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Preface

The interdisciplinary nature of the framework in which this thesis
was developed is evident already when reading the title. For a physi-
cist, the aim is that of understanding the processes and mechanisms
underlying natural phenomena; however the class of phenomena dis-
cussed in this book possess a ‘special’ feature, they pertain to living
and intelligent organisms. Such phenomena are what is usually called
behaviors.
This has been, historically, the reason why cybernetics was populated
by experts of so many different disciplines, and its contemporary de-
scendants still put together psychologists, mathematicians, engineers,
physicists, neurologists, philosophers, and much more. This thesis
makes no exception; I had the luck to interact with researchers from
at least five disciplines, which made this project much more interest-
ing than it could have been otherwise. Furthermore, much work was
developed in tight collaboration with those people, and this (rather
than just by mere convention) is the reason why in the rest of the
book I will use the pronoun ‘we’ instead of ‘I’.
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Introduction

Cognitive science, and in particular the analysis of human vision and
visual attention, have always payed some attention to the visual arts.
In fact, this field has provided a rich source of images that are sit-
uated somewhere between natural images — such as pictures and
videos of landscapes, animals, humans — and synthetic images — the
kind of visual displays realized specifically for the purpose of testing
some visual behavior. Visual artworks share some properties with
both classes, because a) they possess some degree of artificiality, be-
ing images produced by humans and therefore possessing the kind of
features that have been called artifactual properties [88]; and b) they
are as common in our visual experience as natural images, since we are
exposed to visual artworks very often in daily life (think of musems,
books covers and illustrations, advertisement). Furthermore, draw-
ing is an old practice (the oldest cave graffities dating back to about
30,000 years ago), and, orthogonally, they are present in almost all
geographical and cultural areas.
The pioneeristic recordings of eye movements reported by Buswell
[16] and Yarbus [136] used famous paintings as the test image; many
later examples exist of analyses of the visual activity in response to
paintings and drawings, and recently visual artworks have been used
as well in neuroscientific studies of the visual brain. The ground-
breaking work by Zeki [138] proposed even a step further: to not only
use artworks to probe human vision, but, the other way around, to
get an understanding of the aesthetic experience on the basis of our
knowledge of the neural processes involved in perceiving artworks. Al-
though such a reductionist approach has been strongly debated and
criticized it was in part successful, and so much appealing that it
opened an entire novel field of studies, now termed neuroaesthetics.
Many extensions have been proposed, including the adoption of novel
neurophysiological knowledge to better define this newborn branch
of aesthetics (e.g. the recent proposal by Gallese and Freedberg [39]
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that aesthetical experience would be based on the kind of empathetic
responses enabled by mirror–like mechanisms [38]).

Although the work presented in this thesis is not directly related
to neuroaesthetics, it took its first moves from a critical reading of
Zeki’s opus and related work, in particular from a methodological
flaw that has been somehow overlooked: it has been argued in [139]
that understanding the neural correlates of artwork perception could
give not only some insight on aesthetic experience, but also a deep
understanding of the brain processes involved in artwork creation —
by comparing the work of the artist to that of the neurologist, whose
ultimate aim is to induce specific neural activity (and therefore spe-
cific perceptual effects) in the viewer.
Our point here is that this ’inverse’ approach cannot be just taken for
granted, because of two reasons at least. First, the perceptual expe-
rience that the artist has of her own artwork is undoubtedly biased
by her experience of the whole process that led to the result. Against
this objection it could be argued that at least the so called Early
visual analysis, which is thought to be cognitively impenetrable [93],
should be common to the artist and the perceiver. It is well known
however that even the perception of basic features such as orientation
(which is processed in early visual steps) can be biased by the tempo-
ral context, leading to so called perceptual after–effect illusions [108];
the prolonged exposure that the artist has during all the intermediate
stages of image creation could give rise to some kind of long term
after–effects. Furthermore, perception of a visual scene is known to
be determined also by how overt attention (namely eye movements)
is deployed, and it is plausible to think that the attention of the artist
will be directed to regions of the image that were critical during the
creative process, and that are not necessarily the same that perceivers
will attend to.
The second, more general reason, is that nothing guarantees that the
perceptual process and the creative process share the same neural
mechanisms. At least two different positions could be taken here. A)
according to the most recent formulation of the dual vison theory [74],
two separate pathways of visual processing exist, one implementing
perceptual functions (e.g. object recognition) and ultimately deliv-
ering to us a coherent visual experience of the external world, and
the second one subserving the control of motor actions. According to
this view, it could be argued that mainly the Vision for Perception
pathway is involved during artwork perception, while the Vision for
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Action stream is the one upon which the visual creative process relies.
B) following the sensorimotor approach to perceptual experience [85],
and even more profoundly in view of the existence of mirror neurons
[72], it could be argued that the perception of a visual artwork involves
an internal simulation of the actions that produced that specific im-
age, which would provide a common ground to artwork creation and
artwork perception.
In the present thesis we do not commit to any of the above mentioned
positions; however, we believe that a grounded, ’direct’ analysis of
the creative process itself would be a fundamental contribution to
the scientific debate on visual creativity. In addition, creative pro-
cesses can be regarded, from the vantage point of Cognitive science,
as a goal-directed activity involving several human skills and abilities:
sensorimotor coordination, evaluation and decision, memory and emo-
tion. In this perspective, we surmise that the analysis of the creative
process by scientific means can prove itself a powerful methodology
for the understanding of human capabilities such as those mentioned
above, at least as much as the analysis of visual artwork perception
has proven fruitful for the understanding of human vision.

In order to narrow down our field of analysis, we have focused on
sensorimotor coordination, namely the problem of how sensory and
motor resources are integrated to give rise to efficient behaviors for
the solution of specific tasks. In particular, as explained below, our
analysis has concentrated on eye–hand coordination in the task of
performing a realistic drawing from life, namely copying an original
image on an initially blank canvas, trying to reproduce image con-
tours as faithfully as possible.

In chapter 1 we propose an extensive survey of the existing liter-
ature on eye movements, visuomotor coordination and motor control.
The problem of eye-hand coordination in performing a given task is
considered [6] a paradigmatic one with respect to the more general
question of sensorimotor integration, which in turn is reputed to be a
crucial issue both for designing situated artificial agents and for the
investigation about the underlying cognitive mechanisms in biological
agents. Recent approaches to sensorimotor coordination in primates
claim that motor preparation has a direct influence on subsequent
eye movements [110], sometimes turning coordination into competi-
tion. Complementary, eye movements come into play in generating
motor plans, as suggested by the existence of look ahead fixations in
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many natural tasks [63].
Differently from the problem of modeling eye movements in purely
visual tasks, dealing with visuomotor tasks requires a shift of perspec-
tive: the main difference in such cases is that eye movements should
not be treated as entirely independent from movements of other parts
of the body. In fact, it is the basic tenet of Active Vision [5] that eye
movements depend on the task at hand, and if the task is a sensorimo-
tor one, it is reasonable to expect a dependence on body movements
as well.

On these premises, in chapter 2 we first outline a functional account
of the kind of sensorimotor processing involved in a generic visuo-
manual task, overtly inspired by the functional organization of the
primate brain areas involved in sensory and motor processing. Then,
with the aim of providing in a principled way a computational theory
of the underlying processes, we conjecture that such model could be
formalized in terms of a novel type of Dynamic Bayesian Network [77]
(DBN), which we denoted the Input–Output Coupled Hidden Markov
Model (IOCHMM). It is worth remarking that considerations about
noise in motor and perceptual neural signals form the main reason
for the widespread diffusion of probabilistic techniques in modeling
sensorimotor behaviors in humans and animals. Furthermore, proba-
bilistic graphical models together with Bayesian Decision Theory are
a rich tool not only for modeling biological systems [58] (the inverse
problem, fitting the data), but also for controlling artificial agents [4]
(the direct problem, generating/simulating the data).
With respect to previous work, the proposed IOCHMM provides a
general high level mechanism for the dynamic integration of eye and
hand motor plans, and enables the use of information coming from
multiple sensory modalities. It also accounts for the task–dependency
of eye and hand plans, by learning a sensorimotor mapping that is
suitable for the given task.
Chapter 3 concludes with a detailed mathematical account of how in-
ference, decision, and learning can be implemented in the IOCHMM;
such an account provides an extension of existing algorithms for HMM’s
to a special case that, to the best of our knowledge, had never been
treated before in the literature on sensorimotor behaviors.

The following chapters 3 and 4 specialize the present thesis to our
case study: sensorimotor coordination in the drawing task. The choice
of the drawing task proved helpful: since copying an original image
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on a white canvas requires a quite regular alternation of eye and hand
movements, this task provides a good example of the re–entrant influ-
ence between active vision and motor planning/control; at the same
time, it produces quite regular observable behaviors, and this intu-
ition is at the basis of both our experiments and the implementation
of the proposed computational model.
In chapter 3, as a starting point to characterize the visuomotor
strategies adopted in the drawing task, we propose some hypothe-
ses that try to capture the essential features that distinguish drawing
from other tasks, both with respect to the a priori requirements and
the observed behavior. The rest of the chapter is a detailed presen-
tation of our eye–tracking experiments, whose aims were to test the
correctness of our hypotheses, as well as their implications for the
observable sensorimotor behavior. The data collected in the experi-
ments also informed the implementation of our computational model.
Although many complex, natural activities have been studied in the
framework of Active Vision, to the best of our knowledge only very
few experiments on drawing tasks have been reported in the existing
literature, with just one experimental team focusing on gaze behavior
[123, 46]; therefore the experiments presented here, and the principled
analysis paralleled with a computational model, represent a novelty
in the panorama of eye–hand movement research.
Eventually, in chapter 4 we discuss the details of the implementation
of our computational model in the drawing task, and provide simula-
tion results along with qualitative and quantitative comparisons with
behavioral data. Notwithstanding the simplifying assumptions that
are at the basis of the first implementation presented here, our results
have proved successful in modeling the observed oculomotor behavior
(specially when compared with other existing influential models); fur-
thermore, the results obtained indicate that the approach proposed
here represents a promising perspective for the sensorimotor control
of a situated artificial agent.



Chapter 1

Active Vision

1.1 Passive Vision

Understanding of human vision has been dominated in the last decades
by the approach originally proposed by David Marr [68], whose funda-
mental idea is that the visual brain’s function is to build an accurate
internal representation of the visual scene, much in the vein of tradi-
tional Artificial Intelligence. This approach is usually termed Passive
Vision, as it underemphasizes, or even discards, the contribution of
active eye movements to the collection of processes that we call Vi-
sion.
This paradigm can be recognized at many different level of the anal-
ysis. Most psychophysical methods rely on determining sensitivity
thresholds, and to this end adopt tachistoscopic displays that do not
leave sufficient time for eye movement; mathematical descriptions of
the retinal stimulation have been provided in terms of Fourier series
of sine–wave patterns; physiological studies have concentrated on de-
termining the specific contribution of single cells to the internal repre-
sentation; and computer science has provided computational models
of human vision based on parallel processes operated on a static im-
age, to produce the final inner representation upon which higher order
processes run.
In the rest of this section the results of this approach are analyzed,
giving an overview of the main anatomical and physiological discover-
ies about the visual brain, and the resulting standard computational
model of the early stages of human vision.
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1.1.1 Early Vision: Neuroanatomy and the ‘stan-

dard’ computational model

The early stages of the primate visual system, from the retinal activ-
ity up to projections to the visual cortex, have been studied long since
with different techniques. The “wiring” can be studied using stains
that carry from cell to cell; the response of individual cells can be
studied by displaying patterns and recording the electrical behavior
of the cell, and typically, neurons in the visual pathway are discussed
in terms of their receptive field (RF), namely a record of the spa-
tial distribution of the effect of illumination on the neuron’s output;
finally, some structural information can be elicited using psychophys-
ical experiments.

Evidence from all the levels of experimental analysis indicates that
the visual pathway can be profitably schematized in subsequent stages
as follows [37]:

• The retina, where photoreceptive cells transduce impinging light
to electrical spikes. These signals are processed by subsequent
layers of cells, with the retinal ganglion cells connecting to the
final layer.

• The optic nerve consists of the fibers of the retinal ganglion
cells, and connects the retina to the brain through the the optic
chiasma where the left-hand side of each retina is connected to
the left half of the brain, and the right-hand side to the right
half.

• Two main pathways can be identified at this stage; most con-
nections go to the Lateral Geniculate Nucleus (LGN), but there
are several secondary paths among which the predominant one
projects to the Superior Colliculus (SC, see section 1.4.3).

• The LGN is connected to the Visual Cortex, one of the regions
most studied in the primate brain. The visual cortex consists of
a series of quite well defined layers, which carry out specialized
computations. Much of what is commonly called early vision
occurs in this structure, whose outputs are interpreted as a large
selection of different representations of an image.

• Visual information leaves the visual cortex for the Posterior
Parietal Cortex (PPC) and the Infero–Temporal cortex (IT).
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The functionalities implemented along these two pathways are
the object of a long standing debate, and are discussed in more
detail in section 1.3.2.

Understanding the functional specialization of visual brain areas was
a major scientific achievement [138]. The hierarchy itemized above is
primarily motivated as a descriptive classification of increasingly com-
plex functions. The main experimental support for this hierarchical
structure is the well studied systematics of laminar connections [30].
Complementary, cells’ response recordings show a general tendency
of the RF’s to increase their size along the hierarchy, consistently
with the specialization of function; the most striking example are
cells tuned to respond almost only to specific visual categories (e.g.
faces, letters, animals, . . . ) irrespective of their location in the retinal
image [59].

Retinal Cells and the Lateral Geniculate Nucleus

Retinal Ganglion Cells collect responses from the retinal photorecep-
tors. They are usually classified as on–center, off–surround, when
their response (defined as the mean firing rate) is increased by light
impinging within the RF and decreased by light falling off the RF; in
the opposite case, they are called off–center, on–surround. Fig. 1.1
depicts a model of the spatial response as a Difference of Gaussians
(DoG). Following the main visual path, signals from the retinal cells
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Figure 1.1: The response of a retinal ganglion cell can be predicted by adding
the temporal response of the center to the temporal response of the surround.
The model of the spatial response is a Difference of Gaussian model — there is a
center field that has a spatial sensitivity of the form of a narrow Gaussian, and a
surround field that has the form of a broad Gaussian. One field excites, the other
inhibits.
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travel through the optic nerve up to the LGN, whose neurons display
similar receptive field effects to retinal cells. The LGN is a layered
structure, with feedforward and feedback connections to and from
higher level areas, including visual cortex. The functional role, apart
from being a hub for distributing signals upwards in the hierarchy, is
generally unclear; however LGN shows a feature that is often taken
as a preliminary indication of the dual nature of the visual system
(discussed in section 1.3.2): it is formed by two main classes of layers
(Magnocellular and Parvocellular) whose cells are characterized by
different body sizes, different behaviors, and different areas of projec-
tion.
Input to the LGN from the retina keeps a retinotopic mapping, mean-
ing that nearby regions on the retina end up near one another in the
layer; it is usual to think of each layer as representing some form of
feature map.

The Visual Cortex

Most visual signals leaving LGN arrive at the primary visual cor-
tex, usually called area V1, where they are processed in a fairly well
known way, and then routed to parietal and temporal areas of the
cortex. The visual cortex is far the most studied, and most extended,
portion of the cortex; and this understanding has led to a widely ac-
cepted computational model of early vision, described in section 1.1.1.
In this section we briefly review the three main facts about early vi-
sion: there exist separate areas, each one processing a specific feature
of the visual input; processing of a given feature takes place concur-
rently at several spatial locations and scales; there is a distinction
between simple cells with smaller receptive fields, and complex cells
that receive projections from pools of simple cells.

Similarly to lower areas, the cortex is retinotopically mapped, and
cells are arranged so that their receptive fields move smoothly from
the center to the periphery of the visual field. The early stages of
cortical processing are usually classified according to their response
properties, and this part of the visual brain is interpreted as an atlas
composed by many separate retinotopic maps [138]: each map repre-
sents, i.e. consists in, the responses to a specific feature of the visual
input, such as intensity, orientation and color (V1,V2), motion (V5),
directed motion of oriented edges (V3,V5), oriented color (V4), etc.
Furthermore, psychophysical experiments on adaptation to specific
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spatial frequencies (e.g. [13]) have shown that contrast thresholds af-
ter a short time of adaptation, are elevated only for a limited range of
spatial frequencies close to the adapting frequency. This suggests that
the visual cortex is sensitive to several spatial frequency channels; the
contrast sensitivity function can be seen as a superposition of several
contrast sensitivity functions, one for each channel. Generalization of
these results led to the idea that each specific feature is processed at
several spatial scales.
Finally, along the hierarchy, cells are classified also as being simple or
complex : simple cells have smaller receptive fields, and respond locally
to a specific feature, while complex cells have larger receptive fields,
receive input from a pool of simple cells and are thus selective for the
given feature (or combination of features) at a more global level. The
most basic example is provided by cells selective for a given orienta-
tion: simple cells of this type respond most strongly to edges with the
given orientation, while complex cells are tuned to bars of that same
orientation.

A Model of Early Vision

The current best model of human early vision, based on the evidence
described in sections 1.1.1 and 1.1.1, is that the visual signal is split
into several spatial frequency bands, and each band is then subjected
to a set of linear filters. After this point, different routes can be
followed: if the task is to obtain recognition abilities, then the re-
sponses of these filters are subjected to a non–linearity followed by
noise; this is schematized in Fig. 1.2 and described in the rest of this
section. Otherwise, when the task is modeling bottom–up attentional
processes, linear multiscale responses are combined across scales and
across features to obtain a so called saliency map, upon which the
attentional process is deployed (see section 1.4.2 for details). The
model depicted in Fig. 1.2 is the multiresolution model of early vi-
sion, reduced to the case where the only basic feature processed is
orientation, and the ability to be reproduced is pattern sensitivity.
The stimulus is first smoothed with a Gaussian Derivative and sub-
sampled to obtain the Pyramid, i.e. the collection of copies of the
input image at different scales. Then the image at each scale is con-
volved with linear filters at a variety of orientations. Linear filters are
chosen because spatial simple cells act as edge detectors; this response
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Figure 1.2: An overview of a multiresolution model of human pattern sensitivity.
The stimulus is convolved with linear filters at a variety of scales and orientations
— as an illustration we show three scales, one orientation per scale — and then
subjected to a nonlinearity. The results have noise added, and are passed to a
decision process.

is well modeled, and generalized, by Gabor filter pairs (see Fig.1.3):

Gsym = cos(kxx + kyy) exp−

(

x2 + y2

2σ2

)

(1.1)

Gasym = sin(kxx + kyy) exp−

(

x2 + y2

2σ2

)

(1.2)

The characteristic behavior of filters is that they are similar to the
pattern they can detect: as an example, the first filter in Fig.1.3 looks
like a vertical light blob next to a vertical dark blob, which is similar
to what happens in proximity of a vertical edge. In general Gabor
filters resemble groups of oriented bars.
After convolution with several Gabor filters, at several orientations,
frequencies and scales, the resulting retinotopic maps are subjected to
some form of non–linearity, to get the output of the specific complex
cells. The results have noise added, and are passed to a decision
process.

1.1.2 Limitations

The passive approach to vision has proven successful in many respects,
and has led to efficient algorithms to solve a number of visual tasks.
Nonetheless, many fundamentally problematic issues can be found in
this approach.
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Figure 1.3: Gabor filter kernels are the product of a symmetric Gaussian with an
oriented sinusoid; the form of the kernels is given in the text. The images show Ga-
bor filter kernels as images, with mid-grey values representing zero, darker values
representing negative numbers and lighter values representing positive numbers.
The top row shows the vertical antisymmetric component, and the bottom row
shows the diagonal antisymmetric. Spatial frequency increases from left to right.

