuous X ⊂ <q,
bounded,
closed,
invariant

dense
orbit in X
which is
unstable

”equivalence”
with Wig-
gins, easy
to check
numerically

none of
above

About the weak points of the definition of Li-Yorke, Martelli (1998) shows that:

• the Li-Yorke’s Theorem does not hold in dimensions higher than one. For
example, a map on <2, which, thought admits a three-period cycle, has
none of the properties which the Li-Yorke’s Theorem (1975) refers to7;

• there are discontinuous maps, defined on [0, 1], with period three;

• the chaos characterized by the Li-Yorke’ Theorem (1975) is not an observ-
able or ergodic chaos8.

The survey of Forti (2005) does not consider the experimentalists’ chaos and
the Wiggin’s chaos. However it includes the definitions of chaos by Li-Yorke,
Devaney and Martelli, and introduces other four definitions: topological chaos,
distributional chaos, ω-chaos and Block-Coppel chaos.

The seven definitions of chaos presented in the Forti’s paper are:

7Let F be a rotation in <2 of 120◦ around the origin. Then F has period three.
8See also the Lasota-Yorke’s Theorem (1973) or Boldrin and Woodford (1990).
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Topological chaos

Definition 4.1 A map f is topologically chaotic if its topological entropy h(f)
is positive.

Distributional chaos

Definition 4.2 The map f is distributionally chaotic (d−chaotic) in the sense
of B. Schweizer and J. Smı́tal if there exist a pair x, y ∈ X such that

Fxy(t) < F ∗xy(t),

for t in some non-degenerate interval.

Li-Yorke chaos

Definition 4.3 The map f is chaotic in the sense of Li and Yorke if it has a
scrambled set S.

ω-chaos

Definition 4.4 The map f is ω-chaotic if there exists an uncountable ω−scrambled
set S.

Martelli’s chaos

Definition 4.5 The map f is chaotic in the sense of Martelli if there exist a
point x0 ∈ X such that

i) the orbit of x0 is dense in X;

ii) the orbit of x0 is unstable.

Devaney’s chaos

Definition 4.6 The map is chaotic in the sense of Devaney if it
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i) is topologically transitive;

ii) periodic points are dense in X;

iii) is sensitive on initial conditions.

Bank et al.(1992) prove that i) and ii) imply iii) for any metric space X.
Furthemore Block and Coppel (1992) show that, if X is a real interval, i) implies
ii) . Thus, the Devaney’s chaos has reduced to the topological transitivity.

Block-Coppel’s chaos

Definition 4.7 The map f is chaotic in the sense of Block and Coppel if there
exist disjoint non-empty compact subsets J , K of X and a positive integer n
such that J ∪K ⊆ fn(J) ∩ fn(K).

1.5 Additional notions of chaos

In literature we encounter other definitions of chaos. The aim of a recent line
of research followed by Rongbao Gu (2005); Roman Flores (2003); Alessandro
Fedeli (2005), is to extend a chaotic map f from a metric space fixed X, with a
metric d, to a continuous map defined on the metric space given by the family
of all non-empty compact subsets of X and equipped by the Hausdorff metric
9. Particularly, the notions of chaos involved (and not included in the Forti’s
survey) are the Kato’s chaos, Robinson’s chaos, Ruelle-Takens’ chaos, Knudsen’s
chaos, Touhey’s chaos. Let (X, d) a metric space fixed, the previous definitions
of chaos are:

Kato’s chaos

Definition 5.1 The map f is chaotic in the sense of Kato if it

i) sensitive on initial conditions,

9The topology induced by the Hausdorff metric is called Vietoris topology
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ii) accessible.

Robinson’s chaos (or Wiggin’s chaos)

Definition 5.2 The map f is chaotic in the sense of Robinson if it is

i) topologically transitive,

ii) sensitive on initial conditions.

Ruelle-Taken’s chaos (or Auslander-Yorke’s chaos)

Definition 5.3 The map f is chaotic in the sense of Ruelle and Takens if

i) it is surjective;

ii) every point is unstable (in the sense of Lyapunov);

iii) X contains a dense orbit.

Knudsen’s chaos

Definition 5.4 The map f is chaotic in the sense of Knudsen if

i) there is a dense orbit in X;

ii) it is sensitive on initial conditions.

Touhey’s chaos

Definition 5.5 The map f is chaotic in the sense of Touhey if for every non-
empty pair U and V of open subsets of X,

i) exists a periodic point p ∈ U ;

ii) exists a non-negative number k such that fk(p) ∈ V .
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1.6 Comparison among the different notions of
chaos

We can observe that six among the seven chaotic maps presented into the Forti’s
paper are equivalent if the domain of them is an interval (Theorem 6.1.1). More
in detail, the Li-Yorke’s chaos is the only definition not equivalent to the other
definitions but it is implicated by them(the particular case of the real interval).
In dimension higher than one (the general case) Forti (2005) tells us that from
topological chaos, or ω-chaos, or Devaney’s we deduce the Li-Yorke’s chaos and
that Devaney’s chaos implies Martelli’s chaos.

The Robinson’s chaoticity implies the Kato’s chaoticity on the complete metric
space, but the converse is not true in general (H. Román-Flores and Y. Chalco-
Cano, 2005).

According to MDS (1998), Wiggin’s (or Robinson’s) chaos is equivalent to
Martelli’s chaos on any metric space X. Thus when X = I, with I a real
interval, the Robinson’s (or Wiggins’s) chaos is equivalent to topological chaos.

The definition of the Knudsen’s chaos is equivalent to the definition of the Kato’s
chaos on a compact metric space (Rongbao Gu, 2005).

If X is a metric space and f is a map continuous from X in itself, Devaney’s
chaos is equivalent to Touhey’s chaos (Touhey, 1997). By Banks et al.(1992) it
is sufficient to prove that:

Theorem 6.2.1 f is chaotic in the sense of Touhey if and only if

i) the set of periodic points of f is dense in X;

ii) f is topologically transitive.

Proof Assume that f is chaotic in the sense of Touhey. Then every pair of
non-empty open set A and B of X shares a periodic orbit. In particular, if
B = A, every non-empty open set A must contain a periodic point. Thus the
periodic points of f are dense in X. The transitivity of f follows immediately
from definition of chaos in the sense of Touhey. Now we suppose that the
conditions i) and ii) hold. We set a pair of non-empty open subsets U and V in
X. From i)-condition, exists a point u ∈ U and a non-negative integer k such
that fk(u) ∈ V . We set W = f−k(U)∩V . We note that W is a non-empty open
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set in X 10. Moreover W ⊂ U and fk(W ) ⊂ V . From i)-condition a periodic
point p belongs to W . We summarize the previous results saying that exists a
periodic point p ∈ W ⊂ U such that fk(W ) ⊂ V , i.e. f is chaotic in the sense
of Touhey.

Remark W is non-empty since u ∈ f−k(U) ∩ V .

Furthemore, in particular, let I be a real interval and set X = I, Tohey’s chaos
is equivalent to the topological entropy and for f chaotic in the sense of Touhey
the Theorem 6.1.1 holds .

1.7 Discrete Dynamical Systems: One-Dimensional,
Autonomous, First-Order Systems

1.7.1 Linear Systems

We consider the following linear dynamical system (Galor, 2006)

yt+1 = ayt + b, t = 0, 1, 2, 3, . . . (1)

where a, b ∈ < are constant parameters, and yt is a state-variable such that
yt ∈ < for all t ∈ < (one-dimensional).

Definition We say that a point y ∈ < is a steady-state of (1) if

y = ay + b (2)

By (2) immediately we derive the equation

(1− a)y = b (3).

We note that
10See Block-Coppel (1992), Lemma 37.
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Proposition 1 If y denotes a steady-state of (1) occurs that

• Case 1 Let a 6= 1. Then y exists and it is unique.

• Case 2 Let a = 1 and b = 0. Then there is a continuum of steady-states
y.

• Case 3 Let a = 1 and b 6= 0. Then y does not exists.

Proof

• (Case 1) Dividing both hand-sides of (3) by 1− a 6= 0, we have y = b
1−a ;

• (Case 2) Equation 3) is equivalent to equation 0 · y = 0, therefore every
y ∈ < satisfies (3);

• (Case 3) Equation (3) reduces to impossible equation 0 = b, where b 6= 0.

Definition Given y0 (initial condition), any sequence y0, y1, y2, . . . that satisfies
(1) is called trajectory.

From (1) we get:

y1 = ay0 + b,

y2 = ay1 + b = a(ay0 + b) + b = a2y0ab + b,

y3 = ay2 + b = a(ay1 + b) + b = a3y0a
2b + ab + b,

. . .

yt = aty0 + at−1b + at−2b + +ab + b,

= aty0 + b(at−1 + at−2 + . . . + a + 1).

By recurrence it is possible to prove that
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1 + a + . . . + at−1 =
{

1−at

1−a if a 6= 1,
t if a = 1,

from which

yt =
{

aty0 + b 1−at

1−a = at(y0 − b
1−a ) if a 6= 1,

y0 + bt if a = 1,

and 11

y =
{

b
1−a if a 6= 1,
y0 if a = 1 and b = 0,

Thus we can rewrite yt as

yt =





(y0 − y)at + y if a 6= 1,
y0 + bt if a = 1 and b 6= 0,
y0 if a = 1 and b = 0.

Remark If a = 1 and b = 0 the system (1) becomes yt+1 = yt for all t, from
which yt = yt−1 = . . . = y1 = y0, that is yt = y0. Thus the system does not
deviate from the initial condition and it is in the steady-state y = y0. Instead if
a = 1 and b 6= 1, the system take a form yt+1 = yt + b = y0 + bt and it increases
indefinitely if b > 0 and decreases indefinitely if b < 0.

Definition 2 A steady-state is globally (asymptotically) stable if the system con-
verges to this steady-state regardless the level of the initial condition, whereas
a steady-state is locally (asymptotically) stable if there exists at least an ε-
neighborhood of the steady-state such that from every initial condition within
this neighborhood, the system converges to this steady-state.

11We observe that at → 0 for t → −∞ if a > 1 or t → +∞ if 0 < a < 1.
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We observe that the concepts of global and local stability of a steady-state
require respectively global uniqueness and local uniqueness of the steady-state.
Therefore

Corollary A steady-state of (1) is globally stable only if the steady-state is
unique.

From the behaviour of the absolute value of the system (1) as time approaches
to infinity we can derive the global or local stability of a steady-state. As a
matter of fact, since

limt→∞ yt =
{

(y0 − y) limt→∞ at + y if a 6= 1,
y0 + b limt→∞ t if a = 1.

we get that lim |yt| is equal to

• |y| if |a| < 1;

• |y0| if a = 1 and b = 0;

• |y0| for t = 0, 2, 4, . . . if a = −1;

• |b− y0| for t = 1, 3, 5, . . . if a = −1;

• ∞ otherwise.

From the previous results we note that the parameter a plays a central role in
determining if a steady-state is globally stable. Precisely we can say that

• if |a| < 1, the system is globally stable. Moreover if 0 < a < 1 the
trajectory converges monotonically from the initial level y0 to the steady-
state level y: in particular, if y0 < y the sequence yt is monotonically
increasing, otherwise it is monotonically decreasing (See Figure 1.1 and
Figure 1.2). Instead, if −1 < a < 0, the convergence of the sequence yt

is oscillatory (See Figure 1.3 and Figure 1.4).

• If a = 1 and b = 0 there is a continuum set of steady-states but the system
is neither globally nor locally stable (See Figure 1.5).

• If a = 1 and b 6= 1 then there aren’t steady-states (See Figure 1.6).

• If a = −1 the system has a continuum of two-period cycles. Each cycle
is unstable and also y = b/2 is unstable. The trajectory is y0, b− y0 (See
Figure 1.7 and Figure 1.8).
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• If |a| > 1 the system has a diverging path. If a > 1 we may distinguish
another two sub-cases: if y0 > y the divergence is positive (See Figure
1.9), otherwise is negative. Moreover yt diverges with oscillations (See
Figure 1.10).

Figure 1.1: Monotonic Convergence

Figure 1.2: Evolution of the State Variable in following Monotonic Convergence

kenshiro
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kenshiro
Timbro
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Figure 1.3: Oscillatory Convergence

Figure 1.4: Evolution of the State Variable in following the Oscillatory Conver-
genge
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Figure 1.5: Continuum of Unstable Steady-State Equilibria

Figure 1.6: Non-Existence of a Steady-State Equilibrium
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Figure 1.7: Unstable Two-Period Cycle

Figure 1.8: The Evolution of the State-Variable in the Two-Period Cycle
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Figure 1.9: Monotonic Divergence

Figure 1.10: Oscillatory Divergence

Remark To describe the oscillatory behaviour of a discrete time and one-
dimensional system A.Medio and M.Lines (2001) observe that the form of a
trajectory of a variable is kinky and that the oscillations ”do not describe the
smoother ups and downs of real variables”. Therefore they use the term im-
proper oscillations to differentiate is them from those that occurs in continuous
time.

kenshiro
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1.7.2 Nonlinear Systems

Let f : < → < a map continuously differentiable. We indicate with yt the state
variable. We suppose that the evolution of yt follows the law

yt+1 = f(yt); t = 0, 1, 2, . . . (2)

Given y0, the trajectory of the state variable yt is:

y1 = f(y0), y2 = f(y1) = f((y0))) = f2(y0)), . . . , yt = f t(y0)), . . . .

We define steady-state of the nonlinear system (2) a value y such that y = f(y).

In order to study the behaviour of the system (2), we approximate linearly (2) in
the proximity of a steady-state y (linearization of a nonlinear dynamical system)
with a Taylor expansion:

yt+1 = f(yt) = f(y) + f
′
(y)(yt − y)

= f
′
(y)yt + f(y)− f

′
(y)y

= ayt + b,

where a = f
′
(y) and b = f(y)− f

′
(y)y are constants.

Thus, like the linear system (1), the non linear system (2) is locally stable around
the steady-state y if and only if |a| < 1, that is |f ′(y)| < 1.

In order to analyze the global stability of the nonlinear system (2) we will use
the concept of contraction map from a given metric space into itself and the
theorem of existence and uniqueness of a fixed-point for contraction mappings
on a complete metric space.

Definition Let (S, ρ) be a metric space, we say that a mapping T : S → S is a
contraction mapping if exists a constant 0 < β < 1 such that
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ρ(Tx, Ty) ≤ βρ(x, y).

Example Let f : [a, b] → [a, b] be a continuous function with positive slope
smaller than one. Since f(x)−f(y)

y−x ≤ β < 1, then f is a contraction and its graph
must cut the 45◦ line.

Theorem We suppose that (S, ρ) is a complete metric space and T : S → S a
contraction mapping for S. Then (1) exists a unique v ∈ S such that Tv = v
(fixed point for T ); (2) for all v0 ∈ S and 0 < β < 1, ρ(Tnv0, v) ≤ βnρ(v0, v)
for all n = 1, 2, ....

Corollary A steady-state of nonlinear system yt+1 = f(yt) exists and is unique
and globally (asymptotically) stable if f : < → < is a contraction mapping, i.e.,
if

f(yt+1f(yt))
yt+1−yt

< 1, for all t = 1, 2, . . .

or if f ∈ C1 and |f ′(yt)| < 1, for all yt ∈ <.

1.8 Continuous dynamical systems in the plane

(
ẋ
ẏ

)
= A

(
x
y

)
=

(
a11 a12

a21 a22

) (
x
y

)

with x, y ∈ <, ai,j real constant.

We consider the set E of points (x, y) such that ẋ = 0 and ẏ = 0 and we note
that if det(A) 6= 0 we have E = {(0, 0)}. The point (0, 0) is called equilibrium.

The characteristic equation is

0 = det

(
a11 − λ a12

a21 a22 − λ

)
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= λ2 − (a11 + a22)λ + (a11a22 − a12a21)

= λ2 − tr(A)λ + det(A),

and the eigenvalues are

λ1,2 = 1
2 (tr(A)±

√
(∆))

where ∆ = ((tr(A))2−4det(A)) is called the discriminant. The different types of
dynamic behaviour depends upon the sign of the discriminant. We distinguish
three cases.

Case 1 ∆ > 0 We have that eigenvalues and eigenvectors are real.

To Case 1 corresponds three subcases.

(i) tr(A) < 0, det(A) > 0 Eigenvalues and eigenvectors are real and both
eigenvectors are negative. The two-dimensional state space coincides with
the stable eigenspace. The equilibrium is called a stable node.

(ii) tr(A) > 0, det(A) > 0 Eigenvalues and eigenvectors are real and both
eigenvectors are positive. The two-dimensional state space coincides with
the unstable eigenspace. The equilibrium is called a unstable node.

(iii) det(A) < 0 One eigenvalue is positive and the other is negative. Thus there
is a one-dimensional stable and one-dimensional unstable eigenspace. The
equilibrium is called saddle node.

Case 2 ∆ < 0 We have that eigenvalues and eigenvectors are complex coniugate
pairs. There are three subcases:

(i) tr(A) < 0, Re(λ) = α < 0. We have that the oscillations are dampened.
Moreover the dynamical system converges to equilibrium known as focus
or vortex.

(ii) tr(A) > 0, Re(λ) = α > 0. The amplitude of the oscillations gets larger
with time and the system diverges from an unstable equilibrium called
unstable focus or vortex.
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(iii) tr(A) = 0, Re(λ) = α = 0, det(A) > 0.

Case3 ∆ = 0 We have that the eigenvalues are real and equal.

1.9 Discrete dynamical systems in the plane

1.9.1 Homogeneous systems

We consider the following homogeneous system

xt+1 = a11xt + a12yt,

yt+1 = a21x + a22yt.

We can rewrite the previous system such that

(
xt+1

yt+1

)
=

(
a11 a12

a21 a22

) (
xt

yt

)
,

or zt+1 = Azt,

where zt =
(

xt

yt

)
and A is the coefficient matrix

(
a11 a12

a21 a22

)
.

Unlike the discrete and one-dimensional systems, we must solve simultaneously
all the equation in the system. However if A is diagonal, the system becomes

xt+1 = a11xt,

yt+1 = a22yt,

that is it is reduced to two independent equations which we can solve separately
as one-dimensional systems. We call the previous system uncoupled system and
its general solution is given by
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xt = c1a
t
11;

yt = c2a
t
2.

The previous case suggests that if the coefficient matrix A can be transformed
into a diagonal matrix D then the system becomes an uncoupled system and its
solution can be used to solve the original system.

The square matrix A is said diagonalizable if exists an invertible matrix P such
that P−1AP = D, where D is a diagonal matrix. Moreover if all eigenvalues
of A are distinct then it is possible to prove that A is diagonalizable and the
corresponding eigenvectors are linear indipendent. In order to diagonalize A we
use the matrix E formed by eigenvectors of A. In the 2× 2, we set E = (e1, e2),

where e1 =
(

e11

e12

)
and e2 =

(
e21

e22

)
, and Λ =

(
λ1 0
0 λ2

)
, where λ1 and λ2 are

the distinct eigenvalues of A. We obtain

E−1AE = Λ iff AE = A.

We have

E−1zt+1 = E−1Azt = E−1AIzt

= E−1A(EE−1)zt= (E−1AE)(E−1zt)

= ΛE−1zt.

If we set ẑt = E−1zt, the system becomes ẑt+1 = Λẑt, that is

(
x̂t+1

ŷt+1

)
=

(
λ1 0
0 λ2

)(
x̂t

ŷt

)
and it takes the form of an uncoupled system:

x̂t+1 = λ1x̂t,

ŷt+1 = λ2ŷt.

As above, we find immediately the general solution:

x̂t = c1λ
t
1, ŷt = c2λ

t
2.

In order to obtain the solution of the original system we must invert the original
transformation:

ẑt = E−1zt ⇒ zt = Eẑt, from which we have



1.9. DISCRETE DYNAMICAL SYSTEMS IN THE PLANE 29

(
xt

yt

)
=

(
e11 e21

e12 e22

) (
c1λ

t
1

c2λ
t
2

)
.

Hence the general solution of the original system is

xt = c1e11λ
t
1 + c2e21λ

t
2,

yt = c1e12λ
t
1 + c2e22λ

t
2.

If the eigenvalues are complex conjugates we can write them in algebraic form,
that is

λ1 = γ + iµ = r(cos θ − i sin θ) = reiθ,

λ1 = γ − iµ = r(cos θ + i sin θ) = re−iθ,

and the corresponding eigenvectors are

e1 = d + if , e2 = d− if , where d and f are also vectors.

z1
t = e1λ

t
1

= (d + if)(reiθ)t

= (d + if)rt[cos(θt) + isin(θt)]

= rt[dcos(θt) + idsin(θt) + ifcos(θt) + i2fsin(θt)]

= rt[dcos(θt)− fsin(θt)] + irt[dsin(θt) + fcos(θt)].

If we proceed as above we have

z2
t = e1λ

t
2

= rt[dcos(θt)− fsin(θt)]− irt[dsin(θt) + fcos(θt)].

Setting

ut = rt[dcos(θt)− fsin(θt)],

vt = rt[dsin(θt) + fcos(θt)],

we derive

z1
t = ut + ivt,
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z2
t = ut − ivt.

Consider the matrix

B =
(

b11 b12

b21 b22

)

and the discrete dynamical system

xn+1 = b11xn + b12yn

yn+1 = b21xn + b22yn. (.1)

We can write the system in such a way that

(
xn+1

yn+1

)
= B

(
xn

yn

)
, (.2) or

(
xn+1

yn+1

)
=

(
b11 b12

b21 b22

)(
xn

yn

)
. (.3)

We assume that the matrix (I − B) is nonsingular. Then exists the unique
equilibrium point (0, 0) for (.1). We recall that trB = b11 + b22 and detB =
b11b12 − b21b12.

We call characteristic equation the following equation

p(λ) = |B − λI| = det
∣∣∣∣

b11 − λ b12

b21 b22 − λ

∣∣∣∣

= λ2 − (b11 + b22)λ + (b11b12 − b21b12) =

= λ2 − (TrB)λ + (detB) = 0. (.4)
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We determine the roots λ1,2 of (.4)

λ1,2 = TrB±
√

(TrB)2−4detB

2 ,

and we call λ1,2 the eigenvalues of p(λ) = 0.

We consider three cases.

Case 1 ∆ > 0 The eigenvalues are real and take the form

x(n) = c1λ
n
1 v

(1)
1 + c2λ

n
2 v

(1)
2

y(n) = c1λ
n
1 v

(2)
1 + c2λ

n
2 v

(2)
2

• If |λ1| < 1 and |λ2| < 1 then the fixed point is a stable node (See Figure
1.11 and Figure 1.12).

• If |λ1| > 1 and |λ2| > 1 then the fixed point is a unstable node (See Figure
1.11 and Figure 1.12 and consider the arrows point in the opposite
direction).

• If |λ1| > 1 and |λ2| < 1 then the fixed point is a saddle node (See Figure
1.13 and Figure 1.14).

Case 2 ∆ < 0 Then detB > 0 and the eigenvalues are a complex conjugate pair

(λ1, λ2) = (λ, λ) = σ ± iθ

The solutions are sequence of points situated on spirals whose amplitude increase
and decrease in time according to the factor rn (n = 0, 1, . . .), where r =
|σ ± iθ| = √

σ2 + θ2 =
√

detB, is the modulus of the complex conjugate pair.

The solutions are
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x(n) = Crncos(ωn + φ)

y(n) = Crnsin(ωn + φ)

• If r < 1 , the solutions converge to equilibrium and the equilibrium point
is a stable focus (See Figure 1.15).

• If r > 1 , the solutions diverge and the equilibrium is an unstable focus
(See Figure 1.15 and consider the arrows point in the opposite direction).

• If r = 1 the eigenvalues lie on a unit circle. We set ω = arccos[tr(B)/2]. If
ω/2π is rational then the orbit is a periodic sequence (See Figure 1.16),
otherwise the sequence is quasiperiodic (See Figure 1.17).

Case 3 ∆ = 0 There is a repeated real eigenvalue λ = trB/2.

x(n) = (c1v
(1) + c2u

(1))λn + nc2v
(1)λn

y(n) = (c1v
(2) + c2u

(2))λn + nc2v
(2)λn

• If |λ| < 1, limn→ nλn = 0.

• If the repeated eigenvalue is equal to one in absolute value, the equilibrium
is unstable. However, divergence is linear not exponential.

Figure 1.11: Stable Node
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Figure 1.12: Stable Node

Figure 1.13: Saddle-Points
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Figure 1.14: Saddle-Points

Figure 1.15: Stable Focus
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Figure 1.16: Periodic Cycles

Figure 1.17: Quasiperiodic Orbit

1.10 Stability of planar discrete systems

Definition 1 A point x ∈ X is a steady state of the system xt+1 = f(xt), that
is x = f(x).

Definition 2 (Stability) The steady state x is a stable fixed point of the map
f if for any ε > 0 there exist some δ ∈ (0, ε) such that

||xt − x|| < δ ⇒ ||xt − x|| < ε
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for all integers t ≥ s (See Figure 1.18).

Figure 1.18: Stability

Definition 3 (Asymptotically stability) The steady state x is asymptotically
stable if it is stable and a constant δ can be chosen so that, if ||xs − x|| < δ for
any s, then ||xt − x|| → 0 as t →∞ (See Figure 1.19).

Figure 1.19: Asymptotical Stability

Definition 4 (Topological or flow equivalence) Let f and g be continuously
differentiable maps from X ⊆ <n into <n. Then we say that the discrete
dynamical systems xt+1 = f(xt) and xt+1 = g(xt) are topologically equivalent
if there exists a homeomorphism h : <n → <n that maps f orbits into g orbits
while preserving the sense of direction in time.
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Definition 5 (Hyperbolic equilibrium) Let x be a steady state of the system
xt+1 = f(xt). We say that x is a hyperbolic equilibrium if none of the eigenvalues
of the Jacobian matrix of the partial derivatives Df(x), evaluated at x, falls on
the unit circle in the complex plane, that is, if no eigenvalue has modulus exactly
equal to 1.

Linearization

Let f : <n ⊇ X → <n and f ∈ C1. We consider the non linear system

xt+1 = f(xt) (.1)

We applying the Taylor’s formula to equation (.1). We obtain

f(x) = f(x) + Df(x)(x− x) + O(||x− x||).

We suppose x ∈ X and f(x) = x. We expect that the linear system

xt+1 = x + Df(x)(xt − x) (.2)

approximates well the system (.1) near the steady state x.

Theorem (Hartman-Grobman) Let x be the hyperbolic equilibrium of equation
(.1 ). If the Jacobian matrix Df(x) is invertible, there is a neighbourhood U
of x in which the nonlinear system (.1) is topologically equivalent to the linear
system (.2).

