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Chapter 1

Introduction

Discrete choice methods model a decision-maker’s choice among a set of mu-

tually exclusive and collectively exhaustive alternatives. They are used in a

variety of disciplines (economics, transportation, psychology, public policy,

etc.) in order to inform policy and marketing decisions and to better un-

derstand and test hypotheses of behavior. The standard tool for modeling

individual choice behavior is the choice model based on the random utility

hypothesis. These models have their foundation in classic economic con-

sumer theory, which is the source of many of the important assumptions of

these models. Economic consumer theory states that consumers are rational

decision makers. So when they are faced with a set of possible consumption

bundles of good, they assign preferences to each of the various bundles and

then choose the most preferred bundle from the set of affordable alternatives.

If we consider the following properties:

• Completeness Any two bundles can be compared, i.e. either a is

preferred to b, or b is preferred to a or they are equally preferred;

• Transitivity If a is preferred to b and b is preferred to c, then a is

preferred to c;
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• Continuity If a is preferred to b and b is arbitrarily close to a then c

is preferred to b;

it can be shown that there exists a continuous function, utility function,

that associates a real number to each possible bundle, such as it summarizes

the preference ordering of the consumer (Varian 1992). Consumer behavior

can then be expressed as an optimization problem in which the consumer se-

lects the consumption bundle such that their utility is maximized subject to

their budget constraint. This optimization function can be solved to obtain

the demand function. The demand function can be substituted back into

the utility equation to derive indirect utility function, which is the maximum

utility that is achievable under the given prices and income. The indirect

utility function is what generally is used in discrete choice models, and in

the rest of the dissertation it will be indicated simply as utility.

There are several extensions to the classical consumer theory that are im-

portant to discrete choice models. In fact consumer theory assumes homoge-

neous goods and therefore the utility is a function of quantities only and not

attributes. A first extension is then, the fact that the attributes of the goods

that determine the utility they provide and therefore utility can be expressed

as a function of the attributes of the commodities (Lancaster 1966).

Second is the concept of random utility theory (Thurstone 1927), (Marschak

1960); according to this theory, differently by consumer theory which as-

sumes deterministic behavior, the individual choice behavior is intrinsically

probabilistic. The idea behind this theory is that while the decision maker

may have perfect discrimination capability, the analyst has incomplete in-

formation and therefore uncertainty must be taken into account. Therefore

utility is modeled as a random variable, consisting of an observable and an

unobservable component.

Finally consumer theory deals with continuous products. Calculus is used

to derive many of the key results, and so a continuous space of alternatives

is required. Discrete choice theory deals instead with a choice among a set
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of finite, mutually exclusive alternatives and so different techniques need to

be used. However the underlying hypotheses of random utility remain in-

tact. The standard technique for modeling individual choice behavior is then

the discrete choice model derived from random utility theory. The model is

based on the notion that the individual derives utility by buying or choosing

an alternative. Usually the models assume that the individual selects the

alternative that has the maximum utility, but other decision protocols can

be used. The utilities are latent variables, and the actual choice, which is

what can be observed, is a manifestation of the underlying utilities. The

utilities are assumed to be a function of the attributes of the alternatives

and the characteristics of the decision maker, that are introduced to capture

heterogeneity across individuals. The final component of the utility is a ran-

dom disturbance term. Assumption on the distribution of the disturbances

lead to various choice models (probit and logit for example). The outputs of

the models are the probabilities of an individual selecting each alternative.

These individual probabilities can then be aggregated to produce forecasts

for the population. In discrete choice models simplifying assumptions are

made, in order to maintain a parsimonious and tractable structure.

1.1 Behavioral Theory and Discrete Choice

Models

In the behavioral science and economic communities there has been much de-

bate on the validity of discrete choice models, due to the strong assumptions

and simplifications that are made. A large gap between behavioral theory

and discrete choice analysis exists, due to the driving forces behind the two

disciplines; in fact while discrete choice modelers are focused on mapping

inputs to the decision, behavioral researchers aim to understand the nature

of how decisions come about, or the decision-process itself. To understand

the difference it’s possible to consider the figure 1.1
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Figure 1.1: The gap between Discrete Choice Models(left) and the complexity
of Behavior

It’s clear that preferences are unobservable, but they are assumed to be

a function of explanatory variables as well as unknown parameters and a

disturbance term. The choice is a manifestation of preferences and the typ-

ical assumption is that the alternative with the maximum utility is chosen.

This model is often described as an optimizing ”black box” (Ben-Akiva, Fad-

den, Garling, Gopinath, Walker, Bolduc, Borsch-Supan, Delquié, Larichev,

Morikawa, Polydoroulou & Rao 1999), because the model directly links the

observed inputs to the observed output and, thereby assumes that the model

implicitly captures the behavioral choice process. If we look at the right side

of the figure we can see that in the reality there are many unobserved factors

that influence the choice and so it’s important to understand if the discrete

choice models are an adequate representation of the reality. Multinomial

Logit is the standard model used in these circumstances, but sometimes, dif-

ferent specifications, that we will see in the dissertation, are necessary. In this

sense, to reduce the gap between real behavior and discrete choice analysis,
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the findings and the techniques from related fields have been very important.

Psychometricians, i. e. in their quest to understand behavioral constructs,

have pioneered the use of psychometric data, for example, answers to direct

survey questions regarding attitudes, perceptions, motivations, affect, etc.

A general approach to synthesizing models with latent variables has been

advanced by different researchers (Bentler 1980) who developed the struc-

tural and measurement equation framework and methodology for specifying

and estimating latent variable models. Market researchers instead have long

used stated preference data to provide insight on preferences. The basic

idea is to obtain a rich form of data on behavior by studying the choice

process under hypothetical scenarios designed by the researcher (Luce &

Tukey 1964). There are many advantages to these data including the ability

to capture responses to products not yet on the market, design explanatory

variables such that they are not collinear and have wide variability, control

the choice set, etc. However they have also some drawbacks as the fact that

they may be not congruent with actual behavior. For this reason, techniques

to combine stated and revealed preferences which draw on the relative ad-

vantages of each type of data are becoming increasingly popular (Ben-Akiva

& Morikawa 1990). Another area of enhancements to discrete choice models

is related to the idea that there is heterogeneity in behavior across individu-

als, and ignoring this heterogeneity can result in forecasting errors. The most

straightforward way to address this issue is to capture the so-called ”observed

heterogeneity” by introducing socio-economic and demographic characteris-

tics in the observed part of the utility function. But some other techniques

aimed to capture also unobserved heterogeneity. Another technique is latent

class models, which can be used to capture unobservable segmentation re-

garding tastes, choice set and decision protocols.
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1.2 Residential choice models

One of the field in which discrete choice models are applied is the choice of

the residence.

The home is where people typically spend most of their time, a common

venue for social contact and, for most people, a major financial and personal

investment. One’s choice of residence also reflects one’s choice of surround-

ing neighborhood, which has a significant impact on one’s well-being and

quality of life. The topic of residential location choice has, therefore, been

of interest to sociologists, psychologists, urban economists, geographers and

transportation planners. In the past years there were many studies on this

subject, including the relationship between life quality and location, market

differentiation in housing demand, social value of urban amenities and neigh-

borhood quality, and effects of spatial policies.

For urban and transportation planning, the concern for the causes and con-

sequences of individual’s choice of residence arises from the recognition that

it is the values, decisions and actions of the people who are attracted to

certain types of land use patterns that ultimately shape the transportation,

land-use and urban form. The decision of residential location not only de-

termines the connection between the households with the rest of the urban

environment, but also influences the household’s activity time budgets and

perceived well being. The need for understanding land use-transport linkage

at the indivdual level and the debate over whether the influence of urban

form is entirely due to individuals placing themselves into residential neigh-

borhoods that support their travel properties points to the need for better

models of residential location preferences.

In the past years there has been considerable development in the mathemat-

ical modeling of residential activities; based on the trade-off theory, Alonso

(Alonso 1964) was the first one to consider the residential location choice

based on the concept of utility maximization. The level of utility a house-

holds experiences depends on the expenditure in good, size of the land lots,
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and distance from the city center. The most criticized aspects of these urban

economic studies are:

• The models treat location as a one-dimensional variable and are there-

fore incapable of handling the common situations of dispersed employ-

ment centers and asymmetric development patterns;

• All members of any one socio-demographic class are considered to have

identical behavior, which is certainly an oversimplification of reality;

• By reducing the complexity of the housing commodity, which is mul-

tidimensional and heterogeneous, to the one-dimensional measure of

price, one assumes that many of the important and interesting housing

market phenomenon are irrelevant.

These problems was faced with the introduction of the discrete choice analysis

(McFadden 1974). In this way it was possible for the analysts to examine

the choice behavior based on both accepted and rejected alternatives and

to relate spatial behavior to locational characteristics s well as the complex

attitudes, preferences and tastes of individuals. The modeling results can

thus help devise urban policies that effectively target specific population

groups. For these reasons, discrete choice analysis dominates spatial choice

theory, even though it was originally developed for non-spatial context such

as the choice of transportation mode. Anyway, the spatial characteristics,

often create problems for the use of classical discrete choice models, that we

will face during the dissertation.

1.3 Outline of the dissertation

The dissertation is organized as follows:

• Chapter 2 focuses the attention on the Random Utility Model and

the derivation of the different discrete choice models. We will show
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the properties and characteristics of the most used methods: Binary

Logit, Multinomial Logit, Nested and Cross-Nested Logit. At the end

of the chapter we show how all these models are derivable considering

a general model, the Generalized Extreme Value Models.

• in Chapter 3 we describe what kind of problems can arise when we

consider a discrete choice model in which the alternative to be chosen

has spatial implication. We introduce some contiguity measurement

that will be useful for the proceeding of the dissertation and then we

consider some modifications to the classical logit models that allow

to introduce spatial component in the analysis (Spatial Multinomial

Logit, Mixture of Logit models, etc.). However, these models don’t

consider that in some kind of analysis, i.e. destination and residential

choice analysis, the number of alternatives is huge and in this case

a computational burden for the estimation could be. To solve this

problem technique to aggregate alternatives or to sample them and

apply the model on a reduced choice-set are introduced, underlining

advantages and drawbacks.

• Chapter 4 intends to show how multidimensional analysis could be a

tool to solve some problems related to the spatial dimension and to the

size of the choice set. We introduce briefly Principal Component Anal-

ysis and therefore we describe the Constrained Principal Component

Analysis (CPCA), showing that considering a particular matrix rather

than the scalar product matrix, it’s possible to carry out a new method

to aggregate the alternatives. The CPCA will be showed to be useful

also to propose an innovative way to conduce a stratified sampling.

• in Chapter 5 we shows the usefulness of the two techniques applying

them on a data-set relative to the choice of residential location in Zurich

area. First of all we build a model on the full choice-set of alternatives

and we estimate the parameters; afterwards, we carry out the aggrega-
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tion and the sampling of the possible chooses, following the approach

we introduce previously; furthermore a simple random sampling has

been applied and then the model built for the full choice set has been

applied for the samples obtained in the different way. At the end of

the chapter we compare the results obtained with the different tech-

niques showing the improvements that we can have with the innovative

methodology. The analysis has been carried out combining the use of

S-Plus, in which we wrote the code to implement the Multidimensional

Analysis, and of BIOGEME (Bierlaire 2003), (Bierlaire 2005), a soft-

ware that allows the estimation of different Generalized Extreme Value

models.





Chapter 2

Discrete Choice Analysis

2.1 Introduction

Discrete choice models are methods used to model a decision-maker’s

choice among a set of mutually exclusive and collectively exhaustive

alternatives. They are usually derived under an assumption of utility-

maximizing behavior by the decision maker. The original concepts

were developed by Thurstone (Thurstone 1927) in terms of psychologi-

cal stimuli. Marschak (Marschak 1960) interpreted the stimuli as utility

and provided a derivation from utility maximization. Models that can

be derived in this way are called random utility models (RUM). In

these models, a decision maker, labeled n, faces a choice among J al-

ternatives. The decision maker would obtain a certain level of utility

from each alternative. The utility that he obtains from alternative j

is Unj, j = 1, ..., J . The individual is always assumed to select the

alternative with the highest utility, but the analyst doesn’t know the

utilities with certainty and so they are treated as random variables.

From this perspective the choice probability of alternative i is equal to

the probability that the utility of alternative i, Uin, is greater than the
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utilities of all others alternatives in the choice set:

P (i|Cn) = Pr[Uin ≥ Ujn, allj ∈ Cn] (2.1)

In this approach a joint probability distribution is assumed for the set

of random utilities {Uin, i ∈ Cn}

2.2 Random Utility

Manski (Manski 1973) identified four distinct sources of randomness:

– unobserved attributes;

– unobserved taste variation;

– measurement errors and imperfect information;

– instrumental variables.

Unobserved attributes The vector of attributes affecting the decision

is incomplete, so the utility function

Uin = U(zin, Sn, z
u
in) (2.2)

includes an element zu
in which is a random variable and consequently

the utility is in itself random.

Unobserved taste variations The utility function

Uin = U(zin, Sn, S
u
n) (2.3)

may have an unobserved argument Su
n which varies among individuals.

Also in this case Uin is a random variable.
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Measurement errors The true utility function is

Uin = U(z̃in, Sn) (2.4)

In this case we can only observe zin which is an imperfect measurement

of z̃in. We can substitute

z̃in = zin + ε̃in (2.5)

where ε̃in is the unknown measurement error, into the utility function

to get the new utility:

Uin = U(zin + ε̃in, Sn) (2.6)

which contains a random element.

Instrumental Variables In this case the true utility function is

Uin = U(˜̃zin, Sn) (2.7)

and some elements of ˜̃zin are not observable. Therefore we substitute

˜̃zin = g(zin) + ˜̃εin (2.8)

into the utility function to obtain:

Uin = U [g(zin) + ˜̃εin, Sn] (2.9)

where g denotes the imperfect relationship between instruments and

attributes and ˜̃εin is again a random error. Therefore in general, we

can express the random utility of an alternative as a sum of observable

and unobservable components of the total utilities, in the following
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way:

Uin = V (zin, Sn) + ε(zin, Sn) = Vin + εin (2.10)

where Vin is the systematic utility and εin is the random disturbance.

The systematic utility Vin is really the expected value of the perceived

utility between all the individuals who have the same choice set of in-

dividual i. The random disturbance εin is the difference, from this

expected value, of the utility perceived from decisor i. So we have:

Vin = E[Uin] and σ2
in = V ar[Uin]. Furthermore we know that Vin is a

deterministic value with the following mean and variance:

E[Vin] = Vin and V ar[Vin] = 0

then we can calculate the expected value and the variance of the dis-

turbance:

E[εin = 0] and V ar[εin = σ2
in]

Furthermore generally Vin is supposed to be linear in parameters so we

can express it in the following way:

Vin = β
′
xin (2.11)

where β are parameters to be estimated and x are explicative vari-

ables. The probability to select the alternative i from the choice set Cn

becomes:

P (i|Cn) = Pr[Vin + εin ≥ Vjn + εjn, allj ∈ Cn] (2.12)

We can derive a specific random utility model if we have an assumption

about the joint probability distribution of the full set of disturbances

{εjn, j ∈ Cn}. One logical assumption is that the disturbances are

normal distributed. In this case we have the probit model, but it has

the disadvantage of not having a closed form and in this circumstance
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we have to express the choice probability as an integral. For this reason

the assumption that the disturbances are independent and identically

Gumbel distributed is made. In this way we obtain a logit model. If

we have only two alternatives we obtain a Binary Logit Model and in

this case the assumption is simply that the difference εn = εjn − εin is

logistically distributed that is equivalent to the assumption of Gumbel

distribution if we have more than two alternatives. In this second case

we have a Multinomial Logit Model. Before describing these models we

must introduce the Gumbel distribution with its properties that will

be useful in the following sections.

