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INTRODUCTION 
 
Colorectal cancer is the third most common cancer in the world, and the second most 

common cause of cancer related death. A large body of evidence from epidemiological 

studies and clinical trials in patients with the hereditary colon cancer syndrome, familial 

adenomatosus polyposis coli (FAP), indicates that aspirin and related drugs, known as 

nonsteroideal antiinflammatory drugs (NSAIDs), share the property of inhibiting the 

ciclooxygenase (COX) enzyme, hinder the development of colon cancer and perhaps other 

cancer as well. COX is the rate limiting enzyme for the synthesis of eicosanoids, such as 

prostaglandins, from arachidonic acid. Two Cox isoforms have been identified: COX-1 

constituvely expressed and COX-2, inducible form. COX-1 gene is an housekeeping gene and 

has an important role in protecting the gastroduodenal mucosa. COX-2 gene, an immediate 

early response gene, is rapidly induced in response to tumour promotes, cytokines, and 

growth factors (Du Bois et al. 1994, Di Popolo et al. 2000). COX-2, but not COX-1 

expression was found to be increased in colorectal cancer (Eberhart et al. 1994). Numerous 

studies have shown that the chemopreventive effect of NSAIDs on colon cancer is mediated 

through inhibition of cell growth and induction of apoptosis. For these effects NSAIDs have 

been empolyed as sensiting agents in chemotherapy. 

Aspirin, a widely used non-steroidal anti-inflammatory drug is a non-selective inhibitor of 

cyclo-oxigenase-1 (COX-1) and cyclo-oxygenase-2 (COX-2) ( Taketo.1998). High doses of 

salicylates (4 to 10 g per day), including sodium salicylate and aspirin, have been used to treat 

inflammatory conditions such as rheumatic fever and rheumatoid arthritis. There are several 

actions displayed by high doses of aspirin independent from its ability to inhibit 

cyclooxygenases. These includes: i)inhibition of the activation of nuclear factor-kappaB (NF-

kB) by prevention the phosphorylation and degradation of the inhibitory subunit Ik�( Yin et 

al. 1998) ; ii) modulation of gene transcription (XU et al. 1999); iii) modulation of several 
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protein kinases and other molecular signaling pathways as well (Pillinger et al. 1998, Dong et 

al. 1997). Several effects have been demostrated in vitro: aspirin treatment inhibits cell 

growth (Ricchi et al. 1997, Redondo et al. 2003) and protects against a variety of toxic stimuli 

such as H2O2, free radicals, hypoxia and chemical toxic (Grilli et al.1996, Mattie et al. 2001). 
In a previous work we have shown that aspirin treatment may affect the proliferation, 

differentiation and apoptosis of the human colon adenocarcinoma Caco-2 cells; in particular, 

we observed that, depending on the doses, aspirin treatment may induce apoptosis and a 

significant DNA synthesis inhibition associated with a modification in the level of the insulin-

like growth factor II (IGF-II) (Ricchi et al, 1997), an autocrine growth factor for this cell line 

(Zarrilli et al, 1994; Zarrilli et al 1996).In addition, we have demonstrated that NS-398, a 

Cox-2 selective inhibitor, also affects Caco-2 DNA synthesis and apoptosis (Di Popolo et al, 

2000). 

Previously we have shown ( Di Popolo et al.; 2000) that COX2 expression and PGE2 

synthesis are up-regulated by an IGFII/IGFI receptor autocrine pathway in CaCo2 colon 

carcinoma cells. Up-regulation of COX2 expression by IGFII is mediated through activation 

of IGFI receptor. The blocked of the PI3kinase, that mediates the proliferative effect of IGFI 

receptor in CaCo2 cells, inhibits IGFII dependent COX2 upregulation and PGE2 synthesis. 

Then, the induction of proliferation and tumor progression of colon cancer cells by the 

IGFII/IGFII receptor pathway may depend on the activation of COX2 related events.We 

analyzed,also, if the inhibition of proliferation and apoptosis by NS398 and by aspirin was 

prostaglandins dependent In these experimental conditions aspirin is able to inhibit cell 

proliferation, to decrease the levels of IGFII, but these effects are not mediated by Cox2 

inhibition, on the contrary the inhibition by NS398 was reverted by exogenous addition of 

PGE2. 