In the first place, nowadays it is largely accepted that the function of
the visual system cannot be reduced to that of building an internal
representation of the outside world, intended as a processed version of
the retinal image, and there is much debate about even the existence
— leave alone the usefulness — of such representation.
Problems arising from this approach include the issue of transac-
cadic integration, namely how the supposed internal representation
produced by passive vision might be maintained when the eyes are
moved; and the well known binding problem [126], questioning the
mechanisms by means of which different features processed in sep-
arate modules are then integrated in a veridical way. This issue is
usually solved introducing the concept of visual attention: however,
different perspectives on visual attention can be taken, and there is
much evidence that the mental spotlight metaphor advocated by pas-
sive vision is misleading (see section 1.2.1).
Finally, the passive approach underemphasizes the inhomogeneity of
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the retina and visual projections (see section 1.2.2); it has however
been pointed out recently that this is one of the most fundamental
features of the visual system, e.g. because it is the best way to make
the computational resources available in the brain sufficient to process
the incoming information.
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1.2 Active Vision And Visual Attention

The ability to move the eyes is a feature common to humans, most
other vertebrates and some invertebrates. This section analyzes the
strands of research on human and computational vision and visual
attention, that have led to recognizing the pervasive importance of
eye movements in perceptual and action–related functions. The main
critiques to traditional, passive approaches, and some milestones in
research on eye movements will be presented in section 1.2.1; this
discussion provides an introduction to the reasons and main themes
of the so called Active Vision approach, and its tight relation with
studies on visual attention. It follows, in section 1.2.2, a brief overview
of the anatomical background to active vision.

1.2.1 The Active Vision approach and its rela-

tions to Visual Attention

The expression Active Vision has been coined in relation to studies
in the computer vision community, that tried to overcome the com-
putational difficulties raised in the passive vision framework [1, 5, 34].
These works tried to reduce the computational demand of creating
a complete, detailed representation of the visual scene, by adopting
animal–like visual sensors with a central high–resolution region that
could be redirected to different locations of the visual field. Although
this approach underemphasizes the perceptual role of vision, not only
such systems were shown to be effective in the visual guidance of
agents’ behaviors, but also to allow the deployment of pointing, or
deictic, properties that can be used as an interface with the cognitive
activity of a situated agent [7, 93].
In a well–known paper by O’Regan and Noe [85] dealing with the issue
of visual consciousness, the basic idea of the Active Vision paradigm
was effectively synthesized as follows:

Instead of assuming that vision consists in the creation of
an internal representation of the outside world whose ac-
tivation somehow generates visual experience, we propose
to treat vision as an exploratory activity. [. . .] The cen-
tral idea of our new approach is that vision is a mode of
exploration of the world . . .

The proposal that eye movements provide an essential means of ex-
ploring the world, is in line with a critical analysis of classical ex-
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periments in psychology. Such experiments, following the idea of a
static, fully detailed representation in the visual brain, used tachis-
toscopic stimulus presentation techniques, with stimuli displayed for
times shorter than the saccadic latency period of about 150 msec re-
quired for an eye movement to occur. Although it can be shown that
subjects under this condition are able to see and solve tasks such as
recognition of familiar images, it probably cannot be said that ob-
servers are seeing the pictures in the normal sense of the word [81].
Several experiments have shown in fact that when the viewers are not
allowed to move their eyes [105], or when the image is modified as
soon as a saccade is executed [80], then their ability is highly reduced
in solving tasks such as learning and recognition of abstract patterns,
or item counting [3].
The active vision approach has moved the emphasis towards the se-
quential nature of information intake in vision. As a consequence of
the shift from the passive to the active vision paradigm, starting in
the 1980’s a renewed interest in eye tracking studies has flourished,
and a number of experimental tests have been designed in order to
specifically analyze the role of eye movements in both purely visual
(see section 1.4.1) and visuomotor (section 1.5.1) tasks. Similarly, a
number of mathematical and computational models of eye movements
have been developed, some of which will be discussed in sections 1.4.3
and 1.5.2.

A similar course can be recognized as well in the literature on Vi-
sual Attention (see [33] for a review). This phenomenon, or rather
collection of phenomena, has been investigated diffusely in the cogni-
tive sciences; as a reflex of the predominant passive vision approach,
one of the most frequently emphasized facts concerning visual atten-
tion, is the ability to attend covertly to a location in the visual field
without directing the eyes to that location.
This result, already known to Helmholtz, has been commonly inter-
preted in terms of a mental spotlight. The spotlight metaphor envis-
aged covert attention as the process of moving the spotlight towards a
specific region of an internal representation, thus assigning enhanced
processing to that region at the expense of others. Once again, this
interpretation relied on the idea of a fully detailed mental represen-
tation of the visual scene. When considering the relation to overt
attention, this approach implies that the spotlight is moved before
each saccade in order to select the locus of the next fixation; this re-
quires that covert attention be reallocated much more rapidly than



1.2. Active Vision And Visual Attention 11

saccade latency, which is highly implausible. Furthermore, the con-
ceptual weakness of the traditional approach is that it postulates the
existence of a central, supramodal mechanism of attention subserved
by anatomical circuits separated from those involved in sensorimotor
processing.
However it can been noticed from more recent literature on attention
that a distinction has been traced between selective visual attention
for object recognition [24] and spatial visual attention for action con-
trol [99] (a similar classification of the functional areas of the visual
system is discussed in section 1.3.2 ). While the mechanism proposed
for object attention seems to be related to those for object analysis
[75], the mechanism for spatial attention appears to be related to pro-
cesses responsible for the organization of movements in space [100].
Thus according to this view the programming of eye movements —
and generally speaking of motor responses — is the primary spatial
attentional process, among whose consequences are the effects identi-
fied as covert attention. This idea builds on the long recognized link
between covert attention and eye movement programming. Several
experiments have demonstrated that during the preparatory period
of a voluntary eye movement, responses to an attentional probe are
faster at the destination location of the eye movement [111]. In par-
ticular, the premotor theory of attention [110] proposes that covert
attention to a visual location results from the activation of the same
neural circuits employed for the programming of saccades and actions
in space, while at the same time inhibiting the actual motor response.

The work presented in this thesis follows the active vision approach,
and tries to extend it further by generalizing the fundamental ideas of
the premotor theory of attention; as detailed in the following chapters,
the focus of the thesis is in fact the extension of current models of ac-
tive vision to account not only for eye movements in visual tasks, but
also for the effects of the tight interaction of motor and oculomotor
programs in tasks that require some bodily action.

1.2.2 Anatomical need for eye movements

The first stage of visual processing happens in the so called cones, pho-
toreceptive cells on the retina that transduce the impinging light in
electrochemical signals. Apart from cones, other cells are distributed
on the flat retinal surface. However a depression with a diameter
about 1500 µm can be observed in the central region; it is in this re-
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gion that cones are most densely present while other cells are absent.
This region corresponds to about 5 degrees of the visual field, where
the highest optical quality (resolution) of the image is achieved; cor-
respondingly, psychophysics shows that many visual functions exhibit
gradually decreasing ability as the stimuli are placed at increasing
distance from the visual axis (an important exception being the de-
tection of motion or temporal changes): for descriptive convenience,
the region within 1 degree of the visual field is called the fovea and it
is indicated as the region of highest visual acuity, the region extend-
ing from 1 to 5 degrees is called parafoveal, and the peripheral region
encompasses the remaining visual field.
Signals coming out of the cones are then transmitted through the
optical nerve and ganglion cells, and distributed along different path-
ways: the main pathway is the one comprising the Lateral Geniculate
Nuclei (LGN) of the Thalamus, up to the Visual Cortex (see section
1.1.1). Many secondary pathways exist, the most relevant to active
vision being the one that terminates in the Superior Colliculus (SC,
see section 1.4.3).
A general characteristic of the signals projected along early stages of
vision, namely from the retina up to the visual cortex, is that a topo-
graphic mapping is used, whereby spatial relations in the activation
map of retinal cells are maintained in all subsequent layers; however,
as the signal proceeds, an increasing proportion of representation is
assigned to central regions, following an empirical transformation law
proposed in [107]:

u(r, φ) = log(r)

v(r, φ) = φ .

Here r and φ define a point in peripheral vision using radial coordi-
nates, while u, v are the cartesian coordinates of the corresponding
point in the given cortical map.

As a consequence of the retinal anatomy and the central magnification
effect of visual projections, visual acuity declines from the center to
the periphery, although with quantitative effects that depend on the
given task and context (see [34] for a detailed discussion).
These facts are the basis for the active vision approach, for two main
reasons: first, for any given task, eye movements should be considered
as necessary to acquire the detailed information required to solve the
task, since the information acquired from the visual periphery is poor
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and degrades during subsequent elaborations; and second, peripheral
vision should not be considered simply as a low resolution version of
foveal vision, serving the same purposes, but rather as functional to
providing preview cues useful to reorient the gaze direction.
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1.3 Dichotomies In The Visual Brain

1.3.1 Bottom–Up vs Top–Down processes in vi-

sual attention

A seminal paper by Pylyshyn [91] points out that although the study
of visual perception has made more progress in the past 40 years than
any other area of cognitive science, there remain major disagreements
as to how closely vision is tied to cognition:

[. . .] the question of why we see things the way we do in
large measure still eludes us: Is it only because of the par-
ticular stimulation we receive at our eyes, together with
our hard-wired visual system? or is it also because those
are the things we expect to see or are prepared to assim-
ilate in our mind? There have been, and continue to be,
major disagreements as to how closely perception is linked
to cognition - disagreements that go back to the 19th cen-
tury. At one extreme some see perception essentially as
building larger and larger structures from elementary reti-
nal or sensory features. Others accept this hierarchical pic-
ture but allow centripetal or top–down influences within a
circumscribed part of vision. Then there is “unconscious
inference” first proposed by von Helmholtz and rehabili-
tated in modern times in Bruner’s New Look movement in
American psychology [15]. According to this view, the per-
ceptual process is like science itself; it consists in finding
partial clues (either from the world or from one’s knowl-
edge and expectations), formulating a hypothesis about
what the stimulus is, checking the data for verification,
and then either accepting the hypothesis or reformulating
it and trying again in a continual cycle of hypothesize-
and-test.

The main claim of Pylyshyn’s paper is that there are undoubtedly
top–down cognitive influences on visual perception, but also that the
visual system itself is composed of different functional areas, and some
of these areas are not accessed by cognitive factors. In the words of
the author, “vision as a whole is cognitively penetrable” but the “early
vision system is encapsulated from cognition, or to use the terms we
prefer, it is cognitively impenetrable” [91].
A further distinction introduced in the above mentioned paper is a
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classification of different types of top–down influences: first, there are
well known top–down signals running through descending projections
in the hierarchy of cortical areas assimilated to early vision; however,
these are not related to cognitive factors, such as beliefs or expecta-
tions, rather this is a fine grain description of how the early visual
analysis is carried out to eventually provide higher functional areas
with a bottom–up contribution. Secondly, there exist genuinely cog-
nitive top–down factors that influence vision, but these contribute in
determining the nature of perception at only two loci. In other words,
the influence of cognition upon vision is constrained in how and where
it can operate. These two loci are: 1) In the decisions involved in rec-
ognizing and identifying patterns after the operation of early vision.
Such a stage may (or in some cases must) access background knowl-
edge as it pertains to the interpretation of a particular stimulus; 2) In
the allocation of attention to certain locations or certain properties
prior to the operation of early vision.
Thus, for what concerns our discussion on visual attention, Pylyshyn’s
work helps us define the kind of top–down processes which contribute
to overt attention allocation.

On the other hand, it is known from everyday experience that eye
movements can as well be entirely automatic and independent on
cognitive factors, e.g. saccades in response to abrupt changes in the
visual periphery. As a matter of fact, many models (some of which
are discussed in section 1.4.2) have tried to account for the statisti-
cal properties of eye movements (mainly the distribution of fixation
locations) on the basis of image properties alone. Most part of such
models, that in the perspective of the present discussion account for
bottom–up contributions to visual attention, rely on the concept of
a saliency map: not only does the hierarchy of primary visual areas
(as described in section 1.1.1) produce a detailed representation of
the external world, but it also produces the so called saliency map,
namely a topological representation of the saliency, or conspicuity, of
image locations; according to these accounts, foveal attention would
be driven towards the most salient locations, thus relying entirely on
the properties of the visual stimulus.
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1.3.2 Action vs Perception, and the debate on

consciousness

As anticipated in section 1.1.1, the physiology of early visual stages
reveals the existence of two classes of layers, namely Magnocellular
and Parvocellular, whose cells are different in body size, response and
outgoing projections.
This fact is often interpreted, although with some controversy, as a
signal of a much more general property of the visual system: the
existence of two different streams of processing, whose physiological
and functional characteristics are significantly different. Although the
interconnections among cortical areas are multiple, two main routes
were first clearly identified in primate’s brain [130]: a ventral stream
projecting onto temporal areas and a dorsal stream running from the
primary visual cortex to parietal areas. The authors suggested that
the kind of visual processes carried out by the two streams were re-
lated respectively to visual recognition, and visuospatial awareness.
Further investigation of this duality has led to the classical view of
the streams as what (recognition of object) and where (spatial lo-
cation of objects). More recently however, Milner and Goodale [74]
proposed a different interpretation: rather than emphasizing differ-
ences in the visual information handled by the two streams, their
account has instead focused on the difference in the requirements of
the output systems that each stream of processing serves. The view is
now largely accepted that the functions subserved by the two streams
are respectively recognition and the control of action, thus leading to
the following dichotomy: Vision for Perception vs Vision for Action
(see Fig. 1.4). The fundamental idea of this account is that the vi-
sual system for perception and the visual system for action carry out
very different transformations on the same visual input, because the
requirements of the output systems they subserve are different. Infor-
mation about attributes of objects — such as size, shape, orientation,
location — are processed by both streams, but the nature of that
processing is different; as an example, only the relative value of the
above mentioned attributes is of concern to perception, and percep-
tual representations deliver inaccurate, rough metric information. By
contrast, actions must be fine tuned to the real metrics of the world.
The following table summarizes some of the main differences between
the two streams, as indicated by the work of Milner and colleagues.
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Figure 1.4: Simplified scheme of the main visual pathways, with emphasis on
the Dorsal and Ventral systems, after [74].

Ventral Dorsal
Scene–based reference frame Effector–based reference frame

– –
Relative metrics Absolute metrics

– –
Representation can enter memory Moment–to–moment computations

– –
Visually conscious Unconscious

The main experimental evidence for this interpretation of the dual vi-
sion system, come from observation of patients with brain damages. In
particular patients affected by Optic Ataxia in consequence of lesions
to the PPC are able to recognize familiar objects, but show a diffi-
culty or complete inability to reach and grasp; clearly, depending on
the precise region of the lesions, several specific deficits appear, as dif-
ferent subregions of PPC support transformations related to different
motor output. An example of particular interest to the present thesis
is that of ataxic patient D.F., who can recognize objects but when
asked to recall them from memory and represent them by drawing,
can only produce unrecognizable traces1. At the opposite, patients

1As a side remark, it should be said however that drawing from memory (and
drawing in general) should not be considered as a purely action–related task,
since recalling the visual appearance of objects from memory could as well involve
perceptual operations: drawing is the kind of task where perception and action
are hardly dissociated.
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affected by Visual Agnosia due to lesions to the ventrolateral region
of the Occipital Cortex are unable to recognize familiar objects and,
in the most severe cases, even faces of relatives and friends; yet, they
are able to execute consistent motor actions directed towards those
same objects, and in same cases can recognize the objects in another,
non–visual sensory modality.

Thus, all this stream of evidence not only confirms that the two main
pathways of the visual system support different functions, and that
such functions are related to perception and action, respectively. It
also, at least in the perspective of Goodale and Milner, supports the
idea that perceptual experience in the visual modality is almost en-
tirely enabled by ventral modules, while the dorsal stream subserves
action–control functions that can run semi-autonomously, or that at
least carry on computations whose results are not accessed directly
by awareness.
Although out of the scope of this thesis, it is interesting to remark that
clearly this view is not undebated, and an influential account of per-
ceptual experience and consciousness has been proposed by O’Regan
and Noë [85] to oppose the dual vision theory. The sensorimotor,
or enactive, approach advocated by those authors regards action as
constitutive to perceptual experience. In particular reference to vi-
sion, recalling the fundamental role of eye movements, the enactive
approach states that the human brain is able to learn so called senso-
rimotor contingencies, namely sets of rules describing the transforma-
tion of the sensory input upon movement of the sensory apparatus: it
is exactly the mastery and usage of these contingencies that enables
perceptual experience, thus once again highlighting the fundamental
role of the exploratory movements of active sensors.
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1.4 Bridging The Gaps: Eye Movements

Notwithstanding the lively debate regarding the dichotomies men-
tioned in section 1.3, there is widespread agreement about the picture
of the visual and visuomotor brain as an integrated system that deliv-
ers to us a coherent perceptual experience of our relations to the world.
In other words, if any dichotomies exist, it seems to be out of discus-
sion that some mechanisms must exist that facilitate the integration
and coordination of the processes corresponding to the opposite poles
of each dichotomy.
Intuitively, the ability to move the eyes and redirect the gaze is one
of such mechanisms, probably the most apparent, and eye movement
recordings have been for long time a valuable source of insight on the
kind of strategies that are adopted in solving visual and visuomotor
tasks. This approach, namely that of inferring the relevant strategic
and cognitive factors from eye movement data, will be discussed in
detail in section 1.4.1 where we consider the most common experi-
mental paradigms in active vision: text reading, scene perception and
visual search (more recent experimental trends, aimed at analyzing
eye movements in complex visuomotor tasks, will be discussed sepa-
rately in section 1.5).
In support of the above mentioned intuition, neurophysiological evi-
dence shows that eye movements are the result of the cooperation/competition
of multiple brain areas, each related to a different function. In sec-
tion 1.4.2 we discuss the contribution of Early visual areas, as cap-
tured by computational models that have been successful in account-
ing mainly for the bottom–up processes that guide visual attention.
Subsequently, in section 1.4.3, we analyze a different stream of models,
based on probabilistic techniques, that have recently proven successful
in modeling the main brain centers for gaze control thus accounting
also for top–down effects.
Eventually, in section 1.4.4, we briefly review the neural paths of eye
movement generation, and submit that those paths involve processes
that span all of the poles of the dichotomies recalled in section 1.3.

1.4.1 Classical paradigms in eye movement re-

search

Classical experimental paradigms for studying eye movements and
their relation to attention and cognition are text reading, scene per-
ception and visual search.
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Visual search, namely the task to locate a target among a number
of distractor items on the basis of some visual properties, is an ac-
tivity where cognitive influences can be minimized, and it is thus the
most suitable to focus on the basic properties of saccadic movements,
namely the latency and the metric properties (the partial indepen-
dence of the processes regulating such properties is also at the basis
of one of the first models of complex 2d eye movements, described in
section 1.4.2). Furthermore, it turns out there to be a close corre-
spondence between the findings in such behavioral studies and those
shown in experiments of primate brain physiology (see [132] for a re-
view).
The main question related to visual search is the following: are the
items processed within each fixation dealt with in parallel, or is there
a process of covert attentional scanning that scans each item serially?
Typically the Reaction Time (RT) to indicate the presence or absence
of the target is measured, and its plot against the number of display
elements is termed search function; a flat search function is thought
to reflect parallel search, whereas a function that denotes an increase
in RT with the number of elements involves serial search.
A dominant tradition in visual search was initiated with a seminal
paper by Treisman and Gelade [127]. They argued that some primary
visual properties allow a search in parallel across large displays. In
such cases the target appears to ‘pop out’ of the display. More recent
and detailed studies of eye movements in search reinforce this view and
exclude a model in which covert attention scans around the display
prior to any overt eye movement, thus favoring the parallel–processing
model according to which visual search involves serial overt scanning
with eye movements and parallel processing of few items during a
given fixation.
Work in the area of visual search thus produces convergent findings
with those discussed in section 1.2.1, and closely related to the ideas
concerning the premotor theory of attention: during a fixation, visual
information is processed in parallel with enhanced processing at the
area of the following saccade location. There is no support for sequen-
tial intra–fixational scanning by covert attention.

Another historical area of behavioral experimentation in eye move-
ments is text reading. This task involves a tight interaction between
perceptual and cognitive functions, while at the same time posing
strict constraints on eye movements of the reader that make it easier
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to classify saccades in few classes: a reader typically advances along a
line of text making a sequence of fixations and forward saccadic move-
ments. Occasionally within–word refixations or inter–word regressive
movements in the reverse direction breaks the forward sequence of the
scanning. Again, measured quantities are usually saccade length and
fixation duration.
Further experiments, based on gaze–contingent methodologies [71], al-
lowed to study the perceptual span and the role of parafoveal preview.
Various different manipulations of this technique have been developed,
among which the moving window manipulation is perhaps the most
widely used. In this technique, as applied to reading, the subject sees
normal text within a window of predefined size but outside this win-
dow the text is masked in some way, for example each text character
may be replaced by an “x”. Each time the eye moves, the display is
changed so that the unmodified material is always presented precisely
where the gaze is directed. If the manipulation does not affect the
speed of reading, it is reasonable to assume that the material outside
the window is playing no part in the normal process. Conversely, when
the window size is reduced so that reading speed is affected adversely,
then it can be deduced that material from regions outside the bound-
ary must normally be processed. This has allowed measurements of
the perceptual span, the region from which visual information is ex-
tracted. Summarising many results, the perceptual span is found to
extend no more than 15 characters to the right of fixation and only 3-4
characters to the left, and the asymmetry of the span is an immediate
indication that premotor attentional effects are involved.
Thanks to the restricted set of movements allowed in reading, this
area was the one where the first mathematical and computational
tractable models of eye movements emerged, to reproduce the statis-
tics of saccade length and fixation timing (see e.g. [70, 83, 96], and
section 1.4.3).