Theorem (Nonlinear stability) Let x be a steady state of (.1).

• If the modulus of each eigenvalue of Df(x) is less than 1, x is asymptoti-
cally stable (a sink).

• If at least one eigenvalue has the modulus greater than 1 then x is unstable.
If this holds for all eigenvalues, x is a source, otherwise is a saddle.
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• If no eigenvalue of the Jacobian matrix is outside the unit circle but at
least one is on the boundary (has modulus 1), then x may be stable,
asymptotically stable, or unstable.

We consider a non linear system of the form

xt+1 = f(xt, yt),

yt+1 = g(xt, yt),

where f : <2 → < and g : <2 → < are continuously differentiable. We suppose
that s = (x, y) is a steady state of the system and that fx, fy, gx, gy are the
partial derivatives of f and g at steady state s, and we write the Jacobian
matrix J at s:

J(x, y) =
(

fx fy

gx gy

)
.

The characteristic polynomial p(λ) is

p(λ) = |J − λI| = det
∣∣∣∣
fx − λ fy

gx gy − λ

∣∣∣∣

= (fx − λ)(gy − λ)− fygx

= λ2 − (fx + gy)λ + fxgy − fygx

= λ2 − (trJ)λ + detJ = 0.

The steady state s is said

• a sink if |λ1| < 1 and |λ2| < 1;

• a source if |λ1| > 1 and |λ2| > 1;
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• a saddle if (|λ1| > 1 and |λ2| < 1) or (|λ1| < 1 and |λ2| > 1),

where |λi| (i = 1, 2) denotes a modulus of λi.

In order to interpret the eigenvalues from a geometric viewpoint, we introduce
the TD-plane, where T = trJ is the horizontal axis and D = detJ is the vertical
axis. We indicate the discriminant of p(λ) = 0 with ∆ = T 2 − 4D.

We observe that the eigenvalues are real if ∆ ≥ 0 and are complex conjugate if
∆ < 0 . In the TD-plane the curve Γ : ∆ = T 2 − 4D = 0, that is D = 1

4T 2,
represents a parabola. Then the real and distinct eigenvalues, the real and
repeated eigenvalues, and the complex conjugate eigenvalues are respectively
below, on and above Γ (See Figure 1.20).

Figure 1.20: The parabola Γ : T 2 − 4D = 0 in the TD-plane

Let λ1 and λ2 be the eigenvalues of Jacobian matrix J . Then we can consider
p(λ) as a product of two linear factors, that is p(λ) = (λ− λ1)(λ− λ2), and we
evaluate p(λ) at a constant c.

We may observe that p(c) = (c−λ1)(c−λ2) > 0 if and only if the factors (c−λi)
(i = 1, 2) have the same sign: thus the eigenvalues fall on the same side of c.
In particular if p(1) > 0 (resp. p(−1) > 0) implies that the eigenvalues are at
the same side of 1 (resp. −1) on the real line.

We will draw the hyperplanes p(1) = 0 and p(−1) = 0 into TD-plane (See
Figure 1.21 and Figure 1.22). Recalling that p(λ) = λ2 − (Trace)λ + detJ ,
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we obtain that p(1) = 0 and only if 1 − T + D = 0 and p(−1) = 0 if and only
if 1 + T + D = 0. The line p(1) goes through the points (0,−1) and (1, 0),
instead the line p(−1) = 0 goes through the points (−1, 0) and (0,−1) and p(1)
is perpendicular to p(−1).

Figure 1.21: The Hyperplane p(1)

Figure 1.22: The Hyperplane p(−1)

The four lines p(1) = 0, p(−1) = 0, D = 1
4T 2 and the horizontal segment given

by pairs (T, D) such that −2 ≤ T ≤ 2 and det = 1, divide the TD-plane into
eight regions.

We can now identify the stability type of the steady-state. The regions that cor-
respond to real eigenvalues are 1, 2, 3, 4, 7, 8; instead the regions that correspond
to the complex eingenvalues are 5, 6. We obtain that (See Figure 1.23):
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• Region 1 Since p(1) < 0 and p(−1) > 0, the eigenvalues fall on the same
side of −1 and on different sides of 1. Hence −1 < λ1 < 1 and λ2 > 2 and
the steady-state is a saddle-point.

• Region 2 Since p(1) < 0 and p(−1) < 0, the eigenvalues lie on different
sides of −1 and +1. Hence λ1 < −1 and λ2 > 1 and the steady-state is a
source.

• Region 3 Since p(1) > 0 and p(−1) < 0, the eigenvalues fall on the
same side of +1 and on the different sides of −1. Hence λ1 < −1 and
−1 < λ2 < 1 and the steady-state is a saddle-point.

• Region 4 Since p(1) > 0 and p(−1) > 0, then the eigenvalues lie on the
same side of +1 and −1. The pairs (T, D) that belong to Region 4 are
such that det > 1 and T < −2, therefore both eigenvalues are negative
and are smaller than −1. Thus the steady state is a source.

• Region 5 The eigenvalues that fall in the regions 5 and 6 are complex
conjugate, i.e. λ1 = α + iµ and λ2 = α− iµ, from which Trace = 2α and
detJ = α2 + µ2 = |λ1|2 = |λ2|2. For all pairs (T, D) belongs to Region 5
we have D > 1, therefore |λ1| > 1 and |λ2| > 1 and the steady-state is a
source.

• Region 6 Instead, since in the Region 6, 0 < D < 1, we obtain that
|λ1| < 1 and |λ2| < 1 and the steady-state is a sink.

• Region 7 Since p(1) > 0 and p(−1) > 0 we deduce that the eigenvalues
are on the same side of +1 and −1. But in the Region 7 for all pair (T, D)
we have −2 < T < 2 and −1 < det < 1. Thus −1 < λi < 1 (i = 1, 2) and
the steady-state is a source.

• Region 8 From conditions p(1) > 0 and p(−1) > 0 we derive that the
eigenvalues are on the same side of +1 and−1. Since det > 1 and trace > 2
then λi are both positive and greater than 1. Thus the steady-state is a
source.
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Figure 1.23: The Triangle of Stability

1.11 Planar Systems: Stability Triangle and Bi-
furcations

1.11.1 The Implicit Function Theorem and Bifurcations

Following Azariadis (1993) and de la Fuente (2000), let F ∈ C1, and F : <2 → <.
We consider the system constituted by a single equation in one unknown x and
one parameter α:

F (x;α) = 0 (1)

We observe that the graph of F is a three-dimensional surface in the space
(x; α; z) and the solutions (x;α) of (1) correspond to the intersection of the
surface with the horizontal plane xα. The set of pairs that satisfies (1) is called
zero level set of F and it describes a planar curve if F has certain regularity
properties.

In general, given a value of parameter α, we do not interpret (1) as a graph of
function x(α).

Now we study the zero-level set from a different point of view, fixing the value of
α at α0 and plotting F (x; α0) as function only of x. We may image that F (x; α0)
shows two types of behavior: it crosses the axis tranversally and the equilibrium
is locally unique (regular equilibria) or it is only tangent to it (critical equilibria).
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In the former case ∂F (x;α0)
∂x is positive or negative and the equilibria are preserved

under small perturbations; in the latter case ∂F (x;α0)
∂x = 0 and the equilibria will

be fragile, that is they tend to disappear or infold into two different equilibria.

Definition When small perturbations lead to qualitative changes to dynamic
behavior of the system we say that a bifurcation has occurred.

The Implicit Function Theorem guarantees the existence of a isolated equilib-
rium that ”smoothly changes” if we little perturb the parameter α of a hyper-
bolic dynamical system, and it, in the simplest case, is usually stated in the
following way (See Figure 1.24):

Theorem (Implicit Function Theorem) Let F : <2 → < be and suppose that F
is a C1 map on an open neighborhood A of a point (x0, α0) such that F (x0, α0) =
0 and Fx(x0, α0) 6= 0. Then exist open intervals Ix and Iα centered at x0 and
α0, respectively, such that the following hold:

(a) For all α ∈ Iα, there exists a unique xα ∈ Ix such that F (xα, α). That is,
the restriction of the zero-level curve of F to the rectangle Ix × Iα defines a
function x? : Ix → Iα with x?(α) = xα; (b)x? is differentiable in Iα, and its
derivative is a continuous function given by

x?
′
= −Fα(x,α)

Fx(x,α) .

Figure 1.24: Implicit Function Theorem

Usually (Medio-Lines, 2001) we denote the domain of state variable x and the
set values of parameter α with X and Ω respectively. Moreover X and Ω are
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referred as state space and parameter space. X is also known as phase space or,
sometimes, configuration space, and we appeal the system F as parametrized.
The Implicit Function Theorem still holds if set X = <n and Ω = <m and we
replace the condition Fx(x0, α0) 6= 0 with |DFx(x0, α0)| 6= 0, where DFx(x0, α0)
is the Jacobian matrix of F at (x0, α0).

If we restate the Implicit Function Theorem from the bifurcation point of view
we can say that:

Theorem (Implicit Function Theorem and Bifurcations) Given the system
F (x;α) = 0, we consider the pair (xc, αc) such that F (xc, αc) = 0. A nec-
essary condition for (xc, αc) to be a bifurcation point for F (x; α) = 0, at which
at least one steady state appears or disappears, is that xc is a critical point of
the function f(x) = F (x;αc) (See Figure 1.25).

Figure 1.25: Implicit Theorem and Small Perturbations

In order to find the bifurcations we can proceed as follows. Before we consider
the set of equilibria M = {(x, α) ∈ X × Ω|F (x, α) = 0}, and we define the
singularity set of the system as S = {(x, α) ∈ M ||DxF (x, α)| = 0}. After, we
eliminate the state variables from the equations F (x, α) = 0 and |DxF (x, α)| =
0, that is, geometrically, we project S onto the parameter space Ω, and we
obtain the bifurcation set B = {α ∈ Ω|(x, α) ∈ S, x ∈ X}.

Let a discrete family of dynamical system

xt+1 = F (xt, α) (F : X × Ω → X, F ∈ C1) (2)
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We observe that the equilibria of (2) are solutions of the system

G(xt; α) = F (xt; α) − Ixt+1 = 0, where I is an identity matrix. Suppose that
(x0; α0) is a solution of (2).

If we indicate with λf and λg respectively an eigenvalues of Jacobian DxF (x0; α0)
and the Jacobian DxG(x0;α0), we observe that they are related by λg = λf −1.

Moreover |DxG(x0; α0)| = Πiλ
i
g = Πi(λi

f − 1).

Thus if λi
f are real, we can say that DGx vanishes and the implicit-function

theorem fails only if at least one of the eigenvalues of F is one.

We suppose that some eigenvalues are complex, for example let λ1
f = a + jb be

and letλ2
f = a − jb be, where j =

√−1, and consider λi
f ∈ < for i = 3, 4, . . ..

We have

|DxG(x0; α0)| = [(a− 1) + jb][(a− 1)− jb]Πi=3,...,n(λi
f − 1).

We note that DxG vanishes for (a = 1 and b = 0) or |λi
f | = 1 (j = 3, . . . , n).

Following Hirsch, Smale, Devaney (2004), in continuous time we prove:

Theorem (Saddle-Node Bifurcations) Suppose x
′

= fa(x) is a first-order dif-
ferential equation for which

1. fa0(x0) = 0;

2. f
′
a0

(x0) = 0;

3. f
′′
a0

(x0) 6= 0;

4. ∂fa0
∂a 6= 0.
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Then the differential equation undergoes a saddle-node bifurcation at a = a0.

Proof Let G(x, a) = fa(x). We have

G(x0, a0) = 0, ∂G
∂a (x0, a0) = ∂fa0

∂a (x0) 6= 0.

Thus, applying the implicit-function theorem, we can say that there is a function
a = a(x) such that G(x, a(x)) = 0. In particular if x? falls into domain of a(x),
then fa(x?)(x?) = 0, from which x? is an equilibrium for x

′
= fa(x?)(x). If

we differentiate G(x, a) with respect to x, we have a
′
(x) = −∂G/∂x

∂G/∂a . From the

assumptions 2. and 4. we deduce that a
′
(x) = 0. Since

a
′′
(x) =

− ∂2G
∂x2

∂G
∂a + ∂G

∂x
∂2G
∂a2

( ∂G
∂a )2

,

using the assumptions 2. and 3. we derive

a
′′
(x0) =

∂2G
∂x2 (x0,a0)
∂G
∂a (x0,a0)

6= 0.

We conclude that

• the graph of a = a(x) is either concave up or concave down;

• there are two equilibria near x0 for a-values on one side of a0 and there
aren’t equilibria for a-values on the other side.

1.11.2 Local bifurcations for discrete and nonlinear maps

To describe the local bifurcations we will follow A.Medio and M.Lines (2001).
We recall that a fixed point loses the hyperbolicity if it happens that the Jaco-
bian matrix calculated at the fixed point

(i) has one real eigenvalue equal to one;

(ii) or the eigenvalue is equal to minus one;

(iii) or the pair of complex conjugate eigenvalues have modulus equal to one.

We observe that the centre manifold theorem allows to reduce the dimensionality
to a one-dimensional map in cases (i) and (ii) and to a two-dimensional map in
case (iii).
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Case (i) We distinguish three types of local bifurcation: fold, transcritical and
pitchfork (supercritical or subcritical).

Let xn+1 = G(xn; µ) be a general one-dimensional family of map, where xn ∈ <
and µ ∈ <, and, if µc indicates a value of controlling parameter, let x(µc) be a
corresponding equilibrium value.

To detect the local bifurcations we use the following conditions:

• ∂G(x;µc)
∂xn

= 1 simultaneously for fold, transcritical and pitchfork;

• ∂2G(x;µc)
∂x2

n
6= 0 simultaneously for fold and transcritical;

• ∂3G(x;µc)
∂x3

n
= 0 and ∂3G(x;µc)

∂x3
n

6= 0 for pitchfork;

• ∂G(x;µc)
∂µ 6= 0 for fold;

• ∂G(x;µc)
∂µ = 0 and ∂2G(x;µc)

∂µ∂xn
6= 0 simultaneously for transcritical and pitch-

fork.

We consider now some prototypes of bifurcations:

(A) xn+1 = G(xn; µ) = µ− x2
n: fold;

(B) xn+1 = G(xn;µ) = µxn − x2
n: transcritical;

(C) xn+1 = G(xn;µ) = µxn − x3
n: pitchfork.

Prototype (A) To find the equilibria we impose xn+1 = xn = x. We have
x = µ−x2, that is x2 +x−µ = 0, and, if µ > −1/4, we derive two real solutions

x1,2 = 1
2 (−1±√1 + 4µ). We note that

• if µ > 0 the solutions are nonzero and opposite sign;

• if −1/4 < µ < 0 the solutions are both negative;

• if µ = 0 we obtain that x1 = −1 and x2 = 0;

• if µ < −1/4 there are not real solutions.
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Moreover if µ = −1/4 occurs that the two equilibria coalesce and become equal
to −1/2. Instead, when µ decreases further, the equilibria disappear.

We consider the fixed point (x;µc) = (−1/2;−1/4) be. We can say that it
is a fold. As a matter of fact ∂G/∂xn = 1 > 0 (equilibrium nonhyperbolic),
∂2G/∂x2

n = −2 6= 0, ∂G/∂µ = 1 6= 0.

Prototype (B) From equation x2 + µx = 0 we deduce the existence of two
equilibria: x0 = 0 and x1 = µ− 1. Since |∂G/∂xn| = |µ− xn| we deduce that

• if −1 < µ < 1 then x0 = 0 is stable and x1 < 0 is unstable;

• if 1 < µ < 3 then x0 is unstable and x1 > 0 is stable.

We observe that if µ = 1 then the equilibria coalesce and x0 = x1 = 0. Let
(x; µc) = (0; 1). We have ∂G/∂xn = 1 (nonhyperbolic equilibrium); ∂2/∂x2

n =
−2 6= 0; ∂G/∂µ = xn = 0 and ∂2G/∂µ∂xn = 1. Thus (0; 1) is a transcritical
bifurcation.

Prototype (C) We solve the equation x = µx − x3. It is equivalent to x3 −
(µ − 1)x = x[x2 − (µ − 1)] = 0. We observe that x1 = 0 is an equilibrium
for all real µ and if the condition µ > 1 holds there are further two equilibria
at x2,3 = ±√µ− 1. We have |∂G/∂xn| = |µ − 3x2

n|. Thus x1 is stable if
(−1 < µ < 1) and unstable otherwise. Instead the branches of x2,3 are stable if
(1 < µ < 2). We note that at µ = 1 the three equilibria coalesce.

Let (x;µc) = (0, 1). Then (x;µc)xn = 1, ∂G/∂µ = 0 and ∂2G/∂µ∂xn = 1.
Moreover ∂G2/∂x2

n = −6x = 0; ∂G3/∂x3
n = −6. Thus the fixed point is a

(supercritical) pitchfork bifurcation.

Case (ii) A prototype of flip bifurcation is given by the family of logistic maps
xn+1 = G(xn) = µxn(1− xn), x ∈ <, µ ∈ <. From equation µx2− (µ− 1)x = 0
we derive two equilibria: x1 = 0 and x2 = 1 − (1/µ) (µ 6= 0). We find that
|∂G/∂xn| = |µ(1 − 2xn)|. Because |∂G(x1;µ)/∂xn| = |µ(1 − 2x1)| = |µ| and
|∂G(x2;µ)/∂xn| = |µ(1−2x2)| = |µ(1−2(1−1/µ))| = |2−µ| = |µ−2|, then x1 is
stable if 1 < µ < 1 and x2 is stable if 1 < µ < 3. Let (x; µc) = (0; 1). Because at
(0; 1) we obtain that ∂2G/∂x2

n = −1 6= 0, ∂G/∂µ = 0 and ∂G2/∂µ∂xn = 1 6= 0,
we can say that (0; 1) is a transcritical bifurcation.

Moreover from µ = 3 we have x2 = 1 − (1/3) = 2/3 and we observe that at
(x2; 3) the eigenvalue ∂G(2/3; 3)/∂xn = 3(1 − 2(2/3)) = −1. Thus (2/3; 3) is
nonhyperbolic.

Even if the Hartman-Grobman theorem is not true because |∂G(2/3; 3)/∂xn| =
1, however now we approach linearly G around x2. We obtain G(xn) = G(x2)+
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G
′
(x2)(xn − x2). Since xn+1 = G(xn), G(x2) = x2 and G

′
(x2) = −1 we derive

xn+1 − x2 = −(xn − x2). If we set ξn = xn − x2 for all n, we can rewrite the
previous relation such that : ξn+1 = −ξn. Given the initial value ξ0, the one-
dynamical system {ξ0,−ξ0, ξ0,−ξ0, . . .} is equal to the period-2 cycle {ξ0,−ξ0}.

Alternatively we solve the equation x = G(G(x)), that is x = µG(x)(1 −
G(µx(1− x))) = µ(µx(1− x))(1− (µx(1− x))), or

µ3x4 − 2µ3x3 + µ2(1 + µ)x2 + (1− µ2)x = 0.

Solving the last equation we find x1 = 0,x2 = 1−(1/µ), and x3,4 = (1+µ)±
√

µ2−2µ−3

2µ

for (µ ≤ −1 and) µ ≥ 3.

Remark We have that

x3 + x4 = 2(1+µ)
2µ = 1+µ

µ ;

x3x4 = (1+µ)2−(µ2−2µ−3)
4µ2 = 1+2µ+µ2−µ2+2µ+3

4µ2 = 4(1+µ)
4µ2 = 1+µ

µ2 .

We note that G(x3; µ) = x4 and G(x4; µ) = x3. We will verify only the first.

We have G(x3; µ) = µx3(1− x3)

= µ
(1+µ)+

√
µ2−2µ−3

2µ (1− (1+µ)+
√

µ2−2µ−3

2µ )

= (1+µ)+
√

µ2−2µ−3

2

(µ−1)−
√

µ2−2µ−3

2µ = µ2−1−(µ2−2µ−3)−2
√

µ2−2µ−3

4µ

= (2µ+2)−2
√

µ2−2µ−3

4µ = x4.

Thus the set {x3, x4} is a period-2 cycle for G.

We recall that the Chain Rule states that (g ◦ f)
′
(p) = g

′
(f(p))f

′
(p) for all f

and g differentiable in g(p) and p respectively, where p belongs to an interval X
and g(p) ∈ X.

Then for f = g, we deduce that (g2)
′
(p) = (g◦g)

′
(p) = g

′
(g(p))g

′
(p). But if p =

p1, g(p1) = p2 and g(p2) = p1 then (g ◦ g)
′
(p1) = g

′
(g(p1))g

′
(p1) = g

′
(p2)g

′
(p1).

Obviously (g ◦ g)
′
(p2) = (g ◦ g)

′
(p1).

Thus

∂G2(x3;µ)
∂xn

= ∂G2(x4;µ)
∂xn

= ∂G(x4;µ)
∂xn

∂G(x3;µ)
∂xn

= µ(1− 2x4)µ(1− 2x3)
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= µ2[1 + 4x3x4 − 2(x3 + x4)]

= µ2(1 + 4 1+µ
µ2 − 2 1+µ

µ )

= −µ2 + 2µ + 4.

We observe that at µ = 3 and for µ slightly larger of three the equilibria x3,4 are
stable for G2.

As a matter of fact, evaluating (−µ2 + 2µ + 4) at µ = 1 the eigenvalues
∂G2(x3;µ)

∂xn
= ∂G2(x4;µ)

∂xn
are equal to one and they are minus one for µ slightly

larger of three.

Definition We call flip bifurcation a fixed point for G such that

• its eigenvalue goes through minus one;

• the nonzero equilibrium loses the stability;

• a stable period 2-cycle appears.

The conditions for a flip bifurcation to occur are:

(F1) ∂G(x;µc)
∂xn

= −1;

(F2) ∂2G2(x;µc)
∂x2

n
= 0 and ∂3G2(x;µc)

∂x3
n

6= 0;

(F3) ∂2G2(x;µc)
∂µ = 0 and ∂2G2(x;µc)

∂µ∂xn
6= 0.

We observe that the flip bifurcation for the map G corresponds to a pitchfork
bifurcation for the map G2.

At µ = 1 +
√

6 the period-2 cycle for G loses the stability and a new flip
bifurcation appears. Moreover initially will have a new stable period-2 cycle for
G2 that corresponds to a new stable period-4 cycle for G. By increasing µ this
period-doubling scenario continues.

Case (iii) Neimark (1959) and Sacker (1965) stated relevant results about the
case in which a pair of complex eigenvalues of the Jacobian matrix at the fixed
point of a discrete map has modulus one.

Definition In a planar and discrete system, we say that a saddle-node, a flip-
bifurcation, a Neimark-Saker bifurcation occur respectively if one of eigenvalue
is unity and the other is less than unity in absolute value, if one of eigenvalue
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is equal to −1 and the other is less than unity in absolute value and if the
eigenvalues are complex conjugates and both are equal to unity in absolute
value.

We enunciate the following

Theorem (Neimark-Sacker) Let Gp : <2 → <2 be a family of maps of a class
Ck, k ≥ 5, depending on a real parameter µ, so that for µ near 0, x = 0 is a
fixed point of Gp and the following conditions are satisfied

(i) for µ near zero, the Jacobian matrix has two complex, conjugate eigenvalues
k(µ) and k(µ) with |k(0)| = 1 ;

(ii) |k(µ)|
dµ 6= 0;

(iii) [k(µ)]i 6= 1, for i = 1, 2, 3, 4.

Then, after a trivial change of the µ coordinate and a smooth, µ-dependent
coordinate change on <2,

(i) the map Gp in polar coordinates takes the form:(
rn+1

φn+1

)
=

(
(1 + r)rn − α(µ)r3

n

φn + β(µ) + γ(µ)r2
n

)
+O

(
det

∣∣∣∣
rn

φ

∣∣∣∣
6 )

where α, β, γ are smooth functions of µ and α(0) 6= 0;

(ii) for α > 0 (respectively, for α < 0) and in a sufficiently small right (left)
neighborhood of µ = 0, for the map Gp there exists an invariant attractive
(repelling) circle Γµ bifurcating from the fixed point at x = 0 and enclosing
it.

1.11.3 Stability triangle and bifurcations

Proposition Into TD-plane we consider the stability triangle ABC, where
A(0, 1), B(1, 1), C(−1, 0) (See Figure 1.26). We have that

1. the saddle-node bifurcation occurs on line segment BC;

2. the flip-bifurcation occurs on line segment AC;

3. the Neimark-Saker bifurcation occurs on line segment AB.

Proof
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1. Let λ1 = 1 be and let and |λ2| < 1 be. If we evaluate the characteristic
polynomial p(λ) = (λ− λ1)(λ− λ2) at λ = 1 we derive

p(1) = (1− λ1)(1− λ2) = (1− 1)(1− λ2) = 0.

Moreover−1 < λ2 < 1⇒ λ1−1 < λ1+λ2 < λ1+1⇒ 1−1 < λ1+λ2 < 1+1
⇒ 0 < Trace < 2, and |det| = |λ1||λ2| = |1||λ2| < 1 ⇒ −1 < det < 1.

2. Let λ1 = −1 be and let and |λ2| < 1 be. As above, p(−1) = (−1 −
λ1)(−1− λ2) = (−1 + 1)(−1− λ2) = 0. Further −1 < λ2 < 1 ⇒ λ1 − 1 <
λ1 + λ2 < λ1 + 1 ⇒ −1 − 1 < Trace < −1 + 1 ⇒ −2 < Trace < 0, and
|det| = |λ1||λ2| = | − 1||λ2| < 1 ⇒ −1 < det < 1.

3. Let λ1 = a + ib be, λ2 = a− ib be, with |λ1| = |λ2| = 1. We observe that
det = λ1λ2 = a2 + b2 = |λ|2 = 1. Then |a| < 1. As a matter of fact, if
a > 1 then a2 > 1, from which a2 + b2 > 1+ b2 > 1 and if a < −1 we have
also a2 < 1, therefore a2 + b2 > 1. Thus, since Trace = λ1 + λ1 = 2a we
obtain −2 < Trace < 2.