Furthermore, several of the observed effects of NSAIDs in vitro are cell specific and not 

dependent from the inhibition of prostaglandin biosynthesis and probably not relevant for 

prevention in clinical trials (Aas et al. 1995). In fact, a series of studies have evaluated “in 

vitro” the possibility to increase anticancer drugs-induced toxicity and apoptosis through the 

use of older NSAIDs and new coxibs (Sairam et al. 2003 Mattie et al. 2001).
 
But the role of 

NSAIDs as anticancer agent alone and in combination with conventional chemotherapeutic is 

becoming promising also (in vivo) in murine and rat model of cancer (Hundal et al. 2002, 

Vartiainen et al. 2003). In particular, several studies have been focusing on the increase in 

activity and in the changing of toxicity profile by combining a conventional anticancer agent 

with COX-2 inhibitors (Ricchi et al. 2002, Srivastava et al. 1986). Thus during these four 

years of my Phd program the first aim of project has been focused to demostrate: 

 

1)the effect of aspirin on cell cycle and apoptosis alone and in combination with 
conventional anticancer drugs schedules. 
 
2)the molecular  mechanisms  responsible  for the effect of aspirin on cell cycle and 
survival 
 
3)the occurrence of this molecular mechanism and this effect of aspirin also in vivo 
system. 
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RESULTS 
 
The effect of aspirin on cell cycle and apoptosis alone and in combination with 
conventional anticancer drugs schedules 
 
. 

We have previously shown that Caco-2 cells synthesize and secrete IGF-II during their 

replicative phase when this peptide stimulates cell growth by an autocrine loop (Zarrilli et al., 

1994). When cells reach confluence and stop growing, the expression of IGF-II is strongly 

reduced and Caco-2 cells start to differentiate (Pignata et al., 1994; Zarrilli et al., 1994). 

Constitutive IGF-II expression obtained through transfection of Caco-2 cells with rat IGF-II 

cDNA under the control of a viral promoter persistently stimulates cell growth and interferes 

with the enterocyte-like differentiation of this cell line (Zarrilli et al., 1996). To clarifyfurther 

the mechanisms involved in the inhibition of Caco-2 cell replication induced by aspirin, we 

investigated the modifications in IGF-II mRNA expression following drug treatment and 

found that the effect of aspirin on cell growth was associated with a dose-dependent inhibition 

of IGF-II. This finding suggests that a decrease in IGF-II synthesis might be involved in 

aspirin-induce inhibition of cell growth, even though the parallel decrease in IGF-II mRNA 

expression and cell proliferation does not establish cause and effect. Accumulating evidence 

suggest that interference with cell cycle and/or with the intracellular growth factor (receptor)-

activate signal transduction pathways are key modulators of cellular response to 

chemotherapeutic agents (Donaldson et al, 1994; Ciardiello et al, 1996; Tortora et al, 1997; 

Chen et al, 1997; De Luca et al, 1997; Lin et al, 1998). Because aspirin and NS-398 are able 

to inhibit cell growth, I asked whether they might modify sensitivity to anticancer drugs. 

Because cell killing induced by the topoisomerase poisons irinotecan (CPT 11) and etoposide 

(VP-16) is strictly cell cycle dependent (Nitiss and Beck, 1996; Goldwasser et al, 1995) and 

ultimately activates a pathway of programmed cell death, I decided to use these anticancer 

drugs to evaluate this hypothesis. Irinotecan (CPT 11) was selected also because it is one of 

the most active anticancer agent in colon cancer (Rougier et al, 1998). 
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Our previous data indicated that a 24 h aspirin treatment on Caco-2 cells at doses ranging 

from 1 to 10 mM determined a dose-dependent inhibition of DNA synthesis and a significant 

increase in levels of apoptosis (Ricchi et al, 1997). In the present work, I confirmed these 

results on cell growth for a 72 h treatment (data not shown) and evaluated again the effects on 

apoptosis by analysing the percentage of sub-G1 population at flow cytometry. Treatment 

with aspirin for 72 h, caused a dose-dependent increase in apoptosis starting from the 

concentration of 5 mM aspirin; the percentage of apoptotic cells was approximately 6% in 

control cells and 5, 9 and 12% in cells treated with aspirin at 2, 5 and 10 mM, respectively 