Although much less intensively investigated, some of the principles
emerging from studies of active vision in reading are also at work
during the more general situation of viewing visual material such as
natural objects and scenes. Early studies in picture viewing, such as
the famous works by Buswell [16] and Yarbus [136], already pointed
out that wide individual differences were present, and most important,
that even more substantial differences could be found in the same sub-
ject, looking at the same image, when asked to solve different visual
tasks.
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An important breakthrough in gaze analysis was the concept of scan-
path, introduced by Noton and Stark [82] who claimed that when a
particular visual pattern is viewed, a particular sequence of eye move-
ments (the scanpath) is executed. Although this direct relation of
the scanpath to visual content has been rejected soon, the general
position that eye movement patterns can reveal much about visual
perception has been retained in subsequent research, and a number of
workers have developed techniques to capture statistical regularities
in the pattern of eye scanning. The simplest form of sequential depen-
dence in basic gaze parameters is the Markov process, in which the
properties of the immediately preceding saccade constrain the prob-
abilities of the one currently programmed; these kind of models were
soon extended to account also for properties of the image that can
make a region more salient than others, and additional cognitive fac-
tors that make a region more informative than others (see section
1.4.3 for extensive discussion).
Other attempts to carry out quantitative measures in this framework,
address the useful field of view for picture perception using a gaze-
contingent window technique in a manner similar to that used in stud-
ies of reading; but in the case of pictures [101, 112] viewing time and
recognition scores are impaired unless the window is large enough for
about half the display to be visible, and even very low–resolution de-
tail in the periphery (very well below the acuity limit at the peripheral
location) aids performance considerably.
However, although fundamental, the role of peripheral vision in pic-
ture viewing, according to most influential recent studies, remains
quite different from what envisaged in the framework of passive vision.
A particularly striking example is the phenomenon called Change
Blindness : under many experimental conditions, viewers tend to not
notice even significant changes in an image, for example if a white
frame (a ‘flicker’) is shown for about 80 msec between the two im-
ages depicted in Fig. 1.5(a) and 1.5(b). In [84] Change Blindness
is interpreted as a proof of the fact that our internal representations
of the outside world, instead of being very detailed and rich, are ac-
tually rather sparse. In this view, to get the impression of richness,
there’s actually no need for the richness to be in the head; rather,
what has to be in the head is merely effective procedures for getting
at the information in the world. Such algorithms we have, in the form
of movements of the eyes or shifts of attention. If we’re interested in
some detail of the visual scene, we simply need to move our eyes or
our attention to that detail, and it is immediately available.
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The above mentioned account of Change Blindness can be summa-
rized by saying that in the active vision approach the world is treated
as an external memory.

(a)

(b)

Figure 1.5: An image and its modified version, used in a Change Blindness
demonstration. The change in the image is hardly detected by a human observer
if a white frame is interposed between the two images for about 80 msec.
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1.4.2 Saliency–based models

Several models for stimulus–driven (or bottom–up) overt eye move-
ments have been designed; here we limit the presentation to three
recent, influential models, that are based on the pervasive concept of
a saliency map, and also give some hints on how to include top–down
factors. It is worth recalling that biological plausibility of the saliency
map is still largely debated, and a review of candidate brain areas that
could contribute to such map, is presented in [113].

Saccadic movements can be studied according to two basic proper-
ties, namely the latency and the metric properties. The partial sep-
aration between such two properties was the principal feature of the
functional model proposed by Findlay and Walker [35]: based on the
emerging physiological knowledge of the brain pathways involved in
visual orienting, this model separates two pathways controlling Where
and When information. In Fig. 1.6 this separation corresponds to the
two vertical streams. The When stream is envisaged as a single in-
dividual signal whose activity level varies. The Where stream is a
set of interconnected activity maps, resulting in a salience map from
which the saccadic target location is selected. The horizontal bands
represent processing levels that become progressively less automatic
moving in the hierarchy from bottom to top. Interaction between the
two streams occurs at the lowest levels in terms of reciprocal compet-
itive inhibition.
It should be noticed that such model presents a precise, physiologi-
cally motivated, account only of its lowest levels, those corresponding
to automatic, or preattentive, orienting processes. Top–down influ-
ences are just loosely designated.

Furthermore, the concept of saliency map was first proposed by Koch
and Ullman [56], as the key part of a model for implementing parallel
search in biological systems. A saliency map is a topographical map
encoding the ‘saliency’ of each point in the visual input; its essential
feature is that it pools the outputs of different feature maps. In this
way, the final level of salience at any point is indiscriminate with re-
gard to its origins in color/brightness, form, motion properties, and
should be additive across features.
Up to date, the most successful computational implementation of a
preattentive selection mechanism based on the architecture of the pri-
mate early visual system, was presented recently by Itti and Koch [51],
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Figure 1.6: The framework for saccadic eye movement generation presented by
Findlay and Walker [35].

and it relies essentially on the saliency map. In this architecture (see
Fig. 1.7), low–level visual features (color, intensity and orientation)
are extracted in parallel from several spatial scales, using a biolog-
ical center-surround architecture (see section 1.1.1). The resulting
feature maps are combined to yield three conspicuity maps for color,
intensity and orientation. These, in turn, feed into a single saliency
map, consisting of a 2D layer of integrate–and–fire neurons. Finally
a winner–take–all network shifts the focus of attention to the cur-
rently most salient image location. Feedback inhibition (also called
inhibition-of-return, IOR) then transiently suppresses the currently
attended location, causing the focus of attention to shift to the next
most salient image location.



26 1. Active Vision

Figure 1.7: General architecture of the saliency based model by Itti and Koch
[51].

A third model that is worth mentioning here, is the ‘DPZ’ model [22],
implementing the proposal appeared in [26] later refined by neuro-
physiological evidence[24]. This so called ‘biased competition’ theory
of visual attention includes two forms of Top–Down influence: the first
is related to signals coming from higher ventral area IT, and accounts
for a bias in the computation of feature maps. A sort of saliency map,
located in this model in Posterior Parietal (PP) areas, is the source
for the second type of top–down signals; the feature maps and PP are
reciprocally linked, and it is through their iterative interaction that
the model gradually converges to a single winning–item location. At-
tention is thus a dynamic emergent property of the modeled system,
and in the converged state the selected location is active in all feature
maps – even if, for a given map, the target item is of low salience.

1.4.3 Probabilistic models that include top–down

factors

In this section we present a survey of the considerable body of lit-
erature from experimental psychology and artificial intelligence that
led to the adoption of probabilistic tools in modeling eye movements
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in purely visual tasks; these class of models gave rise to most recent
computational accounts for top–down influences in gaze shifting. The
models presented here will be recalled then in chapter 3, where a novel
functional model for gaze control in visuomotor tasks is presented.

Hidden Markov Models for gaze control

Eye movements are usually analyzed on the basis of the distinction
between saccades, i.e. ballistic movements, and fixations, correspond-
ing to the periods during which the displacement of the gaze point
remains below a given threshold. Under this conceptualization, the
oculomotor behavior is described primarily by the scanpath, i.e. the
temporal sequence of fixations executed by the subject.
The sequential nature of gaze allocation, and the observation that
saccades are driven by neural signals that are inherently noisy, sug-
gest that scanpaths are best described by stochastic processes. Early
attempts to model eye movements this way adopted zero–order and
first–order Markov chains [27, 119, 47], while Hidden Markov Mod-
els (HMM) where then introduced [98, 69, 28] to account for the two
stages of saccade generation, namely planning and execution; more
recent technical advances in this direction were described in [67],
with the adoption of a Bayesian framework for statistical inference
on HMM’s that allows to infer the hidden cognitive state from the
observed eye movements (inverse inference).
A problem with the models above is that standard HMM’s for visual
attention conceptualize attention as an autonomous random process
that is not affected by the visual information perceived during fixa-
tions. Opposite to this schematization, it stands the obvious fact that
the variability in observable quantities, e.g. fixation duration and sac-
cade length, reflects not only random fluctuations in the system but
also factors such as moment–to–moment changes in the visual input,
cognitive influences, and the state of the oculomotor system. In order
to account for those additional factors, previous models have been
recently extended with the adoption of variables that explicitly model
top–down contributions to saccade planning.
Feng, in [31, 32], has extensively described a suitable computational
strategy to capture the relationship between cognitive (hidden) pro-
cesses and (output) eye movements, accounting at the same time also
for the contribution of the visual input at each fixation. This model of
eye movements in reading adopts the Input–Output HMM (IOHMM,
see [11]) which is a special case of a class of probabilistic graphical
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models called Dynamic Bayesian Networks [77]. In the IOHMM the
temporal evolution of the cognitive/attentional state (or hidden) vari-
able is described as a Markov process and inferred from the observed
output variable, but is also conditioned on an additional observed (in-
put) variable (see Fig. 1.8). More formally, at each time step t, define

Figure 1.8: Diagram of the Input-Output Hidden Markov Model (IOHMM) for
eye movements in a generic visual task, proposed in [31].

an observable variable it that accounts for the informativeness of the
fixated region of the image, a hidden variable dt for the cognitive (at-
tentional) state of the system, and an observable variable xt denoting
the location of the fixation. In order to design a suitable graphi-
cal model, some assumptions must be made on the dependencies of
different variables; a particular example would be that the cognitive
state depends only the observed input and previous cognitive state
according to:

p(dt|dt−1, it) ; (1.3)

and eye position depends on the cognitive state:

p(xt|dt) . (1.4)

Under these assumptions, the graphical model becomes the one de-
picted in Fig. 1.8, upon which inverse inference of the cognitive state
can be realized:

p(dt|x1:t, i1:t) =
p(x1:t|dt, i1:t)p(dt|i1:t)

p(x1:t|i1:t)
=

p(x1:t|dt)p(dt|it)

p(x1:t)
=

p(dt|x1:t)p(dt|it)

p(dt)
(1.5)
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where the first and last passages are obtained after application of the
Bayes rule, and simplifications in the third term correspond to missing
connections in the independence graph of Fig. 1.8. Notice that in
equation (1.5) the posterior probability of a cognitive state depends
separately on the observations (eye movements) and the visual input.
This model has been implemented in a reading task, and after learning
model parameters from experimental data, it has proven effective in
fitting the statistical properties of reading eye movements [32].

Bayesian models of cortical pathways for gaze control

We move now to another influential model of eye movements based on
Bayesian techniques, that has been proposed recently, as an extension
of Bayesian models of visual cortical connections.
As explained in section 1.1.1, processing of visual information in the
visual cortex is usually schematized as the operation of a sequence
of modules, each one taking as input the output of the previous one;
this can be called a feedforward model, as it accounts for the feedfor-
ward connections among cortical areas; the role of forward (‘driving’)
connections is thought as favoring certain input patterns over others,
leading to a progressive evolution of response selectivity in the ascend-
ing direction. It is well known however that feedback connections also
exist and, although their role is more subtle, they constitute a signifi-
cant part of visual processing in primates, especially because cortical
feedback enables top–down factors to influence visual attention.
The key idea in modeling feedback connections is that feedback acts
to select certain ascending signals in preference to others, culminating
in a steady state resonance, in which the feedback and feedforward ac-
tivity is mutually reinforcing over several hierarchical levels (see [76],
and [114] for a review).
The model proposed in [65] captures the structure of feedback/feedforward
cortical interactions in the case of vision, schematized in Fig. 1.9(a),
with the elegant probabilistic model summarized in Fig. 1.9(b). Here
different visual areas are schematized as boxes implementing stochas-
tic variables, and linked as a Markov Chain. The activity in V1, x1 , is
influenced by the bottom-up feedforward data x0 and the probabilistic
priors P (x1|x2) fed back from V2, and so on.

The approach described above was originally proposed for image
analysis; it has been then extended to model the reciprocal interac-
tions of brain areas along the whole visual system, including the main
centers for gaze control, to account for eye movements in visual tasks
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(a)

(b)

Figure 1.9: 1.9(a) Diagram illustrating how ascending and descending streams
may operate semi-autonomously within a serial pathway, after [114]. 1.9(b)
Schematic of the corresponding hierarchical Bayesian inference framework in the
cortex, after [65].

[14].
A schematic overview of the brain centers for saccade generation was
given in [104].The model in [14], schematized in Fig. 1.10(b), re-
produces the interdependence of only the main brain areas involved
in gaze control, but proposes as well a detailed account of the con-
nection of such oculomotor areas to those related to the analysis of
visual input (Fig. 1.10(a)). Each area is represented as the process
that computes the probability distribution of a stochastic variable,
and gaze-related variables are then computed via the Maximum A
Posteriori (MAP) rule. In particular, this model is able to include
three levels of gaze control, namely the Superior Colliculus (SC) at
the lowest level, Posterior Parietal Cortex (PPC) at the middle level,
and Frontal Eye Fields (FEF) at the highest level. Furthermore, it
shows how the two visual streams related to Action processing and
Perception contribute to gaze control separately in PPC and FEF re-
spectively, to eventually cooperate/compete for gaze control in SC.
On one hand, the PPC module, given the low level information X low

t

, computes a candidate fixation fPPC
t via MAP rule on P (fPPC

t |X low
t ).
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(a)

(b)

Figure 1.10: 1.10(a): interconnections among the main brain areas involved in
saccade generation. 1.10(b): graphical structure of the corresponding Bayesian
Network. Adapted from [14] and [79]

On the other hand, the FEF module takes into account information
about the task, X task, giving a saliency to the objects detected in the
scene X

obj
t (e.g., faces), and selects a location fFEF

t via MAP rule on
P (fFEF

t |Xobj
t , X task). Eventually the saliency’s and object’s parame-

ters are denoted by Θs, Θo and regulate the extraction mechanism of
the specific features.
The target ft where the focus of attention (FOA), X

foa
t is set, is even-

tually selected by taking into account the probability that the stimulus
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in the response field is the target from prior information, through a
posteriori analysis of the sensory cue to target information, and that
a location at time t − 1, ft−1, was explored. In other words, at time
t, the target position is estimated in terms of the MAP probability of
focusing a location X

foa
t , then,

ft = argmaxP (Xfoa
t |ft−1, f

PPC
t , fFEF

t ) . (1.6)

1.4.4 Bridging the gaps

Although the real neural architecture of the areas that contribute to
eye movement generation is highly complex, the survey of existing
models of gaze control have highlighted three main regions, namely
SC, PPC and FEF. The joint operation of these three regions, to-
gether with their feedforward/feedback connections from/to visual ar-
eas, constitute a possible mechanisms that facilitate the integration
and coordination of the processes corresponding to the opposite poles
of the dichotomies described in section 1.3.
In particular, FEF — the highest level of gaze control, in terms of
number of ‘steps’ that separate it from the brainstem where motor
signals are forwarded to the muscles — projects to SC accounting for
top–down influences, both action–related (resulting from input from
the dorsal stream to FEF) and perception–related (resulting from
input from IT to FEF). PPC — the middle level of gaze control
— contributes mostly in terms of reflexive saccades towards non–
anticipated targets; thus, it accounts for an action–related contribu-
tion to eye movements that incorporates both bottom–up (saliency)
signals and behavioral goals (something that can be situated between
purely stimulus driven gaze shifts and those generated purely by cog-
nitive activity). Finally, SC acts as the lowest–level hub for gaze
control, also mediating a strategic mechanism such as Inhibition Of
Return.
Fig. 1.11 gives a schematic positioning of the three gaze centers along
the dichotomic axes discussed in section 1.3, showing that all the poles
are covered.
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Figure 1.11: A schematic depiction of the three gaze centers, positioned in a
metaphoric reference frame defined by the dichotomic axes discussed in section
1.3. The processes that guide eye movements span all the poles.

1.5 Eye Movements In The Guidance Of

Action

Differently from studies of eye movements in purely visual tasks, deal-
ing with visuomotor tasks requires a shift of perspective: the main
difference in such cases is that eye movements should not be treated
as entirely independent from movements of other parts of the body.
Situations in which the viewer is also engaged in carrying out some ac-
tion are the most common in daily life, and in these cases the pattern
of eye scanning must be integrated in an overall action sequence.

1.5.1 Novel experimental paradigms: natural com-

plex actions

A famous visuomotor task involving manipulation of objects was orig-
inally devised by Ballard and colleagues [6, 7] on a mouse–controlled
computer screen, later on reproduced with real world objects [87].
The block–copying task consisted in copying a certain disposition of
colored blocks (the model) onto a workspace initially blank, by select-
ing and picking up colored blocks from a resource.
The main observation in this experiment is the regularity in the rhyth-
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mic pattern of eye–hand movements, within each component subtask.
More specifically, it appears that temporal coordination is controlled
by the availability of the eye, with hand movement delayed with re-
spect to the relevant fixation.
The interpretation given by the authors is usually referred to as the
theory of deictic pointers: according to this view, eye fixations are
used deictically (i.e. as pointers) to visual information that is rele-
vant to the current subtask. In this way, eye movements are guided by
task demands, and become a means to select objects for subsequent
actions, thus allowing a minimization of the memory and computa-
tional loads, and definitely eliminating the need for a detailed internal
representation.

A number of studies carried on in sports [61, 62, 63] and natural
visuomanual actions [64, 86], support the view that eye movements in
most cases are not simply attracted towards visually salient locations,
but rather are determined by the demands of the motor task. These
experiments have shown that the eye tend to fixate locations of the
scene where task–relevant information is found, and that not only fix-
ations often anticipate motor actions (lookahead fixations), but also,
as in the case of table–tennis or cricket, they predict the locations
that relevant objects will occupy in the near future.
Land’s analysis of natural actions introduced the concept of object–
related actions (ORA). ORA’s are most often carried out sequentially,
and involve engagement of all sensorimotor activity on the relevant
object, including a number of fixations and subsequent manual ac-
tions. Furthermore, Land provides a tentative taxonomy of fixation’s
functions in manipulative tasks, using the following categories: locate
an object to be used; direct fixation to the object that is going to be
manipulated; guide relative motion of two objects that must be put
in contact; check the state of an object.

Another influential work in this field was presented by Johansson and
colleagues [53]: they recorded eye and hand movements in a task that
involved picking an object, bringing it to a target and avoiding an in-
termediate obstacle, and bringing it back to the initial position. The
aim of this experiment was to explore the precise spatial and tempo-
ral relation between gaze fixations and ORA’s. In accordance with
the above mentioned studies, Johansson and colleagues found that
fixations are almost always directed to critical landmarks for action
control, and that gaze usually leads hand movements. Furthermore,
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they made the hypothesis that fixations are used to obtain spatial
information for controlling manipulatory actions, and indeed in their
experiment subjects always fixated contact points before moving the
hand there; often, this was also the case with fixations directed to the
intermediate obstacle, thus supporting he idea that fixations play the
role of spatial keypoints for hand/object trajectory.
Regarding temporal relations, the timing of saccades away from a
landmark is found to be determined by critical kinematic events hap-
pening at that landmark (e.g. grasp contact), supporting the idea of
a discrete event–driven sensory control.
A last point worth mentioning here is that it is largely accepted that
motor output during dexterous manipulation largely relies on predic-
tive control mechanisms, the formation and updating of which depend
on correlations between motor output signals and their sensory conse-
quences as established by experience (this point is largely discussed in
chapter 2). The results presented in [53] suggest that the anchoring of
gaze–hand coordination to contact points constitutes a mechanism for
managing correlations between visual and somatosensory information,
and efferent copy signals required for predictive motor control.