Figure 1.26: The Triangle of Stability and Bifurcations

1.12 The Lyapunov Characteristic Exponents

1.12.1 The Sensitive Dependence On Initial Conditions

Following Martelli, Dang and Seph (1998), we notice that many scientists non-
mathematician consider chaotic a dynamical system when it shows a sensitive
dependence on initial conditions. We recall that a discrete dynamical system
xn+1 = F (xn) has a sensitive dependence on initial conditions (SDIC) if there
exists r0 > 0 such that for every δ > 0 we can find y0 ∈ X and n ≥ 1 satisfying

kenshiro
Timbro
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the property that d(x0, y0) < δ and d(xn, yn) > r0, where (X, d) is a metric
space, X ⊆ <q, F : X → X is a continuous map on X. For example (See
Figure 1.27), if we pose X = [0, 1], F (x) = 4x(1−x), x0 = 0.3, y0 = 0.300001,
and we plot the points (n; |xn − yn|) (n = 0, 1, ..., 100), we observe that the two
sequences xn and yn of iterates

• are very close for n = 0, 1, . . . , 15;

• they separate for all almost n > 15;

• sometimes they become very close, for example for n = 45 and n = 60.

Figure 1.27: Sensitive Dependence on Initial Conditions

Thus, for the experimentalists, the divergence in different directions of the or-
bits O(x0) and O(y0) is the hallmark of the sensitivity of the dynamical system
xn+1 = F (xn) to small changes and the impossibility to know exactly the ini-
tial states x0 and y0 in the experimental sciences because they are affected by
measurement errors, lead to conclude that the evolution of dynamical system is
unpredictable.

1.12.2 The Lyapunov Characteristic Exponents In One
Dimension

Following Medio and Lines (2001), to make more precise the notion of sensitive
dependence on initial conditions we will use the concept of Lyapunov charac-
teristic exponents (LCE) requiring that the divergence of nearby orbits occurs
at an exponential rate.

kenshiro
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Let G : U → E be a continuously differentiable map, where U is an open subset
of <, and we consider the dynamical system xn+1 = G(xn).

We define recursively the iterates of G by G0(x) = x, G1 = G, Gk = G ◦Gk−1

for all k > 1.

We pose x1 = G(x0), x2 = G(x1), . . ., xk−1 = G(xk), from which Gk−1(x0) =
xk−1, Gk−2(x0) = xk−2, . . . for all k > 1.

Let G
′
(xi) 6= 0 be for all i = 0, 1, . . . , k − 1.

By the chain rule (g ◦ f)
′
(x?) = g

′
(f(x?))f

′
(x?), we state that for all k > 1

DGk(x0) = DG(Gk−1(x0)) = G
′
(Gk−1(x0))DGk−1(x0)

= G
′
(xk−1)DGk−1(x0)

= G
′
(xk−1)DG(Gk−2)(x0)

= G
′
(xk−1)G

′
(Gk−2)(x0)DGk−2(x0)

= G
′
(xk−1)G

′
(xk−2)DGk−2(x0)

...

= G
′
(xk−1)G

′
(xk−2) . . . G

′
(x0)

= G
′
(x0)G

′
(x1) . . . G

′
(xk−1).

We consider now in U two nearby points x0 and x0, where x0 is a fixed point
and x0 is a variable point, and we expand the nth iterate Gn(x0) in a Taylor
series around x0. We have

Gn(x0) = Gn(x0) + dGn

dx |x0=x0(x0 − x0) + . . .

Stopping the Taylor’s expansion at the first order-term and using the previous
result for k = n we obtain that

|xn − xn| = |Gn(x0)−Gn(x0)| ≈ |dGn

dx |x0=x0(x0 − x0)|

= |G′
(x0)G

′
(x1) . . . G

′
(xn−1)||x0 − x0|

= expln |G′ (x0)G
′
(x1)...G

′
(xn−1)| |x0 − x0|
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= exp
ln

[
|G′ (x0)G

′
(x1)...G

′
(xn−1)|1/n

]n

|(x0 − x0)|

= expn ln |G′ (x0)G
′
(x1)...G

′
(xn−1)|1/n |x0 − x0|

= exp
n

[
ln |G′ (x0)|+ln |G′ (x1)|+...+ln |G′ (xn−1)|

n

]
|x0 − x0|.

We put λ(x0) = limn→∞
ln |G′ (x0)|+ln |G′ (x1)|+...+ln |G′ (xn−1)|

n

and if the limit λ(x0) exists we call λ(x0) the Lyapunov characteristic exponent
(LCE).

Then limn→∞ |xn − xn| ≈ expnλ(x0) |x0 − x0|.

Because LCE’s are obtained around x0 they represent a local average. Moreover
taking n →∞ LCE’s are an asymptotic rate of separation of orbits. Finally we
denote LCE with the term exponential rate because the rate |xn−xn

x0−x0
| tends to

expnλ(x0).

The main features of LCE are:

• λ(x0) < 0 if |G′
(x0)G

′
(x1) . . . G

′
(xn−1)| < 1, i.e., if the orbit of x0 is

stable;

• λ(x0) > 0 if |G′
(x0)G

′
(x1) . . . G

′
(xn−1)| > 1, i.e., if the orbit of x0 is

unstable;

• λ(x0) = 0 if x0 converges to a quasiperiodic orbit or x0 converges to a
periodic orbit which is nonhyperbolic.

1.12.3 The Lyapunov Exponents In Two Dimensions

The Strain Ellipse

In order to extend to higher dimensions the concept of Lyapunov Exponent
we need to introduce some preliminary notions of geometry and linear algebra.
Following Lang (1966), we start from a very straightforward case.

In the plane we consider the unitary circle S1 centered at the origin, i.e., the
set of points P = (x, y) such that x2 + y2 = 1 and the linear map F : <2 → <2

defined by F (x, y) = (ax, by), where a and b are fixed positive real constant.
We put u = ax and v = by and we deduce that F (S1) is the set of points
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P
′

= F (P ) = (u, v) such that u2

a2 + v2

b2 = 1, i.e., the ellipse centered at origin
and length of semi-axes equal respectively to a and b (See Figure 1.28).

Figure 1.28: The disk is mapped into an ellipse

Obviously if a = b then F (S1) is also a circle, i.e., an ellipse with axes of equal
length. We note that

• if a > 1 and b < 1, the ellipse grows along the x-axis and shrinks along the
y-axis;

• if a < 1 and b > 1, the ellipse grows along the y-axis and shrinks along the
x-axis;

• if a > 1 and b > 1 (respectively, a < 1 and b < 1), the ellipse grows
(respectively, shrinks) along x-axis and y-axis.

In Geology the ellipse obtained under the action of the F -deformation is some-
times called strain.

Now, following Alligood, Sauer and Yorke (1996), we translate the previous case
into the language of linear algebra extending it to nth iteration map.

We recall that we say linear a map T from <m to <m such that T (av + by) =
aT (v)+bT (w) for each scalar a, b ∈ < and for each vector v, w ∈ <m. Moreover
we may view every matrix A on <2 (or on <m) as a linear map ; by definition
v → Av, i.e.

kenshiro
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A(v) = Av = A

(
x
y

)
=

(
a11 a12

a21 a22

)(
x
y

)
=

(
a11x + a12y
a21x + a22y

)
,

where v =
(

x
y

)
and T = A. We say that a scalar λ is an eigenvalue of the

matrix A if there is a non-zero vector v such that Av = λv. We denote v an
eigenvector. We distinguish three cases.

• Case I: A has distinct real eigenvalues. Let

A =
(

a 0
0 b

)
.

Then a and b are the eigenvalues of A and the correspondent eigenvectors
are (1, 0) and (0, 1). Moreover if we consider An, i.e., the n-iterate of A,
we have

An =
(

an 0
0 bn

)
.

Geometrically the product AnN maps a disk N with radius one and cen-
tered at the origin into a strain ellipse with semi-major axes of length |a|n
and |b|n. If we deform the disk Nε(0, 0) with radius ε > 0 and center (0, 0)
we obtain a strain ellipse with semi-major axes of length ε|a|n and ε|b|n.
Then, as in the introductive example, when n →∞, the ellipse

– shrinks toward the origin (0, 0) if |a| < 1 and |b| < 1 and the origin
is a sink;

– grows along the axes if |a| > 1 and |b| > 1 and the origin is a source;

– grows along the x-axis and shrinks along the y-axis if |a| > 1 and
|b| < 1 and the origin is a saddle;

– shrinks along the x-axis and grows along the y-axis if |a| < 1 and
|b| > 1 and the origin is a saddle.

• Case II: A has repeated real eigenvalues. Let

A =
(

a n
0 a

)
.

Then, by recurrence,

An = an−1

(
a n
0 a

)
.
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The ellipse (with axes of equal length) AN shrinks toward the origin if
|a| < 1 and |b| < 1, instead grows along the x-axis and the y-axis if |a| > 1
and |b| > 1. In the former case the origin is a sink, in the latter it is a
source.

• Case III: A has complex and conjugate eigenvalues. Let

A =
(

a −b
b a

)
.

We pose r =
√

a2 + b2 and we observe that

A = r

(
a/r −b/r
b/r a/r

)
=
√

a2 + b2

(
cos θ − sin θ
sin θ cos θ

)
.

As a matter of fact the entries a/r and b/r satisfy the identity c2 + s2 = 1
because a2

r2 + b2

r2 = a2+b2

r2 = 1 and, from the relation b/a = tan θ, we
deduce that θ = arctan (b/a). Moreover c = cos θ and s = sin θ. Thus
A is a dilatation followed by a rotation: the factor

√
a2 + b2 stretches or

shrinks a vector and the other factor rotates a vector around the origin
by an angle θ given by arctan (b/a).

From the characteristic equation |A−λI| = 0, i.e., (a−λ)2 + b2 = 0, from
which a− λ = ±ib, where i =

√−1. We have the eigenvalues λ1 = a− bi
and λ2 = a + bi.

Now, we will present a complete view on the main features of the ellipse AN
recalling basic results of Linear Algebra.

We note that being (AT A)T = AT (AT )T = AT A for each matrix A m × m,
where AT is the transpose of A, we can conclude that the product AT A is a
symmetric matrix.

Moreover

Lemma Let A be an m×m matrix. The eigenvalues of AT A are nonnegative.

Proof Let v be a unit eigenvector of AT A. Thus there is a scalar λ (eigenvalue)
such that AT Av = λv with |v| = 1. We have

0 ≤ |Av|2 = vT AT Av = vT λv = λ,

from which λ ≥ 0.

The next result shows explicitly the link between the ellipse AN and the matrix
AT A.



1.12. THE LYAPUNOV CHARACTERISTIC EXPONENTS 59

Theorem 1 Consider a unit disk N in <m and an m×m matrix A. Suppose that
s2
1, s

2
2, . . . , s

2
m and u1, u2, . . . , um are the eigenvalues and the unit eigenvectors,

respectively, of the m×m matrix AT A. Then

1. u1, u2, . . . , um are mutually orthogonal unit vectors;

2. the axes of ellipse AN are s1u1, s2u2, . . . , smum.

We apply the previous theorem to Case I. We recall that A =
(

a 0
0 b

)
. Then,

since AT = A, we have AT A = A2 =
(

a2 0
0 b2

)
. The eigenvalues of A2 are

s2
1 = a2 and s2

2 = b2 and the eigenvector of A2 are the unit vectors u1 = (1, 0)
and u2 = (0, 1). Thus the axes of the ellipse AN are (a, 0) and (0, b) and the
length of axes are a and b. We observe that the length of axes of the ellipse
AnN are given by the square root of the eigenvalue of matrix (An)T An = A2n.
The eigenvalues of (An)T An are a2n and b2n, from which we obtain that the
length of the axes are an and bn.

Another application of the Theorem 1 refers to the Case III.

Let A =
(

a −b
b a

)
. Then AT A =

(
a b
−b a

)(
a −b
b a

)
=

(
a2 + b2 0

0 a2 + b2

)
.

Thus the strain ellipse AN is a circle centered at the origin with radius equal to√
a2 + b2: the original disk N rotates by arctan (b/a) and stretches (or shrinks)

by a factor
√

a2 + b2.

We enunciate the following

Theorem 2 Consider an m ×m matrix A. Then there exist two orthonormal
bases of <m, {v1, v2, . . . , vm} and {u1, u2, . . . , um}, and real numbers s1 ≥ s2 ≥
. . . ≥ sm ≥ 0 such that Avi = siui for i = 1, . . . , m.

The Theorem 2 implies that the matrix A can be written as USV T , where
U is the matrix whose columns are u1, u2, . . . , um, the matrix S is a diagonal
matrix whose entries are s1, s2, . . . , sm and V is the matrix whose columns are
v1, . . . , vm. The previous factorization of A is called singular value decomposi-
tion. The matrices U and V are orthogonal, i.e., UT U = I and V T V = I, where
I is the identity matrix.
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The Definition of Lyapunov Exponents in Two Dimensions

We suppose that f is a smooth map on <m and v0 is the initial point of the
orbit. We consider the unit sphere N and we indicate with Jn the first derivative
Dfn(v0) (i.e. the the Jacobian matrix of fn at v0) of the nth iterate of f . Then
JnN is an ellipsoid with m orthogonal axes. The length of axes are given by
the square roots of the m eigenvalues of the matrix JT

n Jn. Let rn
k be the length

of the kth orthogonal axis of the ellipsoid JnN . Thus rn
k is the measure of the

contraction of expansion near the orbit of initial point v0 when the map f is
iterated. We define the kth Lyapunov number of v0 as Lk = limn→∞(rn

k )1/n

and the kth Lyapunov exponent of v0 as hk = lnLk.

We now will give an example of the application of definition of Lyapunov expo-
nent for two-dimensional maps. We consider a skinny baker map, i.e., the map
on unit square S of <2 defined by

B(x, y) =
{

( 1
2x, 2y) if 0 ≤ y ≤ 1

2 ;
( 1
2x + 2

3 , 2y − 1) if 1
2 < y ≤ 1.

We observe that (See Figure 1.28)

• B(S) lies in the left one-third and right one-third of S;

• B2(S) is the union of four stripes.

Figure 1.29: The Skinny-Baker Map

Since for all v ∈ S
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DB(v) =
(

1
3 0
0 2

)
,

we can say that the Jacobian matrix is constant in each point of S (except along
the discontinuity line y = 1/2). We deduce that JnN , where N is a circle of
radius r centered at a point of S, is an ellipse with length of axes equal to ( 1

3 )nr
in the horizontal direction and equal to 2nr in the vertical direction. We take
r very small to avoid that the ellipses across the y = 1/2-line. We obtain that
the Lyapunov exponent of B are − ln 3 and ln 2.

1.13 The Dynamic Complexity: the Arnold tongues
introduced with a discrete nonlinear busi-
ness cycle model

Samuelson (1939) formalized the well-known model of Alvin H.Hansen ”which
ingeniously combines the multiplier analysis with that of acceleration principle”.
For this model the following assumption holds: a period t, the national income
Yt consists of three components: the government deficit spending gt, the private
consumption expenditure Ct and the private investment It. Moreover Ct is in
given proportion of the income of the previous period Yt−1, that is Ct = αYt−1,
where α is the marginal propensity to consume and 0 < α < 1, and that It is
a given proportion β (β > 0) of the change of consumption ∆Ct = Ct − Ct−1,
that is It = β(Ct − Ct−1). The constant β is called accelerator. We consider gt

as exogenous. Therefore we can think gt as a positive constant and denote it
with the symbol G0. In the original model Samuelsons set gt equal to 1.

Thus the model is described by the equations:

Yt = G0 + Ct + It,

Ct = αYt−1, (0 < α < 1),

It = β(Ct − Ct−1), (β > 0).

Following Chiang (1974), we observe that

It = β(αYt−1 − αYt−2) = αβ(Yt−1 − Yt−2), from which the previous relations
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are equivalent to the following linear nonhomogeneous difference equation of
second-order

Yt − α(1 + β)Yt−1 + αβYt−2 = G0. (9.1)

We can rewrite the previous equation as

Yt+2 − α(1 + β)Yt+1 + αβYt = G0.

If we leave out the component It from the national income, the last equation
becomes a difference equation of first order, that is

Yt = αYt−1 + G0. (9.2)

We obtain the particular integral replacing Yt with YP . As a matter of fact

YP = αYP + G0, from which YP = G0
1−α .

If G0 = 1, the intertemporal equilibrium YP becomes 1
1−α and usually it is

called multiplier of Keynes-Kahn-Clark.

Given Y0 > 0, the general solution of (9.2) is Yt = Y0α
t + G0

1−α . Being 0 < α < 1,
for t →∞, Yt → YP , that is, YP is a stable equilibrium.

Proceeing as above we find that YP = G0
1−α(1+β)+αβ = G0

1−α is the intertemporal
equilibrium for (9.1). We consider the homogeneous equation

b2 − α(1 + β)b + αβ = 0. (9.3)

If α2(1 + β)2 > 4αβ, or α(1 + β)2 > 4β, or α > 4β
(1+β)2 , the equation (9.3)

has two distinct and real solutions (Case I). Instead if α = 4β
(1+β)2 the (9.3)

admits two coincident and real roots (Case II), otherwise the roots are complex
conjugate (Case III). We can interpret geometrically the previous results telling
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that in the plane (β, α) all solutions lie in the strip S =]0,+∞[×]0, 1[. In par-
ticularly, denoted with Γ the curve α = 4β

(1+β)2 , the distinct and real solutions,
the repeated and real roots and the complex conjugate roots are respectively
above, on and below the curve Γ. Now we indicate with b1 and b2 the solutions
of (9.3) and we study the stability of the intertemporal equilibrium. From the
following simple relations

b1 + b2 = α(1 + β);

b1b2 = βα,

we deduce that b1 and b2 are positive. Moreover it proves that

• Case I If 0 < b2 < b1 < 1 then there is convergence without cycles and
αβ < 1; if 1 < b2 < b1 then there is divergence without cycles and αβ > 1
.

• Case II If 0 < b < 1 then there is convergence without cycles and αβ < 1;
if 1 < b then there is divergence without cycles and αβ > 1.

• Case III Let R =
√

αβ, if R < 1 there is convergence with damped oscil-
lations and αβ < 1; if R > 1 there is divergence with explosive oscillations
and αβ > 1.

Thus only Case III presents endogenous cycles. Geometrically, in the plane
(β, α), the stable cycles fall in the strip S both below the Γ-curve and the
hyperbola {(β, α) : αβ = 1} (See Figura 1.30).
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Figure 1.30: Samuelson’s Model

1.13.1 The model of Puu-Sushko in discrete time

About explosive motion generated in the model of the linear accelerator of
Samuelson(1939), Puu (1993)12 observes that ”in all physical systems, the source
of inspiration for mathematical modelling in economics, linearization holds when
the variables remain within reasonable bounds”.

Hicks (1950), in order to eliminate the absurdity of explosive cycles, has rear-
ranged the Samuelson’s model introducing a lower bound Imin and an upper
bound Imax for investment, that is Imin < It < Imax for all period t: Imin

represents a floor for disinvestments and Imax is a ceiling to investments.

Hicks (1950) modifies nonlinearly the investment using a piecewise function.
Later Goodwin (1951) introduced a smooth nonlinearity in the investment func-
tion.

Puu (1993, 2000, 2003) simplifies the Samuelson’s model ignoring the govern-
ment deficit spending gt writing the national income as Yt = Ct + It, defines
nonlinearly the investment function as It = v(Yt−1 − Yt−2) − v(Yt−1 − Yt−2)3,
where v is the accelerator and he distributes the consumption over the two pre-
vious periods setting Ct = (1 − s)Yt−1 + sYt−2, where s is the constant saving
rate. It gets (Yt−Yt−1) = (v−s)(Yt−1−Yt−2)−v(Yt−1−Yt−2)3. Now if we put
Yt−Yt−1 = Zt we can rewrite the last equation as Zt = (v−s)Zt−1−vZ3

t−1, or,

12See also the paper of Marij Lines, Heterogeneous Agents in a Multiplier-Accelerator Model,
(2005) Universita’ di Udine
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by a rescaling ((1 + v − s)/v))
1
2 of variables, Zt = aZt−1 − (a + 1)Z3

t−1, where
a = v − s.

We consider the family of maps fa(Z) = aZ − (a + 1)Z3. From equation

fa(Z) = Z, for all a > 1 we have as fixed points Z = 0 and Z± = ±
√

a−1
a+1 .

The fixed points Z± are stable if a < 2. As a matter of fact the condition
|f ′a(Z±)| < 1 is equivalent to inequality |a − 3(a + 1)Z2

±| = |3 − 2a| < 1 which
is true for all a < 2.

We observe that for all a the diagram of map fa(Z) goes across the points
(−1, 1), (0, 0), (1,−1) and if a < 3 the diagram of cubic fa(Z) is contained in
the square [−1, 1]2. Puu (1993) observes that:

• the process converges toward the positive fixed point if it starts from the
right-hand side of 0 and a = 1.9;

• the process presents a 2-cycle if a = 2.1, a 4-cycle if a = 2.25, and a 8-cycle
if a = 2.295;

• the period doubling points accumulate and chaos occurs around the pa-
rameter value a = 2.302 (Feigenbaum point).

Puu (1993) and Puu-Sushko (2003) generalize the consumption function given
above such that:

Ct = (1− s)Yt−1 + εsYt−2

where 0 ≤ ε ≤ 1. We observe that for ε = 1 we obtain the consumption function
of the previous model and for ε = 0 the consumption function of Samuelson.

As before we can put the system in the form:

Yt = Yt−1 + Zt−1,

Zt = aZt−1 − (a + 1)Z3
t−1 − bYt−1,

where b = (1− ε)s is the rate of saving.
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In the last model we change the notation of the variables: x = Y and y = Z.
We can view the dynamical system as generated by a family of two-dimensional
continuous system non-invertible maps F : <2 → <2 given by

F :
(

x
y

)
→

(
x + y

ay − (a + 1)y3 − bx

)
,

where a > 0 and 0 < b < 1. We observe that (0, 0) is the only fixed point for
the map F .

We find that the jacobian matrix DF of map F is

DF =
(

1 1
−b a− 3(a + 1)y3

)

We write the jacobian matrix DF at the fixed point (0, 0) and we obtain that

DF (0, 0) =
(

1 1
−b a

)

We note that:

• the trace trDF (0, 0) = 1 + a;

• the determinant |DF (0, 0)| = a + b.

The characteristic equation associated to DF (0, 0) is

µ2 − trDF (0, 0)µ+ | DF (0, 0) |= 0, or

µ2 − (1 + a)µ + (a + b) = 0.

We set ∆ = (TrDF (0, 0))2−4 | DF (0, 0) |. We note that the eigenvalues of the
jacobian matrix DF (0, 0) correspond to the roots of the characteristic equation.
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They are real if ∆ ≥ 0 and they are complex conjugate otherwise. The real
eigenvalues of DF (0, 0) are given by

µ1,2 = (a + 1±
√

(a + 1)2 − 4b)/2.

The dynamical system in the TD-plane is given by the equations

D(a, b) = a + b;

T (a, b) = 1 + a.

Now we apply the sufficient and the necessary conditions for detect the triangle
S of stability in the (b, a)-plane for the dynamical system and we have that

1 + |DF (0, 0)|+ trDF (0, 0) > 0,

1 + |DF (0, 0)| − trDF (0, 0) > 0,

1 + |DF (0, 0)| > 0,

that is:

2 + 2a + 2b > 0,

b > 0,

1− a− b > 0.

Since a > 0 and 0 < b < 1, we see easily that

S = {(b, a) : 0 < b < 1, 0 < a < 1− b} and (0, 0) ∈ S. We observe that (∆ < 0)
if and only if (1− 2

√
b < a < 1 + 2

√
b). The eigenvalues complex conjugate are
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µ1,2 = α ± iβ, where α = 1
2TrDF (0, 0) = 1

2 (1 + a) and β = 1
2

√
4b− (1 + a)2.

Moreover, since α2 + β2 = 1, we can write µ1,2 such that

µ1,2 = cos θ ± isinθ,

where cos θ = 1
2 (1 + a) and sin θ = 1

2 (1 + a)
√

4a− (1 + a)2.

Moreover the characteristic equation becomes µ2 − 2αµ + α2 + β2 = 0, or,
recalling that α2 + β2 = 1 and α = 1

2 (1 + a), µ2 − (1 + a)µ + 1 = 0.

The loss of stability of the system occurs if

• µ = 1 (fold bifurcation);

• µ = −1 (flip bifurcation);

• modulus(µ) = 1 (Neimark-Sacker bifurcation).

If we substitute µ = ±1 in the characteristic equation we get respectively b = 0
and 2(1 + a) + b = 0, i.e. a = 0. Since we supposed positive a and b, the fold
bifurcation and the flip bifurcation does not occur. Thus the loss of stability
would present with the Neimark-Sacker bifurcation.

Since |DF (0, 0)| = 1, we have a+b = 1, or a = b−1 (Neimark-Sacker condition).
If θ is an irrational multiple of 2π, the bifurcation presents as an invariant curve,
otherwise as a periodic cycle. In the latter case we suppose that θ = 2π m

n , where
m and n are integer such that (m,n) = 1, where (m,n) denotes the greatest
common divisor between m and n. The number m/n is called rational rotation
number.

From the relation cosθ = 1
2 (1 + a) we deduce that a = 2 cos(2π m

n )− 1. We put
m = 1 and we rewrite the last relation as

an = 2 cos(2π 1
n )− 1, bn = 1− an (9.2.1)

If replacing n respectively with 1, 2, 3, 4, . . . into the (9.2.1) we will have an > 0
and 0 < bn < 1, then we can say that a resonance occurs in the dynamical
system and we can deduce the existence of Arnold tongues. If the conditions
an > 0 and 0 < bn < 1 are verified for n = 1, 2, 3, 4 we say that a strong
resonance occurs. We obtain
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• Case n = 1 : a1 = 2 cos(2π)− 1 = 1, from which, b1 = 1− a1 = 0;

• Case n = 2 : a2 = 2 cos(2π 1
2 ) − 1 = 2 cos(π) − 1 = −3, from which

b2 = 1− a2 = 4;

• Case n = 3 : a3 = 2 cos(2π 1
3 ) − 1 = 2(− 1

2 ) − 1 = −2, from which
b3 = 1− a3 = 3;

• Case n = 4: a4 = 2 cos(2π 1
4 )− 1 = −1, from which b4 = 1− a4 = 2.

Thus the strong resonance does not occur. The previous cases are called also
respectively 1:1, 1:2, 1:3, 1:4. Moreover, substituting n = 5 into (9.2.1) (1:5) we
have a5 = 2 cos(2π 1

5 )− 1 = 2
√

5−1
4 − 1 =

√
5−3
2 < 0, that we don’t accept. Now

we study the case n = 6. We have a6 = 2 cos(2π 1
6 ) − 1 = 2( 1

2 ) − 1 = 0, from
which b = 1− a = 1.