(data not shown).The above data suggest that aspirin acts in Caco-2 cells as anticancer agent 

with cytostatic properties and ability to induce apoptosis at high dosages. Therefore I decided 

to select these antiproliferative, apoptotic dosages of drugs to study whether they could 

modify Caco-2 sensitivity to anticancer drug treatments. To determine the effect of anticancer 

drugs on apoptosis, Caco-2 cells were exposed for 48 h at different concentrations of VP-16 

and CPT 11 and DNA ploidy was analysed by flow cytometry. The effects on apoptosis in 

Caco-2 cells are shown in Figure 1. Both Vp-16 and CPT 11 dose-dependently increased the 

levels of apoptosis in Caco-2 cells: Vp-16 increased apoptosis from 8% at 4.25 mM to 20% at 

34 mM (Figure 1A) and CPT 11 increased apoptosis from 9% at 5 mM to 16% at 15 mM 

(Figure 1B).  

 
 

 

 

 
These data suggest that apoptosis may have a role in drug-induced Caco-2 cells cytotoxicity 

especially at high concentrations of the drugs. To evaluate whether aspirin may affect cell 
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killing by topoisomerase drugs, I tested a schedule of administration in which the effects of 

aspirin treatment on Caco-2 cell growth were present at moment of anticancer-drug exposure: 

cells were pre-treated with aspirin for 24 h and subsequently exposed for 48 h to the afore 

mentioned ranges of drugs in the continuous presence of NSAIDs (co-treatment). I evaluated 

the interference of 2 mM aspirin with anticancer drug induced apoptosis through the analysis 

of the sub-diploid DNA peak at flow cytometry. As shown in Figure 1, the levels of apoptosis 

were reduced for each concentration of both anticancer drugs when administered in the 

presence of aspirin compared with single agent treatment. Aspirin-co-treated Caco-2 cells 

were particularly resistant to etoposide-induced apoptosis: in fact the percentage of apoptosis 

in cells co-treated with aspirin and Vp-16 at 8.5 and 17 mM decreased from 14 to 7% and 

from 21 to 9%, respectively. The effect of aspirin on drug induced apoptosis was similar 

when aspirin and anticancer drugs were simultaneously administered (data not shown). These 

results indicate that aspirin-dependent inhibition of proliferation is associated with a reduced 

ability of the drug to  induce apoptosis. To quantify the effects of aspirin co-treatment on Vp-

16- induced apoptosis and to determine whether this effect was present at concentration in 

which aspirin was already apoptotic by itself, I used annexin V-FITC/propidium iodide 

staining assay. In fact this assay allows to clearly distinguish viable cells from those 

undergoing different stages of apoptosis or necrosis. The effect of aspirin at 2 and 5 mM 

concentration on Vp-16-induced toxicity in Caco-2 cells is analysed in Figure 2. 
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Dot plots of green (Annexin V-FITC) vs red (PI) fluorescence showed four separate clusters: 

viable cell (lower left quadrant), cells at early stage of apoptosis, (upper left quadrant), cell at 

late stage of apoptosis (upper right quadrant), necrotic cells (lower right quadrant). Because of 

the high sensitiveness of this procedure, we detected higher levels of apoptosis as compared 

to that obtained at the analysis of subdiploid peak. Vp-16 at 17 mM increased the percentage 

of early and late apoptotic cells from 13 to 48% and decreased the percentage of viable cell 

from 75 to 49% (Figure 2A,D). Aspirin cotreatment at 2 and 5 mM dose-dependently 

decreased the percentage of early and apoptotic cells from 48 to 36 and 18%, respectively, 

(Figure 2D vs E,F) and increased the percentage of viable cells from 49 to 59 and 70% 

(Figure 2D vs E,F); similar data were obtained for Vp-16 at 8.5 mM (data not shown) and 

CPT 11at 10 mM (Figure 3). Not significant change in the levels of necrosis was observed. 