1.5.2 Modeling: Visual routines and the alloca-

tion of visual resources

Following the experimental evidence presented in section 1.5.1, Bal-
lard and colleagues are developing a computational model that tries
to capture the role of eye movements in visuomotor tasks [118, 49].
Before describing the model, it should be made clear that such model
aims at capturing not the spatial targeting of saccades, but rather the
temporal scheduling of movements related to different subtasks.
The starting point for this approach is the observation that in a com-
plex visuomotor task, the eyes are to be considered as a physical
resource that can only be allocated sequentially to support the reso-
lution of different subtasks. In other words, concurrent pieces of the
task may compete, at a given time, for getting control of sensory re-
sources and obtaining the required information.
From a computational standpoint, this fact can be associated with
the concept of visual routines [129]: visual routines can be described
as sensorimotor programs that keep control of the eye, implement all
the necessary processing of the visual input, and extract relevant in-
formation for a given task (perceptual or motor). In the framework
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proposed in [118, 49] fixations are considered as part of visual routines,
and the model aims at understanding how different routines associ-
ated with different tasks are managed in time, rather than describing
the spatial oculomotor behavior. Thus, any routine, or behavior, at a
given time t has the ability to:

• direct the eye

• perform appropriate visual processing

• choose an appropriate action course

The solution envisaged by the authors to the problem of managing
concurrent behaviors is based on the idea that eye movements serve to
reduce uncertainty about task–relevant environmental variables, and
borrows techniques from the theory of reinforcement learning [121]:
a value is assigned to a behavior by estimating the expected reward
of taking the related action, and the expected cost of the uncertainty
that will result if the related eye movement is not made; then at any
time step, the behavior with highest expected value is chosen.
To see this in practice, the authors model behaviors as Partially Ob-
servable Markov Decision Processes (POMDP); each behavior is a
4-tuple (S, A, T, R), where:

S = state space (1.7)

A = action space (1.8)

T (s, a, s
′

) = transition probability from s to s
′

, through action a(1.9)

R(s, a) = expected payoff for taking action a in state s (1.10)

Furthermore visual information regarding the state of the agent should
be considered as noisy, and this is modeled by estimating the state
with a noisy Kalman filter according to the system dynamics; this
allows to keep track of the increase in uncertainty due to a missing
Kalman update (which happens when sensory resources are allocated
to another behavior).
Then, the goal is to find the optimal policy

Π⋆ : S −→ A (1.11)

so as to maximize discounted long term reward [121]. Standard learn-
ing techniques allow to discover the optimal value function Q(s, a),
namely the expected discounted reward if action a is taken in state
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s, and the optimal policy is followed thereafter; then the agent, given
its state estimate s, can behave optimally by always choosing:

a⋆ = argmaxQ(s, a) . (1.12)

Finally, uncertainty is taken into account by evaluating the cost (or
loss function) associated to an action that is optimal with respect to
the state estimate s, but suboptimal with respect to the actual state
of the environment.
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1.6 Motor Control

According to [54] “The study of motor control is fundamentally the
study of sensorimotor transformations.” Such a position stresses the
crucial role of sensory information in motor control: Wiener’s original
idea of feedback control as the basis for intelligent behavior, is still
central in most recent explanations of biological movement. In this
section we try to analyze how sensory feedback is actually used in
existing models, and which features of biological systems are missing
in such models.

1.6.1 The Optimal Control Framework

Most successful motor control models are those based on Optimal
Control, that have yield accurate descriptions of observed phenom-
ena; this class of models finds an element of biological plausibility in
the fact that the sensorimotor system is shaped by processes, such
as evolution, adaptation and learning, that act to improve behavioral
performance.
Given a task, the problem of motor control is that of generating/selecting
motor signals that produce the appropriate movement, in terms of
kinematics and dynamics, among the infinite possible movements that
biomechanical redundancy allows for. In Optimal Control models this
is cast as an optimization problem, where the appropriate movement
is the one that satisfies a performance criterion, i.e. minimizes a cost
function.
Formally, the system is described as a dynamical system with state
variable(s) x ∈ Rm and control signal u ∈ Rn, where

ẋ(t) = f(x, u, t) . (1.13)

The performance criterion, or cost function, takes the general form of
an integral over the time interval of the movement to account for the
fact that cost is accumulated during execution:

J0 = Φ(x(T ), T ) +
∫ T

0
L(x(t), u(t), t)dt . (1.14)

On the right side, T represents the terminal time, and the first term
is the terminal cost, which is a function only of the terminal (i.e.,
final) state, x(T ). Minimization of this functional is related to the
minimization of action in Lagrangian mechanics, and so L(x, u, t) is
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also called the Lagrangian here.
The problem of optimal control is to find the control law u⋆(t) that
leads the system along a trajectory x⋆(t) in the state space such that
the functional (1.14), usually called cost function, is minimized.
It is immediately clear that a critical point is the choice, and the the-
oretical justification, of a particular cost function; indeed, the many
optimal motor control models are named after the chosen cost func-
tion (minimum jerk model, minimum torque model, minimum vari-
ance model, . . . ). As a matter of facts, more recent models tend to
adopt a cost function that combines different criteria, in order to be
able to model a wider class of observed phenomena.
However a more fundamental characterization for existing models con-
cerns the type of control law, which leads to the distinction between
Open Loop and Closed Loop optimal control.

Open Loop Control

In Open Loop, or feed–forward, models the optimality criterion is ap-
plied to plan the best trajectory in the state space, while feedback
from the sensory apparatus is involved only in the execution phase to
correct deviations from the desired trajectory.
In this section we briefly review some of the main open loop models
for biological movement.
In the analysis of point–to–point hand movements, the first well–
known optimal control model was based on minimization of jerk [50,
36], a quantity related to the temporal derivative of the acceleration.
Such a model produced smooth movements by using a kinematic cost,
thus predicting an optimal trajectory in the cartesian space, as well in
the space of velocity and higher order temporal derivatives. Its success
consisted mostly in the ability to reproduce the observed bell–shaped
velocity profile, local isochrony [133], and the phenomenological two–
thirds power law [60].
Subsequently, models based on dynamic cost were introduced (e.g.
[131]), that used dynamic variables such as joint torque change or
muscle tension. The main difference with kinematic models is that in
that case computation of the optimal movement involves the explicit
positions and velocities as a function of time, thus neatly dividing
the planning stage and the execution stage. Conversely, the solution
to dynamic models are the motor commands required to achieve the
movement and therefore planning and execution are no longer sepa-
rate processes.
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Although the above mentioned models were able to yield good pre-
dictions in some specific class of movements, they all suffered the lack
of a principles justification for the choice of the cost function: there
is no evident reason why the CNS should choose to optimize such
quantities as jerk or torque change, neither is it clear how the CNS
could estimate such quantities and integrate them over time.
An effective way to circumvent those limitations was proposed for eye
and hand point–to–point movements [48], based on the physiological
observation that motor noise is signal dependent, since neural control
signals are corrupted by noise whose variance increases with the size
of the control signal [120]. The minimum variance model chooses the
sequence of muscle activations so as to minimize the variance in the
final position. Not only such choice appears more biologically moti-
vated and the involved costs are directly available to the CNS so that
the optimal trajectories could be learnt from experience of repeated
movements; but it also naturally implies smooth movements, thus
giving a principled motivation to minimum jerk and torque change
models.
Finally, another class of ‘ecological’ models based on a dynamic cost
is common in biomechanics and locomotion, where most models min-
imize energy used by the muscles [89, 2], through cost functions that
increase supra–linearly with muscle activation.

Closed Loop Control

While open loop models have been able to account for behavioral ob-
servations averaged over multiple trials of a task, they revealed poor
capabilities in modeling inter–trial variability.
Indeed more recent motor control models [124] adopt techniques of
stochastic optimal closed loop (or feedback) control, and use online
feedback in a simultaneous planning / execution stage.
In such models feedback is not used by a predefined control law that
corrects deviations from the optimized trajectory; rather, performance
is optimized over the family of all possible feedback control laws. The
(time–varying) best possible transformation from states of the body
and the environment into control signals is constructed by the feed-
back controller.
Temporal difference reinforcement learning techniques are usually adopted:
the optimal feedback law is approximated as the one that minimizes
the total expected cost, given the current state, and assuming that
the optimal control law is applied until the end of the movement.
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The function expressing total expected cost is usually called optimal
cost–to–go, and it includes a term encoding the error in task com-
pletion and a term penalizing effort to account for signal dependent
motor noise. This corresponds to a mix of the minimum energy and
minimum variance models discussed in section 1.6.1, and allows to
approximate the best control scheme for the given task.
Indeed, the most striking result is that the optimal feedback controller
obtained this way obeys the minimal intervention principle [125]: only
errors in task–relevant directions are corrected, while allowing vari-
ability in the redundant (task–irrelevant) subspace of the state space,
the so called uncontrolled manifold.

However sensory feedback in biological systems is known to be cor-
rupted by noise and delays. An important point in the closed loop
approach is the way it deals with such noise.
As indicated in figure 1.12, the controller must rely on a state estimate
that integrates all available information from sensory data, recent con-
trol signals, knowledge of body dynamics, as well as earlier outputs.
It has been shown that the resulting controls are optimal when the
estimator is also optimal, that is Bayesian (see section 1.6.2).
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Figure 1.12: Direct comparison of Open Loop (above) and Closed Loop (below)
architectures for motor control. Notice that the main difference is the kind of
controller resulting from the optimization process: in Open Loop, this is a fixed
servo controller, while in Closed Loop it is programmed online.
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1.6.2 Internal Models and State Estimation

Internal models can be thought of as a form of knowledge (represen-
tation) that the system possesses about the sensorimotor transforma-
tions that it realizes.
Inverse models describe how, given the current state of the system, a
desired final state is transformed into appropriate motor commands.
Since such models produce the motor commands necessary to obtain
a result, they have a natural use as controllers.
In fact, usually in Open Loop control the feedforward controller plans
the desired trajectory in the state space, and an inverse model gener-
ates the sequence of control signals that will drive the system along
that trajectory.
However, it has been argued [124] that in Closed Loop control the
concept of inverse model is unnecessary, since the job of the optimal
feedback controller is exactly to construct the sensorimotor mapping,
namely transforming task goals into motor command.

Conversely a forward model, given an initial state, is the mapping
of a motor command to the next state (dynamical forward model) or
to sensory feedback that will result from the observation of such next
state (output forward model).
Forward models have been used in different ways, both in Open Loop
and Closed Loop control. In any case, however, their function is to
provide an estimate of the state of the dynamical plant, or of its sen-
sory consequences. The theoretical justification for the introduction
of such an estimator, is that feedback control in biological systems is
subject to potential instabilities, especially in fast movements, due to
noise and delay of sensory feedback; then an estimate must be used,
alone or combined with raw sensory data, to maintain stability.
In [73] an output forward model is the essential component of a so
called Smith predictor. The forward model provides internal feed-
back of the predicted outcome of an action before sensory feedback
is available. The internal feedback is used by the controller in an in-
ner loop to correct predicted deviations from the desired trajectory,
before sending new motor commands to the plant; then when sen-
sory feedback becomes available, the previously predicted feedback
is subtracted, and only the unpredictable component of the error is
corrected by the feedback controller.
Moving to dynamical forward models, in [134] a modular Open Loop
control architecture is presented, which adopts several couples of in-
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verse and forward models as a mechanism for context selection. In
each module, the inverse model provides motor commands to get to
the desired state, while the forward model generates a predicted final
state; such state is compared with the desired state, and the module
(or subset of modules) which produced the closest final state is se-
lected as the most appropriate one for the given context.
On the other hand, in Closed Loop control, the state estimates pro-
vided by forward models have been used online to select the optimal
feedback controller (i.e. the sensorimotor mapping) [125]. Notice that
in this context the forward model must satisfy a precise constraint:
in fact, for the resulting controller to be optimal, also the state esti-
mator must be optimal, i.e. Bayesian [57]. In practice, the Kalman
filter is often used because it is optimal under the assumption of linear
dynamics and gaussian noise.
As a last remark, it should be noticed that the adoption of a state
estimator in optimal motor control schemes, not only allows to com-
bine feedback coming from internal (the efference copy of motor com-
mands) and external (sensorial apparatus) sources, but also leaves
open the possibility that data from multiple sensory modalities con-
tribute to state estimation. What specific type of sensory data are
used, and how such data can be integrated, are the issues discussed
in section 1.6.3.

1.6.3 Characterizations of the Sensory Feedback

In normal conditions, information from multiple sensory modalities
is available to all higher organisms, raising the question of how such
signals are combined to guide behavior.
This question comprises several issues that can be analyzed sepa-
rately, although they do not necessarily correspond to separate neu-
ral processes. First, within a single modality suitable features must
be extracted from the input stream. Second, signals from different
modalities must be converted to a common representation (the coor-
dinate transformation problem). And third, signals in the common
representation must be fused using some criterion.
Although the role of sensory feedback in motor control has been ex-
tensively studied, only recent experimental work has addressed the
first problem, i.e. which features are relevant to the control task.
In the case of online visual feedback on hand movement, [103] have
shown that position and motion information are both used by humans,
and they are combined in a manner consistent with the reliability of
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the signals. Notice that neurophysiological studies (e.g. [41]) have
shown that such quantities like hand motion direction and position
are actually encoded in the activity of large populations of neurons in
primates.
The problem of coordinate transformation has been cast historically
in the framework of classical information theory, suggesting that mu-
tual information, i.e. the information common to two transformed
signals, can be used as the basis for an optimization algorithm that
extracts information from multiple input streams [9]. Such model can
also be augmented to incorporate topological order [42].
The third problem, i.e. multimodal integration, is the one that has
attracted most attention, and the most successful approach follows
an optimization paradigm that is similar to the Open Loop control
schemes: integration is realized according to the minimization of a bi-
ologically motivated cost function. It has been shown experimentally
that humans integrate visual feedback with auditory [43] or haptic
[29] cues in a way that can be predicted by a maximum likelihood
estimate, which corresponds to minimization of uncertainty (or vari-
ance) in the final estimate. Further experimental work [10] has shown
that also visual and proprioceptive feedback on hand position (in a
plane) are integrated according to a weighting scheme related to the
direction–dependent variance in the unimodal information.
Extending this approach, further explorations on the integration of
vision and proprioception [117] have shown that the input statistics
alone is not sufficient to explain the following observation [116]: dur-
ing reach movements, the relative weighting is variable, with a plan-
ning stage mostly relying on visual signals, and the computation of
intrinsic motor commands relying more on proprioception. An expla-
nation is given reconsidering the coordinate transformation problem:
it appears that the transformation of sensory signals between coordi-
nate frames is inherently noisy, and sensory integration follows as a
unifying principle the minimization of such noise.

1.6.4 Fundamental Limitations of the Existing Mod-

els

Optimal motor control models have been devoted much attention, and
in the last decade have reached a significant degree of sophistication,
especially with the introduction of internal models.
In particular, the use of forward models allows one to deal with the
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problem of noise, which is a fundamental one because both sensory
and motor control signals are known to be affected by signal depen-
dent biological noise, and furthermore sensory information is usually
processed by the CNS with significant delays with respect to the mo-
tor signals that should be controlled.
Recently, output forward models have been reconsidered as a mech-
anism for endowing robotic systems with Expected Perception (EP)
capabilities [21, 20], namely the ability to predict the sensory con-
sequences of future motor actions, on the basis of previous percep-
tions, efference copies of motor commands, proprioception, and for-
ward models; in this context, EP can be seen as an attentive process
aimed at reducing the computational load that would result from elab-
orating the whole sensorial input stream.
That said, it should be noticed however that all motor control mod-
els discussed above always consider the sensory apparatus as passive.
Even in the sophisticate framework of forward models and EP, where
the perceptual system is somehow ’active’ thanks to the ability to es-
timate and predict, the possibility that motor commands are issued
in order to orient the sensors towards (task–)relevant information, is
never considered. Only recently such possibility is becoming object of
research [115], with the introduction of the distinction between acts of
exploration (i.e. motor signals issued in order to gather information)
and acts of exploitation (motor commands that use the information to
pursue the task objectives). However in [115] the active exploration
is just made of random movements, while the focus is on optimizing
the timing and relative weight of the two kind of movements.
We argue that the ‘intelligent’ (i.e. not purely random) use of active
exploration is a fundamental ingredient of intelligent motor behavior
in biological systems, and we argue that it is an important missing
component in most existing models of motor control. In the present
chapter we have discussed existing approaches to study this specific
issue, focusing on the visual modality: those constitute the so called
Active Vision framework, i.e. attempts to understand the biological
basis and to model the mechanisms of intelligent, overt allocation of
visual resources in complex tasks. In this context however the prob-
lem of motor planning and control is usually not considered.
In chapter 3 we will focus on the eye–hand system, and discuss a new
model that accounts both for how the dynamics of the motor actions
and the incoming sensory information could be integrated to guide eye
movements, and how the behavior and output of the active vision sys-
tem could contribute to action control. We surmise that such model
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represents a first step towards reconciling the active vision approach
and the optimal motor control approach.



Chapter 2

Sensorimotor Coupling. A

Bayesian Framework For

Eye–Hand Coordination

2.1 Introduction

The general issue of sensorimotor coordination is usually treated only
in one direction: either from the point of view of active perception,
or in the framework of motor control with or without online feedback
(see chapter 1).

In the case of motor control theories, existing models usually reflect
the functional architecture of the primate cortico-cerebellar system
[95] . Most acclaimed computational models cast the issue of move-
ment planning and execution as an optimization problem [124, 125].
Optimality means minimization of a scalar function that depends on
control signals as well as on the current state of the musculo–skeletal
system and environment: such function can be e.g. jerk [50, 36], en-
ergy [89, 2], or variance [48]. Closed loop models are those where
optimization is performed online, on the basis of sensory feedback [8],
possibly integrating information from multiple sources [103, 9] and,
in case of noisy or delayed sensors, integrating it with state estimates
[10, 29] through internal models [134, 21]. In such framework the sen-
sory apparatus is always considered as passive.

On the other hand, in the case of active perception, the object of
study is the overt attentional process, namely how sensory resources
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are allocated — e.g. via eye movements — so as to facilitate the ac-
complishment of a given task. Here we focus essentially on vision.
In the case of purely visual tasks, several computational models have
been proposed that reflect the functional organization of the primate
visual system, and generate saccadic movements on the basis of the
image properties alone [51] or combined with top–down cognitive in-
fluences [92, 67, 31, 14]. Eye tracking research in complex visuomotor
tasks [87, 61, 63] has highlighted the reciprocal influence of the motor
task and the oculomotor behavior, showing that most fixations are
targeted to extract information that is relevant to the execution of
the task [49]. As opposed to research in motor control, the active
vision approach indicates a strong relation between active vision and
action.

It is worth noting also that active vision subserving action can be con-
sidered as a form of spatial attention, and according to the premotor
theory of attention [100] spatial attention is the consequence of motor
preparation. Gaze–shifts can be considered as the motor realization
of overt shifts of attention, which in turn — according to most recent
theories [110] — arises from the activation of those same circuits that
process sensory and motor data. In particular, selective attention for
spatial locations [99] is related to the action pathway of the (dorsal)
visual system, which is mainly devoted to trigger prompt actions in
response to environmental varying conditions, and mostly relies upon
motion analysis and gaze–shift control at low and intermediate levels
[74]; selective attention for objects [24] derives from activation of ven-
tral cortical areas involved in the perception pathway, responsible for
object property processing, such as the analysis of form in association
with color, and the visual perception/identification of objects (e.g.,
faces), with tight integration to high–level, cognitive tasks of frontal
areas [45].
Clearly, the two pathways are not segregated but cooperate/compete
to provide a coherent picture of the world. Gaze control, is the ulti-
mate product of such integration effort: the target where the fixation
is eventually set, is selected by taking into account the probability
that the stimulus in the response field is the target from prior in-
formation, through a posteriori analysis of the sensory cue to target
information [14].

Yet, we lack a well defined framework for integrating active vision
models with motor control strategies. We are faced with two comple-
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mentary problems: how the dynamics of the motor actions and the
incoming sensory information could be integrated to guide eye move-
ments, and how the behavior and output of the active vision system,
including eye movements, contribute to action control.