2.3 Gumbel Distribution

If ε is Gumbel distributed then

F (ε) = exp[−e−µ(ε−η)], µ > 0 (2.13)

and

f(ε) = µe−µ(ε−η)exp[−e−µ(ε−η)] (2.14)

where η is a location parameter and µ is a positive scale parameter,

the distribution has the following properties:

– The mode is η;

– The mean is η + γ
µ

where γ is Euler constant (∼ 0, 577);

– The variance is π2

6µ2 ;

– If we consider a scalar constant α > 0 then also αε+V is Gumbel

distributed with parameters (αη + V, µ
α
)
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– If ε1 and ε2 are independent Gumbel-distributed variates with

parameters (η1, µ)and(η2, µ), respectively, then ε∗ = ε1 − ε2 is

logistically distributed:

F (ε∗) =
1

1 + eµ(η2−η1−ε∗)
(2.15)

– If ε1 and ε2 are independent Gumbel-distributed with parame-

ters (η1, µ) and (η2, µ), respectively, then max(ε1, ε2) is Gumbel

distributed with parameters

( 1
µ
ln(eµη1 + eµη2), µ)

– If (ε1, ε2, ..., εj) are J independent Gumbel distributed variables

with parameters (η1, µ), (η2, µ) ,...,(ηj, µ) then max(ε1, ε2, ..., εj)

is Gumbel distributed with parameters(
1
µ
ln
∑J

j=1 e
µηj , µ

)
This last property is very important for our purpose.

2.4 Binary Logit

The binary logit model arises, as we said, from the assumption that

εn = εjn − εin is logistically distributed:

F (εn) =
1

1 + e−µεn
, µ > 0, -∞ < εn <∞(2.16)

f(εn) =
µe−µεn

(1 + e−µεn)2
(2.17)

where µ is a positive scale parameter. So under the assumption that

εn is logistically distributed, the choice probability for alternative i is



2.4. Binary Logit 17

given by:

Pn(i) = Pr(Uin ≥ Ujn)

=
1

1 + eµ(Vin−Vjn)
(2.18)

=
eµVin

eµVin + eµVjn

If Vin and Vjn are linear in their parameters, we have:

Pn(i) =
eµβ

′
xin

eµβ′xin + eµβ′xjn

=
1

1 + e−µβ′ (xin−xjn)
. (2.19)

In this circumstances we cannot distinguish the parameter µ from the

overall scale of the β
′

and for convenience we can do the arbitrary

assumption that µ = 1. In this case, according to Gumbel distribution

the variances of εin and εjn are both π2

6
implying that the variance of

εjn − εin = π2

3
.

2.4.1 Estimation of Binary logit with Maximum

Likelihood technique

In the binary logit we have that:

yin =

{
1, if n chose i

0, if n chose j
(2.20)

Furthermore we have two vectors of attributes xin and xjn each con-

taining values of the K esplicative variables. So, given a sample of N

observations, the problem is to find estimates of β̂1,β̂2,...,β̂k. We can

consider the likelihood of any sample of N observations, the likelihood
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of the entire sample is the product of the likelihood of the individual

observations, because they are by assumption drawn at random from

the whole population. So we have:

` ∗ (β1, β2, ..., βk) =
N∏

n=1

Pn(i)yinPn(j)yjn (2.21)

where Pn(i) is a function of β1, ..., βk. In general it’s better to use the

logarithm of this function:

`(β1, ..., βk) =
N∑

n=1

[yin logPn(i) + yjn logPn(j)] (2.22)

but we know that yjn = 1− yin and Pn(j) = Pn(i) so we can rewrite:

`(β1, ..., βk) =
N∑

n=1

{yin logPn(i) + (1− yin) log[1− Pn(i)]

(2.23)

Now we have to find the maximum of ` differentiating the equation

respect each of the β′s and setting the partial derivatives equal to zero:

∂`

∂β̂k

=
N∑

n=1

{
yin

∂Pn(i)/∂β̂k

Pn(i)
+ yjn

∂Pn(j)/∂β̂k

Pn(j)

}
= 0, k = 1, ..., K(2.24)

The maximum likelihood estimates are consistent, asymptotically effi-

cient and asymptotically normal. The asymptotic variance-covariance

matrix is given by:

−=[∇2`]−1 (2.25)
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where∇2`−1 is the matrix of second derivatives of the log likelihood

function. So the entry in the kth row and the lth column is:

[∇2`]kl =
∂2`

∂βk∂βl

(2.26)

The problem is that we don’t know the actual values of the parameters

or the distribution of xin and xjnand so we generally use an estimated

variance-covariance matrix and the sample distribution of xin and xjn

to estimate their distribution. Thus we use:

=
[

∂2`

∂βk∂βl

]
∼=

N∑
n=1

[
∂2 [yin logPn(i) + yjn logPn(j)]

∂βk∂βl

]
β=β̂

(2.27)

In many occasions the equations that come from 2.24 are non-linear and

so there is a computational problem. If the second derivatives can be

computed without great difficulty and the likelihood function is globally

concave, we can use the Newton-Rapshon method. It’s composed of 4

steps:

– Step1: First of all we have to choose an initial arbitrary value

for β̂0 = [β01, β02, ..., β0K ]
′
. Furthermore we must introduce an

iteration counter and set it in the following way: ω = 0 and we

have also to set e1 and e2 to be small positive number.

– Step2: The second step consists to linearize the function ∇`(β)

around β̂ω. The approximate first-order conditions are given by:

∇`(β̂ω) +∇2`(β̂ω)(β̂ − β̂ω) = 0

– Step3: In the third step we have to solve the linearized form for

β̂ω+1 = β̂ω − [∇2`(β̂ω)]−1∇`(β̂ω).

– Step4: In this step we must check if β̂ω+1 − β̂ω is small. This
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happens if: [
1

K

K∑
k=1

(β̂ω+1,k − β)2

]1/2

< e1

and ∣∣∣∣∣ β̂ω+1,k − β̂

β̂

∣∣∣∣∣ < e2

If the condition in this step are satisfied we terminate with β̂ω+1 as the

solution. Otherwise we must set ω = ω + 1 and come back to step 2.

There are also others method to estimate the parameters, all of them

finding a direction where the log likelihood function is increasing and

then searching along that direction for the best possible estimate.

2.5 Multinomial Logit

As we showed, the probability that any element i in Cn is chosen by

the decision maker n can be expressed according 2.12. We can rewrite

it in the following way:

P (i|Cn) = Pr(εjn ≤ Vin − Vjn + εin, ∀j ∈ Cn, j 6= i)

(2.29)

Any particular multinomial choice model can be derived using the pre-

vious equation given specific assumptions on the joint distribution of

the disturbances. There are different way to derive Pn(i). The most
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insightful is to reduce the multinomial choice problem to a binary one.

To do this we can note that

Uin ≥ Ujn, ∀j ∈ Cn, j 6= i, (2.30)

is equivalent to

Uin ≥ maxUjn, ∀j ∈ Cn, j 6= i (2.31)

In this way we create a ”composite” alternative and the utility of the

best alternative j 6= i represent the utility of the entire composite. So

we have this situation:

Pn(i) = Pr[Vin + εin ≥ max(Vjn + εjn)] (2.32)

To calculate this probability we have to derive the distribution of the

utility of the composite alternative from the underlying distribution

of the disturbances. We can show as in Domencich and McFadden

(Domencich & McFadden 1975) that if the disturbances are

– indipendently distributed;

– identically distributed;

– Gumbel distributed with a location parameter η and a scale pa-

rameter µ ≥ 0;

then the probability that alternative i will be chosen is

Pn(i) =
eµVin∑

j∈Cn
eµVjn

(2.33)
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2.5.1 Derivation of Multinomial Logit

If we assume that η = 0 for all the disturbances and if we order the

alternatives so that i = 1, then, as showed by Ben-Akiva and Lerman

(Ben-Akiva & Lerman 1985), we have:

Pn(1) = Pr[V1n + ε1n ≥ max
j=2,...,Jn

(Vjn + εjn)] (2.34)

We can define

U∗
n = max

j=2,...,Jn

(Vjn + εjn) (2.35)

that from the last property showed in section 2.3 is Gumbel distributed

with parameters ( 1
µ
ln
∑Jn

j=2 e
µVjn , µ). We can also write

U∗
n = V ∗

n + ε∗n where

V ∗
n = 1

µ
ln
∑Jn

j=2 e
µVjn and ε∗n is Gumbel distributed with parameters

(0, µ). So the 2.34 become:

Pn(1) = Pr[V1n + ε1n ≥ max
j=2,...,Jn

(Vjn + εjn)]

= Pr[(V ∗
n + ε∗n)− (V1n + ε1n) ≤ 0], (2.36)

and by one other of the previous properties we have

Pn(1) =
1

1 + eµ(V ∗
n−V1n)

=
eµV1n

eµV1n + eµV ∗
n

=
eµV1n

eµV1n + exp(ln
∑Jn

j=2 e
µVjn)

=
eµV1n∑Jn

j=1 e
µVjn

(2.37)
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In the last equation there is the presence of the scale parameter µ. It’s

not identifiable, but generally it’s used to set it to an arbitrary value,

such as 1.

2.6 Properties of the logit

One of the most discussed aspects of the multinomial logit is the In-

dependence from Irrelevant Alternatives property (IIA). This property

states that for any two alternatives i and k the ratio of the logit prob-

abilities

Pn(i)

Pn(k)
=

eVni/
∑

j e
Vnj

eVnk/
∑

j e
Vnj

=
eVni

eVnk

= eVni−Vnk (2.38)

does not depend on any alternatives other than i and k. So the relative

odds of chosing i over k are the same no matter what other alternatives

are available or what the attributes of the other alternatives are. Since

the ratio is independent from alternatives other than i and k, it is

said to be independent from irrelevant alternatives. This assumption

is realistic in some choice situation, but sometimes it can be clearly

inappropriate. One of the classical example is the famous red-bus blue-

bus problem. In this problem there is a traveler who has to choice if

going to work by car or taking a blue bus. For simplicity we can assume

that the representative utilities of the two modes are the same, so the

probabilities are equal: Pc = Pbb = 1
2

where c is the car and bb the

blue bus. The ratio is Pc/Pbb = 1. If we suppose that a red bus is

introduced, probably the traveler considers the red bus to be exactly

like the blue bus, so the ratio of this probabilities is one: Prb/Pbb =
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1. However in the logit model the old ratio doesn’t change whether

or not this other alternative exists. The only probabilities for which

Pc/Pbb = 1 and Prb/Pbb = 1 are Pc = Pbb = Prb = 1/3, which are

the probabilities that the logit model predicts. In real life however

we would expect the probability of taking a car to remain the same

when a new bus is introduced that is exactly the same as the old bus.

We would also expect the original probability of taking bus to be split

between the two buses after the second one is introduced. That is

we would expect Pc = 1/2 and Pbb = Prb = 1/4. In this case the

multinomial logit model overestimates the probability of taking either

of the buses and underestimates the probability of taking a car and so

is not appropriate in this case. In this situation we must search for a

better model specification:

– find alternatives with missing or mis-specified variables

– point toward an acceptable nested logit structure that we will see

in next sections

To verify if the IIA property holds many test exist (McFadden, Tye

& Train 1977). We can divide them in two groups:

– Estimate a model with a subset of the choice set. Reject IIA if

the parameter estimates differ from the full choice set estimates.

∗ Hausman and McFadden

∗ McFadden,Tye and Train

∗ Small-Hsiao (Small & Hsiao 1982)

– Implement a Lagrange multiplier test of IIA with the full set of

alternatives

∗ McFadden test
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2.6.1 Estimating model with choice subsets

If we suppose IIA holds. Then:

P (i|Cn) =
exp(µβ

′
xin)∑

j∈Cn
exp(µβ ′xjn)

(2.39)

and

P (i|C̃n ⊆ Cn) =
exp(µβ

′
xin)∑

j∈C̃n
exp(µβ ′xjn)

(2.40)

where C̃n is a subset of the full set of alternatives, should give similar

estimates, since under IIA, exclusion of alternatives does not affect the

consistency of estimators. As it was said, it’s possible to use:

– Hausman-McFadden test (Hausman & McFadden 1984).

We have to build the following statistic:

(β̂C̃ − β̂C)
′
(
∑
β̂C̃

−
∑
β̂C

)−1(β̂C̃ − β̂C) (2.41)

that is asymptotically χ2 distributed with K̃ degrees of freedom,

where K̃ is the number of elements in the subvector of coefficients

that is identifiable from the restricted choice set model. So the

null hypothesis that IIA holds is rejected if the value that comes

from the equation 2.41 is bigger than the tabulated value of χ2.

– McFadden, Tye and Train. In this case it’s possible to build an

approximate likelihood ratio test statistic with K̃ degrees of free-

dom: −2[`C̃(β̂C)−`C̃(β̂C̃)] , where the two log likelihood values are

calculated on the estimation sample for the restricted choice set

model. This statistic is not a proper likelihood ratio test because

β̂C is not a vector of constants. For this reason we can consider
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the following correction:

– Small and Hsiao. To remove the bias they proposed to use:

1

1−N1/(αN)
{−2[`C̃(β̂C)− `C̃(β̂C̃)]}

where N is the number of observations in the unrestricted choice

set estimation, N1 is the number of observations in the restricted

choice set estimation (N1 < N) since those observations with cho-

sen alternatives not in the restricted choice set are omitted, and

α ≥ 1 is a scalar. Asymptotically this corrected likelihood ra-

tio statistic actually is χ2 distributed with K̃ degrees of freedom.

Sometimes the assumption made by this correction that a scalar

difference between the covariance matrices exists is not defensible,

so it was proposed an exact test for the IIA assumption. To per-

form the test Small and Hsiao randomly divided the full estimation

data set into two parts, denoted A and B. On sample A, using the

restricted choice sets, estimated β̂A
C , the subvector of coefficients

corresponding to the parameters that are identifiable when the

restricted set of alternatives are used; next, on sample B, using

the restricted choice set, estimated β̂B
C and the corresponding log

likelihood, `B
C̃
(β̂B

C ); finally again on sample B, but now based on

the unrestricted choice sets, they obtained β̂B
C . They showed that

if we form the following convex combination:

β̂AB
C = (1/

√
2)β̂A

C + (1− 1/
√

2)β̂B
C (2.42)

and use it to evaluate the log likelihood of the sample B with

the restricted choice sets, denoted as `BC(β̂AB
C ), then the statis-

tic −2[`B
C̃
(β̂AB

C ) − `B
C̃
(β̂B

C )] is asymptotically χ2 distributed with

K̃ degrees of freedom, K̃ being the common dimension of the

β̂A
C , β̂B

C , β̂B
C̃

, β̂AB
C parameter vectors. This test is more computa-
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tionally intensive and time-consuming. Generally it’s better that

the simpler corrected approximate likelihood ratio test be carried

out first, and then, only if its underlying assumption is violated,

should the exact test procedure be used.

2.6.2 Lagrange multiplier test of IIA

This test checks if cross-alternative variables enter the model. If so,

IIA assumption is violated. The test is composed of 3 steps.