 

 

 

 
 

I also evaluated whether the effects of aspirin co-treatment on anticancer drug responsiveness 

were unique of Caco-2 cells or were obtainable in other colon cancer cells showing different 

Cox 

isoform expression profile. I selected the colon cancer cell line SW480 being Cox-1 positive, 

but Cox-2 negative (Smith et al, 2000). SW480 cells were co-treated with aspirin and 

topoisomerase 

inhibitors under the above mentioned experimental conditions.Aspirin co-treatment at 2 and 5 

mM decreased both CPT 11- and VP-16-induced apoptosis. The effect was dose-dependent 

and 

in the same range of magnitude of that obtained in Caco-2 cells (data not shown). 

Data from our laboratory indicated that Caco-2 cells express Cox-2 but not Cox-1 and NS-

398, a COX-2 selective inhibitor, inhibited DNA synthesis and induced apoptosis in Caco-2 

cells (Di Popolo et al, 2000). To evaluate whether the effects of aspirin co-treatment on Caco-

2 cells were dependent on the inhibition of Cox-2 activity, I analysed the effect of NS-398 co-

treatment on anticancer drug induced apoptosis. I firstly evaluated the effect on apoptosis of 

NS-398 72 h treatment at different concentration using annexin V-FITC/propidium iodide 

staining assay. As shown in Figure 4, 10 and 50 mM NS-398 treatment induced higher level 

of apoptosis compared with 2 and 5 mM aspirin treatments in Caco-2 cells (22 and 25% 

compared with 12 and 20%, respectively). 
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Then I evaluated the effect of NS-398 co-treatment on Vp-16- and CPT 11-induced toxicity. 

The percentage of cells in early plus late apoptosis vs viable cells induced by co-treatments 

with aspirin or NS-398 and Vp-16 or CPT 11 are given in Figure 3. 

Aspirin at 2 and 5 mM dose-dependently decreased both Vp16- and CPT 11-induced 

apoptosis and increased cell viability. NS 398 at 10 mM increased both 17 mM Vp-16- and 10 

mM CPT 11-induced apoptosis (P50.05 and P40.05, respectively), while NS 398 at 50 mM 

decreased 17 mM Vp-16- and 10 mM CPT 11-dependent apoptosis (P40.05 and P50.05, 

respectively). NS 398 at 10 mM did not significantly alter the percentage of viable cells 

following treatment with Vp-16- or CPT 11 co-treated cells, while NS 398 at 50 mM 

increased cell viability of Vp-16-treated cells from 40 to 52% (P50.05). No effects were 

obtained on anticancer drug induced-apoptosis with NS 398 at 1 mM (data not shown). I 

examined whether aspirin and NS-398 treatments had any distinct effect on cell cycle 

parameter under the same experimental conditions. The distribution of cells in the phases of 

the cell cycle is presented in Table 1. 

 

 
 

 Aspirin treatment was associated with a modest dose-dependent increase in the proportion of 

cells in the S phase, while NS-398 did not significantly alter cell cycle parameters with 

respect to control cells. I also asked whether the different effect of aspirin and NS-398 on 

survival could be determined by a selective interference with anticancer drug-induced cell 
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cycle arrest. In fact, Vp-16 arrests cells in the pre-mitotic phase of the cell cycle leading to 

accumulation of the cells in the late S or G2 phase (Fearnhead et al, 1994; Downes et al, 

1994); while CPT 11 causes S phase slowing (Shao et al, 1997; McDonald and Brown, 1998). 

Effect of Vp-16 and CPT 11 treated, Vp-16 and CPT 11 plus aspirin or plus NS-398 co-

treated cells under previously described experimental conditions are shown in Table 2.  