In the present chapter we discuss a functional model of sensorimo-
tor coupling that, in perspective, could be considered as a first step
towards reconciling the active vision approach and feedback motor
control approach. We will focus specifically on eye–hand coupling,
and in the following chapters we will implement the model in a draw-
ing task (chapter 4), and compare the results with eye–tracking anal-
ysis in the same task (discussed in chapter 3).
The model extends a previous one [19, 18], whose aim was to simulate
the scanpath of the draughtsman. In section 2.2 we discuss the overall
functional model, and analyze the modules related to sensory process-
ing and to the control of the desired eye–hand movements. The core
of the model however is the module that realizes a premotor coupling
between eye and hand: this module, discussed extensively in section
2.3, collects inputs from the external sensory modules, and feeds its
outputs, namely premotor information, to the subsequent modules re-
sponsible for the detailed control of eye and hand motor signals.
It is formulated in terms of a Bayesian generative model and its cor-
responding graphical model. The rationale behind the adoption of a
probabilistic, Bayesian framework grounds in the fact that signals in
sensory and motor systems are corrupted by variability and noise, and
the nervous system needs to estimate these states [57]. This overall
uncertainty places the problem of estimating the state of the world
and the control of the motor system within a statistical framework.
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Figure 2.1: A schematic model for sensorimotor coordination of a robot involved
in visuomanual tasks (see text for explanation). Each module roughly corresponds
to a functional area of the primate brain; in particular, FEF (standing for Frontal
Eye Fields) and SC (Superior Colliculus) refer to two of the main areas involved
in gaze control.

2.2 Aims and overall functional model

The functional model depicted in Fig. 2.1 proposes a general organi-
zation of visual, motor and visuomotor modules for the coordination
of an artificial agent in a visuomanual task, on the basis of existing
pieces of knowledge and models of the corresponding functional areas
of the human brain, as discussed in previous chapters.
The first aim of the model is to provide a modular system that — once
the processes taking place in each module are specified — can gen-
erate hand and eye motor signals and control the actual movements
(corresponding to the modules called SC, standing for the low–level
gaze control functions usually attributed to the Superior Colliculus,
and Trajectory Generation and Inverse Kinematics, functions that are
commonly attributed to motor and cerebellar areas). As suggested
by most recent theories of motor preparation [110], a premotor stage
should be considered as well, where hand–related and eye–related sig-
nals are coupled (the core module called Sensorimotor Coupling).

Furthermore, it aims to provide a general mechanism to combine
bottom–up strategies (accounted for by the Preattentive Vision mod-
ule, discussed at length e.g. in [51]) and top–down strategies, cor-
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responding to the FEF module (FEF stands for Frontal Eye Fields,
which are known to be related to high level gaze control) which re-
ceives inputs from the Vision For Perception module (responsible for
object property processing, such as the analysis of form in association
with color, and the visual perception/identification of objects (e.g.,
faces), with tight integration to high–level, cognitive tasks of frontal
areas).
Orthogonally, the model aims as well to combine Action-related and
Perception-related visual processes (respectively the Vision For Ac-
tion and Vision For Perception modules), whose outputs are fed,
through intermediate modules, to the SC where the integration is
performed.

Eventually, the central module (Sensorimotor Coupling) allows also
to combine multimodal sensory information, i.e. the results of visual
processing in the Early Vision and Vision For Action modules, and
proprioceptive information, integrated in the Hand State module with
the efferent copies of motor commands through the Forward Model.

We will not discuss in this chapter the details of each module,
which will be explained in chapter 4 in the specific context of a drawing
task. Rather, here we propose a mathematical formulation of the
core module, namely Sensorimotor Coupling, which in our opinion
could provide a first step towards a general mathematical framework
for targeting the aims itemized above, and for reconciling the active
vision approach and the feedback motor control approach.
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2.3 A Dynamic Bayesian Network for eye–

hand coupling

In any real world implementation, the processes corresponding to the
modules of the architecture discussed in section 2.2 should be treated
as inherently noisy, due to errors in the sensory and motor appara-
tuses as well as to signal–dependent noise in neural signals [48] in the
case of biological systems.
Thus an agent adopting the above architecture should also be able to
deal with uncertainty; to this end, we resort to a probabilistic Bayesian
framework and consider the values of the relevant variables as realiza-
tions of corresponding random variables. This way we can map the
core of the functional model outlined in Fig. 2.1 into the graphical
model shown in Fig.2.2, where nodes denote random variables, and
arrows, conditional dependencies.

Since we are dealing with a process unfolding in time, the network
we designed is in the form of a Dynamical Bayesian Network (DBN
[77]) and the graph depicted in Fig. 2.2 pictures two temporal slices.
The process corresponding to the temporal evolution of the eye plan
is modeled in our network as a discrete–time Input–Output Hidden
Markov Model (IOHMM), as suggested e.g. in [31]; in the IOHMM
we have three layers of variables, i.e. input variables ue, uh related
to vision and proprioception respectively, and the hidden and out-

Figure 2.2: The IOCHMM’s for combined eye and hand movements. The gray
circles denote the input (u) and output (y) variables. Continuous connections in
the hidden layer denote the core process relating hand movements to previous eye
movements, while dotted connections highlight the subgraph that represent the
complementary process.
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put variables xe, ye related to eye movements. Similar considerations
hold for the hand movement, where the inputs are the same while the
hidden and output variables are denoted xh, yh. The inputs are col-
lected from external sensory modules, and the DBN feeds its outputs,
namely premotor information, to the subsequent modules responsible
for the detailed control of eye and hand motor signals.

The very point to be remarked here is that, following the discussion
of section 2.2, the two processes should not be considered as inde-
pendent, but rather as two coupled chains: this results in a graphical
model that unifies the IOHMM Model and another DBN known in the
literature as the Coupled HMM [77, 140, 97]. Thus we call the DBN
represented in figure 2.2 an Input–Output Coupled Hidden Markov
Model (IOCHMM). To the best of our knowledge this kind of archi-
tecture has never been exploited in the literature, and in particular
for sensorimotor modelling.
Notice that the coupling, that in Fig. 2.1 is implicit in the module
we called Sensorimotor Coupling, here unfolds in time in such a way
that at any time step the hand plan depends on the current eye plan,
while the eye plan depends on the previous hand plan.

This way, the process that accounts for the probability of the
current eye movement information conditional on previous eye and
hand signals, can be formally modeled as the probability distribution
p(xe

t+1|u
e
t+1, u

h
t+1, x

e
t , x

h
t ). Similarly, we can write the probability of

the current hand signals given the current eye signals and the previ-
ous hand signals, as p(xh

t+1|u
e
t+1, u

h
t+1, x

e
t+1, x

h
t ). In the vocabulary of

HMM’s, the above functions denote state–transition probabilities, and
represent respectively the (premotor) influence of hand motor prepa-
ration on subsequent eye movements, and the role of active vision in
the guidance of subsequent hand actions.

By considering again the dependencies in the graphical model, we
can write the statistical dependence of the eye output signal on the
corresponding state variable as the distribution p(ye

t+1|x
e
t+1); similarly

for the output hand movement, we can write the density p(yh
t+1| x

h
t+1).

Both represent emission probability distributions. Notice also that
the input nodes have no probability distribution associated, as their
values are provided by endogenous processes that are not modeled
within this network.

Eventually, by generalizing the time slice snapshot of Fig. 2.2 to
a time interval [1, T ] we can write the joint distribution of the state
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and output variables, conditioned on the input variables as:

p(x̄1:T , ȳ1:T | ū1:T ) = p(xe
1| u
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h
1)p(ye
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(2.1)

where ū1:T denotes the input sequence from t = 1 to T , x̄1:T denotes
the pair of state sequences (xe

1:T , xh
1:T ), and similarly for ȳ1:T .
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2.4 Movement selection as Bayesian in-

ference and decision

To use the IOCHMM as a control device for an artificial agent, we
must contend with three problems: learn the parameters of the model;
use the model for inference (i.e., to compute the expected hidden
states for each time slice), and exploit inferences to make decisions.
In order to do this, we first recall how Bayesian inference is formulated
in a standard HMM, and then extend the results to IOHMM’s and
to our IOCHMM; we then outline the decision criterion adopted, and
the learning stage.

2.4.1 Inference

Consider a HMM with hidden and observed variables denoted by Xt

and Yt respectively. In the following, we discuss only the case of dis-
crete variables. Generally speaking, inference consists in evaluating
the probability distribution of the hidden state conditioned on the ob-
servations. Two special cases are of interest here, namely prediction
and filtering.
Prediction is the term reserved to inference of the future hidden
state, given all past and current observations, namely evaluating p(Xt+h | y1:t),
where h > 0 is how far we want to look-ahead. We can without loss
of generality set h = 1, then by simple application of the rule of total
probability, this can be written as:

p(Xt+1 | y1:t) =
∑

xt

p(Xt+1 | xt) p(xt | y1:t) . (2.2)

In the r.h.s. the first term corresponds to the transition model and
the second term is the so called belief state, denoting knowledge of
the current hidden state based on all past and current observations.
Once the distribution written in eq. 2.2 has been evaluated, we can
easily convert this into a prediction about the future observations by
marginalizing out Xt+1:

p(Yt+1 | y1:t) =
∑

xt+1

p(Yt+1 | xt+1) p(xt+1 | y1:t) . (2.3)

Notice that the solution to eq. 2.2 requires the current belief state,
that can be evaluated by the filtering process, discussed below.
Filtering is the most common inference problem in online analysis,
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and it consists in producing an estimate of the belief state using Bayes’
rule:

p(Xt | y1:t) ∝ p(yt |Xt, y1:t−1) p(Xt | y1:t−1) (2.4)

= p(yt |Xt) p(Xt | y1:t−1) (2.5)

where the second line is obtained by applying zero-th order Markov as-
sumption on Y . This equation is sometimes called the update equation
of Bayesian filtering, and it is the basic equation in many probabilis-
tic problems including Kalman Filtering, Dynamic Belief Networks,
probabilistic localization in robotics.
Notice that the filtering equation involves the prediction of the hidden
state, which in turn requires filtering; this fact allows to design recur-
sive algorithms for filtering, the most basic of which are the forwards–
backwards algorithm for HMM’s [94] and the junction–tree for generic
graphical models [12]. Thus recursive estimation for online filtering
consists of two main steps: predict and update. In the following we will
not discuss in depth any inference algorithm, but rather try to clarify
what is the inference problem that is relevant to the adoption of the
IOCHMM as a sensorimotor control mechanism for an artificial agent.

The formulation of the inference problem for standard HMM’s can
be readily extended to IOHMM’s as well as to our IOCHMM.
In the case of the IOHMM, denoting input variables with U , (one
time step) prediction amounts to computing p(Xt+1 | y1:t, u1:t+1) or
p(Yt+1 | y1:t, u1:t+1), while filtering requires evaluation of p(Xt | y1:t, u1:t).
After repeated application of Bayes’ rule, total probability rule, and
Markovianity, one finds that:

p(Xt+1 | u1:t+1, y1:t) =
∑

xt

p(Xt+1 | ut+1, xt) p(xt | u1:t, y1:t) (2.6)

p(Yt+1 | u1:t+1, y1:t) =
∑

xt+1

p(Yt+1 | ut+1, xt+1) p(xt+1 | u1:t+1, y1:t)

(2.7)

p(Xt | u1:t, y1:t) ∝ p(yt | ut, Xt) p(Xt | u1:t, y1:t−1) . (2.8)

So far, we can write down the corresponding formulas for prediction
of hidden and output states in the IOCHMM presented in section 2.3.
The explicit computation, which involves simply repeated application
of Bayes’ rule under Markov assumption, while using the conditional
independencies expressed by the graph structure, leads to:

p(X̄t+1 | ū1:t+1, ȳ1:t) =
∑

xe
t

∑

xh
t

p(Xe
t+1, X

h
t+1 | u

e
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e
t , x

h
t )
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where, in the l.h.s., X̄t+1 stands for Xe
t+1, X

h
t+1, and similarly for the

other variables.

Notice that if the hidden variables are taken to be discrete, then the
entity expressed by equation 2.9 is a matrix. If in addition the output
probability distributions are Gaussian, then equation 2.10 corresponds
to a Mixture of Gaussians, with mixing weights expressed by equation
2.9.

2.4.2 Learning

The problem of learning the parameters associated with the DBN de-
scribed above is the following: each node has a conditional probability
distribution, which describes the probability of taking each particular
value given the values of all its parent nodes. Such probability distri-
butions depend on some parameters, that are unknown, and should
therefore be estimated on the basis of some examples (the training
data).
There exist several techniques to solve this problem, and two main
classes can be identified: classical (or frequentist) approaches are
aimed just at evaluating the parameters, while a fully Bayesian ap-
proach aims at learning a probability distribution on the parameters,
which allows the model to express uncertainty on the actual parame-
ters, due for example to a small training set.
In the work presented here, and more specifically in chapter 4, we
will follow the classical approach. In the case of partial observabil-
ity (due to the presence of hidden nodes), classical learning is based
on the Maximum Likelihood Estimate (MLE) of the parameters (i.e.
finding the values of the parameters that maximize the likelihood of
training data), which in turn can be achieved using Gradient Ascent
techniques, or the standard Expectation Maximization algorithm (EM
[23]) for exact inference.
Since learning relies on inference, several ad hoc techniques have been
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developed for the case of approximate inference, but we will not dis-
cuss this issue further.
We will focus instead on learning in standard HMM’s under exact
inference, which is usually done by a suitable variant of EM, namely
the Baum Welch [8] algorithm; here we briefly recall how it works,
and then extend the results to the IOHMM and the IOCHMM.

MLE learning consists in finding the values for the parameters θ that
maximize the log–likelihood of the training data Y (for simplicity of
notation, we consider just one sequence in the training set):

θ⋆ = arg max logP (Y |θ) ; (2.12)

this problem is simplified by considering the hidden variables as miss-
ing data, introducing a free probability distribution Q. Then the
Jensen’s inequality, which holds for concave functions, can be applied
to the logarithm, and then a lower bound for the log–likelihood can
be set as follows:

log(P (Y | θ)) = log
∑

X

Q(X)
P (Y, X | θ)

Q(X)

≥
∑

X

Q(X) log(
P (Y, X | θ)

Q(X)
)

=
∑

X

Q(X) log P (Y, X | θ)−
∑

X

Q(X) log Q(X)

(2.13)

= F (Q, θ) . (2.14)

The quantity log P (Y, X | θ) is usually called the complete–data log–
likelihood. The negative of the functional F is known in statistical
physics as the Free energy. The EM algorithm maximizes such Free
energy with respect to Q and θ alternatively, starting from a given
value θ0, until convergence is reached (i.e. the log–likelihood does not
increase significantly anymore); the k-th step is given by:

E − step : Qk+1 ← arg max
Q

F (Q, θk) (2.15)

M − step : θk+1 ← arg max
θ

F (Qk, θ) . (2.16)

After simple calculations, it can be shown that the E–step is obtained
by setting Qk+1 = P (X | Y, θk), while the M–step reduces to finding
θk+1 that maximizes

∑

X P (X | Y, θk) log P (Y, X | θ).
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The quantity computed in the E–step is obtained in principle by in-
ference on the graph; in practical cases it is usually not necessary to
compute it in its entirety, rather one only needs to compute the so
called Expected Sufficient Statistics (ESS), which plays an analogous
role to the sufficient statistics in the case of complete data. Recall-
ing that the expected value of a function f(x) under the probability
distribution p(x) is defined as:

〈f(x)〉p(x) =
∫

f(x)p(x)dx , (2.17)

the ESS usually corresponds to the expected values (found by in-
ference) of suitable combinations of the hidden variables, computed
under Qk+1. In order to define the ESS, and write the parameters as
a function of it, some additional calculations are required. This com-
plete derivation in the case of standard HMM’s can be found in many
textbooks [12]; we limit ourselves here to show it for the IOHMM, and
eventually for our IOCHMM, in the case that all variables are discrete.

In the IOHMM, the EM algorithm requires a straightforward gen-
eralization of the above formulas, to account for the fact that the
training set includes input sequences as well. Given a single training
sequence {u1:T , y1:T}, and using the graph (in)dependence structure
in the IOHMM, the complete–data log–likelihood is rewritten as:

LC
.
= log p(ȳ1:T , X̄1:T | ū1:T , θ) = log p(x1 | u1, θ)

+
T−1
∑

t=1

log p(xt+1 | ut+1, xt, θ)

+
T−1
∑

t=1

log p(yt+1 | xt+1, θ) . (2.18)

We will specialize now to the case where all variables are discrete,
therefore the associated distributions are matrices (usually called Con-
ditional Probability Tables, CPT), whose entries are the parameters
that must be learnt.
In the discrete case, computations are simplified by encoding the
states of each variable as unit vectors in the canonical basis of the as-
sociated state space; e.g. if xt ∈ {x

1, . . . , xH}, then x1 = (1, 0, . . . , 0)
and so forth. This approach allows us to rewrite the probability dis-
tributions in eq. 2.18 as follows:

p(x1 | u1) = ΠI
i=1Π

H
j=1(Φij)

u1,ix1,j (2.19)
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p(xt+1 | ut+1, xt) = ΠI
i=1Π

H
j=1Π

H
k=1(Tijk)

ut+1,ixt,jxt+1,k (2.20)

p(yt+1 | xt+1) = ΠH
i=1Π

O
j=1(Eij)

xt+1,iyt+1,j (2.21)

where I, H, O denote the cardinality of the input, hidden and output
state spaces, Φ, T, E are respectively the initial state, transition and
emission probability matrices that we want to learn.
Taking the logarithms and writing the summation in matrix form, we
get the following form for the complete–data log–likelihood:

LC
.
= log p(ȳ1:T , X̄1:T | ū1:T ) = x⊥

1 log(Φ)u1

+
T−1
∑

t=1

x⊥
t+1 log(T )xtut+1

+
T−1
∑

t=1

y⊥
t+1 log(E)xt+1 (2.22)

which is written in terms of the training data (u, y), the parameters
(Φ, T, E), and the missing data (x). Now the E–step consists in eval-
uating the ESS, namely

γt,i
.
= 〈Xt,i〉 = p(Xt = xi | u1:T , y1,T ) (2.23)

ξt,ij
.
= 〈Xt,i, X

⊥
t−1,j〉 = p(Xt = xi, Xt−1 = xj | u1:T , y1,T ) ,(2.24)

given the previous values of the parameters. Then the M–step is
straightforward: we take the derivatives of eq. 2.22 with respect to the
parameters, set to zero and solve under the constraint that transition,
emission and initial state probabilities sum to one. This gives the
following form for the parameters, similar to that for standard HMM’s:

Φij = γ1,iu1,j (2.25)

Tijk =

∑T
t=2 ξt,ijut,k

∑T
t=2 γt,jut,k

(2.26)

Eij =

∑T
t=2 yt,iγt,j
∑T

t=2 γt,j

. (2.27)

Eventually, γ and ξ are found via the standard forward–backward in-
ference algorithm [12], which is an instance of belief propagation [137]
applied to HMM’s.

The derivation described above is readily extended to the IOCHMM
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case1. Again the log–likelihood can be expressed in terms of the com-
plete data log–likelihood, called here Lc, which in this case is

Lc = log p(xe
1|u

e
1, u

h
1) + log p(xh

1 |u
e
1, u

h
1 , x

e
1)

+
T−1
∑

t=1

log p(xe
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t ) +

T−1
∑

t=1

log p(xh
t+1|u

e
t+1, u

h
t+1, x

e
t+1, x

h
t )

+
T−1
∑

t=0

log p(ye
t+1|x

e
t+1) +

T−1
∑

t=0

log p(yh
t+1|x

h
t+1) . (2.28)

Define with M , N , L, K the dimensionality of the hand and eye
movement hidden and input space respectively. Again we encode
discrete variables in the canonical basis, e.g. if xe ∈ {xe,1 . . . xe,M},
then we have xe,1 = (1, 0 . . .0) and so on [12]. With this choice, the
pdf’s in the log–likelihood become (notice that we will not discuss
further the emission distributions, as they are exactly the same as in
the IOHMM case.):

p(xe
1|u

e
1, u

h
1) =

M
∏

i=1

L
∏

j=1

K
∏

p=1

(Φe
ijp)

xe
1,i

ue
1,j

uh
1,p (2.29)

p(xh
1 |u
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1 , x

e
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N
∏
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K
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(Φh
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ue
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1,pxe

1,r (2.30)

p(xe
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(2.32)

where, again, Φ, T are respectively the initial state and transition
probability matrices that we want to learn. The log–likelihood (apart
from the emission terms, as announced above) can be finally written
in matrix form as:

Lc = xe⊥
1 log(Φe)ue

1u
h
1 + xh⊥

1 log(Φh)ue
1u

h
hx

e
1

+ xe⊥
t+1 log(T e)ue

t+1u
h
t+1x

e
tx

h
t + xh⊥

t+1 log(T h)ue
t+1u

h
t+1x

e
t+1x

h
t .