– Step 1: We estimate the systematic utilities (V̂in) and fitted

choice probabilities (P̂n(i|Cn)) using all N observations: V̂in =

β̂
′
xin ∀i ∈ Cn P̂n(i|Cn) = eβ̂

′
xin

P
j∈Cn

eβ̂
′
xjn

– Step 2: For a given An ⊂ Cn we calculate auxiliary variables in

the following way:

V̂Ann =

∑
j∈An

V̂jnP̂n(j|Cn)∑
j∈An

P̂n(j|Cn)
n = 1, ..., N (2.43)

ZAn
in =

{
Vin − V̂Ann, if i ∈ An

0, otherwise
n = 1, ..., N (2.44)

Since Z is non zero only for the alternatives in the setA, it contains

information regarding the other alternatives in An. The spirit of

the proposed test is to verify the presence of cross alternatives

variables.

– Step 3: We can now estimate:

P̂n(i|Cn) =
eβ̂′xin+γAZA

in∑
j∈Cn

eβ̂′xjn+γAZA
jn

(2.45)
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The hypothesis are the following: H0 : γA = 0

H1 : γA 6= 0

γA is distributed as a χ2.

If we reject H0 we reject the IIA assumption. If H0 is not rejected

nest A is considered to satisfy IIA.

2.7 Estimation of Multinomial Logit Model

The logit model has some special properties that under certain circum-

stances greatly simplify estimation of the parameters. Most of this

theory are tributable to McFadden (McFadden 1974). The technique

generally used to estimate a logit model is the Maximum Likelihood,

applied as follows. We can indicate with N the sample size and define:

yin =

{
1, if n chose i

0, otherwise
(2.46)

The likelihood function for a general multinomial choice model is:

`∗ =
N∏

n=1

∏
i∈Cn

Pn(i)yin , (2.47)

where for a linear in parameters logit:

Pn(i) =
eβ

′
xin∑

j∈Cn
eβ′xjn

. (2.48)

Taking the logarithm of 2.47, we seek a maximum to:

` =
N∑

n=1

∑
i∈Cn

yin

(
β
′
xin − ln

∑
j∈Cn

eβ′xjn

)
(2.49)
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Setting the first derivatives of ` with respect to the coefficients equal

to zero, we obtain the necessary first-order conditions:

∂`

∂β̂k

=
N∑

n=1

∑
i∈Cn

yin

(
xink −

∑
j∈Cn

eβ
′
xjnxjnk∑

j∈Cn
eβ′xjn

)
= 0, for k = 1, ..., K(2.50)

Or in more compact form:

N∑
n=1

∑
i∈Cn

[yin − Pn(i)]xink = 0, for k = 1, ..., K. (2.51)

The second derivatives are given by:

∂2

∂β̂k∂β̂l

= −
N∑

n=1

∑
i∈Cn

Pn(i)

[
xink −

∑
j∈Cn

xjnkPn(j)

]

·

[
xinl −

∑
j∈Cn

xjnlPn(j)

]
(2.52)

Under some weak conditions ` in equation 2.49 is globally concave, so if

a solution to equation 2.51 exists, it’s unique. The Maximum likelihood

estimator of β is consistent, asymptotically normal and asymptotically

efficient. The first order conditions (2.51) can be rewritten as:

1

N

N∑
n=1

∑
i∈Cn

yinxink =
1

N

N∑
n=1

∑
i∈Cn

Pn(i)xink, k = 1, ..., K. (2.53)

This means that the average value of an attribute for the chosen alter-

natives is equal to the average value predicted by the estimated choice

probabilities. In particular, if an alternative-specific constant is defined
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for an alternative i, then at the maximum likelihood estimates,

N∑
n=1

yin =
N∑

n=1

Pn(i) (2.54)

implying that the sum of the choice probabilities for alternative i equals

the number in the sample that choose i.

2.8 Nested logit

As we said in the previous sections, sometimes the IIA property doesn’t

hold and so we cannot apply a Multinomial Logit Model. In this cir-

cumstances we must use some other models, for instance a Nested Logit

Model. In this model the set of alternatives can be partitioned in two

subsets, the nests, and the following properties must hold:

– For any two alternatives in the same nest, the ratio of the prob-

abilities is independent of the attributes of all other alternatives,

so the IIA holds within the nest;

– For any two alternatives in different nests, the ratio of the proba-

bilities can depend on the attributes of other alternatives. So in

this case the IIA property doesn’t hold for alternatives in different

nests.

To understand the difference between Multinomial Logit and Nested

Logit we can consider the figure 2.1:

We can see on the left that for a Multinomial Logit we have three

alternatives on the same level, instead in Nested Logit we can have

j alternatives partitioned into K nonoverlapping subsets that we can

call: B1, B2, ..., BK and that we call nests. The utility that person n

obtains from alternative j in nest Bk is denoted as: Ujn = Vjn + εjn.
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Figure 2.1: Differences between Multinomial Logit and Nested Logit model

The nested logit model is obtained by assuming that the the vector of

unobserved utility, εn = (ε1n, ..., εJn) has cumulative distribution:

exp

− K∑
k=1

(∑
j∈Bk

e−εjn/λk

)λk

 (2.55)

This distribution is a type of GEV distribution that we will explain

better in the next section. The marginal distribution of each εjn is uni-

variate extreme value, but for any two alternatives j and m in the same

nest Bk εjn is correlated with εmn. Instead for any two alternatives in

different nests, the unobserved portion of utility is still uncorrelated:

Cov(εjn, εmn) = 0 ∀j ∈ Bk, m ∈ Bl l 6= k

The parameter λk is a measure of the degree of independence in unob-

served utility among the alternatives in nest k and 1− λk is a measure

of correlation. When λk = 1 for all k, the nested logit model reduces

to the standard logit model.

For a nested logit model the choice probability for alternative i in the

nest Bk is the following:

Pin =
eVin/λk(

∑
j∈Bk

eVjn/λk)λk−1∑k
l=1(
∑

j∈Bl
eVjn/λl)λl−1

(2.56)
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In this way is possible to show that IIA holds within each subset of al-

ternatives but not across subsets. In fact if we consider two alternatives

i ∈ Bk and m ∈ Bl, since the denominator of 2.56 is the same for all

alternatives, the ratio of the probabilities is the ratio of the numerators:

Pin

Pmn

=
eVin/λk(

∑
j∈Bk

eVjn/λk)λk−1

eVmn/λl(
∑

j∈Bl
eVmn/λl)λl−1

(2.57)

If k = l, so if i and m are in the same nest, then the factors in paren-

theses cancel out and we obtain:

Pin

Pmn

=
eVin/λk

eVmn/λl
(2.58)

It’s clear that this ratio is independent of all other alternatives. If

k 6= l, so if i and m are in different nests, the factors in parentheses do

not cancel out and therefore the ratio of probabilities depends on the

attributes of all alternatives in the nests that contain i and m. This

ratio, however doesn’t depend on the attributes of alternatives in nests

other than those containing i and m. In this circumstances we can

assert that a form of IIA holds and we can define it as Independence

from Irrelevant Nests (IIN).

The equation 2.56 probably is not very clear, but it’s useful because

the choice probabilities can be expressed in an alternative way that is

readily interpretable. In fact we can decompose the observed part of

utility in two parts: the first one that we can indicate with W that is

constant for all alternatives within a nest, and a part labeled Y that

varies over alternatives within a nest. So we can rewrite the utility as

follows:

Ujn = Wkn + Yjn + εjn for j ∈ Bk (2.59)
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where:

Wkn depends only on variables that describe nest k. These variables

differ over nests but not over alternatives within each nest.

Yjn depends on variables that describe alternative j. These variables

vary over alternatives within nest k.

In this way we can write the nested logit probability as the product of

two standard logit probabilities:

Pin = Pin|Bk
PnBk

(2.60)

where Pin|Bk
is the conditional probability of choosing alternative i

given that an alternative in nest Bk is chosen, and PnBk
is the marginal

probability of choosing an alternative in nest Bk. This decomposition

is useful because can be showed that the two probabilities take the form

of a logit:

PnBk
=

eWkn+λkInk∑K
l=1 e

Wln+λlIln

(2.61)

Pin|Bk
=

eYin/λk∑
j∈Bk

eYjn/λk
(2.62)

where

Ikn = ln
∑
j∈Bk

eYjn/λk (2.63)

The parameters of a nested logit model can be estimated by standard

maximum likelihood techniques, but also in a sequential fashion, ex-

ploiting the fact that the choice probabilities can be decomposed into

marginal and conditional probabilities that are logit. In this second

case there are two difficulties. First, the standard errors of the upper-
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model parameters are biased downward. This happens because the

variance of the inclusive value estimate that enters the upper model is

not incorporated into the calculation of standard errors. Second, some-

times, some parameters appear in several submodels and so, estimating

the models separately provides separate estimates of whatever common

parameters appear in the model. This doesn’t happen with maximum

likelihood, but sometimes in simultaneous estimation some problems

arise and so it could be useful to estimate the model sequentially and

then use the sequential estimates as starting values in a simultaneous

estimation.

2.9 Cross-Nested Logit

Nested logit model is one of the solution for the problem related with

the IIA property, but in many occasions we don’t know if an alterna-

tive belongs only to a nest or to more than one nest. We can consider

for example the choice of a transportation mode. We can divide the

different mode according to the following figure: but we can also sup-

Figure 2.2: A possible structure of Nested Logit model for transportation
system

pose a different division in nests as, for example in figure 2.4 What

of the two structures is right? The solution is in the Cross-Nested

logit that is an extension of the Nested Logit model (Ben-Akiva &
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Figure 2.3: An alternative structure of Nested Logit model for transportation
system

Bierlaire 1999),(McFadden 1978), where each alternative may belong

to more than one nest. So, in this situation we can classify, for example,

the transportation modes in the following way:

Figure 2.4: A structure of Cross-Nested Logit model for transportation system

Similar to the Nested Logit Model, the choice set Cn is partitioned

into M nests Cmn. Moreover, for each alternative i and each nest m

there are parameteres αim (0 ≤ αim ≤ 1)representing the degree of

membership of alternative i in nest m. The utility of alternative i is

then given by:

Uimn =in +ε̃in +Cmn +ε̃Cmn + lnαim (2.64)

The error terms ε̃in and ε̃Cmn are independent. The error terms ε̃in

are independent and identically Gumbel distributed. The distribution
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of ε̃Cmn is such that the random variable maxjmnUjmn is Gumbel dis-

tributed with scale parameter µ. The probability for indivdual n to

choose alternative i is given by:

P (i|Cn) =
M∑

m=1

P (Cmn|Cn)Pn(i|Cmn) (2.65)

where

P (Cmn|Cn) =
eµVCmn∑M
l=1 e

µVCln

(2.66)

P (i|Cmn) =
αime

Ṽin∑
jmn

αjmeṼjn
(2.67)

and

VCmn = ṼCmn + ln
∑
jmn

αjme
Ṽjn (2.68)

In this way we introduce in the model the level of membership of the

alternatives for the different nests. The CNL model is then appealing

to capture complex situations in where correlations cannot be handled

by the Nested Logit. Also this model can be derived from GEV models

that we will see in the next section.

2.10 GEV models

As we said previously, nested and cross-nested logit can be obtained

from the GEV family (McFadden 1978), that is a general formulation

from which we can derive different kind of logit model.

If we consider a function G that depends on Yj for all j, we can
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denote this function in the following way:

G = G(Y1, ..., Yj) (2.69)

Furthermore we can indicate with Gi the derivative with respect to Yi:

Gi =
∂G

∂Yi

(2.70)

If G satisfies the following conditions:

– G ≥ 0 for all positive values of Yj ;

– G is homogeneous of degree one;

– G→∞ as Yj →∞ for any j;

– The cross partial derivatives of G change in the following way:

Gi ≥ 0 for all i, Gij=i/j ≤ 0 for all j, Gijk =ij /k ≥ 0 for any

distinct i, j, k and so on for higher-order cross-partials;

then

Pi =
YiGi

G
(2.71)

is the choice probability for a discrete choice model that is consistent

with utility maximization. Any model that can be derived in this way is

a GEV model. This models are important because a purely mathemat-

ical approach allows the researcher to generate models that he might

not have developed while relying only on his economic intuition. Ob-

viously the difficulty is that the researcher has little guidance on how

to specify a function G that provides a model that meets the needs of

this research.





Chapter 3

Spatial issues in Discrete

Choice Models

This chapter will focus the attention prevalently on the residential

choice models and destination choice models, in which there are dis-

tinctive features that distinguish them from non-spatial choice prob-

lems (Pellegrini & Fotheringham 2002). Failure to account for these

features may lead to erroneous analytical results and ineffective spatial

policies. So it’s important to consider these features that are not found

typically in non-spatial models. These characteristics (Guo 2004) can

be summarized as follows:

– Definition of alternatives: Contrary to most aspatial contexts,

spatial choice problems often involve choice elements that are dif-

ficult to define (Lerman 1983). For example tourists choosing a

holiday destination may be selecting among one or more different

geographical levels, such as a hotel, a city, or a country. Similarly

when a person chooses where to shop, we don’t know if he chooses
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a specific store, a neighborhood populated with shops or a specific

shopping mall. Then, the definition of the choice set is far from

trivial for such applications.

– Definition of choice set: In spatial choice situations, decision

makers often face a very large set of potential options. However,

in practice, the number of alternatives actually considered is con-

strained by the individual’s limited capacity for gathering and

processing information. So it seems unrealistic to assume individ-

uals can evaluate all possible alternatives at any one time. The

identification of individual choice sets is therefore a challenge to

the analyst (Kanaroglou & Ferguson 1998).

– Substitutability among choice alternatives: Due to the con-

tinuity of space, the spatial alternatives faced by decision makers

are likely to follow the First Law of Geography (Tobler 1970),

that everything is related to everything else, but closer things are

more closely related. An alternative at a given location may be

perceived as more similar, and therefore more substitutable, to an

alternative closer by rather than farther away. The perceived simi-

larity between neighboring spatial alternatives are often intangible

or difficult to quantify. Failure to account for such perceived sim-

ilarity would lead to inaccurate interpretation of choice behavior.

Furthermore, in standard discrete choice models, accommodat-

ing unobserved similarity among the choice alternatives is not a

straightforward task.

– Measurement of spatial variables: As in the case of other

modeling efforts, the success of a discrete choice modeling exer-

cise relies on correct model specifications, which are tied closely

to accurate representation or measurement of relevant variables.

For variables that are spatial in nature, their value can be ob-

served only after a location has been specified or a space been
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demarcated. In the latter case, the continuity of space renders

almost infinitely many ways for an analyst to define areal units

for measuring. Without knowing which of the many spatial con-

figurations to use, past efforts of spatial choice modeling typically

use administrative spatial units, such as census tracts, for which

data are readily available. These administrative units often bear

no relation to how the decision makers themselves measure, or

perceive, the spatial factors in their mind. Such a practice may

easily lead to inaccurate analytic outcomes.

The goal of this chapter is then to present some possible techniques

in which spatial problems are considered. Some of them will be showed

in details in next chapter where some possible new procedures will be

proposed too. For our purposes it’s important to introduce before some

spatial measure that will be useful for the proceeding of the chapter

and of the dissertation.

3.1 Spatial weights matrix

A spatial weights matrix is defined as the formal expression of spatial

dependency between observations (Anselin 1988). Research on spatial

weights matrix that can be indicated with W has been reviewed in past

years (Griffith 1996). Five rules of thumb can aid the specification of

weights matrix:

– It’s better to posit some reasonable geographic weights matrix

than to assume independence. This implies that one should search

for or theorize about an appropriate W and that better results are

obtained when distance is taken into account.

– It’s best to use surface partitioning that falls somewhere between

a regular square and a regular hexagonal tessellation. For planar



42 Spatial issues in Discrete Choice Models

data is suggested a specification between four and six neighbors.

– A relatively large number of spatial units should be employed

(generally n > 60).

– It’s always wise to choose less complicated models when the op-

portunity present itself.