 

 
 

I found that Vp-16, from lowest concentration of drug tested, increased the distribution of 

Caco-2 cells at the G2 phase of the cell cycle. In particular, VP-16 at 8.5 mM and 17 mM 

treatments were able to trap 85 and 91% of Caco-2 cells in the G2 phase of cell cycle, 

respectively. Whereas CPT 11 at 10 and 15 mM treatments accumulated 70 and 85% of Caco-

2 cells in the S phase of cell cycle, respectively (Table 2 and data not shown). Aspirin and 

NS-398 co-treatment  

had different effect on anticancer drug induced cell cycle distribution: in cells that have been 

co-treated with Vp-16 at 17 mM, aspirin dose-dependently increased the percentage of Caco-

2 cells at G0 –G1 phase of cell cycle. NS-398 at 10 mM had no effect on Vp-16-induced 

accumulation at the G2 phase of cell cycle, while at 50 mM increased the percentage of cells 

at G0 –G1 phase from 9 to 15%. In cells that have been co-treated with aspirin and CPT 11 at 

10 mM there was an increase in the percentage of cells at G0 –G1 phase similar to that 

observed in Vp-16 co-treated cells. NS-398 only at 50 mM concentration increased the 

percentage of cells at G0 –G1 phase from 22 to 32% (Table 2). 

Several reports indicate that cancer cells after a genotoxic treatment can take hours to many 

days before dying (Vidair et al, 1996; Han et al, 1997). To better evaluate the cytoprotective 

effect of aspirin, also with respect to potential delayed toxicity of Vp-16, we measured overall 

cell viability by performing a plating efficiency assay following 8.5 mM and 17 mM 

etoposide treatments and cotreatments with either 2 or 5 mM aspirin (Figure 5A,B). All 

replated control Caco-2 cells started to divide after a lag period of 48h (Figure 5A); they 

entered into the exponential phase of cell growth at day 4, and reached the stationary phase at 

day 14 (data not shown). Etoposide treatments at both concentrations produced an 

approximately 0.7-fold decrease of the cell number at day 4 after replating; the fraction of 

surviving cells entered into the logarithmic phase of cell growth only at day 8. On the 

contrary, aspirin co-treated cells more efficiently replated and started the exponential phase of 

cell growth at day 6, 5 mM aspirin co-treated cells showing the best profile of cell growth. 

Thus, aspirin co-treated cells appeared to be more viable and less sensitive to anticancer 

delayed toxicity. Etoposide at 34 mM was such a toxic treatment that cell restarted to divide 

only at day 11; nevertheless, cells cotreated with aspirin and etoposide also at this 

concentration, continued to show an advantage in cell growth (data not shown). 
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The molecular  mechanisms  responsible  for the effect of aspirin on cell cycle and 
survival 
 

From previous studies I demonstrated that aspirin treatment at millimolar concentration 

significantly prevented apoptosis and G2/M phase of cell cycle accumulation induced by the 

topoisomerase inhibitors etoposide and irinotecan (Ricchi et al., 2002). These effects were 

observed both in Caco-2 cells and in SW 480 cells independently from their COX’s profile of 

expression, thus suggesting that aspirin acted through a COX-independent mechanism (Ricchi 

et al., 2002).In the second year of my PHD program I try to investigate  the molecular 

mechanisms Cox2 indipendent responsible for the effect of aspirin on cell cycle and 

survival.To valuate the molecular pathway by aspirin induced , I analyzed the citoprotection 

of aspirin on apoptosis by serum deprivation. The effect on apoptosis was first evaluated by 

analyzing the percentage of sub-G1 population at flow cytometry. Spontaneous apoptosis of 

Caco-2 cells at day 4 of culture in complete culture medium was in the average 6% (data not 

shown); the percentage of apoptotic cells was approximately 8, 20, and 30 after serum 

deprivation for 48, 96, and 168 h, respectively (Fig. 5).  

 
 

 

The effect of 2 and 5 mM aspirin treatment on serum withdrawal induced apoptosis was first 

evaluated through the analysis of the subdiploid DNA peak at flow cytometry. Aspirin 

inhibited apoptosis in a statistically significant manner ( p   0.05) at all time points tested 

compared with untreated cells (Fig.5A). Aspirin (2 mM) treatment caused a 60% reduction in 
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apoptosis compared with untreated cells with the maximal effect at 96 h of serum deprivation. 