(2.33)

1Notice however that some care should be exerted in the forward–backwards
algorithm, since in the case of coupled HMM’s the forward operator cannot be
decoupled, as explained in [97].
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Again, the M–step is straightforward: we take the derivatives of eq.
2.33 with respect to the parameters, set to zero and solve under the
constraint that transition and initial state probabilities sum to one.
After defining the following quantities that make part of the ESS:

γe
t,i

.
= 〈Xe

t,i〉 (2.34)

γh
t,i

.
= 〈Xh

t,i〉 (2.35)

γeh
t,i

.
= 〈Xe

t,i, X
h
t,i〉 (2.36)

ξ
e,h
t,ij

.
= 〈Xe

t,i, X
h
t−1,j〉 (2.37)

ξ
e,eh
t,ij

.
= 〈Xe

t,i, X
e
t−1,j, X

h
t−1,j〉 (2.38)

ξ
eh,h
t,ij

.
= 〈Xe

t,i, X
h
t,i, X

h
t−1,j〉 (2.39)

we can rewrite the parameters as:

Φe
ijk = γe

1,iu
e
1,ju

h
1,k (2.40)

Φh
ijkl = γeh

1,ilu
e
1,ju

h
1,k (2.41)

T e
ijklm =

∑T
t=2 ξ

e,eh
t,ilmue

t,ju
h
t,k

∑T
t=2 γeh

t,lmue
t,ju

h
t,k

(2.42)

T h
ijklm =

∑T
t=2 ξ

eh,h
t,ilmue

t,ju
h
t,k

∑T
t=2 ξ

e,h
t,lmue

t,ju
h
t,k

. (2.43)

Eventually, the γ and ξ terms are found via the forward–backward
inference algorithm. This is done by first introducing the following
quantities:

αeh
t

.
= p(xe

t , x
h
t , ȳ1:t | ū1:T ) (2.44)

βeh
t

.
= p(ȳt+1:T | x

e
t , x

h
t , ū1:T ) (2.45)

usually called forward and backward operators; then after simple cal-
culations γ and ξ can be expressed in terms of αeh, βeh:
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(2.46)
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where αe is obtained by marginalizing αeh with respect to h, and
similarly for the other quantities. Eventually, αeh, βeh and the nor-
malization term are evaluated recursively:

αeh
t = p(ȳt | x

e
t , x

h
t )
∑

xe
t−1

∑

xh
t−1

p(xe
t , x

h
t | x

e
t−1, x

h
t−1, ūt)α

eh
t−1 (2.47)

βeh
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p(ȳ1:T | ū1:T ) =
∑

xe
T

∑

xh
T

αeh
T .

(2.49)

Following the extension of the Baum–Welch algorithm outlined above,
the distributions of initial state, transition and emission probabilities
can be inferred from a number of suitable example sequences that
show how the inputs and outputs (observed nodes) are related. We
will discuss in chapter 4 the choice of the training set, and the results
of the learning stage.

2.4.3 Decision

The next step to solve the problem of movement selection, is to apply
a decision process on the results of inference. Here we could follow
two different routes, depending if we start from equation 2.9 or 2.10.
In the first case, we use an inference algorithm to compute the prob-
ability distribution for the next hidden state, then apply the decision
process to select from this distribution a particular value for the next
hidden state, and finally generate the value for the next output state
by sampling the corresponding output distribution. We assume that
this procedure is the one that should be used to generate the agent’s
actions, because the hidden states model the internal dynamics of the
agent itself, while the output distributions account for noisy execu-
tion.
On the other hand, the second case corresponds to the predictions
that an observer could make on the agent’s behavior; in fact the ob-
server does not have access to the agent’s hidden states, but can only
observe the outputs. Then the observer can resort to equation 2.10
to infer the probability distribution of the next output given previous
observations, and then apply a decision process to select the value for
the next output state.
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Notice in passing that although the observer does not have access to
the agent’s internal dynamics, however it has its own internal dynam-
ics for the same sensorimotor task (in terms of the learned transition
and emission probability distributions; these in principle are different
from the distributions learned by the agent, since the agent and the
observer could have been trained with different data sets). In the
evaluation of equation 2.10, the observer is in fact playing what has
been called an embodied simulation of the agent’s actions [38], thus
implementing a mirror–like mechanism [72].

Having chosen the first strategy for action selection, we now have to
define the decision procedure. According to Bayesian Decision The-
ory, if the agent is given a set of observation data d and formulates
some hypotheses h, a decision rule is a function α(d) that associates
the data with an hypothesis. A loss function L(h, α(d)) can be de-
fined to quantify the cost of choosing a wrong hypothesis. Then, the
agent will take its decision so as to minimize the risk, namely a func-
tional that quantifies the cost of the decision weighted by the joint
probability of the data and the hypothesis:

r(α) =
∑

h,d

L(h, α(d))P (h, d) . (2.50)

Different choices can be made for the cost function, and the decision
rule that minimizes the risk changes accordingly. In the simulations
presented in this thesis we used the most basic cost function:

L(h, α(d)) =

{

0 if α(d) 6= h

1 otherwise
. (2.51)

With this choice the risk function is minimized when the decision rule
just selects the hypothesis that maximizes the conditional probability
P (h|d).
Interestingly enough, the use of Bayesian inference jointly exploited
with Decision Theory has gained some currency in recent sensorimo-
tor modelling generalizing to Bayesian accounts of biological agent
evolution (e.g., [40], [128])

Coming back to our IOCHMM, we can then select the next eye–hand
movement as the couple that maximizes the probability in equation
2.9:

(xe⋆
t+1, x

h⋆
t+1) = arg max

[

p(X̄t+1 | ū1:t+1, ȳ1:t)
]

. (2.52)
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We move now to analyze a simple special case, that will be considered
later in chapter 4 where we present simulation results.

If we assume as a first approximation, that the agent’s movement
execution is perfect, we have

p(yi
t | x

i
t) = δyi

t,x
i
t

(2.53)

where i = e, h. Under this assumption, also the update equation
(2.11) reduces to a product of delta functions:
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(2.54)

and this in turn implies that the prediction equation (2.9) for hidden
states reduces to
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This quantity is the matrix that expresses the transition probability
distribution, in the case that hidden variables at the previous time
step are clamped to the previous observed values.
Thus, in this simplified case, once the network has been trained, it is
no more necessary to resort to inference algorithms, since no marginal
distribution needs to be computed before applying the decision pro-
cess. In other words, in this case we just train the network, store the
transition distribution (in the discrete case, a matrix called Condi-
tional Probability Table), and then select the next eye–hand move-
ment according to:

(xe⋆
t+1, x

h⋆
t+1) = arg max

[

p(Xe
t+1, X

h
t+1 | u

e
t+1, u

h
t+1, x

e
t = ye

t , x
h
t = yh

t )
]

.

(2.56)
Finally, notice also that in this case the prediction equation 2.10 for
observations takes exactly the same form as equation 2.55. This means
that in this case, the action selected by the agent coincides with the
action predicted by an observer, since in the case of perfect execution
the observer gets full knowledge of the agent’s hidden states just by
observing the outputs.



Chapter 3

The Drawing Task.

Eye–Tracking Experiments

3.1 Introduction

Visual creation is a specifically human activity, with a long history
and multiple uses. From the perspective of cognitive sciences, the pro-
cess of carrying out a visual creation can be seen as a goal-directed
activity involving several human skills and abilities: visuomotor coor-
dination, evaluation and decision, memory and emotion.

Here we focus our attention on realistic drawing; our motivation for
studying this task is that the behavior adopted in this case can be
considered as a building block of the visual creative behavior in a
broader sense, yet it allows to concentrate the analysis on the physi-
cal aspects of the creative process.
Realistic drawing is not considered a ‘common’ visuomanual activity
like driving [61], washing one’s hands [86], or making a sandwich [6],
neither is it considered a ‘common’ visual task such as the recognition
of a face or a specific object in the scene; in fact, drawing requires a
better precision of hand movements and a higher degree of voluntary
attentional control of fixations. Making a realistic portrait of a visual
scene is a very specific task, and it imposes rigid constraints on eye–
hand coordination.

Among the few existing scientific studies on the drawing process, the
earliest were focused on the motor component. Recordings of the arm
movements during curve tracing revealed a correlation between the
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curvature of the trajectory and the speed profile of the drawing hand;
this was expressed in mathematical form by the empirical 2

3
power law

[60, 133], which states that the absolute value of the hand velocity is
proportional to the 2

3
power of the inverse curvature radius.

Later on, cortical recordings in behaving rhesus monkey proved the
correctness of the power law at the neural level, and found in addition
that populations of neurons in the motor cortex encode the direction
of hand movement with about 100 msec of anticipation [106].
Only recently however, the coordination of eye and hand movements
was brought to the focus of the attention by a series of studies real-
ized by C. Miall and colleagues [123, 46]. Interestingly, a visuomotor
strategy can be clearly observed on subjects involved with drawing
tasks, although the strategy can vary significantly among different
subjects. Indeed, the above mentioned eye tracking experiments on
draughtsmen at work provide evidence of two nested execution cycles:
the longer, external cycle is an oscillation between periods when the
hand is not drawing and globally distributed eye movements can be
observed, and periods when the hand is tracing ; within the tracing
period a shorter nested cycle can be noticed, with eye movements lo-
calized alternately in small parts of the scene and the canvas. The
shorter cycle can be schematized as follows: fixation on the original
image – saccade – fixation(s) on the canvas – saccade – fixation on
the original image.

Further analysis [19, 18] indicates that four main subtasks should
be distinguished:

1. Segmentation of the original scene;

2. Evaluation of the emerging result;

3. Feature extraction for motion planning and generation;

4. Visual feedback for online motion control.

The oscillation between local and global scanpaths may be understood
by considering gaze–shifts as the motor realization of overt shifts of
attention. Visual attention arises from the activation of those same
circuits that process sensory and motor data [110]. In particular,
selective attention for spatial locations is related to the dorsal vi-
sual stream that has been named action pathway after Goodale and
Humprey [74], and is mainly devoted to trigger prompt actions in re-
sponse to environmental varying conditions (Vision for Action). On



68 3. The Drawing Task. Eye–Tracking Experiments

the contrary, selective attention for objects derives from activation of
ventral cortical areas involved in the perception pathway, responsible
for object recognition, with tight integration to high–level, cognitive
tasks of frontal areas (Vision for Perception). Clearly, the two path-
ways are not segregated but cooperate/compete to provide a coherent
picture of the world and gaze control is the ultimate product of such
integration.
In this framework behaviors 1 and 2, that require globally distributed
eye movements, could be associated to the Vision for Perception
stream, while 3 and 4 produce localized eye movements related to
the Vision for Action stream. Thus, the oscillation can be seen as a
part of a high level strategy, which takes advantage of the functional
architecture of the human visual system to keep separate two classes
of visual behaviors, the first of which is global in nature and percep-
tual in purpose, while the second is local and pragmatic, sub-serving
a precise hand movement.

In the present work we focus mainly on behaviors 1 and 3, namely
eye movements related to the segmentation of the image in separate
objects, and to the extraction of visual features that are required for
hand motion planning and control. We leave instead for future work
the analysis of oculomotor behavior associated to the feedback control
of hand movements, and to the more general issue of the evaluation
of emerging results.
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3.2 Three basic hypotheses

As a starting point to characterize the visuomotor strategies adopted
in the drawing task, we make some hypotheses that try to capture
the essential features that distinguish drawing from other tasks, both
with respect to the a priori requirements and the observed behavior.
Three assumptions can be introduced, in reference to a drawing task
described as copying an original image on an initially blank canvas.
[18].

1. An object in the original image becomes relevant (almost) only
during the time that it is being copied. Therefore (almost) all fix-
ations on an object are executed within a time interval in which
no fixations occur on other objects.

2. Fixations are distributed among the original objects according to
the number of salient points on each object, and on each single
object following the distribution of most salient points.

3. The sequence of fixations on the original scene is constrained to
maximize continuity of tracing hand movements.

The first assumption states that a peculiar feature of the drawing be-
havior is that the gaze does not move back and forth among different
objects, but proceeds sequentially. Gaze is directed to an object only
when it becomes relevant to the task, i.e. during the time that it is
being copied.
Salient points can be defined as those with local intensity and orienta-
tion contrast [51] above a given threshold and the second assumption
requires the draughtsman to move the gaze towards all salient points.
This implies a segmentation which is finer than the initial object-
based segmentation and is directly related to pragmatic sensorimotor
control.
Third assumption implies that feedback information on hand motion
plays an important role in determining the actual scanpath. One pos-
sible implication is that the scanpath on the original scene should
resemble a coarse–grained edge following along the contours of the
objects, which has never been observed in the eye–tracking literature
to the best of our knowledge.

In the following sections we present our eye–tracking experiments,
whose aims were to test the correctness of our hypotheses, as well as
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their implications for the observable sensorimotor behavior.
In the experimental sessions we recorded eye and hand movements,
while the subjects were copying an original image on a blank sheet
(the canvas); we call this the realistic drawing task.



3.3. Methods 71

3.3 Methods

3.3.1 Participants

Two experimental sessions were realized. In the first, preliminary
session, eye scan records were obtained from three right–handed in-
dividuals, aged between 27 and 33 years; in the second, main session
29 subjects were used, 5 of which were left–handed.
All subjects had normal or corrected to normal vision; none of them
had specific previous training in drawing or painting.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: The original images adopted in the eye tracking experiments; human
subjects were instructed to copy these images on an initially blank canvas.
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3.3.2 Displays and Instructions

The experimental setup is shown in Fig. 3.2. Subjects were presented
with a rectangular, vertical tablet 40 cm × 30 cm, viewed binocularly
from a distance ranging from 35 cm to 45 cm depending on the sub-
ject’s arm length. In the left half of the tablet hand–drawn images
were displayed, while the right half was initially occupied by a white
sheet. The original images, shown in Fig. 3.1, represented simple
contours drawn by hand with a black pencil on white paper, that oc-
cupied an area of approximately 15 cm × 15 cm.
One image per trial was shown, and the subjects were instructed to
copy its contours as faithfully as possible, drawing on the right hand
sheet. These instructions did not make specific mention of eye move-
ments and did not give constraints on the execution time.
Each subject carried out six trials, one per image, and the images
were presented always in the same order.

3.3.3 Eye movement recording

The subject’s left eye movements were recorded with a remote eye
tracker (ASL 5000) with the aid of a magnetic head tracker (Ascen-
sion Flock of Birds), with the eye position sampled at the rate of 60
Hz1. The instrument can integrate eye and head data in real time and
can deliver a record with an accuracy of less than 1 deg in optimal
light conditions.
The spatial configuration of the experiment is shown schematically
in Fig. 3.2. Due to the wide field of view (about 30 deg × 23 deg),
and the fact that the eye camera was on the bottom left margin of
the field of view, only the records corresponding to the left hemifield
showed a good accuracy; thus, information on eye position in the right
hemifield, namely fixations on the drawing hand, were discarded2.

The eye camera focuses on the left eye of the subject; it is an active
camera that automatically pans and tilts, in response to head move-
ments reported by the magnetic sensor, in order to keep the image
centered on the subject’s eye. The image thus captured is processed
by custom hardware, in order to extract the center of the pupil and of

1All experimental facilities were kindly provided by the Natural Computation

Lab of the University of Salerno.
2This problem will be solved in the future by adopting a head–mounted eye

tracker.
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Figure 3.2: The Subject sits in front of a rectangular, vertical Tablet. In the
left half of the Tablet hand–drawn images are displayed, while the right half is
initially occupied by a white sheet where the Subject is instructed to copy the
images. The eye tracker integrates data from the Eye Camera and the Magnetic
Sensor and Transmitter; eye position is then superimposed on the Scene Camera
video stream, which takes the approximate subjective point of view.

the corneal reflection; these pieces of information are then combined,
via simple geometrical calculations, to obtain the 3D angle of gaze
direction.
Once this is done, a calibration procedure must be followed for each
subject, in order to obtain an estimate of the projection of the gaze
vector onto the image plane (the tablet). This amounts to estimating
a function that maps 3D gaze angle values to 2D cartesian coordinates.

3.3.4 Preliminary analysis of recordings

The first qualitative analysis was conducted on the video output pro-
vided by the instrument: this is the video taken from the point of view
of the subject using the Scene Camera (defined in Fig. 3.2), with the
eye position displayed as a black cursor superimposed on each frame
(see Fig. 3.4).
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Then the raw eye tracker data could be displayed in the form of
a plot of horizontal and vertical eye positions against time, as shown
in figures 3.5(a) and 3.5(b).
The fixations were detected by a Matlab implementation [44] of the
standard dispersion algorithm; the dispersion threshold was set to 2.0
deg with a minimum fixation duration of 100 msec. The algorithm
detects the fixations, and outputs fixation position (x−y coordinates)
and duration. Mainly the spatial coordinates of individual fixations
were used in our analysis, while duration was used only to evaluate
the total fixation time on relevant areas.

The raw data and the fixations could then be displayed in an X-
Y plot superimposed to the digitized version of the stimulus image
for the given trial, as shown respectively in figures 3.6(a), and 3.6(b).

Figure 3.3: A picture of the experimental setup at the Natural Computation Lab

of the University of Salerno. The inset in the upper left corner shows the control
monitor for the eye camera.
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Figure 3.4: Subjective image from the Scene Camera, with the gazepoint shown
by the black cursor (the red arrow was added manually).

(a)

(b)

Figure 3.5: Raw eye data for one subject in trial 1: 3.5(a) X and 3.5(b) Y vs

time.
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(a) (b)

Figure 3.6: X – Y plot of 3.6(a) raw data and 3.6(b) fixations.

3.4 Analysis of recordings

At present, only very few eye tracking studies on drawing humans have
been conducted [123, 46], and no standard measures have been defined
for this task (see [52, 25] for a survey of common measures used in
eye tracking research). Therefore our analysis of eye data was driven
mainly by the hypotheses we made in section 3.2; the aim was to test
the correctness of such hypotheses, as well as their implications as to
the characterization of the sensorimotor behavior of drawing humans.

3.4.1 Hypothesis 1

In trial 5 the image displayed is composed by two closed contours that
are spatially separated (see Fig. 3.1(e)). Hypothesis 1 states that in
this case the two objects are scanned in two disjoint time intervals,

Figure 3.7: Subjective image from the Scene Camera in trial 5, with the ROIs
defined by two green rectangles.
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(a) (b)

Figure 3.8: The cumulative fixations executed by subject AP in trial 5, during
each of the two time intervals.

expressing the fact that gaze is directed to an object only when it
becomes relevant to the task: in this case, we are assuming that an
object is relevant (almost) only during the time that it is being copied.

In fact, from qualitative analysis it resulted that all the subjects
started drawing the second object only after completion of the first
one, independently of which of the two objects was chosen as the
first3. Thus we first defined, for each subject, two time intervals, T1
and T2, corresponding to the two drawing phases; these were found

3Eye data recorded during this trial from 9 subjects were noiseless enough to
allow reliable analysis; therefore the results presented in this section refer to those
9 subjects only.
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Figure 3.9: Plot of the position (R1, R2, OFF) of each subsequent fixation across
the whole execution of trial 5.
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Figure 3.10: The distribution of fixations over the three regions (R1,R2,OFF)
executed by subject AP in trial 5, during each one of the two time intervals.

by inspection of the video data. Then we defined two rectangular
Regions Of Interest (ROI), R1 and R2, each one containing one of the
two objects as shown in Fig. 3.7. Fixations on the left hemifield were
then classified in each time interval, as falling in R1, R2 or outside.
Fig. 3.8 shows the fixations executed by subject AP in each of the
two time intervals, while Fig. 3.9 is a plot of the position (R1, R2,
or OFF) of each subsequent fixation. These plots give an idea of the
correctness of hypothesis 1 for this single subject, as confirmed by the
histogram of the fixations over the three regions in each time interval
3.10.

In Fig. 3.11 we plot, for each subject, the distribution of the
number of fixations (F ) over the three classes, and in Fig. 3.12 we
report the same plot, averaged over the 9 subjects. These plots show
good agreement with hypothesis 1, given that

a) the maximum of the distribution is always in the region corre-
sponding to the time interval considered; and, most notably,

b) the percentage of F in the ‘wrong’ region is always below 27 %
for each subject, and below 10 % in average.