We note that for all n > 6 the values of an and bn are admissible. As a matter
of fact, we have that (See Figura 1.31)

• limn→+∞ an = limn→+∞ 2 cos(2π 1
n )− 1 = limy→0 2 cos(y)− 1 = 1;

• D[2cos(2π
x )− 1] = 4π sin(2π/x)

x2 > 0 for all x > 0.

The previous relations imply that an converges to 1 monotonically increasing
and an < 1 for all n > 6. From which limn→+∞ bn = limn→+∞ an − 1 = 0.

The following table illustrates numerically the previous results:
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n cos(2π/n) an bn

1 1 1 0
2 -1 -3 4
3 -0.5 -2 3
4 6.1257E-17 -1 2
5 0.309016994 -0.381966011 1.38196011
6 0.5 0 1
7 0.623489802 0.24979604 0.753020396
8 0.707106781 0.414213562 0.585786438
9 0.766044443 0.532088886 0.467911114
10 0.809016994 0.618033989 0.381966011
11 0.841253533 0.682507066 0.317492934
12 0.866025404 0.732050808 0.267949192
13 0.885456026 0.770912051 0.229087949
14 0.900968868 0.801937736 0.198062264
15 0.013545458 0.827090915 0.172909085
16 0.923879533 0.847759065 0.152240935
17 0.932472229 0.864944459 0.135055541
18 0.939692621 0.879385242 0.120614758
19 0.945817242 0.891634483 0.108365517
20 0.951056516 0.902113033 0.097886967
21 0.955572806 0.911145612 0.088854388
22 0.959492974 0.918985947 0.081014053
23 0.962917287 0.925834575 0.074165425
24 0.965925826 0.931851653 0.068148347
25 0.968583161 0.937166322 0.062833678
26 0.970941817 0.941883635 0.053910259
27 0.973044871 0.946089741 0.053910259
28 0.974927912 0.949855824 0.050144176
29 0.976620556 0.953241111 0.046758889
30 0.978147601 0.956295201 0.043704799
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Figure 1.31: The Arnol’d Tongues in the Puu-Samuelson Model

1.14 Appendix: Basic Concepts on the Family
of Logistic Maps

The notion of logistic map plays a central role in many economic dynamic models
with chaos, particularly in the Day’s model (1982, 1983) (See Chapter 2). We
define the logistic map setting f(x) = ax(1 − x), where a ≥ 0 and x ∈ <, and
we find the fixed points of f(x) solving the equation ax(1− x) = x. We obtain
the product x[(a− 1)− ax] = 0 that leads to solutions x = 0 and x = (a− 1)/a
(a 6= 1). We observe that f ′(x) = a− 2ax and if we evaluate f ′(x) at x = 0 and
x = (a− 1)/a we have f ′(0) = a and f ′(a− 1)/a) = 2−a. Thus we deduce that
x = 0 is stable if −1 < a < 1 and x = (a − 1)/a is stable if 1 < a < 3. If we
see the logistic map as a dynamical system, i.e. xt+1 = axt(1 − xt), where t is
a discrete time (t = 0, 1, . . .), we can say that if −1 < a < 1 the attractor x = 0
have as basin of attraction the set of point between 0 and 1. Following Alligood
et al. (1996), about the dynamic of growth of populations, the previous result
means that with small reproduction rates, small populations tend to die out.
Instead for 1 < a < 3 the point x = 0 is unstable and x = (a − 1)/a is stable
and we can say that small populations grow to steady-state of x = (a−1)/a (See
Figure 1.32).
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Figure 1.32: Logistic Map

We suppose that xt ∈ [0, 1], a ∈ [0, 4] and we note that :

• xt+1 = axt(1− xt) is a concave quadratic function which maps [0, 1] onto
itself for all a ∈ [0, 4];

• in the (xt, xt+1)-plane xt+1 = axt(1 − xt) represents an example of uni-
modal map, i.e. it has an unique point x∗ which maximize f(xt, a), it is
smooth and there are two points α and β such that f(α, a) = 0 = f(β, a),
where f(xt, a) = axt(1− xt);

• the one-dimensional map f(xt, µ) is not invertible because, fixed xt+1,
exist two points xt and xt′ such that xt+1 = f(xt, a) = f(xt′ , a).

From the assumptions on a and xt we deduce that

• f
′
(xt, a) = a(1− xt)− axt = 0 if and only if x∗ = 1

2 ;

• f( 1
2 , a) = a

4 ≤ (4)(1
4 ) ≤ 1.

The trajectories of dynamical system xt+1 depend on the value of a. As a matter
of fact xt+1 presents (R.H. Day, 1982)

• monotonic contraction to 0 if 0 < a ≤ 1;

• monotonic growth converging to x = a−1
a if 1 < a ≤ 2;

• oscillations converging to x = a−1
a if 2 < a ≤ 3;

• continued oscillations if 3 < a ≤ 4.
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1.15 Appendix: The Li-Yorke Theorem

In 1975 Li and Jorke published a work entitled ”Period three implies chaos ”
which has collected favor among economists ”because its simplicity as it requires
only checking the existence of a period-3 orbit in order to deduce the existence
of ”chaos”” one-dimensional (Boldrin-Woodford (1990, 1992)). In Chapter 2
we will develop a model of growth due to R.H. Day which applies the result
of Li-Yorke. We simply stating the Li-Yorke theorem and refer to the original
work for a demonstration (See Figure 1.33).

Theorem of Li-Yorke Let J be an interval in < and let f : J → J be a
continuous map. We consider the difference equation

xt+1 = f(xt) (?)

and we admit there exists a point x ∈ J such that

f3(x) ≤ x < f(x) < f2(x).

Then

• For every k = 1, 2, 3, . . ., there exists a k-periodic solution such that xt ∈ J
for all t.

• There is a countable set (containing no periodic points) S ⊂ J for every
x0 ∈ J the solution path of difference equation (?) remains in S and

– for all x, y ∈ S, x 6= y,

lim supt→∞ |f t(x)− f t(y)| > 0, lim inft→∞ |f t(x)− f t(y)| = 0;

– for all periodic points x and all points y ∈ S,

lim supt→∞ |f t(x)− f t(y)| > 0.
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Figure 1.33: A map with a period three orbit
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Chapter 2

2.1 Contents

• Introduction

• The Solow Growth Model in Discrete Time

• Complex Dynamics in the Solow Discrete Time Growth Model

• A Two Class one-dimensional Growth Model: The Model of Böhm and
Kaas (1999)

• Complex Dynamics in a Pasinetti-Solow Model of Growth and Distribu-
tion

• Appendix: The CES Production Function

2.2 Introduction

The analysis of the fundamental issues in dynamical macroeconomics usually
begins with the study of two (one-sector and one-dimensional) growth models:
the Ramsey model (Ramsey, 1928) and the Solow model (Solow, 1956). In the
Ramsey model a representative consumer has an infinite horizon of life and
optimizes his/her utility. A basic Ramsey model in discrete time requires to
find

max W =
∑t=∞

t=0 ( 1
1+% )tu(ct),

subject to the constraints yt = f(kt), yt = yt + it, kt+1 = kt + it, where f(kt)

is the production function, kt is the capital-labor ratio at time t, yt the income

77
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over labor at time t, u(ct) an utility function on the consumption per capita
ct at time t, it the investment over labor at time t, % the discount rate, with
the following properties u(ct) ≥ 0, u′(ct) > 0, u′′(ct) < 0, f(0) = 0, f ′(0) = 0,
f ′(∞) = 0, f ′(k) > 0, f ′′(k) < 0.

In the Solow model consumption is not optimal the representative agent saves
a constant fraction of his income. In the next sections we will describe only
the Solow model and the most relevant models for our thesis. We note here
that researches in several direction have spanned from the Solow model. For
example, the Solow model inspired the works of Shinkay (1960), Meade (1961),
Uzawa (1961,1963), Kurz (1963), Srinivasan (1962-1964), on two-sector growth
models. Following this line of research, works about two-sector models appeared
on the Review of Economic Studies in the 1960s (Drandakis (1963), Takajama
(1963,1965), Oniki-Uzawa (1965), Hahn (1965), Stiglitz (1967), among others).
This line of research has been further developed in the 80s with the introduc-
tion of chaos and Overlapping Generations (OLG) into the two-sector model
(Galor and Ryder (1989), Galor (1992), Azariadis (1993), Galor and Lin (1994).
Recently Karl Farmer and Ronald Wendner (2003) developed two-sector mod-
els including overlapping generation (OLG), instead Schmitz (2006) presented
a two-sector model in discrete time that exhibits complex dynamics (topolog-
ical chaos and strange attractors). Another line of research was opened by
P.Diamond (1965) which was the first to extend the Solow model including OLG
developing a one-sector and one-dimensional model with public debt. R.Farmer
(1968) extended the Diamond model to the two-dimension case. Many authors
developed model Farmer-type with chaos (Grandmont (1985), B. Jullien (1988),
B. Reichlin (1986), A. Medio (1992), C. Azariadis (1993), V. Bohm (1993), A.
Medio and G. Negroni (1996), de Vilder (1996), M. Yokoo (2000) ). More-
over, the seminal ideas of Kaldor (1956, 1957), Pasinetti (1962), Samuelson
and Modigliani (1966), Chiang (1973) about the influence on the growth path
by different savings behaviour of two income group (labor and capital) origi-
nated two-class one-dimensional (Böhm and Kaas (2000)) and two-dimensional
(Commendatore (2005)) discrete time models. We note that in the two-class ex-
tensions of the Solow model, the neoclassical features of the production function,
the Inada conditions, are weakened or disappear, and both models present com-
plex dynamics. Following Samuelson-Modigliani (1966) and T. Michl (2005),
in the Chapter 3, we will develop a two-dimensional and two-class discrete
time model which extends the Solow model to OLG and dynasties a lá Barro
(1974)1. We present a detailed taxonomy of the researches in several directions,
originated by the Solow model, in an Appedix of this Chapter.

1”Current generations act effectively as they were infinite-lived when they are connected
to future generations by a chain of operative intergenerational transfers.”, R.J.Barro (1974,
p.1097). See also the seminal papers of Becker (1965), Burbidge (1983), Weil (1987), Abel
(1987) and the recent OLG-model with altruism of Cardia and Michel (2005)
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2.3 The Solow Growth Model in Discrete Time

Following Hans-Walter Lorenz (1989) and Costas Aziariadis (1993), we will
develop a discrete time variant of the growth model due to Solow (1956). We
consider a single good economy, i.e. an economy in which only one good is
produced and consumed. We assume that the time t is discrete, that is t =
0, 1, 2, . . .. The symbols Yt, Kt, Ct, It, Lt, St indicate economywide aggregates
respectively equal to income, capital stock, consume, investment, labor force,
saving at time t. The capital stock K0 and labor L0 at time 0 are given. The
constant s denotes the marginal savings rate and the constant n indicates the
growth rate of population. We consider s and n as given exogenously. The map
F : (Kt, Lt) → F (Kt, Lt) is the production function. We assume that:

1. Yt = Ct + It: for all time t = 0, 1, . . ., the economy is in equilibrium, i.e.
the supply of income Yt is equal to the demand composed of the quantity
Ct of good to consume plus the stock It of capital to invest (closed economy
like a Robinson Crusoe economy);

2. It = Kt+1: investment at time t corresponds to all capital available to
produce at time t + 1 (working capital hypothesis);

3. St = Yt − Ct = sYt (0 < s < 1): saving is a share of income;

4. Yt = F (Kt, Lt), i.e. at time t all income is equal to the output obtained by
the inputs capital and labor;

5. Lt = (1 + n)tL0 (n > 0): the labor force grows as a geometric progression
at the rate (1 + n).

From the first (3.) we deduce that in a short run equilibrium Yt = Ct +St,
which, after a comparison with (1.), gives It = St. Thus, applying (2.) and
(3.), we have Kt+1 = sYt. Finally, from (4.) we obtain Kt+1 = sF (Kt, Lt).

From the later expression, Kt+1
Lt

= sF (Kt,Lt)
Lt

.

If F is linear-homogeneous (or it tells that F exhibits constant returns to
scale), i.e.

6. F (λK, λL) = λF (K, L) (for all λ > 0),

then we have Kt+1
Lt

1+n

=
sLtF (

Kt
Lt

,1)

Lt+1
.



80 CHAPTER 2.

We set kt = Kt

Lt
(capital-labor ratio or capital per worker) and f(kt) = f(Kt

Lt
, 1).

We call output per worker the ratio yt = Yt

Lt
.

Therefore we get the equation of accumulation for the Solow model in discrete
time with the working capital hypothesis:

kt+1(1 + n) = sf(kt) (1.1)

If we assume that capital depreciates at the rate 0 ≤ δ ≤ 1(fixed capital hypoth-
esis), the capital available at time t + 1 corresponds to Kt+1 = Kt − δKt + It,
from which Kt+1 = sF (Kt, Lt) + (1− δ)Kt.

As before we get the following time-map for capital accumulation

kt+1(1 + n) = sf(kt) + (1− δ)kt (1.2)

or

kt+1 = h(kt),

where h(kt) = 1
1+n [sf(kt) + (1− δ)kt].

We notice that It is the gross investment while Kt+1−Kt = It− δKt is the net
investment.

Costas Azariadis (1993, p.4) tells us that this model captures explicitly a simple
idea that is missing in static formulations: there is a tradeoff between consump-
tion and investment or between current and future consumption. The implica-
tions of this ever-present competition for resources between today and tomorrow
are central to macroeconomics and can be explored only in a dynamic framework.
Time is clearly of the essence.

If f(kt) is a concave production function, for example, a Cobb-Douglas function
f(kt) = Bkβ

t (B > 0, 0 < β < 1, k ≤ 0), then the equation (1.1) becomes



2.4. COMPLEX DYNAMICS IN THE SOLOW DISCRETE TIME GROWTH MODEL81

kt+1 = sBkβ
t

1+n . Setting h(kt) = sBkβ
t

1+n , we notice that h(kt) is monotonically
increasing and concave for all k < 0:

df(k)
dk = s

1+nβBkβ−1 > 0 and d2f(k)
dk2 = s

1+nBβ(β − 1)kβ−2 < 0.

Remark 2.3.1 About the Cobb-Douglas, we observe that the assumption 0 <
β < 1 implies the concavity of f(k). Moreover in the plane (kt, kt+1) the graph of
the Cobb-Douglas is below the 45◦-line if f(kt) < kt, from which kt < (1/B)

1
B−1 .

Remark 2.3.2 About the Cobb-Douglas, we have also

f
′
(k) < 1 if k > (Bβ)

1
1−β . As a matter of fact

f
′
(k) < 1 ⇔ Bβkβ−1 < 1 ⇔ kβ−1 < 1

Bβ ⇔ (k−1)1−β < (Bβ)−1

⇔ k−1 < (Bβ)−
1

1−β .Q.E.D.

For example, let B = 0.2 be and let β = 0.7 be, it needs that k > 0.001425.

Moreover the dynamical system kt+1 = h(kt) has two steady-states: the first,
at k = 0, is a trivial and repelling (or instable) fixed point, while the second, at
k∗ = [ Bs

1+n ]
1

β−1 , is interior and asymptotically stable.

2.4 Complex dynamics in the Solow Discrete
Time Growth Model

R.H. Day (1982,1983) first has noticed that complex dynamics can emerge from
simple economic strutures as, for example, the neoclassical theory of capital
accumulation. In particulary Day argues that the nonlinearity of the h(kt) map
and the lag present in (1.1) are not sufficient to lead to chaos. Instead making
changes in (1.1) in the production function or thinking the saving propensity s
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as a function of kt, i.e. s = s(kt), he obtains a robust result (Michele Boldrin
and Michael Woodford, 1990).

In the former case he defines

f(kt) =
{

Bkβ
t (m− kt)γ , if kt < m;

0, otherwise,

where m is a positive constant, 0 < β < 1, 0 < γ < 1 and B > 0.

In the latter case he sets f(kt) = Bkβ
t (B ≥ 2, 0 < β < 1) and he replaces the

constant s with the saving function

s(kt) = a(1− b
r )kt

yt
,

where r = f
′
(kt) = β yt

kt
, a > 0, b > 0.

Thus from the equation (1.1) we deduce respectively the equations

kt+1 = 1
1+nsBkβ

t (m− kt)γ (4.1)

and

kt+1 = a
1+nkt[1− ( b

βB )k1−β
t ] (4.2).

It is very simple to solve the equation (4.1) when m = γ = β = 1. As a matter
of fact we can rewrite it like this

kt+1 = 1
1+nsBkt(1− kt) (4.3).

If we set µ = sB
1+n then the (4.3) becomes the well-known logistic equation

kt+1 = µkt(1− kt).
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We can use the Li-Yorke Theorem (see Chapter 1). Following Day (1982,
1983), first we observe that the right-hand side h(kt) = 1

1+nsBkβ
t (m − kt)γ

of equation (3.1) is a map concave, one-humped shaped, has a range equal to
the interval [0, h(kc)], where kc is the unique value of kt which maximizes the
map h(kt). Moreover fixing the parameters β, γ and m, the graph of h(kt)
stretches upwards as B is increased and at same time the position of kc doesn’t
changes because in the expression of kc the parameter B don’t appear while the
maximum h(kc) depends linearly on B (See Figure 2.1 and Figure 2.2).

As a matter of fact, from the equation

dkt+1
dkt

= sB
1+n (βkβ−1

t (m− kt)γ − kβ
t γ(m− kt)γ−1) = 0,

we get kc = βm
γ+β and h(kc

t ) = Bs
1+nββγγ( m

β+γ )β+γ .

Moreover we assume that kb is the backward iteration of kc, i.e. kb = h−1(kc),
km is the forward of kc, i.e. h(kc) = km and km is the maximum k such that
h(k) = 0. Thus h(km) = 0, kc = h(kb), km = h(kc) = h(h(kb)), h(km) =
h(h(h(kb))) = 0. If B is large enough, kc lies to left of the fixed point k∗, from
which it follows that kb < kc.

The previous conditions

0 < kb < kc < km,

imply that

h(km) < kb < h(kb) < h(kc),

which are equivalent to the inequalities

h3(kb) < kb < h(kb) < h2(kb).

Therefore the hypotheses of Li-Yorke theorem are satisfied.
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From (4.2) we get

dkt+1
dkt

= a
1+n{[1− b

βB k1−β
t ] + kt[(− b

βB )(1− β)k−β
t ]}

= a
1+n [1− (2− β) b

βB k1−β
t ] = 0

if and only if k∗ = [ βB
b(2−β) ]

1
1−β .

If we call ψ(kt) the right-hand side of (4.2) we have

ψ(k∗) = a
1+n [ βB

b(2−β) ]
1

1−β 1−β
2−β .

Let kc the smaller root of the equation

ψ(kt) = x∗ (4.4),

that is a
1+nkt[1− ( b

βB )k1−β
t ] = [ βB

b(2−β) ]
1

1−β (4.5).

As above conditions of the of Li-Yorke Theorem are satisfied.

Figure 2.1:
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Figure 2.2:

2.5 A Two Class Growth Model: A Model of
Böhm and Kaas

In the model of Böhm and Kaas (1999) there are two types of agents (two class
model), called workers and shareholders, and only one good (or commodity)
is produced which is consumed or invested (one sector model). Like Kaldor
(1956,1957) and Pasinetti (1962), the workers and shareholders have constant
savings propensities, denoted respectively with sw and sr (0 ≤ s ≤ 1 and
0 ≤ s ≤ 1). The output is produced with two factors: labor and capital. We
consider that the capital depreciates at a rate 0 < δ ≤ 1 and the labor grows at
rate n ≥ 0. We write the production function f : < → < in intensive form (i.e.
it is maps capital per worker k into output per worker y), and suppose that f
satisfies the following conditions :

• f is C2;

• f(λk) = λf(k) (constant returns to capital);

• f is monotonically increasing and strictly concave (i.e. f
′
(k) > 0 and

f
′′
(k) > 0 for all k > 0);

• limk→∞ f(k) = ∞;

• (a) limk→0
f(k)

k = ∞ and (b) limk→∞
f(k)

k = 0 (weak Inada conditions
(WIC))

kenshiro
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Remark 2.7.1 Following Böhm et al. (2007), we now introduce two families
of production functions that violate the WIC: the linear production functions
and the Leontief production functions given by f(k) = a + bk, (a, b > 0) and
g(k) = min{a, bk} (a > 0, b > 0) respectively.

Since

limk→0
f(k)

k = ∞ and limk→∞
f(k)

k = b,

f violates property (b) of WIC. Instead since

limk→0
g(k)

k = b and limk→∞
f(k)

k = 0,

g does not satisfy property (a) of WIC. We conclude this remark offering an
example of production functions that satisfy WIC: the isoelastic production
functions of the form

h(k) = Akα, A > 0, 0 < α < 1.

It easy verify that h(k) satisfies WIC.

Remark 2.7.2 We observe that, for any differentiable function f : <+ → <+,
the Inada conditions

(α) limk→0 f ′(k) = ∞ and (β) limk→∞ f ′(k) = 0,

imply WIC . As a matter of fact, since

limk→0 f(k) = 0 and limk→∞ f(k) = ∞,

by l’Hôpital’s rule,

limk→0 f ′(k) = limk→0
f(k)

k and limk→∞ f ′(k) = limk→∞
f(k)

k .

If we assume that the market is competitive then the wage rate w(k) is coincident
with the marginal product of labor, i.e. w(k) = f(k)− kf ′(k), and the interest
rate (or investment rate) r is equal to the marginal product of capital, i.e.
r = f ′(k). We suppose that f(0) generally is not equal to 0. We observe that
the total capital income per worker is kf ′(k). Moreover from WIC we deduce
that:
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• w(k) ≥ 0;

• w
′
(k) = −kf

′′
(k) > 0 (w(k) is strictly monotonically increasing);

• 0 ≤ kf
′
(k) ≤ f(k)− f(0);

• limk→0 kf
′
(k) = 0.

Remark 2.7.3 There are several ways to obtain the inequality 0 ≤ kf
′
(k) ≤

f(k) − f(0). The first way is the following. We recall that f is concave in
[0,+∞[ if and only if f(k1) ≤ f(k0) + f

′
(k0)(k1 − k0), for all k0, k1 ≥ 0. In

particulary, if k0 = k and k1 = 0, we have f(0) ≤ f(k) + f
′
(k)(0 − k), from

which 0 ≤ kf
′
(k) ≤ f(k)− f(0).

Alternately, if f
′
(0) < ∞, by the inequality w(0) ≤ w(k) for all k ≥ 0, we have

f(0)− 0 · f ′(0) ≤ f(k)− kf
′
(k), from which 0 ≤ kf

′
(k) ≤ f(k)− f(0).

Finally, consider the graph of a monotonically strictly increasing and concave
function f with f(0) > 0. Geometrically we may intuit the inequality drawing
in the plane (k, f(k)) the line which goes across the points (0, f(0)) and (k, f(k))
and the tangent line in the point (k, f(k)): the slope of the first line, f(k)−f(0)

k ,
will appear greater or equal to the slope f

′
(k) of the second line. By continuity

of f(k) on k = 0, we obtain the limk→0 f(k) = f(0). Thus, from the previous
inequality, limk→0 kf

′
(k) ≤ limk→0(f(k)− f(0)) = f(0)− f(0) = 0.

Similarly to the Solow model we obtain that the time-one map of capital accu-
mulation is

kt+1 = G(kt) = 1
1+n ((1− δ)kt + sww(kt) + srktf

′
(kt)).

Proposition 1 Given n ≥ 0 and 0 ≤ δ ≤ 1, let f(k) be a production function
which satisfies the WIC. If the workers do not save less than shareholders (i.e.
sw ≥ sr) or ef ′(k) ≥ −1 then G is monotonically increasing in k.

Proof We observe that dG(kt)
dkt

= 1
1+n ((1−δ)−swkf ′′(k)+sr(f ′(kt)+ktf

′′(kt))).

Thus dG(kt)
dkt

≥ 0 is equivalent to inequality (sw − sr)kf ′′(k) ≤ 1 − δ + srf
′(k).

From the assumptions f ′(k) > 0, 1 − δ ≥ 0 and sr > 0, we deduce that (1 −
δ + srf

′(k) > 0). Being f ′′(k) < 0, if sw ≥ sr, the left-hand side of inequality
is negative and the inequality is satisfied trivially. Otherwise, rewriting the
inequality in the following manner swkf ′′(k) ≤ (1− δ) + sr(kf

′′
(k) + f ′(k)), we

notice that it is true if (kf ′′(k) + f ′(k) ≥ 0), i.e. ef ′(k) ≥ −1.
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The following proposition investigates the existence and the uniqueness of steady
states.

Proposition 2 Consider n and δ fixed and let f(k) be a production function
which satisfies the WIC. The following conditions hold:

• k = 0 if and only if sw = 0 or f(0) = 0.

• There exists al least one positive steady state if (sr > 0 and limk→0 f ′(k) =
0) or if (sw > 0 and f ′(0) < ∞).

• There exists at most one positive steady state if (sr ≥ sw).

Proof We observe that k is a steady state if and only if k = G(k), that is

sww(k) + srkf ′(k) = (n + δ)k.

Thus 0 = G(0) if and only if (sw(f(0)− limk→0 kf ′(k))+ sr limk→0 kf ′(k) = 0).

By a previous observation we have that limk→0 kf ′(k) = 0, therefore k = 0 is a
steady state if and only if swf(0) = 0.

Moreover the existence of a positive steady state k is equivalent to

sw( f(k)
k − f ′(k)) + srf

′(k) = n + δ.

We set H(k) = sw( f(k)
k − f ′(k)) + srf

′(k). By Bolzano’s Theorem, being H(k)
continuous in interval ]0, +∞[, the range J of H(k) is an interval. We no-
tice that J =]0,+∞[. As a matter of fact, if suppose that limk→∞ f ′(k) =
+∞, we may apply the Hôpital’s Rule to the first of the conditions denoted
above with (I), and we have 0 = limk→∞

f(k)
k = limk→∞ f ′(k), from which

limk→+∞H(k) = 0. From the second relation of (I) and setting f ′(0) < +∞, we
obtain that limk→0 H(k) = +∞. Therefore, the equation H(k) = n + δ accepts
at least one positive solution. Being dH(k)

dk = sw(kf ′(k)−f(k)
k2 − f ′′(k)) + srf

′′(k)

= sw(kf
′
(k)−f(k)

k2 ) + (sr − sw)f
′′
(k) and since kf

′
(k)− f(k) = −w(k) < 0, if we

suppose sr ≥ sw, we deduce that dH(k)
dk ≤ 0. Thus H(k) is strictly monotonically

decreasing and the equation H(k) = n + δ admits only one root.
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Proposition 3 k? is a steady state of Pasinetti-Kaldor iff, for given n and δ,
the pairs (sr, sw) of savings rate describe the line sr + 1−ef (k?)

ef (k?) sw = 1 in the

(sr, sw)-diagram, where ef (k) = kf
′
(k)

f(k) .