The percentage of apoptosis increased up to 11% after treatment with 5 mM aspirin but was 

unmodified during the starvation time. Similar results were obtained when the percentage of 

apoptotic cells was evaluated by annexin staining (Fig. 5B); however, because of the high 

sensitiveness of this procedure, higher levels of apoptosis were observed in untreated cells 

compared with those obtained at the analysis of subdiploid peak (Fig.5A).We also analyzed in 

the same experimental conditions the distribution of cells in the phases of the cell cycle. We 

did not find any relevant modification in cell cycle distribution between starved Caco-2 cells 

and cells cultured in complete medium in the presence or absence of aspirin for 48 h (data not 

shown). On the contrary, prolonged serum deprivation caused a time-dependent decrease in 

the proportion of cells in the G1 phase of cell cycle and increase in the proportion of cells in 

the G2/M phase of cell cycle (Fig.6). 

 

 
 

 

 Aspirin (5 mM) treatment and to a lesser extent 2 mM aspirin treatment counteracted the G1 

decrease and G2/M increase in cell cycle distribution induced by prolonged serum starvation 

leading to a profile of cell cycle similar to that of cells cultured in serum for 168 h (Fig. 6, 

data point “in serum” versus 96- and 168-h serum withdrawal). Data from our laboratory 

indicated that Caco-2 cells expressed COX-2 but not COX-1 (Di Popolo et al., 2000). To 

evaluate whether the effects of aspirin treatment on Caco-2 cells cycle and survival were 

dependent on the inhibition of COX-2 activity, I analyzed the effect of NS-398 treatment, a 

COX-2-selective inhibitor, on survival during serum deprivation. To address this issue, cells 

were starved in the presence of 10  m NS-398, a concentration that completely inhibits the 

biosynthesis of prostaglandin E2 in Caco-2 cells. NS-398 treatment at this concentration did 

not cause any significant modifications on apoptosis and cell cycle parameters with respect to 

starved cells (data not shown). These results, therefore, suggested that aspirin interfered with 

apoptosis and cell cycle modification induced by serum withdrawal in Caco-2 cells in a COX-

independent manner. We have previously shown that an autocrine IGF-II/IGF-Ir pathway 

sustains cells proliferation and survival of Caco-2 colon cancer cells (Zarrilli et al., 1994, 

1996). In particular, we and others have demonstrated that the PI3-kinase pathway 

preferentially, with respect to the MAP kinase pathway, delivered  an antiapoptotic and 

proliferative signal in Caco-2 cells (Di Popolo et al., 2000; Gauthier et al., 2001). Thus, it was 

of interest to evaluate whether aspirin treatment had any effect on MAP kinase and PI3-kinase 

pathways during Caco-2 serum deprivation. 

To address these questions, I focused on the activation status of ERK1 and ERK2, two major 

components of the MAP kinases cascade, and of the AKT protein that is a downstream 

effector of the PI3-kinase. Lysates from cells serum deprived for 96 h in the presence or 

absence of 2 and 5 mM aspirin were probed for phosphorylated AKT at Ser 473 and 

phosporylated ERK1/2 kinases. To evaluate the PI3-kinase/ AKT-dependent pathway in 

serum cultured cells and to compare the effects of aspirin in both culture conditions, lysates of 
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cells cultured in complete medium and treated for 96 h with 2 and 5 mM aspirin were also 

collected. The bands were quantified and normalized to total AKT and ERK2 protein kinases, 

respectively. As shown in Fig.7, aspirin treatment dose dependently induced activation of 

AKT protein and ERK1/2 protein with respect to untreated cells. 

 
 The relative densitometric analysis showed 1.5- and 2.7-fold increase for AKT protein phos- 
phorylation status after aspirin treatment at 2 and 5 mM, respectively (Fig. 7A) and 2.7-fold 

increase for ERK1/2 protein phosphorylation status after aspirin treatment at 5 mM in serum-

deprived cells (Fig. 7B). On the other hand, serum deprivation slightly reduced the activation 

status of Akt with respect to serum-cultured cells (Fig. 7A), but aspirin treatment, although to 

a lesser extent than in serum withdrawal, still induced phosphorylation of Akt (Fig. 7A). 