It should be noticed that hypothesis 1 does not mention fixations
outside the ROI’s, while the data show an increase of F in this class
when moving from T1 to T2 (see Fig. 3.11 and 3.12 where the average
distribution of F is plotted). This fact could be explained by the
additional hypothesis that after one object O has been completed
then sporadic saccades between O and the next object can be used
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Figure 3.11: Plots of the distribution of the number of fixations over the regions
(outside, R1 or R2). Each plot refers to either time interval T1 (left column) or
T2 (right column). Each row corresponds to one subject.

to evaluate information, such as the distance and relative size, that
are relevant for an accurate drawing. These fixations can be naturally
thought of as supporting the evaluation of the emerging result, and
were not analyzed further in the present work.
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Figure 3.12: The distribution of fixations over the three regions (R1,R2,OFF)
during each one of the two time intervals, averaged over 9 subjects.

3.4.2 Hypothesis 2

In trial 4 the image displayed includes an irregular cross and a loop4

(see figure 3.1(c)). Hypothesis 2 states that at the end of the trial,
fixations should be distributed on the image contours according to
some saliency measure; in other words, we expect to find clusters of
fixations around the most salient points.

If we define saliency of a point as proportional to the local intensity
and orientation contrast (as proposed e.g. in [51]), then it is evident
from qualitative analysis of the cumulative fixation plot for each of 5
subjects (Fig. 3.13) that fixations are distributed preferentially near

4The results presented in this section refer to only 5 subjects, as it is intended
only to give a proof of principle.

(a) (b) (c) (d) (e)

Figure 3.13: The cumulative plot of fixations in trial 3; from left to right,
subjects AC, AP, AS, RS, VV.
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salient regions, as predicted by hypothesis 2.
The general fact that fixations tend to be located near salient points
is well known from the literature concerned with purely visual tasks.
However, it was not obvious that this should hold also for a visuoman-
ual task such as realistic drawing: in fact in this case all the points
of the image are potentially relevant to the task, since each portion of
the image must be copied faithfully.

For a quantitative verification of hypothesis 2, we follow an approach
proposed in [135]. We first evaluate the cumulative fixation map for
the 5 subjects: we divide the image in a fixed number of cells, count
the number of fixations per cell by all individuals, assign a gaussian
centered on each cell with height proportional to the corresponding
value, and eventually normalize the resulting matrix to obtain a 2D
probability distribution which can be displayed as a grid of grayscale
cells (see figure 3.14(b)).
Then we compare it with the saliency map obtained as suggested in
[51]. Starting from the original image, early visual features such as
color opponents, intensity and orientation are computed in a set of
feature maps based on retinal input and represented using pyramids.
Then, center-surround operations are implemented as differences be-
tween a fine and a coarse scale for a given feature. One feature type
encodes for on/off image intensity contrast, two encode for red/green
and blue/yellow double-opponent channels and four encode for local
orientation contrast. The contrast pyramids for intensity, color, and
orientation are summed across scales into three conspicuity maps,
which in turn are eventually combined in a saliency map (see Fig.
3.14(c)).
Eventually, the numerical comparison between the two maps requires
the definition of a measure of similarity between two matrices. Given
that the fixation map represents a 2D probability distribution, also the
saliency map can be converted to a probability distribution; then any
standard similarity criterion, e.g. the Kullback–Leibler divergence,
can be used to evaluate the similarity between the two maps. This
result should then be compared with the distance of the experimental
fixation map from a map obtained by sampling a uniform distribution
over the image contour. We leave this explicit computations for future
work.
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(a) (b) (c)

Figure 3.14: 3.14(a) The cumulative plot of fixations in trial three for all 5
subjects; 3.14(b) the corresponding fixation map [135], and 3.14(c) the saliency

map [51] of the original image (see text for the explanation of how these maps are
obtained).

3.4.3 Hypothesis 3

Our third hypothesis states that the sequence of fixations on the orig-
inal scene is constrained to maximize graphical continuity of tracing
hand movements.
In order to explore the correctness and the implications of this hypoth-
esis, we analyze the scanpaths recorded in a trial where the original
image is a shape composed by a single line. Fig. 3.15 depicts the
cumulative plot of fixations, and the corresponding hand position,
at four subsequent stages. The times at which the snapshots have
been taken, correspond to the moments during which the following
sequence is observed: hand stops - fixation(s) on the left - saccade -
fixation(s) on the right - hand moves. We interpret the points where
the hand stops as keypoints, at which the hand’s action needs to be
reprogrammed and thus fixations on the original image become nec-
essary.
A qualitative inspection of Fig. 3.15 shows a general tendency of the
gaze to move orderly along the image contour, as confirmed by the
scanpaths of 11 different subjects5, plotted in Fig. 3.16; furthermore,
all of our subjects used graphically continuous hand strokes. This
evidence suggests that the strategy that humans adopt in the draw-
ing task, to facilitate graphical continuity of hand movements, is to

5Eye data recorded during this trial from 11 subjects were noiseless enough to
allow reliable analysis; therefore the results presented in this section refer to those
11 subjects only.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: The sequence of eye and hand movements by subject AP in the
drawing task. In the upper row, cumulative fixations on the original image are
represented by red circles. In the lower row the solid black square denotes the
gazepoint. In 3.15(h) the circles denote the endpoints points of each trajectory
segment, found by inspection of the video recording.

move the gaze according to a coarse grained edge–following along the
contours of the original image.

Thus, we define a procedure (originally proposed in [90]) to evaluate
in a quantitative manner the similarity of the recorded scanpaths to
the coarse grained edge–following ; the same procedure can be used
then to make a comparison with the scanpaths generated by our as
well as other computational models (chapter 4).
As a first step we superimpose an ordered grid on the original image,
and then we cluster together all subsequent fixations that fall within
a single cell, as one single event. At the end of this procedure, instead
of the scanpath we have an ordered sequence of events, each one be-
longing to a single cell of the grid, as depicted in Fig. 3.17. Then
each cell is labeled with a symbol (an ASCII character in the interval
’A’ to ’e’), and each sequence of events is converted to a string; this
enables a comparison of the strings produced by two algorithms, by
two human experimental subjects, or by an algorithm and an exper-
imental subject, using a string matching algorithm. The final value
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can be normalized on the basis of the string length.
The string similarity index can be defined through an optimization
algorithm, with a cost unit associated to each of three different opera-
tions: deleting, inserting and substituting. By sequentially processing
the first string to obtain the second string, we get the similarity in-
dex as the minimum total cost (this is usually called the Levenshtein
distance [66]).

In Fig. 3.18 we report the comparison between the experimental mea-
sured scanpath and a) 10000 random strings (i.e. the mean similarity
of all the random strings), b) a saliency–based algorithm[51]; c) a
perfect edge following and d) the scanpath obtained by the computa-
tional model we have proposed, discussed in chapter 4.
For the case a) each random string is formed considering only the
pixels where the lines forming input image are present, and their ad-
jacent regions. The probability to extract an empty cell is the half
than that of a full one. This fact emphasizes that only occasionally
the experimental subjects fixated on white portions of the original
image.
The comparison results show that random strings have the lowest
string similarity index, meaning that the scanpath in a drawing task
can not be considered as a random one. Considering eleven ex-
perimental subjects, the average of string similarity index is about
0.098 ± 0.015. Similar results were obtained by the saliency–based
scanpath.
Viceversa, better results come from the comparisons with the perfect
edge following and the proposed computational model (respectively
0.40 ± 0.15 and 0.39 ± 0.16), thus confirming the validity of our hy-
pothesis 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3.16: From left to right, the scanpath executed by 11 subjects in trial 1.
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ABIHNT[\]W 

(a)

AU[\Q

(b)

AIBHN[][\]WBAHBaWXQWXW 

(c)

AHNMUZ[\V\V\VW

(d)

Figure 3.17: From left to right, the clustered version of the scanpath, executed
by subjects AP, AS, AC, MJG in trial 1.
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Figure 3.18: The plot shows for each subject (x axis) the mean similarity of the
observed scanpath to i) 10000 random scanpaths (dark blue with error bar); ii)
a preattentive scanpath à la Itti (light blue); iii) a perfect coarse–grained edge-
following (yellow); and iv) to the scanpath simulated by our computational model
(red, see chapter 4 for a discussion). Horizontal lines denote the respective mean
values.



Chapter 4

The Drawing Task. Model

Specifications, Simulations

and Comparison with

Experimental Data

4.1 Introduction

In order to test the performance of the model proposed in chapter 2,
and compare the results with human execution, we provided a robotic
simulator with the same images presented to human subject in previ-
ous eye tracking sessions (chapter 3).
Here we explain the relevant implementation details, mainly those
concerning learning, inference and decision in the DBN. Then we
outline the implementation of the auxiliary modules, namely those
involved in trajectory generation, gazepoint selection, and kinematic
inversion. Eventually, we discuss simulation results and give both
qualitative and quantitative comparison with experimental data.
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4.2 Task description and aims of the sim-

ulations

The task we have chosen to test the functional model described in
chapter 2 is a realistic drawing task: copying the contour of an irreg-
ular shape. The agent is presented with an original image (black on
white, 1 pixel stroke width), which is a binarized version of the hand
drawn image used in the experiments with human subjects.
Notice that at this stage our model deals only with the fixations on
the original image, not with fixations on the drawing hand ; this im-
plies also that feedback on hand movements is purely proprioceptive
in this case (we call it the blind drawing task).

As discussed in chapter 3, behavioral observations on draughtsmen at
work have revealed the existence of a regular execution cycle, where
two main phases can be distinguished. During one phase, which cor-
responds to either the selection of what to draw next or the evaluation
of the emerging result, the hand is not drawing, and eye movements
distributed over the whole scene can be observed; the other phase is
the one during which the hand is tracing and the gaze is moved or-
derly on small portions of the original image [19].
In order to design an artificial drawing agent, we schematize the above
mentioned execution cycle as an oscillation between two main tasks:
deciding what to draw next, and actually drawing it. This is described
by the following pseudocode:

> while(drawing not completed)
> choose next object ;
> while(object not completed)
> choose next FOA;
> draw ;
> end

> end

The first task (choose next object) must be solved in the cases where
the original image is segmented in multiple separated objects: this
includes both the case of several disjoint objects, and the case of an
object composed by several branches, e.g. a cross. As the experiments
presented in chapter 3 show, in this case human subjects almost al-
ways direct their fixation to only one object until it has been drawn
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q,q

Figure 4.1: A reduced version of the functional model, discussed in chapter 2,
for the sensorimotor coordination of a robot involved in a realistic drawing task
(see text for explanation)

entirely, and then move to the next one. The solution to this task
relies on visual processing mainly related to the Vision for Perception
pathway, essentially involving a segmentation of the original scene in
separate objects. Many standard techniques exist for this purpose
[37].
Once the segmentation is done, the selection process can be expressed
in a probabilistic framework. Here we limit ourselves to outlining how
this can be done, on the basis of the extended functional model intro-
duced in chapter 2.
Let us assume that a segmentation of the image in separate objets
{Θ1, . . . , ΘK} is available. Let us also assume that each object is
further segmented in branches:

Θk = {ok,1, . . . , ok,M} . (4.1)

If we define nk
t and n

k,j
t as the percentage of the contour that has

already been reproduced, at time t, respectively in object k and in
branch k, j. These quantities, that are related to the evaluation of
task progress, are computed in the Vision for Perception modules,
and represent the input uV P to the FEF module. Then we can denote
by

p(Θk
t |Θ

l
t−1, n

l
1:t−1, n

k
1:t−1) (4.2)

the a posteriori probability inferred in the FEF module. Similarly,
for a given object k, the next branch will be distributed according to:

p(ok,j
t |o

k,l
t−1, n

k,l
1:t−1, n

k,j
1:t−1) . (4.3)
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The pdf’s in eq. 4.2 and eq. 4.3 are then passed on to the SC mod-
ule which in turn will select the next gaze point by maximizing the
posterior distribution

p(et|y
e
t , z

e
t , Θ

k
t , o

k,l
t ) . (4.4)

where ye
t is the eye–related output of the Sensorimotor Coupling mod-

ule, and ze
t is the preattentive information encoded by the saliency

map.

At the present stage however, our model does not deal with this issue,
but rather focuses on controlling the fixations and hand strokes on a
single object. Therefore the work presented in the rest of this chapter
refers to this task: reproducing an original image composed by one
object.
For the sake of clarity, we reproduce in Fig. 4.1 a portion of the
functional model presented in chapter 2. This corresponds to the
modules that we implemented in order to solve the above mentioned
task. Recall that the central module, namely Sensorimotor Coupling,
is reshaped in the form of a DBN, precisely a Input–Output Hidden
Markov Model (IOCHMM), depicted in Fig. 4.2. We use the DBN,
together with standard Bayesian Decision Theory, as the core mod-
ule of our functional model. This module generates the sequence of
joint eye–hand premotor information that produces the appropriate
drawing sensorimotor pattern.
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4.3 Joint eye–hand movement planning

4.3.1 Visual and proprioceptive processing

Consider again the system in Fig. 4.1. The visual input is represented
by the image of the observed world scene, while the reafferent propri-
oceptive input is represented by the velocity of the end effector in the
drawing plane.

The proprioceptive input is fed into the the Hand State Estimation
module which, by taking into account internal feedback, computes an
estimate of the hand direction (see section 4.3.2 for details); note that
here we are not modeling also the speed profile.
The visual input, which more precisely is represented by the scene
image together with the point fixated within that image (the fixation
point e provided as visual feedback, see. Fig. 4.1) follows two routes.
In the Preattentive Vision module, early visual features (color, inten-
sity, orientation) are extracted through linear filtering across different
scales; then, center–surround differences are computed for each fea-
ture to yield the feature maps, that are combined in the saliency map
S . From such map the agent extracts a list σ̄ of the n (n ≃ 6, 7)
most salient points in S, by means of a winner–take–all network; such
points represent bottom-up, plausible FOA candidates that can bias
higher level gaze planning (see [51] for details).

In the Vision for Action module, action–related information is

Figure 4.2: The IOCHMM’s for combined eye and hand movements. The gray
circles denote the input (u) and output (y) variables. Continuous connections in
the hidden layer denote the core process relating hand movements to previous eye
movements, while dotted connections highlight the subgraph that represent the
complementary process.
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computed, within the image region surrounding the fixated point e

(such region represents the the Focus of Attention, FOA) to provide
subsequent modules orientation and curvature information. More pre-
cisely, due to the peculiar characteristics of realistic drawing [19], a
regular grid is ideally superimposed on the original image and two
matrices (N, O) are obtained by assigning to each cell respectively an
on/off intensity value (Fig. 4.8(d)) and the average orientation of the
contour (Fig. 4.8(e)). Eventually, the visual feature ue, forwarded
to the DBN, is coded as an angular value corresponding to the ori-
entation value of the image contour in the currently fixated cell (see
section 4.3.2 for details).

4.3.2 State spaces

In the implementation of the DBN module, discrete state spaces are
used for all the variables; we consider a regular grid superimposed on
the original image, and eye and hand movements selected by the DBN
module are relative to grid cells. In particular, both eye and hand
movement models are coded as displacement vectors, originating from
the current fixation point or hand position respectively; this choice
(encoding the direction rather than the target endpoint) is motivated
by literature on neurophysiology, as this appears to be a plausible
encoding in the motor and oculomotor areas of primate’s brain (see
e.g. [106, 55]).

The nodes are distributed on three layers, namely input, hidden
and output. The corresponding random variables have the following
interpretation and state spaces (also depicted in Fig. 4.3):
ue: the first input for eye and hand movement planning processes
provides the features extracted from the portion of the original image
corresponding to the current fixation; in particular ue is the orienta-
tion of the image patch, varying only between 0 and π because lines
in the image are not directed:

ue ∈
{

0,
π

8
, . . . ,

7π

8

}

(4.5)

uh: the second input for eye and hand movement planning processes
concerns information regarding the perceived current position of the
hand, as resulting from the elaboration of proprioceptive data. More
precisely, uh is the vector representing the endpoint of the previous
movement, with respect to the center of the currently fixated cell.
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Since we use only discrete variables, such vector is classified as one
out of eight possible directions:

uh ∈
{

0,
π

4
, . . . ,

7π

4

}

(4.6)

xe: the state of the eye movement process. Eye movements are coded
as displacement vectors, originating from the previous fixation point,
as this is the most plausible encoding in biological systems (see e.g.
[55]); we consider the length of the displacement as fixed to one grid
cell, while the direction can take eight discrete values:

xe ∈
{

0,
π

4
, . . . ,

7π

4

}

(4.7)

ye: the eye–movement output, encoding the performed displacement.
In principle continuous values should be used for ye, to include the
possibility of errors in the execution; in our implementation however
we assume perfect execution, and we have ye

t = xe
t at any time step

(see section 4.3.4 for a discussion of this assumption).

ye ∈
{

0,
π

4
, . . . ,

7π

4

}

. (4.8)

xh: the state of the hand–movement process denotes the planned
overall direction of the hand movement, within the currently fixated
cell. As a slightly different interpretation, xh should be seen as a
class label, where the process of selecting a hand plan is equivalent
to the process of selecting an action class; such process then activates
a lower–level motor controller that computes the details of the hand
kinematics. Formally, xh is a variable that takes values among eight
possible directions:

xh ∈
{

0,
π

4
, . . . ,

7π

4

}

(4.9)

yh: the output of the hand–movement process represents the plan
that is actually issued and passed forward to a motor controller. The
values taken by yh are the same as for xh:

yh ∈
{

0,
π

4
, . . . ,

7π

4

}

(4.10)
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(a) (b)

Figure 4.3: A visualization of the state space for the visual input 4.3(a) and eye
and hand variables 4.3(b).

4.3.3 Learning the DBN

The problem of learning the parameters associated with the DBN de-
scribed above is the following: each node has a conditional probability
distribution, which describes the probability of taking on each partic-
ular value given the values of all its parent nodes. In our specific case
all the variables are discrete, therefore the associated distribution is
in fact a matrix (a Conditional Probability Table — CPT), and each
entry in such matrix is treated as a parameter that must be learnt.
As discussed extensively in chapter 2, the learning technique we adopt
is the Maximum Likelihood Estimate (MLE) of the parameters, us-
ing a version of the Baum–Welch algorithm that is adapted to our
network; this in turn is a HMM–specific variant of the Expectation
Maximization algorithm for exact inference [12].

The system is provided with some example sequences that show how
the inputs and outputs (observed nodes) are related; from these ex-
amples the CPT’s of the initial state and the hidden, unobserved layer
(transition probabilities) are inferred. As a simplifying assumption,
here we consider the output mechanism to be perfect, thus the output
probability distribution is modeled as a delta function, and it needs
not be learned:

p(yi
t | x

i
t) = δyi

t,x
i
t

(4.11)

where i = e, h.

The examples we use are sequences that reflect the experimental ob-
servations on eye–tracked human subjects discussed at length in chap-
ter 2 (see also [18]): hand movements are graphically continuous and
correspondingly the scanpath is a coarse–grained edge–following along
the contours of the original image.

Since the network is first order Markov, i.e. each node at time t
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depends only on nodes at times t and t−1, we assume that satisfactory
learning results can be obtained using examples that are only two
temporal steps long. A possible sequence is the following:

t = 1 t = 2
ue

t 0 π
8

uh
t π π

ye
t 0 π

2

yh
t 0 π

4

(4.12)

In this example sequence the visual input changes across time, it is
horizontal in the first time step (ue

1 = 0) and then slightly diagonal
(ue

2 = π
8
); at the beginning the hand is located at the left of the fixated

cell (uh
1 = π). In the first time step both eye and hand move to the

right, but then the input configuration changes, and when t = 2 the
hand plan is directed upwards along the 45deg diagonal, while the
eye movement points straight upwards (ye

2 = π
2

, yh
2 = π

4
). Fig. 4.4

depicts the visual input and the eye–hand output corresponding to
this specific sequence. The learned joint probability distribution for
the eye–hand plans p(xe

t+1, x
h
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t ) is the sensorimotor

mapping that characterizes the drawing behavior of the agent; Fig.
4.5 depicts two instances of such map.

Figure 4.4: The visual input (upper left), proprioceptive input (upper right),
and the eye (bottom left) and hand (bottom right) outputs corresponding to the
example sequence given in table (4.12).
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Figure 4.5: The joint conditional probability at the hidden nodes (xe, xh) at
t = 1 4.5(a) and t = 2 4.5(b), in the case that the visual input is the same as in
table (4.12).