Proof We observe that the total consumption per worker is c(k) = f(k) −
sw(k)−skf

′
(k). If k? is a steady state then c(k?) = f(k?)−(n+δ)k?. We want

the steady state k?, with different savings rate, which maximize c(k?). Thus,
setting dc(k?)

dk? = 0, we find f
′
(k?) = (n + δ), that is k? = f−1((n + δ)). We

call Kaldor-Pasinetti equilibrium the optimal steady state consumption (or the
golden rule for capital stock). Replacing (n + δ) with f

′
(k?) in the right-hand

side of the steady state condition sww(k?) + srk
?f

′
(k?) = (n + δ)k?, we obtain

sww(k?) + srk
?f

′
(k?) = k?f

′
(k?), that is sw(f(k?)− k?f

′
(k?)) + srk

?f
′
(k?) =

k?f
′
(k?). Dividing both sides of the previous equation by f(k?) and recalling

the definition of ef (k), we have sr + 1−ef (k?)
ef (k?) sw = 1. We notice that in the

(sr, sw)-plane the last equation can be viewed as a line that

• has negative slope;

• goes across the point (sr, sw) = (1, 0);

• is below or above the 45◦-line sw = sr depending on ef (k?) is less or
greater than 1

2 .

The (sr, sw)-plane is coincident with the square [0, 1]2.

2.5.1 The dynamics with fixed proportions

We consider the Leontief technology

fL(k) = min{ak, b}+ c, a, b, c > 0.

Let k? = b/a be. We have

fL(k) =
{

ak + c, if k ≤ k?,
b + c, if k > k?; and f

′
L(k) =

{
a, if k ≤ k?,
0, if k > k?.
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The map G becomes

GL(k) =
{

G1(k) = 1
1+n ((1− δ + sra)k + swc), if k ≤ k?,

G2(k) = 1
1+n ((1− δ)k + (b + c)sw), if k > k?.

We may say that:

• G1 and G2 are affine-linear maps strictly monotonically increasing;

• G
′
1 = 1

1+n (1− δ + sra) > G
′
2 = 1

1+n (1− δ);

• G
′
2 < 1: the map G

′
2 has always a fixed point k2;

• G1 has the fixed point k1 if and only if G
′
1 < 1, that is n + δ − sra > 0;

• G1(0) = 1
1+nswc < G2(0) = 1

1+n (b + c)sw.

Let k1 be the fixed point for G1. Then k1 is a fixed point also for G if and only
if k1 < k?. Analogously, found the fixed point k2 for G2, we have that k2 is a
fixed point also for G if and only if k? < k2 (See Figure 2.3).

Figure 2.3: The Maps G1 and G2

Proposition 1 Let G
′
1 < 1 be. We obtain that:

kenshiro
Timbro
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(i) the fixed point k1 for G1 is equal to csw

n+δ−asr
;

(ii) k1 is a fixed point also for G if and only if bsr + csw < (n + δ) b
a ;

(iii) G1(k?) < k? if and only if bsr + csw < (n + δ) b
a .

Proof We solve the equation G1(k) = k. We get

1
1+n ((1− δ + sra)k + swc) = k, from which

(sra− n− δ)k = −swc. Thus k1 = csw

n+δ−asr
.

Moreover k1 < k? if and only if csw

n+δ−asr
< b

a . From the assumption G
′
1 < 1

we deduce n + δ − sra > 0. Therefore csr < −bsw + (n + δ) b
a , from which

bsr + csw < (n + δ) b
a .

The inequality G1(k?) < k? is equivalent to the following 1
1+n ((1− δ + sra)k? +

swc) < k?. We get before (asr−n−δ)k? < −swc, and after srak?− (n+δ)k? <
−swc. We deduce the relation (iii). (i) and (ii) are equivalent.

Proposition 2 We get

(i) the fixed point of G2 is k2 = (b+c)sw

n+δ ;

(ii) k2 is the fixed point also for G if and only if sw > (n+δ)b
(b+c)a ;

(iii) G2(k?) > k? if and only if sw > (n+δ)b
(b+c)a .

Proof Solving the equation G2(k) = k, we obtain the following equivalent
relations:

1
1+n ((1− δ)k + (b + c)sw) = k,
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(1− δ)k − (1 + n)k = −(b + c)sw,

−(n + δ)k = −(b + c)sw, from which k2 = (b+c)sw

n+δ .

Moreover k2 > k? if and only if (b+c)sw

n+δ > b
a , from which sw > (n+δ)b

(b+c)a . (iii)
trivial. Obviously (ii) and (iii) are equivalent (See Figure 2.4).

Figure 2.4: Stability regions for the Leontief technology

Remark GL has two fixed point if and only if G1(k?) < k? < G2(k?), from
which G1(k?) < G2(k?). Then 1

1+n ((1 − δ + sra)k? + swc) < 1
1+n ((1 − δ)k? +

(b + c)sw. Thus sr < sw.

(A) GL has only one fixed point: the fixed point of G1, that is it holds the
system

{
bsr + csw < (n + δ) b

a ,

sw < (n+δ)b
(b+c)a .

(B) GL has two fixed points: the fixed point of G1 and the fixed point of G2,
that is it holds the system

kenshiro
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{
bsr + csw < (n + δ) b

a ,

sw > (n+δ)b
(b+c)a .

(C) GL has only one fixed point: the fixed point of G2, that is it holds the
system

{
bsr + csw > (n + δ) b

a ,

sw > (n+δ)b
(b+c)a .

(D) GL don’t has fixed point, that is it holds the system

{
bsr + csw > (n + δ) b

a ,

sw < (n+δ)b
(b+c)a .

Remark Now consider the case (B). Since G1(k?) < k? < G2(k?), we get

G1(k1) < G1(k?) < k? < G2(k?) < G2(k2),

from which

G1(k1) < G2(k2) for all pairs (k1, k2) such that 0 ≤ k1 ≤ k? and k2 > k?.

Thus GL is strictly monotonically increasing (and therefore injective) in the case
(B).

Remark Look at case (D), that is G2(k?) < k? < G1(k?). Then GL(G2(k?)) =
G1(G2(k?)) and GL(G1(k?)) = G2(G1(k?)). Moreover, by relations

G1(G2(k?)) = (1−δ+sra)(1−δ)
(1+n)2 k? + (1−δ+sra)(b+c)sw

(1+n)2 + csw

(1+n) ,

G2(G1(k?)) = (1−δ+sra)(1−δ)
(1+n)2 k? + (1−δ)csw

(1+n)2 + (b+c)sw

(1+n) ,
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we will show that G1(G2(k?)) > G2(G1(k?)), and thinking as before,

we may deduce that GL is injective on the interval [G2(G1(k?)), G1(G2(k?))].

As a matter of fact, we can write G1 and G2 such that:

G1(k?) = m1k
? + n1 and G2(k?) = m2k

? + n2, where m1 ≥ 1 > m2 > 0 and
n2 > n1 > 0.

We have

G1(G2(k?)) = m1(m2k
? + n2) + n1 = m1m2k

? + m1n2 + n1,

G2(G1(k?)) = m2(m1k
? + n1) + n2 = m1m2k

? + m2n1 + n2.

Let n2 = n1 + ε be, where ε > 0. Then we may conclude observing that
m1n2 +n1 = m1(n1 + ε)+n1 = m1n1 +m1ε+n1 > m2n1 +n2 = m2n1 +n1 + ε.

Proposition 3 We consider the case (D), i.e. G2(k?) < k? < G1(k?). Let Kτ =
(ks)s=1,...,τ be a cycle of order τ for GL such that ks 6= k? for all s = 1, . . . , τ .
Then Kτ is globally stable.

Proof By recurrence it proves that on the interval [G2(G1(k?)), G1(G2(k?))]

• each sth iterate Gs
L is injective;

• the τth iterate Gτ
L, presents a discontinuity either at k? or at G−s

L (k?),
s = 1, . . . , τ − 1.

Thus Gτ
L shows at most τ discontinuities and we may find a partition {I1, . . . , Im}

of [G2(G1(k?)), G1(G2(k?))] into m intervals Is (s = 1, . . . , m and m ≤ τ + 1)
such that Gτ

L(k) = As + Bsk, s ∈ Is, where As and Bs are positive constants.

Let (ks)s=1,...,τ be a cycle of order τ . If we assume that ks ∈ Is (s = 1, . . . , τ),
we obtain that Bs < 1. As a matter of fact, imposing ks = As + ksBs, we have
(1−Bs)ks = As. Being ks and As positive, we deduce that 1−Bs > 0.Therefore
we may say that each trajectory starting in [G2(G1(k?)), G1(G2(k?))] converges
to Kτ .
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2.6 Complex Dynamics in a Pasinetti-Solow Model
of Growth and Distribution: a Model of P.Commendatore

2.6.1 Introduction

Similarly to the paper of Böhm and Kaas (1999), the model of Commendatore
(2005)

• is a two-class model, that is two distinct group of economic agents (workers
and capitalists) exist, with constant propensities to save (Kaldor, 1956);

• labor and capital markets are perfectly competitive;

• the income sources of workers are wages and profits and the income of
capitalists is only profits (Pasinetti, 1962);

• the time is discrete;

• there is a single good in the economy (one sector model).

Commendatore’s model differs from the model of Böhm and Kaas in some as-
sumptions:

• following Chiang (1973), workers not save in same proportions out of labor
and income of capital;

• the production function is not with fixed proportions (Leontief technology)
but it is a CES production function;

• likewise Samuelson-Modigliani (1966) that, following Pasinetti (1962), ex-
tend the Solow growth model (1956) to two-dimensions, the map that
describes the accumulation of capital in discrete time is two-dimensional
because it considers not only the different saving behaviour of two-classes
but also their respective wealth (capital) accumulation.

2.6.2 The model: the economy, short-run equilibrium, steady
growth equilibrium

Let f(k) = [α + (1− α)kρ]
1
ρ be the CES production function in intensive form,

where k is the capital/labor ratio, 0 < α < 1 is the distribution coefficient,
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−∞ < ρ < 1 (ρ 6= 0), η = 1
1−ρ is the constant elasticity of substitution. We

consider f(k) > 0. Therefore f(k) = [α + (1 − α)kρ]
1
ρ = [αk−ρ + (1 − α)]

1
ρ k.

The terms kw and kc denote, respectively, workers’ and capitalists’ capital per
worker, where 0 ≤ kw ≤ k, 0 ≤ kc ≤ k, k = kw + kc. The workers’ saving
out of wages are represented by sww(f(k)−kf

′
(k)) and the workers’ saving out

of capital revenues consist in swP f
′
(k)kw, where 0 ≤ sww ≤ 1, 0 ≤ swP ≤ 1.

Instead the capitalists’ savings are scf
′
(k)kc, where 0 ≤ sc ≤ 1. We assume

sc > max{sww, swP }. Thus the aggregate savings correspond to

s(kc, kw) = sww(f(k)− f
′
(k)k) + swP f

′
(k)kw + scf

′
(kc).

Let n be the constant rate of growth of labor force, the following map

G(kw, kc) = 1
1+n [(1− δ)k + i]

describes the rule of capital accumulation per worker, where i indicates gross
investment per worker and 0 < δ < 1 is the constant rate of capital depreciation.
In a short-run equilibrium G becomes

G(kw, kc) = 1
1+n [(1− δ)k + sww(f(k)− f

′
(k)k) + swP f

′
(k)kw + scf

′
(kc)],

from which we deduce the capitalist’ process of capital accumulation

Gw(kw, kc) = 1
1+n [(1− δ)kw + sww(f(k)− f

′
(k)k) + swP f

′
(k)kw]

and the capitalist’s rule of capital accumulation

Gc(kw, kc) = 1
1+n [(1− δ)kc + scf

′
(k)kc].

In order to obtain the steady states of Gw and Gc, we imposing

Gw(kw, kc) = kw and Gc(kw, kc) = kc.

We get
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(n + δ)kw = sww(f(k)− f
′
(k)k) + swP f

′
(k)kw, (?)

(n + δ)kc = scf
′
(kc) (??)

We find three types of equilibria: Pasinetti equilibrium (capitalists own posi-
tive share of capital), dual equilibrium (only workers own capital) and trivial
equilibrium (the overall capital is zero).

Pasinetti equilibrium

Now we indicate a Pasinetti equilibrium with (kP
w , kP

c ),

where, by definition, kP = kP
w + kP

c . We prove the following

Proposition 7.2.1.1 For the Pasinetti Equilibrium the following conditions
hold:

• f
′
(kP ) = n+δ

sc
,

• kP
w = sww

sc−swP

1−ef (kP )
ef (kP )

kP ,

• kP
c = (1− sww

sc−swP

1−ef (kP )
ef (kP )

)kP .

Proof We start by the relation (??). Since kc 6= 0 then (n + δ) = scf
′
(k),

from which f
′
(kP ) = n+δ

sc
. In the left-hand side of (?), we replace (n + δ) with

scf
′
(k). We get

scf
′
(k)kw − swpf

′
(k)kw = sww(f(k)− f

′
(k)k),

kwf
′
(k)(sc − swp) = sww(f(k)− f

′
(k)k),

kwf
′
(k)(sc − swp) = swwf(k)[1− f

′
(k)k

f(k) ],
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kwf
′
(k)k(sc − swp) = swwf(k)[1− f

′
(k)k

f(k) ]k,

kw
f
′
(k)k

f(k) (sc − swp) = sww[1− f
′
(k)k

f(k) ]k,

kwef (k)(sc − swp) = sww(1− ef (k))k,

kP
w = sww

sc−swp

1−ef (k)
ef (k) kP .

Since kP = kw + kc, we have kc = kP − kw, from which

kP
c = kP − sww

sc−swp

1−ef (k)
ef (k) kP = [1− sww

sc−swp

1−ef (k)
ef (k) ]kP .

Dual equilibrium

We indicate the dual equilibrium with (kD
w , kD

c ), where kD = kD
w + kD

c .

We prove the following

Proposition 7.2.2.1 The dual equilibria are given by the relations

f(kD)
kD = n+δ

sww(1−ef (kD))+swP ef (kD)
, kD

w = kD and kD
c = 0

Proof We rewrite the relation (?) replacing kD
w with kD and k with kD.

We get

(n + δ)kD = sww(f(kD)− f
′
(kD)kD) + swpf

′
(kD)kD,

from which

(n + δ)kD = swwf(kD)(1− f
′
(kD)kD

f(kD)
) + swp

f
′
(kD)kD

f(kD)
,

(n + δ) kD

f(kD)
= sww(1− ef (kD)) + swpef (kD),
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f(kD)
kD = n+δ

sww(1−ef (kD)+swpef (kD .

Trivial equilibrium

(k0
w, k0

c ) and k0 = k0
w + k0

c where k0 = k0
w = k0

c = 0.

Output elasticity

We see immediately that

ef (k) = kf
′
(k)

f(k) = (1− α)(αk−ρ + 1− α)−1,

0 < ef (k) ≤ 1.

2.6.3 Meade’s Relation For Pasinetti Equilibria

We introduce the Meade’s relation for Pasinetti equilibria

f(k)
k = ϕ(ef (k)),

where ϕ(x) = ( 1−α
x )

1
ρ .

We notice that for ϕ(x) occurs:

• ϕ
′
(x) = (1−α)

ρ ( 1−α
x )

1
ρ−1(− 1

x2 ) = − (1−α)
ρ

1
x2 ( 1−α

x )
1−ρ

ρ

• ϕ
′′
(x) = − (1−α)

ρ {−2x−3( 1−α
ρ )

1−ρ
ρ +x−2( 1−ρ

ρ )( 1−α
x )

1−ρ
ρ −1(1− α)(−x−2)}

= (1−α)
ρ x−3(1−α

x )
1−ρ

ρ (2 + 1−ρ
ρ )

= (1 + ρ) (1−α)
ρ2 x−3(1−α

x )
1−ρ

ρ
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The former features of ϕ(x) lead us to state that (See Figure 2.5)

Proposition 7.3.1 For the function ϕ(x) is true that:

• it is strictly monotonic for all ρ < 1 and ρ 6= 0;

• it is strictly convex for all 0 < ρ < 1 and strictly concave for all ρ < −1;

• it becomes the line ϕ(x) = x
1−α if ρ = −1.

• limx→0 ϕ(x) = +∞ if 0 < ρ < 1.

Figure 2.5: The diagram of ϕ for different ρ.

Proposition 7.3.2 Both workers and capitalists own a positive share of capital
if and only if

0 < eT
f < ef (kP ) < 1,

where eT
f = sww

sc−(swP−sww) .

Proof We observe that kP
w > 0 is equivalent to say that (ef < 1 and sc > swp)

or (ef > 1 and sc < swp).

We don’t accept the second condition because the CES don’t satisfies the in-
equality ef > 1.

kenshiro
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Moreover the inequality kP
c > 0 holds iff 1−ef

ef

sww

sc−swP
< 1.

Thus is true that

1−ef

ef
< sc−swP

sww
,

from which

1
ef

< 1 + sc−swP

sww
, 1

ef
< sc−(swP−sww)

sww
. Q.E.D.

Observed that

• Case (a): sww = sc. Then eT
f = sww

sc
;

• Case (b: sww < sc. Then sc − (swP − sww) < sc;

• Case (c): sww > sc. Then sc − (swP − sww) > sc;

we deduce that

eT
f (Case(c)) < eT

f (Case(a)) < eT
f (Case(b)).

Proposition 7.3.3 We have ef (kP ) = (1− α)
1

1−ρ (n+δ
sc

)
ρ

ρ−1

Proof From definition of ef we obtain that f(k)
k = f

′
(k)

ef (k) and by Meade’s relation
f(k)

k = ϕ(ef (k)) we get ϕ(ef (kP )) = f
′
(kP )

ef (kP )
= n+δ

sc

1
ef (kP )

: the intersection

between the arc of hyperbola Γ : n+δ
sc

1
ef (kP )

and the curve ϕ(ef (kP )) identifies
the unique Pasinetti equilibrium.

From ef (kP ) = f
′
(kP )

ϕ(ef (kP ))
and by definition of ϕ(k) we have (n+δ

sc
) ( ef (kP )

1−α )
1
ρ =

ef (kP ). We obtain

(n+δ
sc

)ρ( ef (kP )
1−α ) = (ef (kP ))ρ,

(ef (kP ))ρ−1 = 1
1−α (n+δ

sc
)ρ. Q.E.D.
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Commendatore (2005), generalizing a relation of Samuelson-Modigliani (1966)
and Miyazaki (1991), shows that

Proposition 7.3.4 We assume that:

• f
′
(k) is monotonically increasing,

• ef (k) < 1,

• sww ≤ swP ,

• kD > kP .

Then is true that
eT
f > ef (kP ),

where eT
f = sww

sc−(swP−sww) and ef (k) = kf
′
(k)

f(k) .

Proof We observe that a CES production function satisfies the former two
assumptions of proposition first, then we prove that f(k)

k is monotonically de-
creasing if and only if f

′
(k) < f(k)

k . As a matter of fact, let g(k) = f(k)
k

be. We have that g
′
(k) = f

′
(k)k−f(k)

k2 < 0 if and only if f ′(k)k < f(k). Since

ef (k) = f
′
(k)k

f(k) < 1 then the previous inequality is satisfied. Thus from the

assumption kP < kD we deduce f(kP )
kP > f(kD)

kD .

Moreover the dual equilibrium can be rewritten as follows

(n + δ)kD = sww(f(kD)− f
′
(kD)kD) + swP f

′
(kD)kD,

(n + δ)kD = swwf(kD)− swwf
′
(kD)kD + swP f

′
(kD)kD,

(n + δ)kD = swwf(kD) + (swP − sww)f
′
(kD)kD,

(n + δ) = sww
f(kD)

kD + (swP − sww)f
′
(kD),
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(n+δ)
sww

= f(kD)
kD + swP−sww

sww
f
′
(kD),

f(kD)
kD = (n+δ)

sww
− swP−sww

sww
f
′
(kD).

Therefore f(kP )
kP > (n+δ)

sww
− swP−sww

sww
f
′
(kD).

Then, recalling that sww ≤ swP and f
′
(kP ) = n+δ

sc
, we have

sww
f(kP )

kP > (n + δ)− (swP − sww)f
′
(kD) = scf

′(kP )− (swP − sww)f
′
(kD),

and, observing that from the strict monotonicity of f
′
(k), the inequality kD >

kP implies f
′
(kD) > f

′
(kD), we get

sww
f(kP )

kP > [sc − (swP − sww)]f
′
(kP ). Q.E.D.

2.6.4 Meade’s Relation For Dual Equilibria

In order to detect geometrically the dual equilibria we will use the following
Meade’s relation for dual equilibria

f(k)
k = θ(ef (k)),

where θ(x) = n+δ
sww(1−x)+swP x .

We observe that

• θ : [0, 1] → [0, 1] and θ(x) > 0 for all x ∈ [0, 1];

• θ(0) = n+δ
sww

> 0 and θ(1) = n+δ
swP

> 0;

• θ(x) is a continuous function in [0,1 ];
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• θ
′
(x) = (sww − swP ) θ(x)2

n+δ ;

• θ
′′
(x) = 2(sww−swP )2

(n+δ)2 θ(x)3 ≥ 0;

Thus θ(x) is (See Figure 2.6)

• constant if sww = swP ;

• strictly monotonically increasing if sww > swP ;

• strictly monotonically decreasing if sww < swP ;

• strictly convex if sww 6= swP .

Figure 2.6: The diagram of θ for different comparisons of sww with swP .

Proposition 7.4.1 The dual equilibria are given by the set

{x ∈ [0, 1] : ϕ(x) = θ(x)}.

Proof We distinguish the following two cases:

• Case I: ρ = −1. Then ϕ(x) becomes ( 1−α
x )−1. Thus we must solve the

equation (See Figure 2.7)
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x
1−α = n+δ

sww(1−x)+swpx .

If sww = swP then the equation ϕ(x) = θ(x) is equivalent to relation

x
1−α = n+δ

sww
,

from which, trivially, it follows the solution x = n+δ
sww

(1 − α). We notice
that x is acceptable iff x ∈ [0, 1].

If sww 6= swp, from the relation

x[sww(1− x) + swP x] = (n + δ)(1− α),

we obtain that

−swwx2 + (sww + swP )x = (n + δ)(1− α).

Thus

swwx2 − (sww + swP )x + (n + δ)(1− α) = 0.

We set

A = sww, B = −(sww + swP ), C = (n + δ)(1− α), ∆ = B2 − 4AC.

We may conclude that if ∆ ≥ 0 then dual equilibria exist (two real repeated
equilibria or two real distinct equilibria).

Figure 2.7: The diagram of ϕ for ρ = −1 and the different diagrams of θ.
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• Case II: (ρ < −1) ∨ (0 < ρ < 1).

We find the solutions of the equation (See Figure 2.8 and Figure 2.9)

( 1−α
x )

1
ρ = n+δ

sww(1−x)+swwx .

We may rewrite the previous equation such that (for details, see Remark
1)

1−α
(n+δ)ρ = x

[sww+(swP−sww)x]ρ .

Now we set g(x) = x
[sww+(swP−sww)x]ρ .

After some transformations (see Remark 2) we get

g
′
(x) = sww+(1−ρ)(swP−sww)x

[sww+(swP−sww)x]ρ+1 .

If swP ≥ sww then g(x) is strictly monotonically increasing in [0, 1] and
the range of g(x) is

[0, 1
[sww+(swP−sww)]ρ ].

By Bolzano’s Theorem and by the strictly monotonicity of g(x) exists an
unique solution of equation

g(x) = 1−α
(n+δ)ρ .

If sww < swp then g(x) can be monotonically decreasing and exists an
unique dual equilibrium.

Notice that g
′
(x) = 0 iff sww+(1−ρ)(swP−sww)x, i.e., x = − sww

(1−ρ)(swp−sww) .

Therefore the point x? = sww

(1−ρ)(swP−sww) may be the maximum or mini-
mum for g(x).

Observed that g(x) is strictly concave (or strictly convex), also by Bolzano’s
Theorem, we obtain one or two dual equilibrium if and only if 1−α

(n+δ)ρ ≤
g(x?).
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We can say that an unique dual equilibrium exists if the line y = 1−α
(n+δ)ρ

intersects the graph of function g(x) at (x?, g(x?)), being g(x?) the maxi-
mum of g(x).

Instead, if 1−α
(n+δ)ρ < g(x?), then, by concavity of g(x), the line y =

1−α
(n+δ)ρ intersects the graph of g(x) in two distinct points (x

′
, g(x

′
)) and

(x
′′
, g(x

′′
)), i.e. there are two points x

′
and x

′′
in [0, 1] such that g(x

′
) =

g(x
′′
) = 1−α

(n+δ)ρ .

Figure 2.8: The diagram of ϕ for ρ < −1 and the different diagrams of θ.

Figure 2.9: The diagram of ϕ for 0 < ρ < 1 and the different diagrams of θ.
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In the figures 2.10, 2.11, 2.12 we identify the steady-growth equilibria (Pasinetti,
Dual and Trivial) for the cases (a)sww = swP , (b) sww < swP and (c)sww > swP :

Figure 2.10: Steady-growth equilibria identified for the case sww = swP .

Figure 2.11: Steady-growth equilibria identified for the case sww < swP .
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Figure 2.12: Steady-growth equilibria identified for the case sww > swP .

Remark 1

( 1−α
x )

1
ρ = n+δ

sww+(swP−sww)x ,

( 1−α
x )

1
ρ = n+δ

sww−swwx+swP x ,

(1−α)
1
ρ

x
1
ρ

= n+δ
sww−swwx+swP x ,

1−α
(n+δ)ρ = x

[sww+(swP−sww)x]ρ

Remark 2

g
′
(x) = [sww+(swP−sww)x]ρ−ρx(swP−sww)[sww+(swP−sww)x]ρ−1

[sww+(swP−sww)x]2ρ

= [sww+(swP−sww)x]ρ{1−ρx(swP−sww)[sww+(swP−sww)x]−1}
[sww+(swP−sww)x]2ρ

=
[sww+(swP−sww)x]ρ{1− ρ(sww−swP )x

sww+(swP−sww)x
}

[sww+(swP−sww)x]2ρ

kenshiro
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= sww+(swP−sww)x−ρx(swP−sww)
[sww+(swP−sww)x]2ρ−ρ+1 = sww+(1−ρ)x(swP−sww))

[sww+(swP−sww)x]ρ+1 .