– In general it’s better to apply a somewhat under-specified rather

than an over specified weights matrix, because overspecification

reduces the power of tests (Florax & Rey 1995)

In the classical formulation this matrix, indicated with W , is a pos-

itive square matrix with elements wij. The cells contain the values 0

or 1 if we build a contiguity matrix, otherwise they can assume also

other values. It’s then important the definition of neighbors and for this

reason different methods have been developed to build spatial weights

matrix; let’s consider some of the most important.

The Spatial Contiguous Neighbors is one of the simplest and

most used method to build a contiguity matrix. Really it can be di-

vided in three sub-techniques that we will see in details:

Rook Contiguity The four neighbors of each cell in the cardinal di-

rections are given the value 1, all others 0. This is the most popular

formulation of W . To understand better the situation is possible to

consider the figure 3.1.

In the previous figure the neighbors of the cell number 5 are the

number 2,4,6 and 8. According to this figure we can build the Spatial

weights matrix in the following way:
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Figure 3.1: Rook contiguity

W=



0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0


It’s possible to see that the value 1 appears for the neighbor cells, otherwise

the value is equal to 0.

Bishop Contiguity In this case the units sharing a vertex with a cell i are

considered as neighbors of i.

Figure 3.2: Bishop contiguity
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Queen contiguity This last method combines the rook and bishop definition

as any unit sharing a common edge or vertex with i, defined as a neighbor

of i, as it’s possible to see in the figure 3.3.

Figure 3.3: Queen contiguity

Obviously also for these last two techniques the building of the Spatial

weights matrix follows the same procedure. Other used approaches are:

– k nearest neighbor distance: according to this definition all

units among the k nearest neighbors of unit i are treated as

neighbors of i, while the k + 1, ..., k + n units are treated as non-

neighbors. Clearly the value k should be theoretically informed;

– Distance band in which the element wij of the matrix W is equal

to 1 if dij is inferior to a distance cut-off; otherwise is equal to 0;

– Cliff-Ord weights in which wij = [dij]
−a[bij]

b where dij is the

distance between i and j and bij is the share of common boundary

between i and j in the perimeter of i;

– Inverse distance weights In this case wij = 1/dα
ij where dij is

the Euclidean distance and α is a positive number; the most used

values of α are 1,2 or 5;

– Block structure in which wij = 1 for all i and j in the same

block. The blocks are defined according to some specific criterion.

Other measures that it’s possible to consider are:
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– Geostatistics functions (spherical, Gaussian, exponential)

– Lengths of shared borders

– Number of links

The spatial weights matrices will be useful in the proceeding of the dis-

sertation.

A positive G∗
i indicates that there is clustering of high values around i;

a negative number scrutinized cumulatively, rather than by distance bands,

around each observation as absolutely with distance, the cluster diameter is

reached, implying that distance. It’s possible to indicate with

3.2 Spatial Multinomial Logit

Recent studies in travel behavior research focus on activity location and

spatial interaction of activities. These spatial interactions and dependencies

(spatial autocorrelation) warrant modeling techniques that explicitly account

for space. The introduction of spatial component is important for the prop-

erties of the estimations, in fact it’s demonstrated that the elimination of

territorial component from a discrete choice model leads to parameter esti-

mations that are biased (Goetzke 2003). There are two different approaches

to introduce the spatial dependency: the first one consider the influence that

every individual can have on the other decision makers; in the second ap-

proach the similarity between the alternatives is considered. It’s then impor-

tant consider the Spatial Autocorrelation, defined as the dependency found

in a set of cross-sectional observations over space. It occurs when individuals

in population are related through their spatial location (Anselin 1988).

To describe the first approach, in which the interactions between individu-

als are considered we can follow the Spatial Multinomial Logit (Mohammadian

& Kanaroglou 2003). To understand how to introduce the spatial dependency
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we have to consider the basic formulation of utility:

Uin = Vin + εin (3.1)

As we said in the previous chapter we can divide the utility in a determin-

istic component Vin and a randomly distributed unobserved component εin

capturing the uncertainty. In order to account for spatial dependency, it

is assumed that the systematic component of utility function Vin consist of

two parts; the first part is a linear in the parameter function that captures

the observed attributes of decision-makers n and alternatives i, while the

second term captures spatial dependencies across decision-makers. Utility of

alternative i for the decision maker n is given as:

Uin = Vin + εin =

(∑
βiXin +

S∑
s=1

ρnsysi

)
+ εin (3.2)

where parameters βi make up a vector of parameters corresponding to Xin,

the vector of observed characteristics of alternative i and decision-maker n.

Parameters ρ make up a matrix of coefficients representing the influence

that the choice of decision maker s has on decision-maker n while choosing

alternative i. S is the number of decision-makers who have influence on n.

yin will be set equal to unity if the decision-maker s has chosen alternative i,

and zero otherwise. ρ can be modeled similar to an impedance function. In

spatial statistics it usually takes the form of a negative exponential function

of the distance separating the two decision-makers (Dns).

ρnsi = λexp

(
−Dns

γ

)
(3.3)

where λ and γ are parameters to be estimated. The total influence that the

choices of all other decision-makers have on decision-maker n can be modeled
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as:

Zin =
S∑

s=1

ρnsiysi (3.4)

The probability that decision-maker n would choose alternative i rather than

any other alternative j in the choice set, can be expressed as the probability

that the utility of i is higher than that of any other alternative, conditional

on knowing the systematic utility Vjn for all j alternatives in the choice set.

To estimate the parameters we have to consider the following log-likelihood

function:

L∗(β) = ln(L(β)) =
N∑

n=1

∑
i∈Cn

lnP yin

in =
N∑

n=1

∑
i∈Cn

yin

[
Vin − ln

(∑
j∈Cn

exp(Vjn)

)]
(3.5)

To calculate the spatial dependency term ρ we need estimates of the parame-

ters λ and γ. The value of these two parameters can be estimated directly by

maximizing the previous maximum likelihood function or, alternatively, they

can be obtained via a search procedure over a range of numbers by trying

out different values of the parameter γ while estimating the value of λ as a

standard parameter in logit model. The Spatial Multinomial Logit can be

extended considering not only the characteristics of the decision-maker, but

also variables relatives at the same time to the individual and to the chosen

alternative (Nelson, Pinto, Harris & Stone 2004). We can define this model

as a Conditional Spatial Multinomial Logit in which the linear component of

systematic utility is decomposed in two parts as follows:

xijβj = hijη + giδj (3.6)

in which hij includes the characteristics of every individual relative to the

alternative j; instead gi are the individual attributes that don’t depend on

the chosen alternative. Therefore we can write the utility in the following
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way:

Uij = Vij + εij =

(∑
j

hijη +
∑

j

giδj +
K∑

k=1

ρikjykj

)
+ εij (3.7)

The estimation of the parameters is the same of the Spatial Multinomial

Logit.

The two previous models allow us to consider the spatial effects, but they

cannot solve the problem related to the IIA property. As we saw in the first

chapter possible solutions are nested logit models, but if we want to introduce

also the spatial component we can consider some models based on the Mixed

Multinomial Logit Models.

3.3 Mixed Multinomial Logit Models

Mixed logit is a higly flexible model that can approximate any random utility

model (McFadden & Train 2000). This model has been known for many years

but it has only become fully applicable since the advent of simulation. A

mixed logit model is any model whose choice probabilities can be expressed

in the following form (Train 2003):

Pin =

∫
Lin(β)f(β)dβ (3.8)

where Lin is the logit probability evaluated at parameters β:

Lin(β) =
eVinβ∑J

j=1 e
Vin(β)

(3.9)
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and f(β) is a density function. If Vin(β) is linear in β the probability can be

expressed as:

Pin =

∫ (
eβ′xin∑
j e

β′xjn

)
f(β)dβ (3.10)

Considering this last expression is evident that the standard logit is a special

case of mixed logit, when the f(β) distribution degenerate at fixed parame-

ters b: f(β) = 1 if β = b and f(β) = 0 if β 6= b. The mixed logit probability

can be derived from utility-maximizing behavior in several ways. The most

straightforward derivations are based on random coefficients or error compo-

nents.

Random coefficients If we consider this first approach we can consider

the classical expression for the utility:

Ujn = β′nxjn + εjn

This is the same specification as for the standard logit except that β varies

over decision makers rather than being fixed. So it’s necessary to specify a

distribution for the coefficients and estimates the parameters of that distribu-

tion. In most applications (Revelt & Train 1998), (Ben-Akiva & Bolduc 1996)

f(β) has been specified to be normal or lognormal: β(b,W ) or lnβ(b,W ) with

parameters b and W that are estimated. However also other distributions

have been used as, for example, triangular and uniform distributions (Revelt

& Train 1998).

Error components In this second approach the model represent error

components that create correlations among the utilities for different alterna-

tives. Utility is then specified as:

Ujn = α′xjn + µ′nzjn + εjn (3.11)
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Here the terms in zjn are error components that, along with εjn, define the

stochastic portion of the utility. It can be indicated as ηjn = µ′nzjn + εjn

and it can be correlated over alternatives depending on the specification of

zjn. When zjn is identically 0, then the model reduces to a standard logit

model. In this approach the emphasis is placed on specifying variables that

can induce correlations over alternatives. Before considering the introduc-

tion of the spatial component in the model it’s important to underline that

any Random Utility Model (RUM) can be approximated to any degree of

accuracy by a mixed logit with appropriate choice of variables and mixing

distribution (McFadden & Train 2000).

3.4 Discrete choice models and spatial de-

pendence

Introduction of Mixed logit model has been very important because it allowed

to consider the spatial contiguity between destination and not only between

individual. Really one of the first approach in which the spatial weights have

been introduced (Autant-Bernard 2005) starts from a simple Multinomial

Logit Model in which the contiguity is introduced in the deterministic part

of the utility:

Uij = Vij + εij = ρ1W1Vij +Xβ + ε (3.12)

where the matrix W1 is one of the spatial weights matrix introduced previ-

ously and ρ1 are the parameters relative to the spatial effects. Successively,

however, according to a different approach, the introduction of the spatial

component is not in the deterministic part, but in the random part of a

Mixed Multinomial Logit Model:

Uij = Vij + εij = Xβ + η + ξ = Xβ + η + ρ2W2ξ + υ (3.13)
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Here the random component is divide in two parts:

η with mean equal to 0 and Gumbel distributed;

ξ with mean equal to 0 and distribution equal to f(ξ|Ω) where Ω is the

matrix of the parameters of the distribution, depending on the structure of

the observed data and on the alternatives of the choice set.

ξ here is an autoregressive component with υ vector of normally distribute

variables with mean = 0 and variance-covariance matrix = to Σ. If we

define Σ = σ2I, it’s possible to write υ = στ where σ indicate the standard

deviation and τ is a vector of elements normally standardized distributed.

Following the two showed techniques it is possible to consider an integrated

approach (Miyamoto, Vichiensan, Shimomura & Paez 2004) in which the

spatial component was introduced to a double level: in the deterministic part

and in the random part. In this way the special effect in choice probability

is accommodated considering the spatial interaction among the observable

data and the spatial autocorrelation among the unobservable data:

U = V + ε

{
V = ρ1W1V +Xβ

ε = η + ξ = η + ρ2W2ξ + στ
(3.14)

In this way the utility can be re-expressed as follows:

U = (I − ρ1W1)
−1 + σ(I − ρ2W2)

−1τ + ε (3.15)

In this equation (I−ρ1W1)
−1 represents the spatial interaction among observ-

able data,σ(I − ρ2W2)
−1τ is the Spatial autocorrelation among unobservable

data, while ε is IID Gumbel distributed. The choice probability can then be

expressed as:

L(τ) =
exp ((I − ρ1W1)

−1 + σ(I − ρ2W2)
−1τ)∑

exp ((I − ρ1W1)−1 + σ(I − ρ2W2)−1τ)
(3.16)
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The parameters to be estimated in the model include scalars ρ1 and ρ2 rep-

resenting the degree of spatial dependency, the standard deviation σ and the

vector β associated with the explanatory variables in the deterministic part

of the model. We can define a parameter vector θ that includes all parameters

in the model. Estimation can be done with the classical maximum likelihood

method, which has commanded substantial attention in recent years (Bhat

& Guo 2004). In particular if we write the log-likelihood function:

L(θ) =
∑

n

∑
i

ynilogL(θ) (3.17)

and considering the 3.18:

yin =

{
1, if n chose i

0, otherwise

we obtain that the log likelihood in 3.17 involves the evaluation of multidi-

mensional integrals that are not in closed form. Simulation techniques any-

way are useful to approximate the multidimensional integrals and maximizing

a simulated log-likelihood function (Bhat 1998). The simulation techniques

entail computing the integral at several values of τ drawn from a the normal

distribution for a given value of the parameter vector θ and averaging the

integrand values. The choice probabilities are approximated by averaging

over the NR numbers of simulated probability (SP):

SP =
1

NR

NR∑
nr=1

exp ((I − ρ1W1)
−1 + σ(I − ρ2W2)

−1τ)∑
exp ((I − ρ1W1)−1 + σ(I − ρ2W2)−1τ)

(3.18)

The above expression is an unbiased estimator of the actual probability. The

simulated log-likelihood (SLL) function is the following:

SLL =
∑

n

yln(SP ) (3.19)
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An ulterior possibility to introduce the spatial correlation is when we con-

sider a different model (Ben-Akiva, Bolduc & Walker 2001) named Logit Ker-

nel. Also in this case the random part can be divided in two components:

a probit-like term with a multivariate distribution and a Gumbel random

variate. The probit-like term captures the interdependencies among the al-

ternatives. These interdependencies can be specified using a factor analytic

structure (McFadden 1984):

εn = Fnξn + υn (3.20)

where ξn is an (M ∗1) vector of M multivariate distributed latent factors, FN

is a (Jn ∗M) matrix of the factor including fixed and unknown parameters

and may also be a function of covariates, and υn is a (Jn∗1) vector of Gumbel

random variates. For estimation it’s desirable to specify the factors such that

they are independent and so ξn can be decomposed as follows:

ξn = Tζn (3.21)

where ζn are a set of standard independent factors, TT ′ is the covariance

matrix of ξn and T is the Cholesky factorization of it. Here if we consider a

generalized autoregressive process of the errors ξ, we have ξ = ρ2W2ξ + Tζ

and the utility is expressed as:

U = Xβ + η + ρ2W2ξ + Tζ (3.22)

that is similar to the 3.13

3.5 Aggregation of alternatives

In the previous sections we have seen how to introduce the spatial component

in logit models, but the proposed techniques don’t solve the problems related
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to the size of choice set. In fact when the number of alternatives in the choice

set is large, response probability models may impose heavy burdens of data

collection and computation. In this section we introduce one of the possible

solution for this issue, aggregation of alternatives.