4.3.4 Decision stage

In order to use the DBN as a control system, we need not just sample
it, but rather pass the information it contains to a decision process.
As explained in chapter 2, we resort to standard Bayesian Decision
Theory, and specifically to the MAP rule; with this choice, the out-
puts of the network are selected as those that maximize the posterior
probability given the inputs and the past history.
In formulae, this amounts to

(xe⋆
t+1, x

h⋆
t+1) = arg max

[

p(X̄t+1 | ū1:t+1, ȳ1:t)
]

, (4.13)

where ū = (ue, uh) denote the pair of variables representing the visual
and hand proprioceptive inputs, respectively, and similarly for X̄, ȳ.
Although in general this requires online inference, as already antici-
pated in chapter 2 we have run the first simulations under the sim-
plifying assumption that the system has perfect outputs (eq. 4.11).
Under this assumption, also the update equation reduces to a product
of delta functions:

p(X̄t | ū1:t, ȳ1:t) = η p(ye
t | x

e
t) p(yh

t | x
h
t ) p(Xe

t , X
h
t | u

e
1:t, u

h
1:t, y

e
1:t, y

h
1:t)

= δxe
t ,ye

t
δxh

t ,yh
t

(4.14)

and this in turn implies that the prediction equation for hidden states
reduces to

p(X̄t+1 | ū1:t+1, ȳ1:t) =
∑

xe
t

∑

xh
t

p(Xe
t+1, X

h
t+1 | u

e
t+1, u

h
t+1, x

e
t , x

h
t ) δye

t ,xe
t
δyh

t ,xh
t
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= p(Xe
t+1, X

h
t+1 | u

e
t+1, u

h
t+1, x

e
t = ye

t , x
h
t = yh

t ) . (4.15)

This quantity is a matrix that expresses the transition probability dis-
tribution, in the case that hidden variables at the previous time step
are clamped to the previous observed values.
Thus, in this simplified case, once the network has been trained, it is
no more necessary to resort to inference algorithms, since no marginal
distribution needs to be computed before applying the decision pro-
cess. In other words, in this case we just train the network, store the
transition distribution (in the discrete case, a matrix called Condi-
tional Probability Table), and then select the next eye–hand move-
ment according to:

(xe⋆
t+1, x

h⋆
t+1) = arg max

[

p(Xe
t+1, X

h
t+1 | u

e
t+1, u

h
t+1, x

e
t = ye

t , x
h
t = yh

t )
]

.

(4.16)

Notice that, after the DBN has been trained with a sufficient num-
ber of examples, it is straightforward to compute at any time step t,
given the inputs (ue

t , u
h
t ), and knowing the previous hidden states as

xi
t = yi

t, the posterior hidden state distribution p(Xe
t+1, X

h
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t ).

In section 4.3.5 we will introduce an additional mechanism to prevent
the eye from moving towards empty cells.

As a result of the learning stage followed by the decision step, we
obtain a sensorimotor map that encodes the eye and hand direc-
tions xe

t and xh
t for each given input couple. In Fig. 4.6 we show

an instance of such a map in the case of yh
t−1 = xh

t−1 = 0: red and
blue arrows denote the direction of the eye and hand plan respec-
tively, for each input couple. In addition, the level of confidence is
shown as gray level filling, for the specific eye–hand plan chosen; this
is given by the maximum value of the joint conditional probability
p(xe

t+1, x
h
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t ) for any input couple (ue

t+1, u
h
t+1). No-

tice that, due to the choice xh
t = 0, corresponding to a horizontal,

rightwards previous hand plan, the confidence is higher in the cases
where also the hand input uh corresponds to a rightwards previous
hand plan, be it horizontal or diagonal; this is due to a small num-
ber of training examples with xh

t = 0 and different values of uh . In
other words, when the information on the previous hand plan is in-
consistent with the actual previous hand plan, the decision taken has
a lower level of confidence.
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Figure 4.6: The eye–hand policy obtained applying Bayesian Decision Theory
to the DBN, in the specific case that xe

t−1
= 0: red and blue arrows denote the

direction of the eye and hand plan respectively, for each input couple. The level
of confidence is shown as gray–scale filling for the eye–hand plan chosen, for each
input couple. The lighter the pixels, the higher the confidence.

4.3.5 Gazepoint selection and hand trajectory gen-

eration

Planning of hand trajectory is achieved by fusing the outputs of differ-
ent sensorimotor modules of our architecture, in the Trajectory Gener-
ator module (see Fig. 4.1); here the goal is to reproduce the trajectory
planning strategy that can be inferred from the observation of human
draughtsmen. Eye tracking experiments have shown that the most
common drawing behavior is the following: a) subjects fixate on a
location on the original image, b) then move the gazepoint towards
the pencil tip, c) draw the corresponding portion of the image and
d) stop drawing and go back to point a). Such a cyclic behavior has
been discussed in chapter 3. Accordingly, in our model hand trajec-
tory is generated and executed in segments, and the endpoints and
intermediate key points of each segment are defined by the fixation
points.
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Recall that, at any given time step t, the Gaze orienting and
Hand orienting modules provide the next eye and hand movement
directions, (ye

t ) and (yh
t ), respectively; meanwhile a set of most salient

points σ̄ is made available by the Preattentive Vision module. The
latter points are translated to the coordinates of the hand workspace,
and are used as the starting and ending points for each trajectory
segment.

Gaze points e are determined by the Gazepoint Selection module
as follows. Suppose the current gaze location et ∈ σ̄; given et and
the value of ye

t , the cell where the gaze point will move next (ǫt+1) is
computed. Then, the next gaze location et+1 is obtained by finding
the most salient point in the image patch I(ǫt+1) corresponding to the
next cell.
The gaze point et and the angular value φt of the chosen hand direction
yh

t are fed into the Trajectory Generator module. This is repeated
until it happens again that et+τ ∈ σ̄; in this case the sequence of pairs
[(et+i, φt+i)]i=0,1,...τ is interpolated by a spline, setting the slope of the
curve at point et+i to the value tan(φt+i). The resulting curve is the
trajectory segment that is fed into the Inverse Kinematic module for
generating actual motor commands.
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4.4 Inverse Kinematics

Movements of a redundant seven degree–of–freedom (DOF) robot ma-
nipulator, having a human–like kinematic structure (Fig. 4.7), have
been simulated1.
The drawing task considered here leads to a solution to the inverse
kinematics that can be possibly evaluated and compared with arm
movements of human experimenters. Previous work in this direction
is discussed in [17].

The closed-loop inverse kinematics (CLIK) scheme [109] has been
used to obtain the joint variables of the robot manipulator from a dif-
ferential mapping between task–space and joint–space values, denoted
respectively as p and q. In solving the kinematic inversion one should
keep in mind that in this peculiar case, i.e. the drawing task, only
the first two components of the position vector p = [ x y z ]T in
the task space are variable, while the z component remains constant
during the task execution.
To compute the inverse kinematics we resort to the differential kine-
matics equation:

ṗ = J(q)q̇ (4.17)

where J(q) is the (3 × 7) Jacobian matrix. This equation represent
the mapping of the (7×1) velocity vector q̇ of the joint variables into
the task space (3 × 1) velocity vector ṗ. It is possible to invert the

1This part of the model has been developed in collaboration with Dr. A. De
Santis at PRISMA lab, Università di Napoli Federico II.

Figure 4.7: The 7 DOF manipulator
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equation using the pseudo–inverse of the Jacobian matrix as follows:

q̇ = J †(q)ṗ (4.18)

where J † = JT(JJT)−1 is a (7 × 3) matrix; it corresponds to the
minimization of the joint velocities in a least-squares sense [109].

In order to contemplate the different characteristics of the available
DOF’s it could be necessary to modify the velocity distribution with
respect to the least-square minimal solution. A possible solution is to
consider a weighted pseudo-inverse matrix:

J
†
W = W−1JT(JW−1JT)−1 (4.19)

with W−1 = diag{β1, . . . , β7}, where βi is a weighting factor belong-
ing to the interval [0, 1] such that βi = 1 corresponds to full motion
for the i-th degree of mobility and βi = 0 corresponds to freeze the
corresponding joint.

Furthermore, redundancy of the robotic arm can be exploited to
satisfy secondary tasks, without affecting the primary task, i.e. the
motion of the drawing point p. To this end, a task priority strat-
egy [78] is used, which leads to the following solution:

q̇ = J
†
W (q)ṗ +

(

I7 − J
†
W (q)J(q)

)

q̇a (4.20)

where I7 is the (7× 7) identity matrix, q̇a is an arbitrary joint veloc-

ity vector and the operator
(

I7 − J
†
WJ

)

projects the joint velocity
vector in the null space of the Jacobian matrix.
Discrete–time integration of the joint space velocity can lead to nu-
merical drifts; the CLIK algorithm [109] used here, allows the system
to overcome this problem by exploiting the direct kinematics equation
to compute an internal feedback signal from the efferent copy of the
joint space variables.

The drawing task is performed on a vertical plane. Consequently,
the secondary task of minimizing the gravity torques can be trans-
formed to the joint space. This constraint provides an arm posture
that is attached to the body. A possible definition of multiple sec-
ondary tasks related to the positioning of intermediate parts of the
same kinematic structure, including proper trajectory planning, is
presented in a more systematic fashion in [102].
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4.5 Results

4.5.1 Simulations and qualitative comparison with

experimental data

After training the DBN as described above, we have run it on a bina-
rized version of the original image shown to the experimental subjects
(Fig. 4.8(a)). The preliminary visual processing, corresponding to the
Vision for Action and Preattentive Vision modules, are shown in Fig.
4.8.
A single run of simulation leads to the time sequences of eye and hand
plans ȳe, ȳh shown in the two top rows of Fig. 4.9; the bottom row is
the sequence of visual inputs, namely the orientation of the image in
the region foveated at each time step. The second bottom row shows
the confidence level assigned to the eye–hand plan chosen.
The corresponding scanpath is depicted in Fig. 4.10(a), and it can
be directly compared to the human eye movement recordings shown
in Fig. 4.11. Fig. 4.10(b) shows, in green, the trajectories planned
according to the DBN outputs, with the endpoints evidenced by blue
circles; these trajectories are computed as splines passing through the
points corresponding to the position of each eye fixation, with a slope
defined by the associated hand plans.
It is worth remarking that a pure bottom-up, uncoupled scanpath
generation would provide a very different result. This can be easily
seen, for instance, by feeding the salient points to a winner–takes–all
network combined with the inhibition of return[51] in order to ob-

(a) (b) (c) (d) (e)
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Figure 4.8: The original image (4.8(a)), the saliency map (4.8(b)), and the
most salient locations (4.8(c)) denoted by black circles. The red lines denote the
scanpath that would be obtained following the approach proposed in [51]. 4.8(d)
shows the imaginary grid superimposed on the image; cells containing an ‘X’ sign
are those evaluated as empty. 4.8(e) depicts the orientation of the image patch
contained in each non empty cell; the color code for orientations is explained in
4.8(f).
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Figure 4.9: The discrete–time evolution obtained as described in section 4.3.5,
with time increasing left to right. The bottom row is the sequence of visual
inputs, namely the orientation of the image in the region foveated at each time
step. The second bottom row shows the confidence level assigned to the eye–hand
plan chosen. The two top rows depict respectively the sequences of eye movement
plans, in green, and hand movement plans, in red, output by the DBN.

tain the bottom-up fixation sequence; an evaluation of how different
this scanpath is from scanpaths either generated by our approach or
recorded via eye-tracking, is presented in section 4.5.2.

Fig. 4.10(b) shows, in green, the trajectories planned after the
DBN outputs, with the endpoints evidenced by blue circles. For hu-
man subjects, such endpoints have been found by inspection of the
video recording, as the points where the hand interrupts for a while
the drawing movement. In Fig. 4.12 it is possible to observe the
temporal sequence of drawing movements by the same subject whose
scanpath is in Fig. 4.11(a). The results of the kinematic inversion
of such trajectories are shown in Fig. 4.13, where the time histories
of the first four joints of the robot are depicted. Finally, Fig. 4.14
shows the pencil trajectory obtained by the simulated robotic arm,
with blue circles denoting the endpoints of each trajectory segment.
It can be recognized that the simulated trajectory and segmentation
points are qualitatively following those recorded experimentally.
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(a) (b)

Figure 4.10: The final scanpath (4.10(a)) and planned hand trajectory (4.10(b));
the blue circles in (4.10(b)) denote the starting and ending points of each trajec-
tory portion. Both eye and hand movements start from the upper left corner.

(a) (b) (c) (d)

Figure 4.11: The scanpath executed by 4 human subjects in the drawing task,
trial 1, are reproduced here for a visual comparison with the simulated scanpath
in Fig. 4.10(a).

4.5.2 Quantitative comparison with experimental

data

For a quantitative comparison of both the mobility distribution and
the final trajectory, direct measurements of the pencil tip, wrist and
elbow would be required. However, the results obtained allow us to
present a numerical comparison of the simulated and recorded eye
movements.
As explained in chapter 3, in order to make such a comparison, we
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first convert the scanpaths to strings of ASCII symbols, and then we
can evaluate string similarity as the Levenstein distance between any
two strings.

In Fig. 4.15 is reported the similarity between the experimental
measured scanpath and a) 10000 random strings (i.e. the mean sim-
ilarity of all the random strings), b) a saliency–based algorithm [51];
c) a perfect edge following and d) the proposed DBN algorithm.
For the case a) the random string is formed considering only the cells
where the lines forming input image are present, and their adjacent
cells. The probability to extract an empty cell is the half of that of a
full one. This fact emphasizes that only occasionally the experimental
subjects fixated on white portions of the original image.

The comparison results show that random strings have the lowest
string similarity index, meaning that the scanpath in a drawing task
can not be considered as a random one. Considering eleven ex-
perimental subjects, the average of string similarity index is about
0.098 ± 0.015. Similar results were obtained by the saliency–based

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: The sequence of eye and hand movements by subject AP in the
drawing task. In the upper row, cumulative fixations on the original image are
represented by red circles. In the lower row the solid black square denotes the
gazepoint. In 4.12(h) the circles denote the endpoints points of each trajectory
segment, found by inspection of the video recording.
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Figure 4.13: The time history of joint motions for the considered trajectory;
angular variables correspond to the rotational degrees of freedom depicted in Fig.
4.7.

scanpath. Better results come from the comparisons with the per-
fect edge following and the proposed DBN algorithm. (respectively
0.40± 0.15 and 0.39± 0.16).

Figure 4.14: The actual position of the end effector computed via direct kine-
matics from the joint variables. The trajectory has been translated in world
coordinates considering square pixels (1 mm).
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Figure 4.15: The plot shows for each subject (x axis) the mean similarity of
the observed scanpath to 10000 random scanpaths (dark blue with error bar),
the similarity to a preattentive scanpath à la Itti (light blue), the similarity to a
perfect coarse–grained edge-following (yellow), and the similarity to the scanpath
simulated by the DBN (red). Horizontal lines denote the respective mean values.



Chapter 5

Discussion

The research project presented in this thesis tackled the general prob-
lem of understanding the mechanisms underlying sensorimotor cou-
pling in humans. The complementary issue of designing a sensorimo-
tor control architecture for a situated artificial agent, was considered
as well.

The first result of this work (see chapter 2) is that we provided
the outline of a modular functional model of eye–hand coordination,
inspired by the functional organization of the primate brain areas
involved in sensory and motor processing; then, with the aim of pro-
viding in a principled way a computational theory of the underlying
processes, we analyzed further the core modules, and formalized them
by means of probabilistic techniques, namely a novel kind of Dynamic
Bayesian Network, that we called Input–Output Hidden Markov Model
(IOCHMM).
For this specific network — that to the best of our knowledge was
never adopted before in the literature on sensorimotor coordination
— we derived explicitly the analytic solution to the problems of infer-
ence (evaluating the conditional distribution of hidden states, given
the observations), learning (estimating the most suitable values for the
parameters that describe the generative model) and decision (select-
ing, at each time step, the most appropriate values for the variables
that describe eye–hand actions, in order to solve the given task), in a
particular case of interest, namely in the case of discrete variables.

The second achievement of the present work (see chapter 3) was
to design and realize eye–hand tracking experiments in the case study
we chose, namely realistic drawing. The first thing to notice is that



109

in the current literature on eye–tracking only few papers [123, 46]
from a single research team reported experiments on this specific task;
furthermore, while the above mentioned experiments were mainly ex-
ploratory, our analysis was instead driven by some preliminary hy-
potheses stemming out of a general theoretical description of the draw-
ing process and its neural underpinnings.
As a matter of facts, the experimental results are in quantitative
agreement with our three basic hypotheses (discussed in the open-
ing of chapter 3). Probably the most interesting finding is that, due
to the tight coupling of eye and hand movement generation in this
specific task (in particular, the constraint that eye movements should
support graphically continuous hand movements) we observed a scan-
path that was never reported before, which resembles a coarse–grained
edge–following on the contours of the original image to be portrayed.

Further results of this project are presented in chapter 4, where
we discuss the implementation details for the computational model as
applied to the drawing task. Such details include mainly the expla-
nation of a number of simplifying assumptions, of the choices made
for the state spaces of the stochastic variables, and the generation of
a suitable training set.
Two points deserve further discussion here: first, at the end of the
training procedure the DBN parameters are set to a value, to which
corresponds a generative model (the joint probability distribution of
all variables) that, together with the decision stage, represents a sen-
sorimotor map; namely, a couple of eye–hand responses for each given
collection of sensory stimuli (visual and proprioceptive). As shown in
chapter 4, such map can be used as the core module of a bio–inspired
situated artificial agent that should solve the given task.
The second point worth mentioning, is that the simulation results in-
clude a sequence of eye–hand movements on any given input image.
Therefore, although the computational model was not designed to
fit the experimental data (in other words, the DBN was not trained
with experimental data), nevertheless it produces a kind of observable
behavior that — much in the vein of algorithmic explanations [122]
— can be directly compared to experimental observations. Thus, we
first provided a qualitative (visual) comparison of eye–hand sequences
produced by the model with those recorded on human subjects, and
the similarity of the two behaviors was readily apparent. Eventually,
we defined a mathematical procedure to obtain a numerical evalua-
tion of how the simulated scanpath captures the regularities of the
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observed ones, and the result was successful (particularly if compared
with other existing influential models), notwithstanding the simplify-
ing assumptions that are at the basis of our first implementation.

At this stage of the project, it can be said that the initial work
plan has been fulfilled in terms of the development of a computational
model, the realization of eye–tracking experiments, and the compari-
son of the respective results.
As a final remark, it is important however to acknowledge that a num-
ber of directions could be explored from this point on, and we like to
conclude by evidencing some potentially interesting extensions.

• The simplifying assumptions we made in the implementation of
the computational model could be weakened, in order to include
continuous variables and noisy outputs for the DBN.

• The DBN for sensorimotor coupling could be based on a more
general graph structure, taking advantage of existing techniques
for structure learning that allow to define the most suitable con-
ditional dependencies among variables on the basis of the train-
ing data.

• The learning technique adopted in our implementation provides
a way to get point estimates of the relevant parameters; how-
ever, a fully bayesian approach to learning could be followed, in
order to learn probability distributions on the parameters, that
express uncertainty on the parameters due e.g. to a restricted
training set.

• At a more general level, the formulation by means of proba-
bilistic graphical models could be extended to the whole func-
tional model, not only for the interest of formal consistency, but
even more interestingly for including in a unified mathemati-
cal framework also the processes related to inverse kinematic
and forward models (that are usually treated in the framework
of optimal motor control, separately from the control of active
sensors).

• On the experimental side, novel recording sessions should be
planned to get a better recording of eye movements on the draw-
ing hand (namely fixations providing visual feedback on hand
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movements). Furthermore, numerical records of arm joints dy-
namics should be obtained as well, to enable a direct comparison
with the hand motor outputs of the model.

• Many interesting extensions of the eye–hand tracking experi-
ments could be tested, including a comparison of the behav-
iors of different groups of subjects (e.g. experts vs beginners),
and a comparison of the behavior observed in different draw-
ing modalities (e.g. realistic drawing, stylized drawing, drawing
from memory or from imagination, . . . )

• In perspective, it would be interesting to apply the functional
model in the solution of sensorimotor tasks other than drawing
(e.g. motion planning for mobile robots), in order to test the
generality of the proposed architecture.
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