We note that ef (k = 0) = (1− α)(1− α)−1 = 1, from which ϕ(ef (0)) = ϕ(1) =
(1−α)

1
ρ . Thus the intersection between the curve ϕ(ef (k)) and the vertical line

at 1 identifies the trivial equilibrium.

2.6.5 Local stability analysis

1.7.5.1 The Jacobian evaluated at a Pasinetti equilibrium

In order to determine the local stability of the fixed points of our dynamical
system we will linear approximate it with the Hartman-Grobman Theorem.
We begin with the Jacobian matrix of the dynamical system evaluated at a
Pasinetti-equilibrium:

J(kP
w , kP

c ) =
(

J11 J12

J21 J22

)
,

where

J11 = 1
1+n [1− δ + (swP − sww)f

′′
(kP )kP + swP (f

′
(kP )− f

′′
(kP )kP

c )],

J12 = 1
1+n [(swP − sww)f

′′
(kP )kP − swP f

′′
(kP )kP

c ],

J21 = 1
1+n [scf

′′
(kP )kP

c ],

J22 = 1
1+n [1− δ + sc(f

′
(kP ) + f

′′
(kP )kP

c )].

After some transformations we obtain the trace of the Jacobian matrix at the
Pasinetti-equilibrium

T (kP
w , kP

c ) = n+δ
1+n [ 2(1−δ)

n+δ + 1 + ef ′ (k
P ) + (

swP ef (kP )−swwe
f
′ (kP )

scef (kP )
)],
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and the determinant of the Jacobian matrix at the Pasinetti-equilibrium

D(kP
w , kP

c ) = T (kP
w , kP

c )( 1−δ
1+n )− ( 1−δ

1+n )2 +
e

f
′ (kP )(swP−sww)+swP

sc
(n+δ
1+n )2.

For two-dimensional discrete time maps, to search the region of stability of
Pasinetti-equilibrium and to study how here frontier is crossed, we will apply
the following three conditions:

(1) 1 + T (kP
w , kP

c ) + D(kP
w , kP

c ) > 0;

(2) 1− T (kP
w , kP

c ) + D(kP
w , kP

c ) > 0;

(3) 1−D(kP
w , kP

c ) > 0.

The previous relations in the plane trace-determinant lead to the triangle of
stability and they guarantee that the modulus of each eigenvalue of the Jacobian
matrix, calculated at the Pasinetti-equilibrium, is less than one (see Chapter
1). From the characteristic equation we derive the eigenvalues of the Jacobian
matrix evaluated at an equilibrium point. For the Pasinetti-equilibrium we have:

λP
i = 1

2 (T (kP
w , kP

c )±
√

(T (kP
w , kP

c ))2 − 4D(kP
w , kP

c )), where i = 1, 2.

Commendatore (2005), rewriting the stability conditions in terms of ef (k) and
ef ′ (k), deduces very interesting relations.

Setting

eF
f ′ = −2( 1+n

n+δ ) (n+2−δ)sc+(n+δ)swP

(n+2−δ)(sc−sww
1

ef (k) )+(n+δ)(swP−sww)
,

and

ef = sww(n+2−δ)−(swp−sww)(n+δ)
sc(n+2−δ) ,

from (1), after some transformations, we obtains the first relations:
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• ef ′ (k) > eF
f ′ if ef (k) > ef ;

• ef ′ (k) < eF
f ′ if ef (k) < ef .

In the (ef (k)), ef ′ (k))-plane the former inequality is satisfied by points which are
above the diagram of eF

f ′ and at left of the right-line ef (k) = ef . Analogously
we will think for the last inequality. Moreover the condition (2) always holds if
ef (k) < ef and it reduces to relation ef > eT

f .

We pose

eN
f ′ = (sc−swP )(1+n)

(swP−sww)(n+δ)+(1−δ)(sc−sww
1

ef (k) )
,

and

ef = sww

sc+(swP−sww) n+δ
1−δ

.

We have that the condition (3) is equivalent to the inequalities

• ef ′ (k) < eN
f ′ for ef (k) > ef ;

• ef ′ (k) > eN
f ′ for ef (k) < ef .

We note that:

• eF
f ′ depends on ef 6= e0, where e0 = (n+2−δ)sww

(n+δ)(swP−sww)+(n+2−δ)sc
;

• eF
f ′ is continuous and monotonically strictly increasing in X =]0, e0[∪]e0, 1];

• eF
f ′ is never vanish in X;

• limef→e0 eF
f ′ = ∞: in the (ef , eF

f ′ )-plane the straight-line ef = e0 is an
asymptote for eF

f ′ ;

• limef→0 eF
f ′ = 0;
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• limef→1 eF
f ′ = −2( 1+n

n+δ ) (n+2−δ)sc+(n+δ)swP

(n+2−δ)(sc−sww)+(n+δ)(swP−sww) ;

• limef→eT
f

eF
f ′ = − (n+2−δ)sc+(n+δ)swP

(n+δ)(swP−sww)

{
< 0 if swP > sww,
> 0 if swP < sww;

• by the Theorem about Sign Permanence the function eF
f ′ has constant

sign on both convexes ]0, e0[ and ]e0, 1], particularly eF
f ′ is positive on the

left of e0 and negative on the right of e0. Moreover the test-point eT
f lies

on the left of e0 if swP < sww and on the right of e0 if swP > sww.

Analogously for eN
f ′ we may say that:

• eN
f ′ depends on ef 6= e00, where e00 = (1−δ)sww

(n+δ)(swP−sww)+(1−δ)sc
;

• eN
f ′ is continuous and monotonically strictly decreasing in X =]0, e00[∪]e00, 1];

• eN
f ′ is never vanish in X;

• limef→e0 eN
f ′ = ∞: in the (ef , eN

f ′ )-plane the straight-line ef = e00 is an
asymptote for eN

f ′ ;

• limef→0 eN
f ′ = 0;

• limef→1 eN
f ′ = (sc−swP )(1+n)

(swP−sww)(n+δ)+(1−δ)(sc−sww) ;

• limef→eT
f

eN
f ′ = sc−sww

swP−sww

{
< 0 if swP < sww,
> 0 if swP > sww;

• by the Theorem about Sign Permanence the function eN
f ′ has constant

sign on both convexes ]0, e00[ and ]e00, 1], particularly eN
f ′ is negative on

the left of e00 and positive on the right of e00. Moreover the test-point eT
f

lies on the left of e00 if swP < sww and on the right of e00 if swP > sww.

1.7.5.2 The Jacobian matrix evaluated at a dual equilibrium

Setting kD
c = 0 we calculate the Jacobian matrix at a dual equilibrium we obtain

J(kD
w , kD

c ) =
( 1

1+n [1− δ + (swP − sww)f
′′
(kD)kD + swP f

′
(kD)] 1

1+n (swP − sww)f
′′
(kD)kD

0 1
1+n (1− δ + scf

′
(kD))

)
.
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Since the Jacobian matrix J(kD
w , kD

c ) is a diagonal matrix on <, then the eigen-
values λD

1 and λD
2 are real and they correspond to diagonal elements of the

matrix J(kD
w , kD

c ). Therefore the dual equilibrium can’t lose stability through
a Neimark-Saker bifurcation. We recall that the dual equilibrium is stable if
−1 < λD

1 < 1 and −1 < λD
2 < 1. The expression of eigenvalues depends on

saving propensities sww and swp and that lead us to distinguish three cases:

• Case I: sww = swp. The eigenvalues become λD
1 = 1

1+n [1−δ+swpf
′
(kD)]

and λD
2 = 1

1+n [1 − δ + scf
′
(kD)]. Since f

′
(kD) > 0 we deduce that both

eigenvalues are positive. By the assumption swp < sc we obtain that
λD

1 < λD
2 . Thus the stability conditions for dual equilibrium reduces to

relation λD
2 < 1, which holds for kD > kP . As a matter of fact, the

inequality λD
2 < 1 is equivalent to relation 1

1+n [1 − δ + swpf
′
(kD)] < 1,

from which we have firstly f ′(kD) < n+δ
sc

and secondly, by f
′
(kP ) = n+δ

sc
,

f
′
(kD) < f

′
(kP ). Finally, by the property f

′′
(k) < 0 of CES production

function, we deduce kD > kP . Commendatore (2005) explains the last
inequality saying that a stability loss involves a transcritical bifurcation
which goes in the opposite direction to the one that concerns the Pasinetti
equilibrium. Now, it is the dual equilibrium which loses stability and the
Pasinetti equilibrium, already existing, that gains stability.

• Case II: sww < swp. Since f
′′
(kD) < 0 we notice that the term (swP −

sww)f
′′
(kD)kD of eigenvalue λD

1 is negative and λD
1 could be itself neg-

ative. Everyone λD
2 > 0 and λD

2 > max{λD
1 , 0}. Thinking as above, we

deduce that λD
2 < 1 for kP > kD. Moreover from inequality λD

1 > −1 we
obtain the following equivalent relations

1
1+n [1− δ + (swP − sww)f

′′
(kD)kD + swP f

′
(kD)] > −1,

1− δ + (swP − sww)f
′′
(kD)kD + swP f

′
(kD) > −1− n,

(2 + n− δ) + (swP − sww)f
′′
(kD)kD + swP f

′
(kD) > 0,

2+n−δ
f ′ (kD)

+ (swP − sww) f
′′

(kD)kD

f ′ (kD)
+ swP > 0,

swP + 2+n−δ

f
′ (kD)

swP−sww
+ ef ′ (k

D) > 0,

ef ′ (k
D) > εF < −1,

where εF = −
swP + 2+n−δ

f
′ (kD)

swP−sww
.
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We observe that the stability of dual equilibrium may be lost through a
transcritical bifurcation when λD

2 crosses 1 or through a flip bifurcation
when λD

1 crosses− 1.

• Case III: sww > swp. We notice immediately that both eigenvalues
are positive. As a matter of fact is sufficient to observe that the term
(swP − sww)f

′′
(kD)kD of λD

1 is positive. Moreover λD
2 < 1 for kD > kP

and λD
2 < 1 for ef ′ (k

D) > εS < 0, where

εS = −
n+δ

f
′ (kD)

−swP

sww−swP
.

We conclude that the dual equilibrium may lose stability through a saddle-
node (fold or tangent) bifurcation and two equilibria of dual type are cre-
ated, one stable and the other unstable.

1.7.5.3 The Jacobian matrix evaluated at a trivial equilibrium

We recall that if f(k) is the CES production function then f
′
(0) = (1 − α)

1
ρ ,

where 0 < α < 1 and ρ < 1 (ρ 6= 0), i.e. 0 < f
′
(0) < ∞. By definition of trivial

equilibrium we have

J(k0
w, k0

c ) =
( 1

1+n (1− δ + swP f
′
(0)) 0

0 1
1+n (1− δ + scf

′
(0))

)
.

Since the Jacobian matrix J(k0
w, k0

c ) is an upper triangular matrix on <, then the
eigenvalues λ0

1 and λ0
2 are real and lie along the principal diagonal of the matrix

J(k0
w, k0

c ). If we assume swp < sc, we get 0 < λ0
1 < λ0

2. Therefore the stability of
trivial equilibrium depends on the inequality λ0

2 < 1, i.e. f
′
(0) < n+δ

sc
. We recall

that f
′
(kP ) = n+δ

sc
and f

′′
(k) < 0. Then we derive the relation kP < 0 = k0,

that can’t occur. Thus the trivial equilibrium is never stable.

2.7 Appendix: A CES Production Function

We define CES Production Function , where the term CES stands for Constant
Elasticity of Substitution, the following function
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f(k) = [α + (1− α)kρ]
1
ρ ,

being k the capital/labor ratio, 0 < α < 1 a constant, −∞ < ρ < 1 and ρ 6= 0
a parameter.

The main features of CES production function f(k) are:

1. f ′(k) > 0 for all k ≥ 0 (i.e. f(k) is increasing);

2. f ′′(k) < 0 for all k ≥ 0 (i.e. f(k) is concave);

3. limρ→0 f(k) = k1−α (i.e. when ρ tends towards 0 the CES behaves as a
Cobb-Douglas);

4. limρ→−∞ f(k) = min{1, k} =
{

k, if 0 < k < 1
1, if k ≥ 1 ;

5. limρ→1 f(k) = α + (α− 1)k;

6. 0 < f ′(0) < ∞.

As a matter of fact:

• f ′(k) = 1
ρ [α + (1− α)kρ]

1
ρ−1ρ(1− α)kρ−1

= (1− α)kρ−1[α + (1− α)kρ]
1
ρ−1

= (1− α)kρ−1k1−ρ[αk−ρ + (1− α)]
1−ρ

ρ

= (1− α)[αk−ρ + (1− α)]
1−ρ

ρ > 0;

• f ′′(k) = (1− α) 1−ρ
ρ [αk−ρ + (1− α)]

1−ρ
ρ −1(−ραk−ρ−1)

= α(1− α)(ρ− 1)k−ρ−1[αk−ρ + (1− α)]
1−2ρ

ρ < 0;
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• limρ→0 f(k) = limρ→0 e
ln[α+(1−α)kρ]

ρ = limρ→0 e
(1−α)kρ ln k
α+(1−α)kρ

= limρ→0 eln k1−α

= k1−α;

• Because limρ→−∞ kρ is equal to 0 if k > 1 and it is equal to∞ if 0 < k < 1,
then

limρ→−∞ f(k) = limρ→−∞ e
ln[α+(1−α)kρ]

ρ

is equal to e0 = 1 if k > 1 while it is equal to eln k = k if 0 < k < 1.

Let f(k) be a production function in intensive form. We set ef (k) = kf
′
(k)

f(k)

and ef ′ (k) = kf
′′

(k)

f ′ (k)
. If f(k) is a CES production function we obtain that

ef (k) = (1− α)(αk−ρ + 1− α)−1 and ef ′ (k) = α(ρ− 1)[α + (1− α)kρ]−1. As a
matter of fact

• ef (k) = f
′
(k)k

f(k) = (1−α)[αk−ρ+(1−α)]
1−ρ

ρ k

[αk−ρ+(1−α)]
1
ρ k

= (1− α)[αk−ρ + (1− α)]−1;

• ef ′ (k) = kf
′′

(k)

f ′ (k)
= α(1−α)(ρ−1)k−ρ−1[αk−ρ+(1−α)]

1−2ρ
ρ k

(1−α)[αk−ρ+(1−α)]
1−ρ

ρ

= α(ρ− 1)k−ρ[αk−ρ + (1− α)]−1

= α(ρ− 1)k−ρkρ[α + (1− α)kρ]−1

= α(ρ− 1)[α + (1− α)kρ]−1.

Obviously, ef ′ (k) < 0 for all ρ < 1 (ρ 6= 0) and for all k ≥ 0.

Developing an observation of Commendatore (2005, p.16) we establish that (See
Figure 2.13 and Figure 2.14)

Proposition 5.1 If f(k) is the CES production function then the inequality

ef ′(k) > −1
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is true always for all 0 < ρ < 1 and for all k ≥ 0; while if ρ < 0 the inequality
is verified only for those k ∈]0, k?[, where k? = ( αρ

α−1 )
1
ρ and ef ′ (k

?) = −1.

Proof Let 0 < α < 1 be. We observe that:

• def′ (k)

dk = αρ(ρ−1)(α−1)kρ−1

[α+(1−α)kρ]2 ;

• ef ′(k) is strictly increasing if 0 < ρ < 1 and is strictly decreasing if ρ < 0;

• limk→0 ef ′ (k) =
{

(ρ− 1) if 0 < ρ < 1,
0 if ρ < 0;

• limk→+∞ ef ′ (k) =
{

0 if 0 < ρ < 1,
(ρ− 1) if ρ < 0.

Being ef ′(k) continuous on the interval ]0,+∞[, by Bolzano’s Theorem 2, the
range J of ef ′ (k) is an interval, and, by Theorem about limits of monotonically
functions3, J is equal to ](ρ− 1), 0[ for all ρ < 1 (% 6= 0).

Now we consider 0 < ρ < 1. Since −1 < ρ − 1 = inf{ef ′(k) : k ≥ 0} ≤ ef ′(k),
we obtain that ef ′(k) > −1.

After we fix ρ < 0 and we solve the equation ef ′(k) = −1. We have as an unique
solution k? = ( αρ

α−1 )
1
ρ . Being ef ′(k) strictly decreasing, for all 0 < k < k?,

ef ′(k) > ef ′(k?) = −1. Q.E.D.

2Let g : X ⊆ < → < be. If g is continuous on X and X is an interval, then g(X) is an
interval.(For a proof of the Bolzano’s Theorem see Vincenzo Aversa (2006))

3Let g : X ⊆ < → < be. We suppose that infX and supX are points of accumulation for
X. Then,

• for x → infX, g(x) → inf(g(X)) if g is monotonically increasing, otherwise g(x) →
sup(g(X)) if g is monotonically decreasing;

• for x → supX, g(x) → sup(g(X)) if g is monotonically increasing, otherwise g(x) →
inf(g(X)) if g is monotonically decreasing.

(See Vincenzo Aversa (2006))



2.7. APPENDIX: A CES PRODUCTION FUNCTION 119

Figure 2.13: The case ρ < 0

Figure 2.14: The case ρ < 1

kenshiro
Timbro

kenshiro
Timbro



                                                    Appendix: Literature on the growth models                               

kenshiro
Timbro



One-Sector and One- Dimensional Growth Models 

 

R. Solow 
(1956) 

      P. Diamond 
(1965) 

 

R. Solow + OLG 

 
R. Farmer (1968) 

Diamond + Public 
Debt 

Two-Dimensional Growth Models 
(2D Diamond-type OLG model  & Chaos ) 

Grandmont (1985) 
B. Jullien    (1988) 
B. Reichlin (1986) 
A. Medio (1992) 

Samuelson 
+ 

Modigliani 

C. Azariadis (1993) 
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Chapter 3

3.1 Introduction

In this chapter, we develop a two-class growth model in discrete time optimal
consumption choices, which is able to generate chaotic dynamics. The model
elaborated by Commendatore, presented in the previous Chapter, represent-
ing a discrete time version of the growth and distribution models proposed by
Pasinetti (1962), Samuelson and Modigliani (1966) and Chiang (1973), does
not assume optimal saving behaviour, eventhough it is able to generate com-
plex behaviour. In order to model capitalists and workers saving behaviour we
follow Michl (2004, 2006). This author uses a hybrid optimization model, that
combines the assumption of overlapping generations in order to describe the
consumption behaviour of the ”workers’” class with the assumption of an eter-
nal dynasty (introduced in Barro (1974)) in order to describe the consumption
behaviour of the ”capitalists’” class. Our model represents a discrete time, mi-
crofounded version of the Pasinetti and Samuelson-Modigliani growth models.

3.2 The model

3.2.1 The Capitalists’ Optimization

Each generation of ”capitalists” cares about its offspring and saves for a bequest
motive. It behaves like one infinitely-lived household. Thus the capitalists have
an infinite time horizon t = 0, 1, . . . and behave as a dynasty (Barro, 1974). At
the beginning of period 0 each generation has an endowment of positive wealth
Kc,0 and it invests Kc,0 for one period at the gross market interest rate r. At
the end of period 0 the wealth of generation will become (1 + r − δ)Kc,0, being
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δ the constant rate of depreciation of capital. The rates r and δ are given. At
the end of period 0 capitalists consume the sum Cc

0 and they can accumulate
the capital Kc,1 with a budget constraint Cc,0 + Kc,1 ≤ (1 + r − δ)Kc,0. The
same will happen in the next periods 1, 2, . . . . In summary, the dynasty has
to make a sequence of decision Cc,0, Cc,1, . . . about the consumption and saving
subjected to following budget constraints:

Cc,0 + Kc,1 ≤ (1 + r − δ)Kc,0,

Cc,1 + Kc,2 ≤ (1 + r − δ)Kc,1,

. . .

Cc,t + Kc,t+1 ≤ (1 + r − δ)Kc,t.

We assume that capitalists choose Cc,0, Cc,1, . . . in order to maximize the fol-
lowing utility from their consumption

U = (1− βc)
∑∞

t=0 βt
c ln Ct

where βc is the discounting factor (0 < βc < 1).

The solution of the infinite-horizon problem is (See below the Remark 3.2.1.1)

Cc,t = (1− βc)(1− δ + r)Kc,t,

which, replaced in to the last constraint Cc,t + Kc,t+1 ≤ (1 + r − δ)Kc,t, gives
the following relation

Kc,t+1 = βc(1− δ + r)Kc,t.

Remark 3.2.1.1 (About the solution of capitalists’ infinite-horizon problem)

First we begin by writing the Lagrangian function for the capitalist’s planning
problem:
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L = (1− βc)
∑∞

t=0 βt
c ln Cc,t −

∑∞
t=0 λt(Cc,t + Kc,t+1 − (1 + r − δ)Kc,t)

= (1− βc)
∑∞

t=0 βt
c ln Cc,t −

∑∞
t=0 λtCc,t+

+
∑∞

t=0 λt(Kc,t+1 − (1 + r − δ)Kc,t),

where λt (t = 0, 1, . . .) is the shadow price for each period’s budget constraint.

Expanding the last sum, we obtain

∑∞
t=0 λt(Kc,t+1 − (1 + r − δ)Kc,t)

= λ0− λ0(1 + r− δ)Kc,0 + λ1− λ1(1 + r− δ)Kc,1 + λ2− λ2(1 + r− δ)Kc,2 + . . .

from which

= −λ0(1 + r − δ)Kc,0 + λ0Kc,1 − λ1(1 + r − δ)Kc,1+

+λ1Kc,2 − λ2(1 + r − δ)Kc,2 + λ2Kc,3 − λ3(1 + r − δ)Kc,3 + . . .

= −λ0(1 + r − δ)Kc,0 + (λ0 − λ1(1 + r − δ))Kc,1+

+(λ1 − λ2(1 + r − δ))Kc,2 + (λ2 − λ3(1 + r − δ))Kc,3 + . . .

= −λ0(1 + r − δ)Kc,0 +
∑∞

t=0(λt − λt+1(1 + r − δ))Kc,t+1.

Rewriting the Lagrangian function, we have

L = (1− βc)
∑∞

t=0 βt
c ln Cc,t −

∑∞
t=0 λt(Cc,t + Kc,t+1 − (1 + r − δ)Kc,t)

= (1− βc)
∑∞

t=0 βt
c ln Cc,t −

∑∞
t=0 λtCc,t+
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= +λ0(1 + r − δ)Kc,0 −
∑∞

t=0(λt − λt+1(1 + r − δ))Kc,t+1.

We observe that L = L(Cc,t,Kt+1, λt) and we recall that

d ln Cc,t

dCc,t
= 1

Cc,t
(t = 0, 1, . . .). We have, for all t = 0, 1, . . ., the first-order

conditions:

∂L
∂Cc,t

= (1−βc)β
t
c

Cc,t
− λt ≤ 0 (= 0 if Cc,t > 0),

∂L
∂Kc,t+1

= −λt + (1 + r − δ)λt+1 ≤ 0, (= 0 if Kc,t+1 > 0),

∂L
∂λt

= −(Cc,t + Kc,t+1 − (1 + r − δ)Kc,t) ≥ 0 (= 0) if λt > 0.

The value of the penalty function is equal to 0 at the saddle-point, that is

∑∞
t=0 λtCc,t =

∑∞
t=0(−λt + λt+1(1 + r − δ))Kc,t+1 + λ0(1 + r − δ)Kc,0.

From first-order conditions
∑∞

t=0 λtCc,t =
∑∞

t=0(1− βc)βt
c = 1, because

(1− βc)
∑∞

t=0 βt
c = 1.

Again from the first-order conditions

∑∞
t=0 Kc,t+1(−λt + (1 + r − δ)λt+1) = 0. Thus

λ0 = 1
(1+r−δ)Kc,0

. We consider the first-order condition ∂L
∂Cc,t

= 0 for t = 0,

that is Cc,0 = 1−βc

λ0
, we obtain Cc,0 = (1− βc)(1 + r − δ)Kc,0.

The last relation is also true for all t = 1, 2, . . .. From which

Kc,t+1 = βc(1 + r − δ)Kc,t.
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3.2.2 The Workers’ Optimization

We assume that each generation of ”workers” has a finite time horizon because
lives two periods. In his/her first period of life we call ”young” an individual
worker while we will consider ”old” the worker which lives in his/her second
period of life. Each individual is active, that is, he works and is able to earn
money only as young, while he is in retirement as old. Each young supplies one
inelastic unit of labor-power for the wage w, where w is exogenous. We indicate
respectively with Cw and Cr the consumption as young and as old, and we call
Sw its saving in the first period. The worker invests Sw at the constant gross
return rate r for one period and at beginning of the second period he has the
wealth (1 + r − δ)Sw, where δ is the depreciation rate of capital and r − δ is
the net profit rate. In contrast with the capitalists, the workers save only for
to consume the whole wealth and income during the retirement, that is for the
life-cycle motive. Then we have the following budget constraints:

Cw + Sw = w (first period),

Cr = (1 + r − δ)Sw (second period).

The previous constraints can be combined into a single household constraint:

Cw + Cr

(1+r−δ) = w.

Given the wage w and subject to the previous budget constraint, the household
wants to choose the consumption Cw so as maximize the utility

U = U(Cw, Cr) = (1− βw) ln(Cw) + βw ln(Cr),

where βw is the discount rate of utility of the workers.

It is easy to see that Cw = (1− βw)w (See Remark 3.2.2.1).

Therefore the individual worker saving is
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Sw = w − (1− βw)w = βww.

Remark 3.2.2.1 (About worker’s consumption) In order to derive the expres-
sion of worker’s consumption, we begin from the budget constraint and we
observe that the utility function can be so rewritten:

U = (1− βw) ln(Cw) + βw ln[(w − Cw)(1 + r − δ)].

Thus

dU
dCw = (1− βw) 1

Cw + βw
1

(w−Cw)(1+r−δ) [−(1 + r − δ)]

= (1− βw) 1
Cw − βw

1
w−Cw = 0

if and only if 1−βw

Cw = βw

w−Cw , Cw

1−βw
= w−Cw

βw
, βwCw = (1− βw)w − Cw,

Cw = (1− βw)w.

3.2.3 Capitalists’ and Workers’ Processes of Capital Ac-
cumulation

Suppose that for the production function we have

f(k) ≥ 0, f ′(k) ≥ 0, f ′′(k) ≤ 0, where (0 ≤ k ≤ ∞) and (k = kc + kw).

Capitalist’s capital accumulation law corresponds to

Kc,t+1 = Ic,t + (1− δ)Kc,t.

We need to find Ic,t (that in a short-run equilibrium is equal to Sc,t).