The use of the grouped alternatives model to approximate the ideal disag-

gregate models was, at beginning, forced on the analysts simply because

data were not available for all the alternatives at the original level of the

elemental alternatives (Lerman 1983). Yet, although over the years more

micro-level data have become available, residential choice studies of a disag-

gregate nature remain scarce. This is perhaps because few researchers have

risen to challenge the norm, i. e., the aggregate approach, but also because

the concept of grouped alternatives has its behavioral merits. According to

this approach, we can consider an individual who select an alternative and

we can indicate with C the set of all possible alternatives; the aggregation

amounts to partitioning this set into Ci subsets that do not overlap (Parsons

& Needelman 1992):

Ci ⊆ C, i = 1, ..., J

where each i is an aggregate alternative. The choice probability of an aggre-

gate alternative is equal to the probability that the individual chooses one of

its elemental alternatives. So we can write it as follows:

Pn(i) =
∑
l∈Ci

Pn(l), i = 1, ..., J (3.23)

Now we can consider again the individual’s utility for an elemental alterna-

tive:

Uln = Vln + εln (3.24)
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where Vln is the classical deterministic part of utility. The utility of choosing

an aggregate alternative i is just:

Uin = max(Vln + εln|l ∈ Ci) (3.25)

so Uin is the maximum utility that the individual n perceive among all alter-

natives in the group i. If the εln are independent and identically distributed

Gumbel random variables with location parameter equal to 0 and scale pa-

rameter µ, we can decompose 3.25 as:

Uin =
1

µ
ln

[∑
l∈Ci

eµVln

]
+ εin (3.26)

where 1
µ
ln
(∑

l∈Ci
eµVln

)
is the mode of the random variablemax(Vln+εln), l ∈

Ci and εin is Gumbel distributed with mode 0 and scale scale µ. We can now

decompose 3.26 as follows:

Uin =
1

µ
ln

[∑
l∈Ci

eµVln

]
+ εin

=
1

µ
ln

[∑
l∈Ci

eµV̄ineµ(Vln−V̄in)

]
+ εin

=
1

µ

[
ln(eµV̄in) + ln

∑
l∈Ci

eµ(Vln−V̄in)

]
+ εin

= V̄in +
1

µ

[
ln
∑
l∈Ci

eµ(Vln−V̄in)

]
+

1

µ
lnMi +

1

µ
ln

(
1

Mi

)
+ εin

= V̄in +
1

µ

[
ln

[
1

Mi

∑
l∈Ci

eµ(Vln−V̄in)

]]
+

1

µ
lnMi + εin

= V̄in +
1

µ
lnBi +

1

µ
lnMi + εin (3.27)
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where V̄in is the average utility of the elemental alternatives in aggregate

alternative i; Bi = 1
Mi

∑
li
eµ(Vln−V̄in) is a measure of the heterogeneity of the

elemental choices and Mi is the number of disaggregate alternatives in the

aggregate one i. Sometimes, when there is not a sufficient information, site

aggregation schemes usually specify the utility of an aggregate alternative

ignoring the terms involving lnBi and lnMi and V̄in or some approximate

measure is used alone and there is a loss in estimation accuracy due to these

omissions. A drawback of aggregation is the fact that we need a procedure

to join together the different alternatives. Different techniques have been

proposed in past years.

The most common practice to aggregate the alternatives in residential choice

problems or destination choice, is to join dwellings or destinations into admin-

istratively defined units, typically census tracts or transport analysis zones.

The tracts or zones are then considered as the communities or neighborhoods

that the individual households choose from. Other administratively defined

units used as proxy for residential alternatives include counties (Gabriel &

Rosenthal 1989), school districts and census cities (Levine 1998). The use of

administrative units is likely attributed to the fact that spatial data describ-

ing the residential environment of the dwellings are often readily available

only for these units. Anyway there are also other kind of geographical ag-

gregations; for example analysts divide the study area into 0,5 by 0,5 mile-

squares-zones. Data about the housing quality and neighborhood are then

aggregated over these ”quarter-sections” (Anas & Chu 1984).

One of the problem that arises when aggregation of zones is effected is the

Modifiable Area Unit Problem (MAUP). The effect of the MAUP has been

found in a variety of spatial analysis and modeling studies, including uni-

variate statistical analyses, bivariate regression, multivariate statistical anal-

ysis. While relevant research effort has concentrated mostly on revealing the

MAUP, the search for effective solutions has not been widely attempted, at

least not with satisfactory results. We can categorize the past attempts in
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three categories (Wong 1996):

– Data Manipulation;

– Technique oriented;

– Error modeling.

The data manipulation approach is based on the suspicion that the MAUP

would vanish if the chosen areal units can be justified one way or another,

instead for administrative convenience. Many researchers developed methods

for creating optimal zones with respect to predefined objective functions.

The technique-oriented approach, on the other hand, is based on the argu-

ment that the MAUP effect might have been a result of using inappropriate

models or statistical techniques in analyzing aggregated spatial data. This

leads to the proposal of abandoning the unsuitable classical statistical tech-

niques and replacing them with frame independent analysis (Tobler 1991).

Another group of researcher recognize that, when analysis moves from one

spatial scale to another, relationships among variables and among spatial en-

tities also change. Instead of searching for techniques immune to such scale

effects, they adopt the error modeling approach of explicitly documenting

variations derived from changing scale, and incorporating these changes into

modeling and analysis.

Generally we can assert that to reduce or remove the effect of MAUP it’s

necessary to know something about the general nature of the phenomenon.

In temporal instances there are often strong organizing principles associ-

ated with the observations that give rise to self-similarity, which analyst can

exploit to perform generalization. What often makes the spatial instances

difficult is the lack of intuition about the phenomenon at hand and analysts

are thus required to decide on the spatial units before attempting to study

the phenomenon.

Instead of using locality-based groupings, some studies construct residen-

tial choice alternatives by grouping individual units based on their non-
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spatial attributes; sometimes, i.e., different housing types have been defined

as choice alternatives (Quigley 1976). Other times the neighborhood types,

defined based on tract-level median income values, are considered as choice

alternatives in examining individual’s preferences for neighborhood qualities

(Chattopadhyay 2000) and similarly, communities defined based on census

places are grouped into clusters based on residential density and commute

time to form location choice for individuals.

In next chapter we will introduce a technique for carrying out the aggregation

that will consider spatial and non-spatial characteristics simultaneously.

3.6 Problems related to the size of the choice

set

Aggregation of alternatives is only one method to reduce the number of the

alternatives, but sometimes, after the aggregation there is the application

of a nested logit model and so, really, the number of alternatives is not

reduced and then the computation is anyway not so easy. To handle this

problem, it’s possible to follow another procedure. It was demonstrated

(McFadden 1978), in fact, that if the multinomial logit functional form is

valid, consistent estimates of the parameters of the strict utility function can

be obtained from a fixed or random sample of alternatives from the full choice

set. We can denote with C the full choice set and with P (i|C, x, β) the true

selection probabilities where β is a vector of parameters and x a vector of

explanatory variables. If the IIA property is satisfied we can write the choice

probabilities as follows:

i ∈ D ⊆ C =⇒ P (i|C, x, β) = P (i|D, x, β)
∑
j∈D

P (j|C, x, β) (3.28)
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where D is a subset drawn from the set C according to a probability distri-

bution π(D|i, x), which may, but need not, be conditioned on the observed

choice i. The observed choice may be either in or out of the set D. We can

consider different examples of π distributions:

– choose a fixed subset D of C, independent of observed choice

– choose a random subset D of C, independent of observed choice

– choose a subset D of C, consisting of the observed choice i and

other alternatives selected randomly

The most used type is the last one and we can show some examples of this:

To obtain consistent estimator from a sample of alternatives we must intro-

duce the positive conditioning property established by McFadden (McFadden

1978):

If j ∈ D ⊆ C and π(D|i, x) > 0 then π(D|j, x) > 0

and the uniform conditioning property:

If i, j ∈ D ⊆ C, then π(D|i, x) = π(D|j, x).

If the two previous properties are respected, then the maximization of the

modified likelihood function:

Ln =
1

N

N∑
n=1

log

[
eVin (xn,β)+logπ(Dn|in,xn)∑

j∈C e
Vjn (xn,β)+logπ(Dn|jn,xn)

]
(3.29)

yields, under normal regularity conditions, consistent estimates of the un-

known parameters.

As showed sampling of techniques is an applied technique for reducing

the computational burden involved in estimating a choice model with a large

number of alternatives. Now the main issue is how to obtain the most effec-

tive sample of alternatives. Many strategies are possible like:
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– Simple Random Sampling of Alternatives;

– Importance Sampling of Alternatives;

– Independent Importance Sampling;

– Importance Sampling with Replacement;

– Stratified Importance Sampling;

We will discuss about some of these.

3.6.1 Simple Random Sampling of Alternatives

The simplest and most used approach to sample design is to draw a simple

random sample of alternatives from the full choice set and to add the chosen

alternative if it is not otherwise included. The probability to obtain a subset

D is

πn(D|i) =

(
J

J ′

)−1

, i ∈ D (3.30)

where the term in parenthesis indicates the number of combinations of J

items taken J ′ at a time. A problem that could rise with this kind of sampling

is the fact that if the observed choice is sampled, the size of the sampled choice

set, that we can indicate with J̃n, is equal to J ′; if the observed choice is not

sampled, J̃n is equal to J ′+1. To prevent this drawback it’s possible to draw

randomly J ′ alternatives from all the available alternatives, except for the

chosen one. In this case the set D has always J ′ + 1 elements and:

πn(D|i) =

(
J − 1

J ′

)−1

, i ∈ D (3.31)

These random sampling strategies are characterized by the uniform condi-

tioning and so the correction terms for alternative sampling bias in the logit
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model ln ↪→ πn(D|i), i ∈ D are equal and therefore cancel out in the choice

probabilities and a standard logit model with a choice set given by D yields

consistent estimates.

3.6.2 Importance Sampling of Alternatives

With a simple random sampling the alternatives may have very small choice

probabilities and so a sample of alternatives in which the alternatives most

likely to be chosen by the decision maker have a higher probability of being

selected may be more efficient. This is the basic idea of importance sampling

that is borrowed from Monte Carlo integration. We can, for example, con-

sider the probability of estimating a sum of choice probabilities over a subset

with J0 alternatives:

J0∑
i=1

Pn(i)

It’s efficient to select a sample from the J0 alternatives with selection prob-

abilities qin such that the ratios

Pn(i)

qin
, i = 1, ..., J0

vary as little as possible. Thus an importance alternative sampling strategy

is based on preliminary estimates of the choice probabilities. These estimates

can be provided a priori by some simple model form. For example, in des-

tination choice model two factors are usually considered, distance and size,

which may be combined in a gravity-type function:

M̃ie
−αdin , i = 1, ..., J (3.32)
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where M̃i is an approximate measure of size of destination zone i, din is a

measure of distance between the origin of traveler n and destinations in zone

i, and α is a scalar parameter that represents the sensitivity to distance. The

drawback of this kind of sampling is that it’s only an intuitively reasonable

strategy for model estimation.

3.6.3 Stratified Importance Sampling

The technique of stratified importance sampling avoids the need to specify

a selection probability qin for every alternative j = 1, ..., J . The set of J

alternatives is stratified into R disjoint subsets such that:

R∑
r=1

Jrn = J (3.33)

where Jrn is the number of alternatives in stratum r for decision maker n.

The importance sampling criterion is realized by assigning different selection

probabilities in different strata, while maintaining uniform selection prob-

abilities in different strata. So if we indicate with J̃rn the sample size for

stratum r = 1, ..., R and with r(i) the stratum of alternative i we must draw

a simple random sample of size J̃rn from every stratum except that from the

stratum of the chosen alternative i, from which we draw only a sample of

J̃r(i)n − 1 alternatives and then we add the chosen alternative. In this way

the size of D is uniform across all observations. The probability of selecting

a set of alternatives D is:

πn(D|i) =

(
Jr(i)n − 1

J̃r(i)n − 1

)−1∏
r=1

(
Jrn

J̃rn

)−1

, i ∈ D (3.34)

The main advantages of this method are:
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– its fixed sample size (J̃ = J ′ + 1 where J ′ is the total number of

random draws

– the selection probabilities, given by qin =
J̃r(i)n

jr(i)n
are easier to quan-

tify than in the other methods

In next chapter we will show how it’s possible the use of Multidimensional

Analysis to build a new kind of Stratified Sampling. Multidimensional Anal-

ysis will be also the basis of the new technique of aggregation that we pointed

out previously.





Chapter 4

Multidimensional Analysis and

Residential Choice Models

In this chapter we will introduce, as we said, two methods to deal with the

great number of alternatives in the choice set and with the spatial complexity

related to residential choice. The basis of the two methods will be Princi-

pal Component Analysis that we will introduce briefly at beginning of the

chapter.

4.1 Principal Component Analysis

The central idea of Principal Component Analysis is to reduce the dimen-

sionality of a data set consisting of a large number of interrelated variables,

while retaining as much as possible of the variation present in data set

(Jolliffe 2002). This is achieved by transforming to a new set of variables, the

principal components (PCs), which are uncorrelated, and which are ordered

so that the first few retain most of the variation present in all of the original

variables. So we have to consider our original data and the various step to

obtain the Principal Components. First of all we have to define with X the
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data matrix in which there are the values of different variables for all the

individual of the analysis; with D we indicate the matrix of the weights for

every unity and with M the metric matrix, that defines the nature of the

distances between individual. The matrix Xn,p define a group of vectors that

describe a cloud of points and the distances between them define the shape

of the cloud. To see this shape we can project it on some spaces, having has

objective the minimization of the deformation caused by the projection. So

we can indicate with u a unit vector of the p-dimensional space Rp and with

OHi the orthogonal projection of the individual OMi on the line generated

by the vector u. The situation can be understood looking at the following

figure 4.1.

Figure 4.1: Projection of individuals on an optimal subspace

OHi can be expressed as follows:

OHi = x′iMu (4.1)

and the objective is therefore to search, according to the Ordinary Least

Squares, the line that minimizes the sum of the square distances of the points

that we can indicate with
∑n

i (MiHi)
2. But it’s easy to see that:

n∑
i=1

(MiHi)
2 =

n∑
i=1

(OMi)
2 −

n∑
i=1

(OHi)
2 (4.2)

and so, as
∑n

i=1(OMi)
2 is independent from the vector u, to minimize the
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quantity
∑n

i=1(MiHi)
2 is the same to maximize

∑n
i=1(OHi)

2, that can be

expressed as follows:

max(u)

{∑
i

piOH
2
i

}
= max(u){u′MX ′DXMu} = max(u){u′Au} (4.3)

with the normalization constraint equal to u′Mu = 1; pi are the weights of

the individuals and A = MX ′DXM . We can then consider the Lagrange

Multiplier and write:

L = u′Au− λ(u′Mu− 1) = max (4.4)

If we derive respect to u we obtain:

∂L

∂u
= 2Au− 2λMu = 0 (4.5)

and then:

Au = λMu (4.6)

Following some algebraic manipulations we can obtain:

u′Au = λu′Mu

λ = u′Au (4.7)

and if M is a positive definite matrix, it’s possible to write:

M−1Au = λu

A∗ = M−1A (4.8)

A∗u = λu

So finding the eigenvector u1 associated with the first eigenvalue of the ma-
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trix M−1 we can calculate the first principal component: c1 = XMu1. To

obtain the other components is only necessary to introduce a constraint of

orthogonality u′1Mu2=0 and so we have:

∂L

∂u2

= 2Au2 − 2λ2Mu2 − ι2Mu1 = 0 (4.9)

If we multiply all the elements for u′1 we have u′1Au2 = u′1Mu2 = 0 and

u′1Mu1 = 1 and so we obtain Au2 = λ2Mu2 and therefore the second compo-

nent is derivable from the eigenvector associated to the second eigenvalue of

the same matrix as before. The importance of Principal Component Analysis

is due to the fact that, as we said at beginning of the chapter, it allows to

consider only few components to explain most of the variability present in

the data. In the continuing of the chapter we will introduce some modifica-

tion to the classical Principal Component Analysis and we will show how the

techniques based on it can be useful for our purposes.

4.2 Constrained Principal Component Anal-

ysis

In classical Principal Component Analysis there is the hypothesis of a sym-

metrical relationship between variables, but sometimes, this hypothesis can

be not assumed and so it’s necessary consider some different techniques. The

problem of the asymmetrical relationship was faced. i. e., through a sort

of ”visualized regression” by means of the supplementary points technique

(Lebart, Morineau & Warwick 1984), but one of the most important proposed

techniques is the Constrained Principal Component Analysis (D’Ambra &

Lauro 1982). This technique allows to use the Principal Component Analy-

sis also when the relationships between the variables involved are not sym-

metrical. In Constrained Principal Component Analysis we indicate with
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X and Z the data matrices associated respectively with two sets of quan-

titative variables xj(j = 1, ..., p) and zk(k = 1, ..., q) observed on the same

individuals:

Z =

 z11 ... ziq

... ... ...

zn1 ... znq

X =

 x11 ... xiq

... ... ...

xn1 ... xnq


In this technique we don’t assume that the variables play a symmetrical role

in the analysis, but instead a non-symmetrical one. The aim of CPCA is to

analyze the structure of explained variance of the first data set due to the

second one, assumed as explanatory. We can indicate with Rx and Rz the

two sub-spaces of Rn spanned by the linearly independent vectors xj and

xz. Constrained Principal Component Analysis consists in carrying out a

Principal Component Analysis of the image of xj obtained onto Rz through

a suitable orthogonal projection operator. We can obtain it in the following

way:

Pz = Z(Z ′DpZ)−1Z ′Dp (4.10)

where Dp is the diagonal metric matrix with 1/n on the diagonal. We use

this operator because he gives us the best image of X matrix on Rz according

to the ordinary least squares. Now we can project X on Rz:

X∗ = PzX (4.11)

and we can effectuate the principal component analysis in the following way:

– Research of the subspace of reduced dimensions (principal axis)

of Rz through the computation of eigenvalues and eigenvectors of

the following expression:

X ′PzXvα = λαvα (4.12)



70 Multidimensional Analysis and Residential Choice Models

where λα > 0, vα v
′
α = 0, α 6= α′

– Determination of principal factors as follow:

uα =
1√
λα

vα (4.13)

with u′α uα=1

– Research of the principal components as linear combination of the

original variables x:

cα = PzXvα (4.14)

The norm of these components is equal to λα and so, to obtain

normalized components c′αcα it’s necessary to divide the previous

eqaution for 1/
√
λα:

cα =
1√
λα

(4.15)

– Computation of the correlation between original variables and new

component to describe the relationships between the two groups

of variables and to interpret the components. This computation

is possible if we multiply the 4.15 for X ′:

X ′cα =
1√
λα

X ′PzXvα (4.16)

and considering 4.12 we have

X ′cα =
√
λα (4.17)
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It’s also possible to calculate the correlations of the new components with

the variables of the group Z:

Z ′cα =
1√
λα

(Z ′X)vα = Z ′Xuα (4.18)

This expression shows that CPCA allows to analyze the image of the external

correlation between the two sets of variables X and Z on the principal axes,

unlike the supplementary points technique where xj variables are indepen-

dently projected on the factorial axes, without participating to the determi-

nation of them. Also in this technique anyway it’s possible to represent some

supplementary variables in the following way:

y′sPzcα =
1√
λα

y′sPzXvα (4.19)

To find a supplementary individual we can consider instead the following

expression:

cs =
1√
λα

zs(Z
′Z)−1z′sxsvα (4.20)

Our idea to deal with the great number of alternatives will be based

on Constrained Principal Component Analysis, but before showing it, we

present some other techniques used in the past years to consider an inte-

gration between spatial and multivariate analysis, introducing also the links

with classical univariate indexes.

4.3 Univariate indexes of spatial structure

We saw in the previous chapter that it’s possible to indicate with W a con-

tiguity matrix and we indicate, as usually, with X the data matrix and

furthermore we can write qi = xi − x̄ with x̄ = 1
n

∑n
i xi, where n is the
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number of elements of our analysis. This notation will be useful to introduce

in this paragraph Geary index and Moran index that are the basis of spatial

statistics.

4.3.1 Moran Index and Geary contiguity coefficient

Moran index can be defined in the following way:

I =
n
∑
wijqiqj∑

wij

∑n
i=1 q

2
i

(4.21)

where n is the number of statistic elements. Sometimes this matrix is written

as follows:

I =
q′Fq∑n
i=1 q

2
i /n

(4.22)

where the elements of the matrix F are fij =
wijP
ij wij

. Generally Moran index

is used in three different fields, we are interested in the case of the neighboring

graph. In this circumstance the index can be written as follows:

I =
1

2w

q′Wq∑n
i=1 q

2
i /n

(4.23)

where W is the contiguity matrix and 2w is the number of the pairs of

neighbors. We have that I ′nWIn = 2W and so the previous expression can

be written as 4.22. The c coefficient of Geary instead, is generally known as:

c =

∑
wij(xi − xj)

2

2ij

∑n
i=1 q

2
i /(n− 1)

(4.24)
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or sometimes it’s written as

c =
fij(xi − xj)

2

2
∑n

i=1 q
2
i /(n− 1)

or c =

1
2w ij

(xi − xj)
2

2
∑n

i=1 q
2
i /(n− 1)

(4.25)

In this index we use the term 1/(n − 1) for the variance rather than 1/n

that is used for Moran index. The substantial difference between the two

indexes is perhaps that Moran index is arranged so that its extremes match

the intuitive notions of positive and negative correlation, whereas the Geary

index uses a more confusing scale.

4.4 Statistical analysis of contiguity

The first attempt to introduce spatial component in multivariate analysis has

been done by Lebart (Lebart 1969). To understand the analysis we have to

introduce a neighboring graph as in the following figure:

Figure 4.2: graph of neighboring

Here we have some edges that join the individual. We can then introduce

the following matrices:

– W = [wij] is, as usually, the symmetric n by n matrix of the

between-sites neighbors: if alternative i is neighboring alternative

j then wij = 1, else wij = 0. Moreover for any i, wii = 0

– N is the diagonal matrix of degrees of vertices with ni =
∑

j mij
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In our example we can rewrite the matrix as follows:

W=


0 1 1 0 0

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

0 0 1 1 0

N =


2 0 0 0 0

0 3 0 0 0

0 0 4 0 0

0 0 0 3 0

0 0 0 0 2


The matrix N −W can be indicated as a proximity operator. If now we

indicate with w =
∑

i ni =
∑

ij mij twice the number of edges we can con-

sider a matrix T with w/2 rows and n columns, crossing the w/2 edges and

the n elements. If an edge k joins two vertices i and j and if i < j, tki = 1

and tkj = −1; tki = 0 otherwise. For our graph the matrix of edges will be:

T=



1 −1 0 0 0

1 0 −1 0 0

0 1 0 −1 0

0 1 −1 0 0

0 0 1 −1 0

0 0 1 0 −1

0 0 0 1 −1


The following relation between the matrices is straightforward:

T ′T = N −W (4.26)

The matrix T ′T is a symmetric and semi-definite positive matrix because

(x′L′Lx ≥ 0), then also N − W is semi-definite positive. It’s important

to remember this property because it will be useful for our new proposal.

However, before showing it, we can demonstrate the relationships with the

Geary and Moran indexes; to do this, we must introduce:
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– P = [pij] with pij = 1
2w
wij where w is the total number of pairs of

neighbors, therefore
∑

ij pij = 1

– D = Diag(p1, p2, ..., pn) is the diagonal matrix of neighboring

weights: pi = 1
2w

∑
j wij

We have now all the matrices we need to define the total variance, the local

variance and the global variability (Thioulouse, Chessel & Champely 1995).

In fact if we consider the mean of a variable x, given the weights D, is equal

to:

x̄D =
∑

i

pixi = x′DIn (4.27)

It’s variance is equal to what we can call total variance:

V ar(x) =
∑

i

pi(xi − x̄D)2 (4.28)

If x is D-centered it can be written in matrix form as:

V ar(x) = x′Dx (4.29)

The local variance (Aluja & Lebart 1984) is:

LV (x) =
∑

i

∑
j

pij(xi − xj)
2 (4.30)

and can be written as:

LV (x) = x′(D − P )x = x′D(In −D−1P )x (4.31)

The global variability or spatial auto− covariance is defined by:

GV (x) =
∑

i

∑
j

pij(xi − x̄D)(xj − x̄D) (4.32)
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which, if x is D-centered, can be written:

GV (x) = x′Px = x′D(D−1P )x (4.33)

Since it is not always positive, it cannot be called global variance. The

second form in 4.31 and 4.33 show that the global variability can be seen

as the covariance between x and the mean of its neighbors, and that the

local variance can be seen as the covariance between x and the difference

between each point and the mean of its neighbors. It’s possible to derive

then a variance decomposition of the following form:

V ar(x) = LV (x) +GV (x) (4.34)

When the neighboring weights D are uniform, the ratio of the local variance

to the total variance LV (x)/V ar(x) is equal, except a (n − 1)/n factor to

Geary’s coefficient of autocorrelation from which Geary’s index can be de-

duced. Similarly it’s possible to note that Moran’s index is exactly, under

the same hypothesis, the ratio of the global variability to the total variance:

GV (x)/V ar(x).

Lebart introduced the spatial component in Multivariate Analysis, generaliz-

ing the concept of local variance and obtaining a Local Principal Component

Analysis, simply with the diagonalization of the spatial covariance matrix

X ′(D − P )X. Le Foll (LeFoll 1982) used a similar approach; he asserted

in fact that the local structure of data matrix can be accomplished by the

analysis of the triplet (XD, Ip, D − P ) where XD is the D-centered matrix.

The row scores of this analysis maximize the local variance. Wartenberg

instead (Wartenberg 1985) presented a method called Multivariate Spatial

Correlation Analysis (MSCA), based on the eigenvector analysis of matrix

X ′WX (the spatial covariance matrix). By introducing the D-centering and

using P = 1
2w
W , we simply obtain the analysis of the global structure of

the data table by the PCA of the triplet (XD, IP , P ). The row scores of this
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analysis have the highest possible global variability, but the corresponding

eigenvalues are not always positive, as they are not variances but spatial

auto-covariances. This method is the only one we know in which the multi-

variate analysis is not constrained to give positive eigenvalues.

In this paragraph we have seen some techniques to integrate spatial and

multivariate analysis. The matrix used by Lebart to calculate the spatial

auto-covariance will be useful to demonstrate that the which one we want

to introduce in CPCA is semi-definite positive too. We will show this in the

following section.

4.5 A new approach to aggregate alternatives

in Discrete Choice Models

In the previous chapter we said as different techniques for aggregation of

alternatives have been proposed in the past years. These techniques carry

out the aggregation according to some spatial measurements or according

to some characteristics of the elemental alternatives. We don’t know tech-

niques in which spatial and non-spatial elements are considered together. The

only attempt we know is a Spatial Zoning Algorithm (Hammadou, Thomas,

Tindemans, Witlox, Hofstraeten & Verhetsel 2004) in which they use a clas-

sical Principal Component Analysis with a Varimax rotation, then a Cluster

Analysis based on Ward’s method to group sectors that look alike in terms

of scores of the components and, eventually, they define the aggregate al-

ternatives, keeping in mind the observed reality and grouping together the

neighboring sectors. In this way they introduce the spatial dimension only

in the last step of the algorithm. Our proposal instead has as goal to intro-

duce directly in the first step of the analysis the spatial component. This is

possible considering the Constrained principal Component Analysis.

In fact we can consider the expression (4.12) and multiply it for PzX; in this
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way we obtain:

PzXX
′PzXvα = λαPzXvα (4.35)

The projection operator is idempotent and so if we multiply Pz for Pz we

obtain once again Pz. Thanks to this property it’s possible to rewrite the

previous equation in the following way:

PzXX
′PzPzXvα = λαPzXvα (4.36)

In this way we can then compute the Principal Component as the eigenvectors

associated to this last matrix (the principal axis of the other subspace). The

matrix that we must diagonalize is therefore the following:

Z(Z ′DpZ)−1Z ′DpXX
′DpZ(Z ′DpZ)−1Z ′ (4.37)

This matrix allows euclidean representation of individuals on the space on

which CPCA in Rn rests. In this perspective some contiguity matrix could

be considered instead that XX ′ (D’Ambra & Lauro 1992). In this way we

introduce the spatial component directly in the multivariate analysis. One

problem could be the fact that the matrix must be semi-definite positive and

we cannot be sure that using a simple contiguity matrix, as those proposed

in chapter 3, it will be semi-definite positive. For this reason we propose to

carry out some modifications on the contiguity matrix keeping in mind the

concepts of total variance, local variance and global variability that we in-

troduced before (Lebart 1969)and that have been developed during the years

(Monestiez 1978), (LeFoll 1982), (Mom 1998). The matrix that we will intro-

duce in lieu of XX ′ is F − P ∗ (Meot, Chessel & Sabatier 1993), (Cornillon,

Amenta & Sabatier 1999) that we will show to be semi-definite positive too.

We consider once again the contiguity matrix that we indicated with W ; we

can then define the matrix P ∗ simply multiplying the contiguity matrix for
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the spatial weights matrix Dp. Now we can compute the column marginal of

this new matrix; they will be the diagonal elements of the diagonal matrix

F . The elements of this matrix can be indicated with fij =
∑

j wijdj where

dj are the column marginal. We can demonstrate that this matrix is semi-

definite positive; in fact if we consider the proximity operator introduced by

Lebart (N −W ) it’s easy to see that, when the different zones have the same

weight, the matrix (N −W ) is simply n times the matrix F − P ∗, where n

is the number of elements of the matrix. To show that this relation holds we

can consider the following steps:

– we saw that P ∗ is obtained as DpW , in this way all the elements

of the new matrix will be simply the same as in W but divided

for n, because the elements on the diagonal of Dp are all equal to

1/n.

– for the same reason the matrix F will have elements equal to those

of W but divided for n;

– then the relation between N −W and F − P ∗ is straightforward:
1
n
(N −W ) = (F −P ∗) and if (N −W ) is semi-definite positive, as

demonstrated before, also F − P ∗ will be semi-definite positive.

When in the spatial weights matrix the elements have a different importance,

and so on the diagonal there are values different from 1/n it’s possible anyway

to show that the matrix will be semi-definite positive (Cornillon, Sabatier &

Chessel 1993) We can then introduce the matrix F − P ∗ in lieu of XX ′

(D’Ambra, Rodia & Pagliara 2005), and so we obtain:

Z(Z ′DpZ)−1Z ′DpF − P ∗′DpZ(Z ′DpZ)−1Z ′ (4.38)

Diagonalizing this matrix we obtain directly, as we showed before, the value of

the components obtained calculated on the sub-space of Rn that we indicated

with Rz. Once we obtained the new components, we can effectuate a cluster
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analysis on them, with one of the classical methods known and, in this way

we will obtain some clusters that we can define homogeneous according to

multivariate analysis with a spatial constraint (D’Ambra & Lucadamo 2006).

The clusters obtained can be used as aggregate alternatives in a logit model;

in this way we consider, for the computation of the aggregate zones, not only

the geographic characteristics but at the same time also other important vari-

ables. In the other works we know about this problem, the two approaches

are always considered separately.

We will show in next chapter how this technique can be applied to a real

data-set, but before, in next section, we will show that most of the proper-

ties that hold for PCA are valid also for CPCA. Afterwards we will see how

the CPCA and the cluster analysis can be used also to carry out a new kind

of stratified sampling of alternatives, that, as we said previously, is another

method to simplify the analysis when we have a great number of alternatives

in the choice set.