From the capitalists’ budget constraint
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rKc,t = Cc,t + Sc,t = Cc,t + Ic,t.

It follows

Ic,t = rKc,t − Cc,t.

From the solution of the maximization problem:

Cc,t = (1− βc)(1− δ + r)Kc,t,

we get

Ic,t = βc(1− δ + r)Kc,t − (1− δ)Kc,t.

Finally we obtain

Kc,t+1 = βc(1− δ + r)Kc,t,

with a neoclassical production function f(Kt, Lt) and equilibrium in the capital
market r = fK(Kt, Lt) (marginal productivity of capital). The accumulation
law of capitalists’ capital is

Kc,t+1 = βc(1− δ + fK(Kt, Lt))Kc,t,

or, in terms of quantities per worker, assuming that Lt+1 = (1 + n)Lt:

kc,t+1 = 1
1+nβc(1− δ + f ′(kt))kc,t.

The accumulation law of workers is

kw,t+1 = 1
1+nβww = 1

1+nβw[f(k)− f ′(k)k].
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3.2.4 Steady Growth Equilibrium

The map

Gw(kw, kc) = 1
1+nβww = 1

1+nβw[f(k)− f ′(k)k]

denotes workers’s accumulation law and the following dynamic map

Gc(kw, kc) = 1
1+nβc[1− δ + f ′(k)]kc

denotes the capitalists’accumulation law, where k = kw + kc.

G(kw, kc) = ( 1
1+nβw[f(k)− f ′(k)k], 1

1+nβc[1− δ + f ′(k)]kc)

The steady growth solutions are obtained by imposing

Gw(kw, kc) = kw and Gc(kw, kc) = kc

and solving the following equations

kw = 1
1+nβw[f(k)− f ′(k)k] (?)

kc = 1
1+nβc[1− δ + f ′(k)]kc (??)

3.3 Local Dynamics

There exist three different types of equilibria: a Pasinetti equilibrium involves
capitalists owing a positive share of capital; a dual equilibrium, instead, allows
only workers to own capital; finally, in a trivial equilibrium, the overall capital
is zero.
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3.3.1 Pasinetti Equilibrium

Suppose kc 6= 0. Using (??) we obtain:

(1− δ) + f ′(k) = 1+n
βc

from which

f ′(k) = 1+n
βc

− (1− δ) = 1
βc

[1 + n− (1− δ)βc]

Moreover, also from (?), we have

1 + n = βc[(1− δ) + f ′(k)].

Substituting (1 + n) in (??) it has:

kw = βw

βc[(1−δ)+f ′(k)] = [f(k)− f ′(k)k] = (? ? ?)

= βw

βc

1− f′(k)k
f(k)

1−δ
f(k)+

ef (k)
k

= βw

βc

1−ef (k)
1−δ
f(k)+ef (k)

k.

By the identity k = kw + kc, we obtain

kc = k − kw = k − βw

βc

1−ef (k)
1−δ
f(k)+ef (k)

k = [1− βw

βc

1−ef (k)
(1−δ)k

f(k) +ef (k)
]k (? ? ??)

3.3.2 Dual Equilibrium

Suppose kc = 0. We have k = kw and, from (?) and (? ? ??),

k = 1
1+nβw[f(k)− f ′(k)k],
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from which

k
f(k) = βw

1+n [1− f ′(k)k
f(k) ] = βw

1+n [1− ef (k)].

Therefore, if 1− ef (k) 6= 0,

f(k)
k = 1+n

βw[1−ef (k)] . (4.2.1)

The (4.2.1) says that we can write f(k)/k as a function of ef (k), i.e.,

f(k)
k = θ(ef (k)),

where, by definition, θ(x) = 1+n
βw(1−x) , (0 ≤ x < 1).

Remark 3.3.2.1 (About convexity of θ(x)) For all (0 ≤ x < 1), notice that

• θ′(x) = 1+n
βw(1−x)2 ;

• θ′′(x) = 2(1+n)
βw(1−x)3 .

Therefore θ(x) is monotonically increasing and convex for all 0 ≤ x < 1.

3.3.3 Trivial Equilibrium

We impose that kc = kw = 0. We have that k = 0 and f(0) = 0.

Remark 3.3.3.1 (On Meade’s diagrammatic approach to find equilib-
ria)

We notice that, if ϕ(x) = ( 1−α
x )

1
ρ ,
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• ϕ(1) = (1− α)
1
ρ ;

• limx→0 ϕ(x) =
{

0, if ρ < 0
+∞, if 0 < ρ < 1 ;

• ϕ
′
(x) = 1

ρ ( 1−α
x )

1
ρ−1(1− α)(− 1

x2 )

= (− 1−α
ρ )( 1

x2 )( 1−α
x )

1−ρ
ρ ;

• ϕ
′′
(x) = (− 1−α

ρ ) [− 2
x3 (1−α

x )
ρ

1−ρ + 1
x2

1−ρ
ρ ( 1−α

x )
1−ρ

ρ −1 (1− α)(− 1
x2 )]

= (− 1−α
ρ )[− 1

x2 (1−α
x )

ρ
1−ρ ] [ 2

x + 1−ρ
ρ (1−α

x )−1(1− α) 1
x2 ]

= ( 1−α
ρ )[ 1

x2 ( 1−α
x )

ρ
1−ρ ] [ 2

x + 1−ρ
ρ

1
x ]

= ρ+1
ρ2 (1− α) 1

x3 ( 1−α
x )

1−ρ
ρ ;

• if ρ = −1, we have ϕ(x) = x
1−α , i.e. the graph of ϕ is a line with slope

equal to 1
1−α > 0.

Thus we deduce that

• ϕ(x) is strictly increasing if ρ < 0 and strictly decreasing if 0 < ρ < 1;

• ϕ(x) is convex if ρ < −1 and concave if (−1 < ρ < 0) or (0 < ρ < 1).

In order to find graphically the equilibria of dynamic system Commendatore
(2005), following Meade(1966), has stated that

Proposition 3.3.3.2 If f(k) = [α + (1− α)kρ]
1
ρ = [αk−ρ + (1− α)]

1
ρ k (k > 0)

is a CES production function (0 < α < 1, ρ < 1, ρ 6= 0), then f(k)
k depends on

ef (k), i.e. f(k)
k = ϕ(ef (k)), where ef (k) = kf

′
(k)

f(k) .

Proof By definitions of f(k) and ef (k), we observe that
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f(k)
k = [αk−ρ + (1− α)]

1
ρ and ef (k) = 1−α

αk−ρ+(1−α) .

From last relation we obtain that αk−ρ + (1− α) = 1−α
ef (k) ,

from which [αk−ρ + (1− α)]
1
ρ = ( 1−α

ef (k) )
1
ρ = ϕ(ef (k)).

Generally f(k)
k = f

′
(k)

ef (k) .

Proposition 3.3.3.3 About the existence of dual equilibria we may distinguish
three cases:

• Case I: ρ = −1. There are two dual equilibria (real and coincident or real
and distinct) if and only if (1+n)(1−α)

βw
≤ 1

4 .

• Case II: 0 < ρ < 1. There is one dual equilibrium.

• Case II: (−∞ < ρ < −1) ∨ (−1 < ρ < 0). There is one or two real and
distinct dual equilibria if and only if (1 − α)( 1+n

βw
)−ρ ≤ M , where M is

the maximum of function x
(1−x)ρ .

Proof We solve the equation ϕ(x) = θ(x), i.e. ( 1−α
x )

1
ρ = 1+n

βw(1−x) .

If ρ = −1 the equation becomes x
1−α = 1+n

βw(1−x) ,

which is equivalent to relation x2 − x + (1+n)(1−α)
βw

= 0.

Setting A = 1, B = −1, C = (1+n)(1−α)
βw

, ∆ = B2 − 4AC, we notice that

∆ ≥ 0 ⇔ (1+n)(1−α)
βw

≤ 1
4 .

If ρ < 1 and ρ 6= −1 (ρ 6= 0) the equation reduces to

x
(1−x)ρ = (1− α)( 1+n

βw
)−ρ.
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We pose h(x) = x
(1−x)ρ and we observe that:

• h(x) is positive and continuous in the interval 0 < x < 1;

• limx→0 h(x) = 0;

• limx→1 h(x) =
{

+∞, if 0 < ρ < 1
0, if ρ < 0 ;

• h
′
(x) = 1

(1−x)ρ+1 [1− (1− ρ)x];

• h
′′
(x) = ρ(1− x)−ρ−2(x(ρ− 1) + 2).

We have h
′
(x) > 0 ⇔ x < 1

1−ρ . We consider now 0 < ρ < 1. Then
1

1−ρ > 1. Since x < 1 we deduce that h(x) is strictly increasing and convex
for all 0 < x < 1 and the range of function h(x) is ]0, +∞[. Therefore,
by Bolzano’s Theorem, there is a unique x for which holds the equation
h(x) = (1 − α)( 1+n

βw
)−ρ. If ρ < 0, then the point x = 1

1−ρ maximizes
the function h(x) because h(x) is strictly increasing for all x < 1

1−ρ and
h(x) is strictly decreasing for all x > 1

1−ρ . Moreover h(x) is concave
in ]0, 1[ and the range of h(x) is ]0, h( 1

1−ρ )]. By Bolzano’s Theorem, if
(1 − α)( 1+n

βw
)−ρ ≤ h( 1

1−ρ ) = (1 − ρ)ρ−1(ρ)−ρ there is at least one dual
equilibrium.

3.3.4 The Jacobian matrix of the G map

We have

∂Gw

∂kw
= 1

1+nβw[f ′(k)− f ′′(k)k − f ′(k)] = − 1
1+nβwf ′′(k)k,

and ∂Gw

∂kc
= ∂Gw

∂kw
. Moreover ∂Gc

∂kw
= 1

1+nβc[f ′′(k)kc] and

∂Gc

∂kc
= 1

1+nβc[f ′′(k)kc + 1− δ + f ′(k)].

The jacobian matrix J evaluated at (kw, kc) is
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J(kw, kc) =
( ∂Gw

∂kw

∂Gw

∂kc
∂Gc

∂kw

∂Gc

∂kc

)
=

=
(− 1

1+nβwf ′′(k)k − 1
1+nβwf ′′(k)k

1
1+nβcf

′′(k)kc
1

1+nβc[f ′′(k)kc + 1− δ + f ′(k)]

)
.

The trace T of the jacobian J at the point (kw, kc) is:

T (kw, kc) = − 1
1+nβwf ′′(k)k + 1

1+nβc[f ′′(k)kc + 1− δ + f ′(k)] (3.3.4.1)

The determinant Det(kw, kc) of jacobian J is:

Det(kw, kc) = ( 1
1+n )2βwβcef ′(k)f ′(k)[δ − 1− f ′(k)]. (3.3.4.2)

From (?) and (??) we can rewrite Det and Trace for Pasinetti equilibrium :

Det(kP ) = − σc

1+n
βw

βc
ef ′(kP ), (3.3.4.3)

Trace(kP ) = (σw − βw

βc

σc

ef (kP )
) ef′ (k

P )

(1+n)2 σc + 1, (3.3.4.4)

where:

σw = 1 + n− (1− δ)βw,

σc = 1 + n− (1− δ)βc.
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3.3.5 Eigenvalues of jacobian matrix for Pasinetti equilib-
rium

Following Azariadis(1993) and M.W.Hirsch, S.Smale, R.L.Devaney(2003), the
eigenvalues λ+ and λ− are solutions of the characteristic equation:

p(λ) = |J − λI| =
∣∣∣∣

∂Gw

∂kw
− λ ∂Gw

∂kc
∂Gc

∂kw

∂Gc

∂kc
− λ

∣∣∣∣ =

= (∂Gw

∂kw
− λ)(∂Gc

∂kc
− λ)− ∂Gw

∂kc

∂Gc

∂kw
=

= λ2 − (∂Gw

∂kw
+ ∂Gc

∂kc
)λ + ∂Gw

∂kw

∂Gc

∂kc
− ∂Gw

∂kc

∂Gc

∂kw
=

= λ2 − (TraceJ)λ + detJ = 0,

where I is the identity matrix.

It notices that λ+ + λ− = TraceJ and λ+λ− = DetJ .

Moreover from the sign of the discriminant ∆ = T 2 − 4D it deduces that the
eigenvalues are

1. complex with non zero imaginary part if ∆ < 0;

2. real and distinct if ∆ > 0;

3. real and repeated if ∆ = 0.

and are given by

λ± = TraceJ+
√

(TraceJ)2−4DetJ

2 .

If the eigenvalues are real, they are given by
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λ± = TraceJ+
√

(TraceJ)2−4DetJ

2 .

Instead, if the eigenvalues are complex, they are given by

λ± = TraceJ
2 +

√
4DetJ−(TraceJ)2

2 i,

where i is the imaginary unit.

In the last case, it observes that the square of the modulus of the each eigenvalue
is DetJ . As a matter of fact

(TraceJ
2 )2 + (

√
4DetJ−(TraceJ)2

2 )2 =

= (TraceJ)2+4DetJ−(TraceJ)2

4 = detJ .

It says trace - determinant plane (TD-plane) the Cartesian plane which has
T = TraceJ as the horizontal axis and D = detJ as the vertical axis.

In the TD-plane, the matrix J with trace T and determinant D corresponds to
the point (T, D) and the location of point (T, D) determines the geometry of
phase portrait of the dynamic map G.

In the TD-plane, the equation T 2−4D = 0 describe a parabola with a minimum
at the origin O(0, 0): the region above the parabola is associated to the complex
eigenvalues, instead, the region below the parabola and the parabola itself are
associated to the real eigenvalues.

From (3.3.4.3) and (3.3.4.4) it obtains:

∆ = [T (kP )]2 − 4Det(kP ) =

= [(σw − βw

βc

σc

ef (kP )
) ef′ (k

P )

(1+n)2 σc + 1]2 + 4 σc

1+n
βw

βc
ef ′(kP ).
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We set

β = βw

βc
, e = ef ′(k), e = ef (k), n = 1 + n.

In order to state if the eigenvalues of the Jacobian J are real, we’ll derive some
helpful relations.

Proposition 3.3.5.1

(1) If e = β σc

σw
the eigenvalues are real when e ≥ − n

4σcβ ;

(2) if e 6= β σc

σw
the eigenvalues are real when e ≥ βσc

βn+σw
.

Proof

The condition ∆ ≥ 0 holds if

[(σw − β σc

e ) e
n2 σc + 1]2 + 4σc

n βe ≥ 0.

The last inequality is equivalent to the following:

σ2
c

n4 (σw − β σc

e )2e2 + [2(σw − β σc

e ) σc

n2 + 4σcβ
n ]e + 1 ≥ 0,

which can be seen like an inequality of second degree in e.

Setting

A = σ2
c

n4 (σw − β σc

e )2, B = [2(σw − β σc

e ) σc

n2 + 4σcβ
n ], and C = 1.

If A = 0 then



142 CHAPTER 3.

e = β σc

σw
and the inequality becomes

(4σcβ
n )e + 1 ≥ 0, i.e. e ≥ − n

4σcβ .

If A 6= 0 then it notices that A > 0 and let ∆′ = B2 − 4AC.

Let τ = (σw − β σc

e ) σc

n2 be, then A = τ2, B = 2τ + 4σcβ
n , C = 1

and the condition ∆′ ≥ 0 is equivalent to the following inequalities

4τ2 + 16σ2
cβ2

n2 + 16τ σcβ
n − 4τ2 ≥ 0,

16σ2
cβ2

n2 + 16τ σcβ
n ≥ 0, σcβ

n + τ ≥ 0

τ ≥ −σcβ
n .

Remembering the meaning of τ it has

(σw − β σc

e ) σc

n2 ≥ −σcβ
n , (σw − β σc

e ) 1
n ≥ −β, σw − β σc

e ≥ −βn,

−β σc

e ≥ −βn− σw

1
e ≤ βn+σw

βσc
, Q.E.D..

3.3.6 Local stability and triangle stability for Pasinetti
equilibrium

The conditions of local stability of dynamical system in terms of ef

or ef ′

It is well known that the necessary and sufficient conditions for the local stability
of the dynamical system can be written as
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(1) 1− trJ + detJ > 0 (Transcritical bifurcations)

(2) detJ < 1 (Neimark-Sacker bifurcations)

(3) 1 + trJ + detJ > 0 (Flip bifurcations)

which are, in the trace-determinant plane, a triangle, ”the stability triangle”.

In order to draw the stability triangle in the ef -ef ′ plane, we propose to rewrite
the previous conditions in terms of ef or ef ′ .

• The condition (1) corresponds to the inequality e > βσc

βn+σw
. As a matter

of fact, from the following equivalent inequalities we obtain

1− (σw − β σc

e ) e
n2 σc − 1− σc

n βe > 0,

e[−(σw − β σc

e ) 1
n − β] > 0,

−(σw − β σc

e ) 1
n < β,

σw − β σc

e > −βn,

−β σc

e > −βn− σw,

β σc

e < βn + σw,

e > βσc

βn+σw
.

• The condition (2) corresponds to inequality

−σc

n βe < 1. Thus

e > − n
σcβ .
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• The condition (3) corresponds to the following equivalent inequalities

1 + (σw − β σc

e ) e
n2 σc + 1− σc

n βe > 0,

[ σc

n2 (σw − β σc

e )− σc

n β]e + 2 > 0,

[ σc

n2 (σw − β σc

e )− σc

n β]e > −2.

If [ σc

n2 (σw − β σc

e )− σc

n β] > 0 it has e > − 2
[ σc

n2 (σw−β σc
e )−σc

n
β]

.

If [ σc

n2 (σw−β σc

e )−σc

n β] < 0, because e < 0 the inequality e < − 2
[ σc

n2 (σw−β σc
e )−σc

n
β]

is always true.

Remark (About βσc

βn+σw
) We’ll shaw that the expression βσc

βn+σw
lies between 0

and 1. As a matter of fact, from inequality σc < n we obtain

βσc < βn, βσc < βn + σw, 0 < βσc

βn+σw
< 1.

Remark (About − n
σcβ ) We propose to prove that −1 is a lower-bound of − n

σcβ .
As a matter of fact, from the inequality

βσc < n we have − n
βσc

> −1.

Remark It notices that the following inequalities are equivalent

σc

n2 (σw − β σc

e )− σc

n β > 0,

1
n (σw − β σc

e )− β > 0,

σw − β σc

e > βn,

−β σc

e > βn− σw,

β σc

e < σw − βn,
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1
e < σw−βn

βσc
(if σw − βn > 0 because e > 0),

e > βσc

σw−βn .

Remark We note that σc + βn > σc − βn.

If β is such that σc − βn > 0, we obtain that

1
σc+βn < 1

σc−βn ,

from which

βσc

σc+βn < βσc

σc−βn .

The boundary of triangle stability in terms of ef or ef ′

From the conditions for the local stability of dynamical system rewritten in
terms of ef or ef ′ , easy we get the following correspondent conditions for the
boundary of triangle stability:

• Neimark-Sacker bifurcation curve, defined by the condition Det(kP ) = 1,
corresponds to

ef ′(k) = − (1+n)βc

βwσc
, denoted by N.

• The Transcritical bifurcation curve T, defined by the condition Det(kP )−
Trace(kP ) + 1 = 0, corresponds to

e = βσc

βn+σw
.

• The Flip bifurcation curve F defined by Det(kP ) + Trace(kP ) + 1 = 0,
corresponds to

ef ′(k) = − 2

− σc
1+n

βw
βc

+(σw− βw
βc

σc
ef (k) )

σc
(1+n)2

=

= 2
σc

1+n
βw
βc
−(σw− βw

βc

σc
ef (k) )

σc
(1+n)2

.
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In order to describe in details the diagram of Flip bifurcation curve, we set

g(e) = 2
σc
n

β−(σc−β σc
e ) σc

n2
, (e 6= βσc

σw−βn ).

We note that:

• the straight line e = βσc

σw−βn is a vertical asymptote of g(e);

• the straight line e = σc

n β − σ2
c

n2 is an horizontal asymptote of g(e);

• the map g(e) is not monotonically decreasing. As a matter of fact

g′(e) = 2β2σ3
c

n2
1

[ σc
n2 (σw−β σc

e )−σc
n

β]2
1
e2 > 0.

We recall that the Neimarck-Sacker boundary is, in the TD-plane, the segment
of point (T, D) such that |T | ≤ 2 and D = 1. We will analyze the behaviour of
(T, D) when it is on this segment and varies some parameter.

If D = 1 then e = − n
σc

βc

βw
, from which T = (σw − βc

βw

σc

e )(− 1+n
σc

) 1
(1+n)2 σc + 1 =

= (σw − βc

βw

σc

e )(− 1
1+n ) + 1.

Remark If f(k) is a CES then 0 < e ≤ 1. Thus the last case become e = 1,
from which T → (σw − βw

βc
σc)(− 1

1+n ) + 1.

3.4 Study of the dynamical system in depen-
dence on a single parameter

We propose to study the dynamical system when it depends on worker’s dis-
count rate, on capitalists’ discount rate and on parameter ρ of CES production
function.
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3.4.1 Dynamical system and workers’ discount rate

We observe that when the workers’ discount rate βw moves in [0, 1] in TD-
plane the couple (T (βw), D(βw)) describe a segment which starts by (T ?, 0) =
(T (0), D(0)) and ends at (T ??, D??) = (T (1), D(1)), where

T (0) =
e

f
′ (kP )

1+n σc + 1, D(0) = 0,

T (1) = {[1 + n− (1− δ)]− 1
βc

σc

ef (kP )
} e

f
′ (kP )

(1+n)2 σc + 1,

D(1) = − σc

1+n
1
βc

ef ′ (k
P ).

Moreover D(βw) ≥ 0 for all βw ∈ [0, 1].

Proposition 1 The slope of above segment is positive and it is equal to

m = 1
βc

1+n [(1−δ)+ σc
βcef (kP )

]

Proof As a matter of fact

m = D
′
(βw)

T ′ (βw)
=

∂D(βw)
∂βw

∂T (βw)
∂βw

=
− σc

1+n
1

βc
e

f
′ (kP )

{−(1−δ)− σc
βcef (kP )

}
e

f
′ (kP )σc

(1+n)2 = 1
βc

1+n [(1−δ)+ σc
βcef (kP )

]

We recall that:

• in the TD-plane the inside of ABC-triangle (where A(0, 1), B(1, 0) and
C(−1, 0)), which sides have respectively the following equations:

AC : D = T − 1, 0 ≤ T ≤ 2, and slope(AB) = 1,

BC : D = 1, |T | ≤ 2; and slope(BC) = 0
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AB : D = −T − 1,−2 ≤ T ≤ 0, and slope(AB) = −1,

gives the stability region of Pasinetti’s equilibria;

• when a point (T,D) of dynamical system moves from inside (resp. outer)
of ABC-triangle toward the outer (resp. inside) of triangle crossing one
side or two sides of ABC-triangle, the Pasinetti’s equilibria lose (resp.
obtain) stability and they show bifurcations.

We observe that the equation of family of segments which start by (T ?, 0) and
which have slope m > 0 is D = m(T − T ∗) (D > 0).

Proposition 2

Case 1: −1 < T ? < 1. For the segment which starts from (T ?, 0) happens that
(See Figure 3.1):

• it meets the BC-side if m ≥ 1;

• it cuts the AC-side if 0 < m < − 1
T ?−2 ;

• it is parallel to AC-side if m = 1;

• it never meets the AB-side;

• it goes through C-vertex if 1
3 < m < 1.

Figure 3.1: The behaviour of the dynamical system as starting from (T ?, 0),
where (−1 < T ? < 1).

kenshiro
Timbro
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Remark 1 It’s easy to show that if −1 < T ? < 1 then 1
3 < − 1

T ?−2 < 1.

Remark 2 If m = 1
3 then the segment which starts from (T ?, 0) meets AC-side.

Remark 3 We observe that

m ≥ 1 ⇔ βc

1+n [(1− δ) + σc

βcef (kP )
] < 1 ⇔< σc

βcef (kP )
1+n
βc

− (1− δ) = σc

βc

⇔ 1
ef (kP )

< 1.

Case 2: T ? = −2. For the segment which starts from (T ?, 0) happens (See
Figure 3.2):

• it meets the AB-side if m > 0;

• it cuts the BC-side if m > 1
4 ;

• it meets the AC-side if 0 < m < 1
4 ;

• it goes through C-vertex if m = 1
4 .

Figure 3.2: The behaviour of the dynamical system as starting from (T ?, 0),
where T ? = −2.

Case 3: −2 < T ? < −1. For the segment which starts from (T ?, 0) happens
(See Figure 3.3):

kenshiro
Timbro
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• it meets the AB-side if m > 0;

• it cuts the BC-side if m > −1/(T ∗ − 2);

• it intersects the AC-side if 0 < m < − 1
T ?−2 ;

• it goes through the C-vertex if 1
4 < m < 1

3 .

Figure 3.3: The behaviour of the dynamical system as starting from (T ?, 0),
where −2 < T ? < −1.

Remark 4 It is to see that if −2 < T ? < −1 then 1
4 < − 1

T ?−2 < 1
3 .

Case 4: T ? < −2. For the segment which starts from (T ?, 0) happens (See
Figure 3.4):

• it meets AC-side if 0 < m < − 1
T ? ;

• it cuts BC-side if − 1
T ?−2 < m < 1

T ?+2 ;

• it intersects AC-side if 0 < m < 1 and m 6= − 1
T ?−2 ;

• it goes through C-vertex if 0 < m < 1
4 .

kenshiro
Timbro
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Figure 3.4: The behaviour of the dynamical system as starting from (T ?, 0),
where T ? < −2.

Remark 5 It’s easy to proof that if T ? < −2 then − 1
T ?−2 < 1

4 .

Case 5: T ? > 1. The segment which starts from (T ?, 0) never meets the
ABC-triangle.

Proof

Case 1 For brevity we’ll prove only statement ”the family of segments which
start from (T ?, 0) and which have slope m > 0 cut the AC-side only if m is less
than − 1

T ?−2”. We assume −1 < T ∗ < 1. We start with solving the system

{
D = T − 1,
D = m(T − T ∗),

where the former item is the equation of AC-side and last item is the equation of
the family of segments S which start from (T ∗, 0) and which have slope equal to
m > 0. We obtain T = mT∗−1

m−1 . Obviously m− 1 < 0. Since D > 0, we observe
that S intersects AB-side only if 1 < T < 2, thus we have 1 < mT∗−1

m−1 < 2.
From the inequality mT∗−1

m−1 > 1 we deduce T ∗ < 1 for all m > 0. Instead from
the inequality mT∗−1

m−1 < 2 we get m(T ∗ − 2) > −1. The case T ∗ − 2 > 0, i.e.
T ∗ > 2 is impossible by the assumption −1 < T ∗ < 1. Therefore m < − 1

T∗−2 .
The meaning of statement is that the dynamical system which starts by a stable
point of Pasinetti equilibrium (T ∗, 0) (−1 < T ∗ < 1) can cross the boundary AC
of the flip bifurcations only if m < −1/(T ∗ − 2).

kenshiro
Timbro
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Case 2 We’ll prove only statement ”the family of segments which start from
(−2, 0) and which have slope m > 0 cut the BC-side only if m > 1/4”. We
assume T ∗ = −2 and −2 < T < 2. We consider the system

{
D = m(T + 2),
D = 1,

where the former item is the equation of the family of segments S which start
from (−2, 0) and which have slope equal to m > 0 and the last item is the
equation of BC-side. The solution of the system is T = (1 − 2m)/m and by
assumption −2 < T < 2 we deduce that −2 < 1−2m

m < 2. From inequality
1−2m

m < 2 we obtain m > 1/4, instead from inequality 1−2m
m > −2 we have

m > 0, that is the conclusion. The meaning of statement is that the dynamical
system which starts by a unstable point of Pasinetti equilibrium (−2, 0) can cross
the boundary BC of the Neimark-Sacker bifurcations only if m > 1/4.

Case 3 We’ll prove only statement ”the family of segments which start from
(T ∗, 0) (−2 < T ∗ < −1) and which have slope m > 0 cut the BC-side only if
m > −1/(T ∗ − 2)”. Solve the system

{
D = m(T − T ∗),
D = 1,

where the former item is the equation of the family of segments S which start
from (T ∗, 0) (−2 < T ∗ < −1) and which have slope equal to m > 0 and the last
item is the equation of BC-side (−2 < T < 2). We have −2 < 1

m + T ∗ < 2.
We solve the inequality 1

m + T ∗ > −2. We have m(T ∗ + 2) > −1. By the
assumption (−2 < T ∗ < −1) we obtain m > − 1

T∗+2 . Since m > 0 the previous
inequality is always true. Instead the inequality 1

m +T ∗ < 2 is equivalent to the
inequality m(T ∗−2) < −2, from which m > − 1

T∗−2 . In terms of bifurcations we
can say that the dynamical system which starts by a unstable point of Pasinetti
equilibrium (T ∗, 0) (−2 < T ∗ < −1) can cross the boundary BC of the Neimark-
Sacker bifurcations only if m > −1/(T ∗ − 2).

Case 4 We’ll prove only statement ”the family of segments which start from
(T ∗, 0) (T ∗ < −2) and which have slope m > 0 cut the BC-side only if −1/(T ∗−
2) < m < 1/(T ∗ + 2)”. Consider the system

{
D = m(T − T ∗),
D = 1,

where the former item is the equation of the family of segments S which start
from (T ∗, 0) (T ∗ < −2) and which have slope equal to m > 0 and the last
item is the equation of BC-side (−2 < T < 2). As before we have −2 <
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1
m + T ∗ < 2 (∗). Since T ∗ < −2, then we get m < − 1

T∗+2 from the left hand
side of (∗) and m > − 1

T∗−2 from the right hand side of (∗). We conclude
saying that the dynamical system which starts by a unstable point of Pasinetti
equilibrium (T ∗, 0) (T ∗ < −2) can cross the boundary BC of the Neimark-Sacker
bifurcations only if −1/(T ∗ − 2) < m < −1/(T ∗ + 2).

Case 5 Very easy to prove.

3.4.2 Dynamical system and capitalists’ discount rate

We observe that when the capitalists’ discount rate βc moves in ]0, 1] in TD-
plane the couples (T (βc), D(βc)) describe an open curve Γ which starts by AA =
(limβc→0 T (βc), limβc→0 D(βc) and ends at BB = (T (1), D(1)), where

T (1) = [σw − βw

ef (kP )
(n + δ)](n + δ)

e
f
′ (kP )

(1+n)2 + 1,

D(1) = − (n+δ)βwe
f
′ (kP )

1+n .

We consider, as above, both positive σw > 0 and σc > 0 and we observe that
D > 0 for all βc ∈]0, 1]. From the dynamical equations systems we have

Proposition 1 If ef ′ (k
P ) < − 1+n

σwσc
then T > 0 if and only if

βc <
βwσ2

ce
f
′ (kP )

(1+n)2ef (kP )+σwσcef (kP )e
f
′ (kP )

.

Proof T > 0 ⇔ (σw − βw

βc

σc

ef (kP )
)

e
f
′ (kP )

(1+n)2 σc > −1

⇔ σw − βw

βc

σc

ef (kP )
< − (1+n)2

e
f
′ (kP )σc

⇔ βw

βc

σc

ef (kP )
> (1+n)2

e
f
′ (kP )σc

+ σw
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⇔ 1
βc

>
(1+n)2ef (kP )+σwσcef (kP )e

f
′ (kP )

βwσ2
ce

f
′ (kP )

.

We observing that

∂
∂βc

( 1
βc

) = − 1
β2

c
;

∂
∂βc

(σc) = ∂
∂βc

[(1 + n)− (1− δ)βc] = δ − 1;

∂
∂βc

(σc

βc
) = (δ−1)βc−σc

β2
c

= − 1+n
βc

.

∂
∂βc

(σw) = 0.

From the equation f
′
(kP ) = 1+n

βc
−(1−δ) and if f

′
has inverse (f

′
)−1 we obtain

that

kP = (f
′
)−1[ 1+n

βc
− (1− δ)].

Therefore we deduce that kP depends on βc, that is kP = kP (βc).

Thus

∂kP

∂βc
= ∂

∂βc
(f
′
)−1[ 1+n

βc
− (1− δ)] = 1

f ′′ [(f ′ )−1(kP )]
(− 1+n

β2
c

).

Moreover

∂
∂βc

D(βc) = − βw

1+n
∂

∂βc
[σc

βc
ef ′ (k

P )] = − βw

1+n{( ∂
∂βc

(σc

βc
))ef ′ (k

P ) + σc

βc
( ∂

βc
ef ′ (k

P ))}

= − βw

1+n {(− 1+n
β2

c
)ef ′ (k

P ) + σc

βc

∂
∂kP ef ′ (k

P ) ∂
∂βc

kP }.

We recall that
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T (βc) = [σw − βw

βc

σc

ef (kP )
]
e

f
′ (kP )

(1+n)2 σc + 1. Then

∂
∂βc

T (βc) = −βw
∂

∂βc
(σc

βc

1
ef (kP )

)
e

f
′ (kP )

(1+n)2 σc +[σw−βw

βc

σc

ef (kP )
] 1

(1+n)2
∂

∂βc
[ef ′ (k

P )σc]

= −βw[( ∂
∂βc

(σc

βc
)) 1

ef (kP )
+ σc

βc

∂
∂βc

1
ef (kP )

]
e

f
′ (kP )

(1+n)2 σc+

+[σw − βw

βc

σc

ef (kP )
] 1

(1+n)2 [( ∂
∂βc

ef ′ (k
P ))σc + ef ′ (k

P ) ∂
∂βc

σc]

= −βw[(− 1+n
β2

c
) 1

ef (kP )
+σc

βc

∂
∂kP

1
e

f
′ (kP )

∂
∂βc

kP ]
e

f
′ (kP )

(1+n)2 σc+

+[σw − βw

βc

σc

ef (kP )
] 1

(1+n)2 [( ∂
∂kP ef ′ (k

P ) ∂
∂βc

kP )σc+ ef ′ (k
P ) ∂

∂βc
σc].

In order to illustrate the behaviour of dynamical system we present some inter-
esting simulations:

Figure 3.5: β = 0.4, n = 0.01, δ = 0.01, ρ = −100, α = 0.7

kenshiro
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Figure 3.6: β = 0.4, n = 0.1, δ = 0.01, ρ = −1, α = 0.7

Figure 3.7: β = 0.1, n = 0.1, δ = 0.01, ρ = −70, α = 0.7
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Figure 3.8: β = 0.4, n = 0.5, δ = 0.2, ρ = −10, α = 0.7

Figure 3.9: β = 0.1, n = 0.5, δ = 0.2, ρ = −14, α = 0.7
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Figure 3.10: β = 0.5, n = 0.05, δ = 0.2, ρ = −70, α = 0.7

Figure 3.11: β = 0.1, n = 0.05, δ = 0.2, ρ = −14, α = 0.7
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Figure 3.12: β = 1, n = 0.05, δ = 0.1, ρ = −0.5, α = 0.7

3.4.3 Dynamical system and a CES production function

We start from the CES production function

f(k) = [α + (1− α)kρ]
1
ρ .

where −∞ < ρ < 1, ρ 6= 0, 0 < α < 1.

We have

ef (k) = (1− α)(αk−ρ + 1− α)−1;

ef ′ (k) = α(ρ− 1)[α + (1− α)kρ]−1;

from which the dynamical system

D(kP ) = − σc

1+n
βw

βc
ef ′ (k

P ),

kenshiro
Timbro



160 CHAPTER 3.

T (kP ) = [σw − βw

βc

σc

ef (kP )
]
e

f
′ (kP )

(1+n)2 σc + 1,

becomes

D(ρ) = − σc

1+n
βw

βc
α(ρ− 1)[α + (1− α)kρ]−1;

T (ρ) = ασc

(1+n)2 [σw − βw

βc

σc

α−1 (αk−ρ + 1− α)] (ρ− 1)[α + (1− α)kρ]−1 + 1.

We recall that

limρ→−∞ k−ρ =
{

+∞, if k > 1
0, if 0 < k < 1 ;

limρ→−∞ kρ =
{

0, if k > 1
+∞, if 0 < k < 1 .

From the previous results we deduce that:

• limρ→−∞ T (ρ) =
{

+∞, if k > 1
1, if 0 < k < 1 ;

• limρ→−∞D(ρ) =
{

+∞, k > 1
0, 0 < k < 1 ;

• for all k > 0, limρ→1 T (ρ) = 1 and limρ→1D(ρ) = 0;

• for all k > 0, limρ→0 D(ρ) = σcβwα
(1+n)βc

> 0;

• for all k > 0, limρ→0 T (ρ) = 1− ασc

(1+n)2 (σw − βw

βc

σc

α−1 )

= 1− ασc

(1+n)2 (σw + βw

βc

σc

1−α ).
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Thus we can observe that when ρ moves in ] − ∞, 1[ (ρ 6= 0) and if k > 1,
in TD-plane the couples (T (ρ), D(ρ)) describe an open curve which starts by
(+∞, +∞) and ends at (1, 0) .

Remark 1 If 0 < k < 1, then, by the Hôpital’s Rule, we get

limρ→−∞
ρ−1

α+(1−α)kρ = limρ→−∞ 1
(1−α)kρ ln k = 0.

For all ρ < 1 (ρ 6= 0) and for all k > 0 (k 6= 1), we set ψ(ρ) = α + (1− α)kρ +
(1− ρ)(1− α)kρ ln k.

Proposition 1 For all −∞ < ρ < 1 we get:

(A) for all k > 1, ∂D(ρ)
∂ρ < 0;

(B) for all 0 < k < 1, ∂D(ρ)
∂ρ

{
> 0, if ρ < ρ0

< 0, if ρ0 < ρ < 1 ,

where ρ0 is the unique zero of ψ(ρ).

Proof We have

∂
∂ρD(ρ) = [− ασcβw

(1+n)βc
] {[α + (1− α)kρ]−1+

+(ρ− 1)(−1)[α + (1− α)kρ]−2(1− α)kρ ln k}

= [− ασcβw

(1+n)βc
] [α + (1− α)kρ]−2ψ(ρ).

We notice that the sign of ∂D(ρ)
∂ρ depends on factor ψ(ρ).

Therefore we consider two cases.
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Case 1: k > 1. Since ln k > 0, then ψ(ρ) > 0.

Thus, for all k > 1, ∂D(ρ)
∂ρ < 0.

Case 2: 0 < k < 1. Then ln k < 0. Moreover

• limρ→−∞ ψ(ρ) = −∞ < 0;

• limρ→1 ψ(ρ) = α + (1− α)k > 0;

• limρ→0 ψ(ρ) = 1 + (1− α) ln k;

• 1 + (1 − α) ln k > 0 if and only if k > e−
1

1−α and, being − 1
1−α < 0,

e−
1

1−α < 1;

• ∂ψ(ρ)
∂ρ = = (1− ρ)(1− α)kρ(ln k)2 > 0.

Thus, being ψ(ρ) continuous and strictly increasing in ]−∞, 1[, the Intermediate
Value Theorem guarantees that there is a unique point ρ0 in which ψ(ρ0) = 0,
and ψ(ρ) < 0 for all ρ < ρ0 and ψ(ρ) > 0 for all ρ > ρ0, Q.E.D..

From definition of D(ρ) and from Proposition 1 we deduce that

Proposition 2 The function D(ρ) is positive for all ρ < 1 and for all k > 0
(k 6=). About monotonicity of D(ρ) we can say that:

(A) for all k > 1 and for all ρ < 1, it is strictly decreasing;

(B) for all 0 < k < 1, D(ρ) is unimodal: it is strictly increasing for all ρ < ρ0

and it is strictly decreasing for all ρ > ρ0. The maximum is D(ρ0).
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We set ϕ(ρ) = α+(1−α)kρ and we call ϕ−1(ρ) = 1
ϕ(ρ) . Then we can so rewrite

T (ρ):

T (ρ) = ασc

(1+n)2 [σw − βwσc

βc(1−α) (αk−ρ + 1− α)](ρ− 1)ϕ−1(ρ) + 1.

Thus

∂T (ρ)
∂ρ = ασc

(1+n)2 {(− βwσc

βc(1−α) )(−αk−ρ ln k)(ρ− 1)ϕ−1(ρ)+

+[σw − βwσc

βc(1−α) (αk−ρ + 1− α)][ϕ−1(ρ) + (ρ− 1)(−ϕ−2(ρ)ϕ
′
(ρ))]}

= ασc

(1+n)2 ϕ−1(ρ){( αβwσc

βc(1−α) )(k
−ρ ln k)(ρ− 1)+

+[σw − βwσc

βc(1−α) (αk−ρ + 1− α)][1 + (ρ− 1)(−ϕ−1(ρ)ϕ
′
(ρ))]}

= ασc

(1+n)2 ϕ−1(ρ){( αβwσc

βc(1−α) )(k
−ρ ln k)(ρ− 1)+

+[σw − βwσc

βc(1−α) (αk−ρ + 1− α)][1 + (1− ρ)ϕ−1(ρ)ϕ
′
(ρ)]}.

In order to simplify the expression of T (ρ) we calculate the Taylor expansion of
T of one order and with center at −1 and we get:

TTaylor(ρ) = A∗k(1−ρ)(αB∗(k−1)+B∗−σw)
α(k−1)+1 +

− 2A∗k(ρ+1)(α2B∗(k2−2k+1)+α(2B∗(k−1)+σw)+B∗−σw) ln k
(α(k−1)+1)2 ,

where A∗ = ασc

(1+n)2 and B∗ = βwσc

βc(1−α) .

Moreover we have that
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∂TT aylor(ρ)
∂ρ = − 2A∗k(α2B∗(k2−2k+1)+α(2B∗(k−1)+σw)+B∗−σw) ln k

(α(k−1)+1)2 +

−A∗k(αB∗(k−1)+B∗−σw)
α(k−1)+1 .

If we assume k > 1 and B∗ > σw we obtain that, for ρ near to −1,

∂TT aylor(ρ)
∂ρ < 0.

We can conclude that, if k < 1, TTaylor(ρ) is decreasing for ρ near to −1 (ρ 6= 0).

The following figures describe the behaviour of the maps D(ρ), T (ρ) and of
the dynamical system (D(ρ), T (ρ)) for n = 0.1,δ = 0.2,α = 0.2,βc = 0.3,βw =
0.2,k = 0.4:

Figure 3.13: The map D(ρ)
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Figure 3.14: The map T (ρ)

Figure 3.15: The dynamical system (D(ρ), T (ρ))

3.5 Appendix 1

Let ef (k) = [ f ′(k)k
f(k) ] be the elasticity function of f(k) and let ef ′(k) = f ′′(k)k

f ′(k) be
the elasticity function of f ′(k).

Proposition Consider f(k) ≥ 0, f ′(k) > 0, f ′′(k) < 0 for all k ≥ 0. Then:

kenshiro
Timbro

kenshiro
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(i) ef (k) > 0 and ef ′(k) < 0;

(ii) (ef ′(k) > −1) ⇔ (ef (k) is monotone increasing).

Proof

(i) Trivial.

(ii) It notices that

def (k)
dk = d

dk [ f ′(k)k
f(k) ] = [f ′′(k)k+f ′(k)]f(k)−k[f ′(k)]2

[f(k)]2 > 0

is equivalent to the following inequalities:

[f ′′(k)k + f ′(k)]f(k)− k[f ′(k)]2 > 0;

[f ′′(k)k+f ′(k)]f(k)
k[f ′(k)]2 > 0;

f ′′(k)k > −f ′(k);

f ′′(k)k
f ′(k) > −1, that is ef ′(k) > −1.

Remark 1 From proof of (ii) it deduces that def (k)
dk 6= ef ′(k).

Remark 2 The (ii) is equivalent to (−1 < ef ′(k) < 0).

3.6 Appendix 2 (Helpful inequalities)

(A) For n ≥ 0, 0 < βc < 1, 0 < βw < 1 and 0 < δ < 1, then:

(1) σc = (1 + n)− (1− δ)βc < (1 + n) and σw = (1 + n)− (1− δ)βw < (1 + n);
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(2) (1 + n) ≥ 1; 0 < (1− δ)βc < 1 and 0 < (1− δ)βw < 1;

(3) σc > 0 and σw > 0;

(4) (1 + n)βc > βcσc, (1 + n)βw > βcσw, (1 + n)βc > βcσw, (1 + n)βw > βwσc,
and (1 + n)βw > σc;

(5) if (0 < βw < βc < 1) then ((1 + n)βw − βcσw < 0).

(B) 1+n
σc

> 1, βc

βw
> 1, 1+n

σc

βc

βw
> 1, − 1+n

σc

βc

βw
< −1 and − 1+n

σc
< −1.

(C) − 1+n
σc

βc

βw
< − βc

βw
< 0.

(D) if 0 < βw < βc < 1 then − βc

βw
< −1.

(E) F (n, βc, βw, δ) = − 1+n
σc

βc

βw
< −1 < 0.

(F) If 0 < βw < βc < 1 then σc

1+n
βw

βc
< 1.

(G) σc < (1 + n) < (1 + n)2 and σc

(1+n)2 < 1.

(H) if (0 < βw < βc < 1) then σc < σw and σc

σw
< 1.

(I) σw − βwσc

(1+n)βc
< σw and σc

σw
< σc

σw− βwσc
(1+n)βc

.

(L) 0 < βwσc < βcσw < (1 + n)βcσw, (1 + n)βcσw and

(1 + n)βcσw − βwσc > 0.

(M) (1+n)βcσc

(1+n)βcσw−βwσc
> 0.

(N) Det(kP ) = − σc

1+n
βw

βc
ef ′(kP ) > 0 and Det(kP ) < −ef ′(kP ).
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3.7 Appendix 3 (About Flip bifurcations: a con-
dition of existence)

Because ef ′(k) < 0 for all k ≥ 0, it notices that

ef ′(k) = 2
σc

1+n
βw
βc
−(σw− βw

βc

σc
ef (k) )

σc
(1+n)2

< 0,

if and only if are true the following inequalities:

σc

1+n
βw

βc
− (σw − βw

βc

σc

ef (k) )
σc

(1+n)2 < 0,

σw − βw

βc

σc

ef (k) > σc

1+n
βw

βc

(1+n)2

σc
,

σw − βw

βc

σc

ef (k) > −βw(1+n)
βc

,

βw

βc

σc

ef (k) < βw(1+n)
βc

− σw,

σc

ef (k) < (1 + n)− σwβc

σcβw
,

1
ef (k) < (1+n)

σc
− σwβc

σcβw
,

1
ef (k) < (1+n)βw−σwβc

σcβw
,

ef (k) > σcβw

(1+n)βw−σwβc
.

(Q) From (5)(A) it has

σcβw

(1+n)βw−σwβc
< 0 and because
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(1 + n)βw − σcβc < (1 + n)− σc < (1 + n),

then

ef (k) > σc

(1+n)−σc
> σc

(1+n) .

Obviously σc

(1+n)−σc
is negative and σc

(1+n) is positive.

3.8 Appendix 4 (About Pitchfork bifurcations:
a condition of existence)

The condition

Det(kP )− Trace(kP ) + 1 = 0

is equivalent to formula

ef ′(k) = 2
σc

1+n
βw
βc

+(σw− βw
βc

σc
ef (k) )

σc
(1+n)2

.

But, because ef ′(k) < 0, then

σc

1+n
βw

βc
+ (σw − βw

βc

σc

ef (k) )
σc

(1+n)2 < 0,

from which, it obtain the following inequalities:

(σw − βw

βc

σc

ef (k) )
σc

(1+n)2 < − σc

1+n
βw

βc
,

σw − βw

βc

σc

ef (k) < −βw(1+n)
βc

,
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−βw

βc

σc

ef (k) < −σw − βw(1+n)
βc

,

βw

βc

σc

ef (k) > σw + βw(1+n)
βc

= βcσw+βw(1+n)
βc

,

ef (k) < σcβw

βcσw+βw(1+n) < σc

βcσw+βw(1+n) .

But

βcσw + βw(1 + n) < βcσc + βw(1 + n) > βcσc,

from which

ef (k) < σc

βcσc
= 1

βc
.

3.9 Appendix 5

If kP don’t depends on βc we have

Proposition 2 ∂D
∂βc

< 0 for all βc ∈]0, 1].

Proof ∂D
∂βc

= (−βwe
f
′ (kP )

1+n ) ∂
∂βc

(σc

βc
)

= (−βwe
f
′ (kP )

1+n )(− 1+n
β2

c
) =

βwe
f
′ (kP )

β2
c

< 0,

because ef ′ (k
P ) is negative while βw and β2

c are positive.

We put A = ef (kP )σw(δ − 1), B = −βwσc(δ − 1), C = βwσc(1 + n),
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∆ = B2 − 4AC and recall that βc ∈]0, 1].

Then we have

Proposition 3 The sign of ∂T
∂βc

is

• positive for all βc if ∆ < 0;

• positive for all βc 6= − B
2A if ∆ = 0;

• negative for all βc ∈]−B−
√

∆
2A , −B+

√
∆

2A [ and is positive otherwise if ∆ > 0.

Proof ∂T
∂βc

=
e

f
′ (kP )

(1+n)2 {[ ∂
∂βc

(σw − βw

ef (kP )
σc

βc
)]σc + (σw − βw

ef (kP )
σc

βc
) ∂

∂βc
σc}

=
e

f
′ (kP )

(1+n)2 {(− βw

ef (kP )
)(− 1+n

β2
c

)σc + (σw − βw

ef (kP )
σc

βc
)(δ − 1)}

=
e

f
′ (kP )

(1+n)2 [βwσc(1+n)
ef (kP )β2

c
+ σwβcef (kP )−βwσc

ef (kP )βc
(δ − 1)]

=
e

f
′ (kP )

(1+n)2 [βwσc(1+n)+σwβ2
c ef (kP )(δ−1)−βwβcσc(δ−1)
ef (kP )β2

c
]

=
e

f
′ (kP )

(1+n)2ef (kP )β2
c

[ef (kP )σw(δ − 1)β2
c − βwσc(δ − 1)βc + βwσc(1 + n)]

=
e

f
′ (kP )

(1+n)2ef (kP )β2
c

(Aβ2
c + Bβc + C).

We conclude observing that

e
f
′ (kP )

(1+n)2ef (kP )β2
c

< 0, A < 0 and the sign of Aβ2
c + Bβc + C depends on ∆.
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By the previous propositions we will construct in the TD-plane the phase-
diagram of the dynamical system when it depends on βc. We get

• Case 1. The dynamical system lies in the first quadrant and it moves from
AA to right and down to T -axis, it ends at BB.

• Case 2. The dynamical system starts from AA (in the first quadrant)
going down to T-axis, before to right, after it stops, finally it again moves
down and to right. Finally it ends in BB.

• Case 3. The dynamical system starts from AA (in the fist quadrant) going
down to T-axis and to right, after it stops. Moreover it goes to left, after
it stops, and it again goes to right and it ends in BB.
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Conclusions 
 
In the Thesis we have achieved the following results: 
 
In the first Chapter we presented the various definition of Chaos proposed in the literature 
evaluating the respective strengths and weaknesses. We noticed that the Li-Yorke definition, which 
is the one usually adopted in economics, has substantial flaws. For example, it cannot be used for 
the case of non differentiable or two-dimensional maps. In this Chapter we also discussed in detail 
another method that can be used to detect Chaos in dynamical system, that is, the computation of 
the Lyapunov coefficients. Computational techniques are also useful in detecting and representing 
graphically other complex phenomena that are generated by dynamical systems. We described in 
great detail some economic dynamical models that are able to generate the so-called Arnold 
Tongues,  which is a complex phenomenon representing a threshold between periodic and aperiodic 
time evolution. For to dimensional system, an important condition for the presence of Arnold 
Tongues is the occurrence of a  Neimark-Saker bifurcation. 
 
 
In the second Chapter, we reviewed the literature on Chaos in one and two-dimensional economic 
growth models . In particular, we described in  great detail some significant and recent models of 
economic growth in discrete time. We did not limit ourselves to the description of such models but, 
in some cases, we developed analytical demonstrations only hinted at by the authors and not fully 
developed. 
 
In the third Chapter, we presented and developed a new two-dimensional growth model in which 
two groups of economic agents have optimal but different saving behaviour. This model represents 
a discrete time version of a model developed in various stages by Solow, Pasinetti and Samuelson 
and Modigliani. A crucial difference from other models presented in the literature is the assumption 
of optimal saving behaviour of the two different type of agents existing in the literature (the 
"classes" of "workers" and "capitalists"). For this model we identified the different types of existing 
equilibria or steady-states and the local stability properties. We verified the emergence of the 
various types of bifurcations applying the Hartmann-Grobman theorem. In particular, a Neimark-
Saker bifurcation can occur increasing reducing the elasticity of substitution between the factors of 
production in the CES production function. We also verified how these bifurcations can occur via a 
diagrammatical tool known as Triangle of stability often employed in the economics literature 
(Grandmond, Pintus, de Vilder, Cazzavillan, Puu). 
 