4.6 Properties of CPCA

Optimality of the solution

One interesting property of principal components is to give the best de-

scription of the image of X on the subspace Rz:

||PzXX
′ −
∑

cαc
′
α||2 = min (4.39)

Considering the first principal component and the trace of the matrix we can

write

||PzXX
′||2 + ||c1c′1||2 − 2tr(PzXX

′c1c
′
1) (4.40)

and so to find the minimum of the first expression it’s sufficient to find
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the maximum of the last term of 4.40 considering the constraint for the

normalization c′1c1 we obtain the equation for the principal components as

linear combinations of zj:

PzXX
′zbα = λα (4.41)

Now it’s possible to define a measurement for the quality of the representation

th = 1−
∑
λα

tr(X ′X)
=

∑
λα

tr(X ′X)
(4.42)

but if the number of z variables is inferior to the x variables this measurement

cannot ever be equal to 1 so it’s necessary a correction; in fact we know that

the maximum of the numerator is tr(Z ′XX ′Z) and so th can be rewritten as

follows:

tch =

∑
λα

tr(Z ′XX ′Z)
(4.43)

If we multiply the 4.41 for b′α and we consider the normalization condition

we have:

b′′XX′Zbα
(4.44)

that can be expressed also in the following way:

(x′1Zbα)2 + ...+ (x′iZbα)2 = λα (4.45)

In this way it’s easy to see that if the variables are standardized λα is the

sum of the correlation squares between the original variables and the principal

components. The explanatory power of the principal components respect to
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the original variables is given by:

tch =
′
iZbα
p

(4.46)

where p is the number of x variables. The contribution of every variable to

the components will be given by:

(x′iZbα)2

λα

(4.47)

Orthogonality of CPCA

To demonstrate that the Constrained Principal Components are orthog-

onal we can consider two eigenvalues λα and λ′α. Furthermore we can write

PzXX
′ = A and then we have:

AZbα = λα

AZb′α = λα′Zbα′ (4.48)

We can do some algebraic manipulation and so we obtain:

b′αZ
′AZbα = λαb

′
αZ

′Zbα

b′αZ
′AZbα′ = λαb

′
αZ

′Zbα′ (4.49)

and as Z ′AZ is a symmetric matrix we have:

(λα − λα′)(b′αZ
′Zbα′) = 0 (4.50)

and so, as we supposed that λα 6= λα′ , the components must be necessarily

orthogonal.

Other properties
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In the classical analysis if we consider a transformation, not orthogonal,

on the original matrix the PCA is not invariant. In the CPCA we must

consider the transformations on the two groups of variables. In fact if we

writeX∗ = XT where T is a non-singular matrix and considering the classical

equation we have:

Z(Z ′Z)−1Z ′X∗X∗′gα = ψαZgα (4.51)

and considering the transformation of the matrix:

Z(Z ′Z)−1Z ′XTT ′X ′Zgα = ψαZgα (4.52)

that, if TT ′ is not equal to the 4.36 and so it has different eigenvalues and

eigenvectors. If we, instead, carry out the transformation on the matrix Z,

we have Z∗ = ZS where S is always not singular and:

ZS(S ′Z ′ZS)−1S ′XX ′ZSfα = λZSfα (4.53)

and following a property of the inverse of a product of matrix we have:

Z(Z ′Z)−1Z ′XX ′ZSfα = λα (4.54)

and

PzXX
′(ZSfα) = λα(ZSfα) (4.55)

that is similar to the 4.37. The eigenvalues are in fact the same and the

eigenvectors are have the following relations:

cα = (ZSfα) (4.56)

and so the CPCA is invariant for a transformation on the matrix of the
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variables Z.

CPCA in relation to the sub-space orthogonal and complement

The Constrained Principal Analysis we showed considered the projection on

the sub-space Rz, but sometimes we would like to analyze a structure of

dependence of a group of variables x without the influence of the others and

so we need to analyze X in the sub-space orthogonal and complement that

we can indicate with R⊥
z . The projection operator in this space is (I − Pz)

and so if we write:

X̃ = (I − Pz)X (4.57)

and remembering that (I − Pz)
2) = (I − Pz), we have:

X̃ ′X̃ = X ′(I − Pz)X

X ′(I − Pz)Xdα = %αdα (4.58)

and the equation for the principal components is:

(I − Pz)XX
′(I − Pz)Xdα = %(I − Pz)Xdα (4.59)

4.7 Cluster Sampling of alternatives

The CPCA can be used also to explain how it’s possible to carry out a strat-

ified sampling of alternatives. As we said McFadden showed that when the

number of alternatives in the choice set is too large, it’s possible to estimate

the parameters of the model with a subset of alternatives. Different tech-

niques were introduced in the previous chapter and generally the most used

is the simple random sampling of alternatives. Sometimes the importance

sampling of alternatives is used, but in these circumstances we need some

particular variables as i.e. distance and size to build the so called gravity
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type function and, anyway, it’s only an intuitively reasonable strategy for

model estimation.

Our idea, following a precedent work (Bierlaire & Lucadamo 2006), is to

build the strata of our sampling according to this procedure. First of all

we must carry out a CPCA on the matrix Z in which we have the values

of the variables observed on the elemental alternatives. Also in this case,

we introduce the spatial component instead to divide the variables in two

groups. Once we obtain the components we can conduce a Cluster Analysis,

taking the advantage to have components, as we showed before, that are

uncorrelated. At this point we have obtained clusters of different sizes and

therefore, for the sampling, we must assign a different selection probabilities

in different strata, while maintaining uniform selection probabilities within

strata. To define the probability for every strata we suggest two different

procedures.

Probability computed according to the size of the clusters. Once

we obtained the clusters, following the procedure we explained before, a

simple possibility is to define the size of the sub-set we want and then proceed

to the sampling in the following way:

– Let k be the number of clusters we obtain from CPCA and Cluster

Analysis;

– Let define with J the number of alternatives in the full choice set;

– Let Ri be the number of alternatives in every cluster, where i =

1, ..., k

– Let J ′i be the size of the sub-set we defined, i = 1, ..., k;

– Let define with R′
i the number of alternatives we have to draw

from every cluster, where i = 1, ..., k
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then the following equality must hold:

R′
i

J ′i
=
Ri

J
(4.60)

and then:

R′
i =

Ri

Ji

J ′i (4.61)

In this way we obtain a number of alternatives from every cluster that is

proportional to the size of it.

Probability computed according to the size and the variability

of the clusters. In the second approach we don’t consider only the size of

the clusters, but also the variability and so we build the probability for an

alternative to be chosen following the approach proposed by Neyman.

We must indicate with σi the standard deviation in every cluster and then

we can calculate for each of them the following measure:

CSi = σiRi (4.62)

We can sum them for all the clusters and we obtain: CS =
∑k

i CSi. Con-

sidering the same notations as before we can write the following equality:

R′
i

J ′i
=
CSi

CS
(4.63)

It’s easy to see that if all the stratum standard deviations are equal, the

optimal sample sizes are proportional to the stratum sizes and if all the

stratum sizes are equal, the optimal sample sizes are proportional to the

stratum standard deviations.

In next chapter we will apply the proposed techniques to a data set relative

to the choice of apartment in the Zurich area. It will be showed how the

proposed approaches could be useful in real situations and the results will be
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compared with the traditional techniques used until now.





Chapter 5

A study in the Zurich Area

5.1 Description of the data

The data used in this analysis have been furnished by the ETH of Zurich and

are fruit of the period of study of the candidate in the department ROSO

- Ecole Polytechnique Federale de Lausanne. They come from two different

data sources:

– Revealed preference information about households in the Greater

Zurich Area that was gathered by means of an household survey

conducted in 2005;

– Real estate offers that were obtained from the Web.

About the first kind of data the survey was shipped to 9330 households

in 21 municipalities of Canton Zurich and surrounding cantons plus four city

districts of Zurich. It contained question concerning sociodemographic fea-

tures of the households, characteristics of their dwellings, and housing price

information (Burgle 2006). The return rate of the survey was of 30%. These

households records were geocoded, but considering that only those house-

holds that had occupied their present dwelling for no more than five years,
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Figure 5.1: Spatial scale of the residential choice location models

when answering the survey, were considered recent movers and therefore el-

igible for the modeling of residential location choice. To complement the

information collected in the household survey and to gather a reasonable

amount of data to build meaningful models, real estate offers were obtained

from the online real estate portal ”comparis”. The webpages were parsed

using a Java programme. Data posted on the Internet in the period from

December 2003 until October 2005 was scanned to collect a comprehensive

database of real estate bids for the area in which the household survey had

been conducted. For the two data sets not all the available records could

be used for estimation depending on the quality of geocoding and on the

variables considered in the models, because in many observations there were

missing data. We will see in next paragraph the variables of the data set

that we considered to build our model.

5.2 Explanatory variables

When we deal with a problem concerning the choice among a group of al-

ternatives, the classical instrument is the Multinomial Logit Model, but we

saw that there are many other models that we can apply. This is only a
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first step of the analysis, in fact the main problem regard the choice of the

right variables to build the model. There is a range of publications available

indicating what types of variables to use for the estimation of residential lo-

cation choice. Generally discrete choice models are based on the assumption

that the probability for a decision maker to choose a given alternative is a

function of his socioeconomic characteristics and the relative utility of alter-

native. The attractiveness of a residence in turn can be ascribed to attributes

of the dwelling itself and attributes of its location. In our work we considered

some past studies, working hypotheses on the same data and data availability.

Access to other type of opportunities, or land-use is one of the attributes

that has been empirically shown to influence residential choice behavior. For

example it’s showed that as the amount of commercial activities increases in

a zone, the probability of that zone being chosen increases. The propensity

for easy access to shopping opportunities, the access to workplaces and access

to alternative modes of transportation can also have an effect on residential

choice.

Residential density is, sans doubt, one of the attribute that most influ-

ence a choice, but the effects are not always the same. Some works showed

that households generally have an aversion to location with high density

(Ben-Akiva & Bowman 1998), other researches found that high population

density is preferred by households. The contradictory findings may be at-

tributed to the difference in the population segment or the geographical area

being studied. It could be also a result of other sources of error such aggre-

gation bias.

Housing affordability, measured by housing price, or by price-income

ratio is generally found to be an attractive feature for a residential zone.
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Other factors that can influence a choice are race and ethnicity, socioe-

conomic status, age and family status, school quality and safety.

In our work the selection of variables was made keeping in mind not only the

previous general rules, but also some precedent works on the same data set

The starting working hypotheses are therefore the following:

– Households prefer to spend as little as possible of their income on

housing;

– Households with employed persons prefer housing locations close

to their place of employment;

– Households with children prefer to live in areas with many chil-

dren;

– Young households without children prefer locations with high pop-

ulation density;

– Municipality characteristics like tax index or rate of vacant hous-

ing units influence residential location choice;

– Good accessibility by public transport is important for households

without a car.

Keeping in mind this previous information we built our model. The full

choice set was composed of 696 alternatives, because, as we said before,

for many of them there were missing data. First of all we considered only

the variables used in other models and we checked their explanatory power

estimating a multinomial logit model. This was only a first step, because

we had more than 50 variables and so there was a stepwise introduction of

additional variables to test if there was an added explanatory power. At the

end we had 7 significant variables for which we resume in 5.1 the description

and the average.

The estimation of a Multinomial Logit Model was carried out with BIO-

GEME (Bierlaire 2003), (Bierlaire 2005) and the results we obtained are in
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V ariable Description Mean Unit

access
Public transport accessibility for
households without cars

0,90

childdensity
Average number of children per
hectare measured in a radius of 500m

1,63 person/ha

distwork
Distance between residential location
and place of employment

13,96 Km

popyoung

Average number of inhabitants per
hectare measured in radius of 1km
multiplied for a dummy variable rel-
ative to the presence of young people

14,82 person/ha

rentratio
Total monthly rent divided for the in-
come

0,37

taxindex
Ratio of tax rate to the cantonal av-
erage weighted with total tax payers
multiplied by total tax burden

92,06

timetoplatz
Car travel time to Zurich centre based
on regional transport model

29,63 Minutes

Table 5.1: Description of variables considered for residential choice estima-
tion

the table 5.2

In the construction of the model we found that the accessibility by private

or public transport showed no significant influence on residential location

choice, but introducing an interaction term, representing the accessibility

to population by public transport and the absence of cars in the house-

hold yielded a significant result with positive sign. These findings confirmed

the assumption that accessibility only has an impact on residential location

choice in connection with the availability of mobility tools in the decision-

making household. The second parameter we can see in the table is the

density of children per hectare for households with children under 12 years

old. It has a negative sign demonstrating that households with children pre-

fer to settle in areas where other families don’t live. The distance to place

of employment shows a negative sign. This results confirms the hypothesis

that households prefer residential location close to the place of employment.
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Variable Beta
Std
Error

T-test
Rob.
Std
Error

Rob.
t-test

Access 0,5176 0,0843 6,1434 0,0818 6,3314
Childdensity -0,0519 0,0241 -2,1572 0,0238 -2,1831

Distwork -0,1424 0,0071 -20,1580 0,0085 -16,8473
Popyoung 0,0179 0,0020 8,8296 0,0017 10,3193

Rentratio -1,2266 0,2603 -4,7117 0,2526 -4,8551

Taxindex -0,015 0,0038 -3,9002 0,0037 -4,0873
Timetoplatz 0,0732 0,0062 11,7616 0,0063 11,5785

Table 5.2: Model parameters for residential location choice

The population density was also found to be significant if multiplied for a

dummy variable relative to the presence of young people in the households.

Obviously the rent ratio and the tax index have a negative influence on the

utility, because they indicate a greater financial burden for the decision mak-

ing household. The last parameter that we found to be significant was the

travel time to Zurich centre. It has a positive sign showing that people prefer

to live far from place where traffic and noise could be very high.

The model we estimated on the full choice set (all the alternatives we could

use) is a basis to effect the comparison for the results we obtained with the

use of the new proposed approaches.

5.3 Application of Constrained Principal Com-

ponent Analysis

As we said in the previous chapter we can apply a Principal Component

Analysis or a Constrained Principal Component Analysis, before carrying

out a Cluster Analysis to obtain strata for a Stratified Sampling. It’s easy

to obtain the results for the Principal Component Analysis in the classical

way, so we don’t show here the procedure and we will consider only the
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results. We can instead consider the steps utilized to obtain the Constrained

Principal Component Analysis with the introduction of Spatial Component.

It was possible to apply this technique because we had many variables that we

didn’t use to build the Multinomial Logit Model and that we could use for our

purpose. As we showed before the first thing that we need for a Constrained

Principal Component Analysis is the computation of the projector operator

(4.10):

Pz = Z(Z ′DpZ)−1Z ′Dp

The matrix Z has on the rows all the alternatives of our analysis and on the

columns all the continuous variables (56). In this case in fact, as we saw, we

don’t need to divide the variables in two groups, because the matrix XX ′ in

the equation 4.37 will be substituted by the contiguity matrix. Having no

more information about the alternatives, we decided to give an equal weight

to all the possible choices so we have that Dp is a diagonal matrix with the

value 1/n on the diagonal. The last matrix we needed was the proximity

operator that we could calculate considering the geographic code that we

had for all the apartments. We so built the contiguity matrix with a code

in S-plus and then we did all the necessary steps to obtain the proximity

operator. Once we introduced it in the matrix 4.37 we could carry out the

CPCA and we obtained the eigenvalues that are useful to know how many

components it’s better to consider for the following steps of the analysis and

the eigenvectors of the space Rn (the components we need for the analysis).

In tables 5.3 and 5.4 we can see the differences between the eigenvalues of

the classic Principal Component Analysis and of the Constrained Principal

Component Analysis.

The values in the tables cannot be compared, but anyway they are useful

to define the number of components to choose before applying the Cluster

Analysis. We decided to consider 10 components in the two cases; in this way
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Number Eigenvalue Percentage
Cumulative
percentage

1 23,3871 41,76 41,76
2 4,7905 8,55 50,32
3 3,6561 6,53 56,85
4 2,9793 5,32 62,17
5 2,8777 5,14 67,30
6 2,0012 3,57 70,88
7 1,8317 3,27 74,15
8 1,7880 3,19 77,34
9 1,4847 2,65 79,99
10 1,2738 1,64 82,27
11 1,1696 2,27 84,36
12 1,0384 2,09 86,21
13 0,9192 1,85 87,85
14 0,8628 1,54 89,39
15 0,7258 1,30 90,69

Table 5.3: Eigenvalue for the PCA

Number Eigenvalue Percentage
Cumulative
percent

1 0,0011499 35,47 35,47
2 0,0006969 21,49 56,97
3 0,0005135 15,83 72,81
4 0,0004555 14,05 86,86
5 0,0002078 6,41 93,27
6 0,0000794 2,44 95,72
7 0,0000654 2,01 97,74
8 0,0000272 0,83 98,58
9 0,0000197 0,60 99,18
10 0,0000101 0,31 99,49
11 0,0000083 0,25 99,75
12 0,0000042 0,12 99,88
13 0,0000015 0,04 99,93
14 0,0000010 0,03 99,96
15 0,0000008 0,02 99,98

Table 5.4: Eigenvalue for the CPCA
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we had the 82% of variability explained for the classical Principal Component

Analysis and the 99% for the Constrained Principal Component Analysis.

With the PCA we reduced the redundant information in the data, and this

advantage can be utilized in the following Cluster Analysis too.

5.4 Cluster Sampling according PCA and CPCA

The application of the Cluster Analysis is then the first step to obtain the

strata from which we can extract the alternatives. Both for the PCA and for

the CPCA the Cluster Analysis was effected considering the Ward’s method.

The number of clusters we obtained was equal to 5 in the two cases and we

can see on the following figures, obtained with SPAD, how they are disposed

on the first two factors.

Figure 5.2: PCA clusters
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Figure 5.3: CPCA clusters

The differences are obviously in the composition of the clusters. As we

said in the previous chapter the sampling of alternatives from clusters is done

proportionally to the number of elements in every cluster. To verify if the

Cluster Sampling can show better results than the Simple Random Sampling

we decided to consider 5 different sample sizes for the number of alternatives:

10, 12, 15, 20, 40. Furthermore, for each sample size, the sampling procedure

was repeated 5 times using different random seeds to estimate the variance

due to the sampling of alternatives. In the tables 5.5 and 5.6 we indicate the

number of elements we have in every cluster and the corresponding number

we extract from them for every size. Therefore we obtained 5 sub-sets for

every size and for every technique. On each of them we estimated the same

model that we had estimated on the full choice set. We will do the same

also for the classical Simple Random Sampling and, in next section, we will

introduce some synthetic measures to compare the results obtained with the
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Cluster number
Number of elements in
every cluster

Elements drawn for every sample size

10 12 15 20 40
1 138 2 2 3 4 8
2 349 4 6 8 10 20
3 34 1 1 1 1 2
4 108 2 2 2 3 6
5 67 1 1 1 2 4

Table 5.5: Number of elements to be drawn for the Cluster Sampling based
on PCA

Cluster number
Number of elements in
every cluster

Elements drawn for every sample size

10 12 15 20 40
1 281 4 5 6 8 16
2 109 2 2 2 3 6
3 152 2 3 3 4 9
4 85 1 1 2 3 5
5 69 1 1 2 2 4

Table 5.6: Number of elements to be drawn for the Cluster Sampling based
on CPCA

different methodologies.

5.5 Simple Random Sampling and Compar-

isons of the Results

The Simple Random Sampling was carried out with another code in S-plus

and also in this case it was repeated 5 times to consider the variability in the

results due to the sampling. Once we obtained all the results, the problem

is about the comparison of them. For our purpose we followed a previous

work (Nerella & Bhat 2004). The measures we considered for the evaluation

of the differences between the techniques are the following:
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– Ability to recover model parameters;

– Ability to replicate the choice probability of the chosen alternative

for each observations;

– Ability to estimate the overall log-likelihood function accurately

For each of the criteria identified above, the evaluation of proximity was

based on three properties:

– Bias, or the difference between the mean of estimates for each

sample size of alternatives across the 5 runs and the true values;

– Simulation variance, or the variance in the relevant parameters

across the 5 runs for each sample size of alternatives;

– Total error, or the difference between the estimated and the true

values across all 5 runs for each sample size of alternatives.

Before computing all the mentioned performance measures we can have

some preliminary information from the data, simply considering the signifi-

cance of the parameters estimated on the different sub-sets. In figures 5.4,

5.5 and 5.6 we can see the differences in the three cases. The values we show

in this part of the dissertation are relative to the samples with 20 elements,

but we obtained similar results also with for other sizes.

In these tables we can already see that the probability to draw sub-sets

that give estimation of the parameter not close to the true values is higher

for the random sampling rather than for Cluster Sampling based on PCA or

on CPCA. In this particular case, two subsets of the five extracted give a low

value of the robust t-test. This is only what we see at beginning, but the

following tables will show other advantages of the proposed techniques. The

figure 5.7 shows the differences between the mean, across the 5 runs, of the

parameters and the values estimated on the full choice set.
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Figure 5.4: Parameters estimated with the random sampling (size=20)

Figure 5.5: Parameter estimation with the cluster sampling on PCA
(size=20)

We can see that with the Cluster and the ”Cluster CPCA” the sum of

the differences between the parameters is reduced, so we have in this way a

lower bias. As we said before, this happens also for the other sizes. If we

look at the figure 5.8 we see that also the variance is reduced for the two new

techniques.
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Figure 5.6: Parameter estimation with the cluster sampling on CPCA
(size=20)

Figure 5.7: Differences between mean of the parameters calculated on the
reduced choice sets and the true values (size=20)

Figure 5.8: Variance of parameters across the 5 runs (size=20)
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A third table 5.9 shows instead the differences between the true values

and all the estimated values. We don’t insert here all the differences but we

can see directly the sum of these differences and we can note how the CPCA

cluster shows once again a lowest value.

Figure 5.9: Total differences between true values and all the parameters com-
puted on the reduced choice-sets (size=20)

The computation of probability to be chosen for every alternative is an-

other measure relative to the quality of the sampling. In this case we consider

only one table in which we have the results for every sample and for all the

sizes.

Figure 5.10: Sum of the differences in absolute values between the probability
for the alternatives, calculated with the true values and the values estimated
on the reduced choice sets

We see also in the figure 5.10 that the situation is better for the CPCA

cluster technique both for the sum of the differences and for the variability.

Last criteria to be evaluated is relative to the log-likelihood function. In this
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case, we consider again what’s happen for the size equal to 20. In the figure

5.11 we have simultaneously the bias, the variance and the total error.

Figure 5.11: Evaluation of ability to estimate overall Log-Likelihood function
value (size=20)

Here it’s clear how the ”CPCA cluster” give a big improvement to the

estimation of the true log-likelihood function, and we can note how the vari-

ability across the 5 runs is very slow compared to the variability of the other

two techniques. Also in this case the results are similar for the other sample

sizes.

Sampling of alternatives can, as we said in past chapters, reduce computa-

tional time compared to using a full choice set, but the efficiency and the

empirical accuracy of the estimated parameters is not always guaranteed. In

this chapter we showed that the techniques we proposed (”CPCA cluster”

and ”PCA cluster” sampling) can improve the accuracy of sampling. Ob-

viously, as with any numerical exercise, the usual cautions for generalizing

the results apply also to this dissertation. There is certainly a need for more

computational and empirical research on the topic of sampling of alterna-

tives to draw more definitive conclusions. Anyway we think, looking at the

results we obtained for the different sizes we chose, that, when the full choice

set is to big to be used, the Cluster Sampling of Alternatives could be an

useful technique to obtain good estimation of the parameters. In the clas-

sical random sampling, in fact, we dont know what kind of alternatives we

select, so its possible that we could obtain all the alternatives with similar

characteristics and so there could be some problems in the estimation. With

the Cluster Sampling instead we obtain a choice set which reflects better the
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full one.

As we said previously, the CPCA can be very useful also for the aggregation

of the alternatives, and in next section we will show some results we obtained,

also if the research about this topic must be study in more depth.

5.6 Aggregation of alternatives

The second kind analysis we show in this dissertation, once again based on

CPCA with spatial constraint, is the Aggregation of the Alternatives. As

we saw in the previous chapter, generally the aggregation of alternatives is

done only according to geographical attributes. Sometimes instead the ag-

gregation is conducted according to some particular variables observed on

the elemental choices. In our proposal we join the two approaches. In this

case the difference with the Cluster Sampling is that we don’t stop the aggre-

gation according to the classical criteria, but we decided, starting from 696

alternatives to obtain 35 aggregate alternatives. Our choice is justified con-

sidering the proportion for aggregation used in previous works (Hammadou

et al. 2004) and, furthermore the number was adapted to the number of

aggregate alternatives we could obtain carrying out the aggregation only ac-

cording to geographic coordinates. This was necessary because in this way

we could do a comparison between the two procedure utilized. In the appli-

cation of these techniques an usual problem is the definition of the variables

for the aggregate alternatives. In fact for some variables there are not prob-

lem mainly for spatial aggregation, because they are variables defined to a

zonal level and so the values of elemental alternatives are the same also for

aggregate alternatives. For other variables the solution we adopted was to

consider, as done in other papers, the mean of the values observed on the

elemental alternatives that constitute the aggregate one. Obviously this so-

lution will cause some problems; another problem arised when we carried

out the estimation. In fact we couldn’t introduce in the utility function the
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corrections we saw in the formula 3.27 relative to the heterogeneity of the

elemental choices and to the number of disaggregate alternatives in the ag-

gregate one. Anyway we introduce here the results we obtained applying

the two techniques. In the tables 5.12 and 5.13 we can see the differences

between the two procedures.

Figure 5.12: Parameter estimation after spatial aggregation

Figure 5.13: Parameter estimation after ”CPCA aggregation”

In the two cases we see that there are three parameters not significant.

The childdensity (measuring the density of children) and the popyoung (mea-

suring the density of young people) have low values of the robust t-test in the
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two cases, while the third parameter not significant is the rentratio (ratio

between rent and income) for the spatial aggregation and the timetoplatz

(time to go in the centre of the city) for the ”CPCA aggregation”. For other

parameters the differences with the values calculated on the full choice set

are minimal in both the cases. Anyway these results will be object of further

studies to improve the quality of aggregation.





Appendix

S-PLUS CPCA code

cpca < − function(mat1, mat2, mat3)

{
print(”Data matrix”)

print(mat1)

print(”Spatial coordinates”)

print(mat2)

print(”Weights matrix”)

print(mat3)

prossimityoperator

n < − nrow(mat1)

contiguitymatrix < − matrix(0, n, n)

for(i in 1:n) {
for(j in 1:n)

if(mat2[i] == mat2[j])

contiguitymatrix[i, j] = 1 }
diag(contiguitymatrix) < − 0

pmatrix < − contiguitymatrix %*% mat3

columnmarginal < − apply(pmatrix, 1, sum)

fmatrix < − diag(columnmarginal, nrow = nrow(mat1))

prossimityoperator < −fmatrix - pmatrix

#standardization
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meanmat < − matrix(rep(apply(mat1, 2, mean), n), nrow = n, byrow = T)

variancemat < − matrix(rep(apply(mat1, 2, var), n), nrow = n, byrow =

T)/(n) * (n - 1)

standardizedmat < − (mat1 - meanmat)/(sqrt(n) * sqrt(variancemat))

#diagonalization

mat5 < − standardizedmat %*% solve(t(standardizedmat) %*% mat3 %*%

standardizedmat) %*% t(standardizedmat) %*% mat3 %*% prossimityoper-

ator %*% mat3 %*% standardizedmat %*% solve(t(standardizedmat) %*%

mat3 %*% standardizedmat) %*% t(standardizedmat)

components < −eigen(mat5)

eigenvalues < − as.numeric(components$values)

eigenvectors < − matrix(as.numeric(components$vectors), nrow = n, byrow

= F)

coordinates < − eigenvectors[, 1:56]

return(eigenvalues, coordinates)

}

S-PLUS code to build the reduced subset

subset function(mat1, mat2, mat3, mat4, mat5, x, y, z)

{
n1 < − round(ncol(mat1)/696 * z)

n2 < − round(ncol(mat2)/696 * z)

n3 < − round(ncol(mat3)/696 * z)

n4 < −round(ncol(mat4)/696 * z)

n5 < − round(ncol(mat5)/696 * z)

id < − matrix(1:696, 696, 1)

choice < −matrix(1, 696, 1)

first < − matrix(0, 696, n1)

second < − matrix(0, 696, n2)

third < −matrix(0, 696, n3)

fourth < − matrix(0, 696, n4)
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fifth < − matrix(0, 696, n5)

for(i in 1:696) {
first[i, ] < − sample(mat1[i, ], n1)

second[i, ] < − sample(mat2[i, ], n2)

third[i, ] < − sample(mat3[i, ], n3)

fourth[i, ] < − sample(mat4[i, ], n4)

fifth[i, ] < − sample(mat5[i, ], n5)

final < − cbind(first, second, third, fourth, fifth)

ordin < − final

for(i in 1:nrow(x))

for(j in 1:ncol(x)) {
if(x[i, j] == i)

ordin[i, 1] < − i

ordin[i, j] < − x[i, j]

}
for(i in 1:nrow(ordin))

for(j in 1:ncol(ordin)) {
if(ordin[i, j] == ordin[i, 1])

ordin[i, j] < − x[i, 1]

ordin[i, 1] < − ordin[i, 1]

}
nelm < − dim(y)[1] * dim(y)[2]

ngrp < − 11

nelmgrp < − 696

newmat1 < − ordin

elem < − nelmgrp

for(i in 2:ngrp) {
newmat1 < − cbind(newmat1, elem +ordin)

elem < − elem + nelmgrp

}
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newmat2 < − t(as.matrix(newmat1[1, ]))

elemelem < − nelmgrp * ngrp

for(i in 2:dim(ordin)[1]) {
newmat2 < − rbind(newmat2, (elemelem + newmat1[i, ]))

elem < − elem + (nelmgrp * ngrp)

}
endmat < − matrix(c(t(y))[c(t(newmat2))], nrow = dim(y)[1], byrow = T)

finalsubset < − cbind(id,choice,endmat)

return(finalsubset)

}
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Morikawa, T., Polydoroulou, A. & Rao, V. (1999), ‘Extended

framework for modeling choice behavior’, Marketing letters

10(3), 187–203.

Ben-Akiva, M. & Lerman, S. (1985), Discrete Choice Analysis: Theory

and Application to Travel Demand, The MIT Press, Cambridge,

Ma.

Ben-Akiva, M. & Morikawa, T. (1990), ‘Estimation of travel deman

models from multiple data sources’, Transportation and Traffic

Theory pp. 461–476.

Bentler, P. M. (1980), ‘Multivariate analysis with latent variables’, An-

nual Review of Psychology 31, 419–456.

Bhat, C. (1998), ‘Accomodating variations in responsiveness to level

of service variables in travel mode choice models’, Transporttation

Research A 32, 495–507.

Bhat, C. & Guo, J. (2004), ‘Mixed spatially correlated logit model: For-

mulation and application to residential choice modelling’, Trans-

portation Research B 38(2), 147–168.

Bierlaire, M. (2003), Biogeme: a free package for the estimation of dis-

crete choice models, in ‘3rd Swiss transport Research Conference’,

Monte Verità, Ascona.
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