To directly demonstrate the activation of PI3-kinase by aspirin treatment in serum-starved 

cells, we analyzed the PI3-kinase activity in the pTyr immunoprecipitate from 96-h serum-

deprived Caco-2 cells in the absence (control) or presence of 2 and 5 mM aspirin. As shown 

in Fig. 8aspirin treatment dose dependently increased the levels of three phosphate 

phosphatidylinositols. 
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Because the molecular effects of aspirin have been observed after prolonged exposure to drug, 

we asked whether these effects could be related to a direct activation of PI3- kinase by 

aspirin. To address this issue, we evaluated the effect on AKT and ERK phosphorylation 

status after aspirin acute stimulation. After 24 h of serum deprivation, Caco-2 cells were 
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treated with aspirin at 5 mM and cell lysates were collected after 5, 10, 15, and 30 min of drug 

addition. As shown in Fig.9, 5 mM aspirin treatment transiently inducedactivation of AKT 

and ERK1/2 proteins with respect to serum- deprived cells after 10 min of exposure. 

 

 
To further evaluate the relative involvement of ERK1/2 and PI3-kinase pathways in Caco-2 

cells survival, we analyzed also the effects, during serum deprivation, of PD98059 or 

LY294002 inhibitor treatments alone and in combination with 2 and 5 mM aspirin (Fig. 10, A 

and B; Table 1).  
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Treatment with the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 alone 

did not cause any relevant change in activation status of AKT protein, slightly decreased 

ERK1/2 phosphorylation, but reduced apoptosis with respect to control cells (Fig. 10 Table 

1). The aspirin induced activation of AKT persisted in the presence of PD98059 (Fig. 10 A) 

but  PD98059 did not counteract 5 mM aspirin-induced activation of ERK1/2 kinases (Fig. 10 

B), thus suggesting that ERK1/2 kinases were activated by aspirin independently from MAP 

kinases. On the contrary, the PI3- kinase inhibitor LY294002 alone reduced basal activation 

of AKT (Fig. 10A) and further increased apoptosis from 19 to 35% with respect to control 

cells (Table 3). Furthermore, LY294002 in cotreatment with aspirin completely reduced AKT 

activation (Fig. 10 A) and partially reduced ERK1/2 activation induced by aspirin (Fig. 10 B), 

whereas increased apoptosis levels up to 40 and 45% in the presence of aspirin at 2 and 5 

mM, respectively (Table 3). These data suggest that in Caco-2 cells ERK1/2 kinase pathway 

could be, at least in part, under PI3-kinase pathway control. Similar data were obtained in 

aspirin-treated cells for 168h (data not shown). Because treatments with aspirin, through the 

activation of AKT protein via PI3-kinase pathway stimulation, and with PD98059, by 

decreasing MAP kinase activity, both reduce apoptosis, the above-mentioned findings support 

the hypothesis that PI3-kinase inhibition and MAP kinase activation are involved in apoptotic 
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response to serum deprivation in Caco-2 cells. I have previously shown that in Caco-2 cells 

cotreated with aspirin and topoisomerase inhibitors, apoptosis and overall toxicity induced by 

topoisomerase inhibitors were reduced (Ricchi et al., 2002). To further correlate this 

cytoprotective effect of aspirin with the activation status of AKT, I assayed AKT activation 

status after 17  M Vp-16 and 5 mM aspirin cotreatment, an experimental condition where 

maximal effect on overall viability have been observed (Ricchi et al., 2002). As shown in Fig. 

11, phosphorylation status o  AKT protein was 2-fold increased both in cells treated with 5 

mM aspirin and cells cotreated with aspirin at 5 mM and Vp-16, compared with untreated 

cells, whereas phosphorylation status of AKT protein was unmodified after Vp-16 treatment 

compared with untreated cells. 
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Finally, in the search for substrates of Akt that could be relevant to the survival-promoting 

effects of Akt in Caco-2 cells, I also evaluated the effects of aspirin treatment on 

phosphorylation of (Ser 136) Bad in the same experimental system. No effects were detected 

on phosphorylation status of Bad at Ser 136 both after acute (5–30 min) and 96-h aspirin 

treatments (data not shown). On the contrary, according to our previous data (Ricchi et al., 

2002), I found that aspirin long-term treatment caused a dose-dependent increase in the bcl-2 

levels (data not shown). Together, these results strongly suggest that the aspirin cytoprotective 

effect resides in the ability to activate AKT protein and to deliver antiapoptotic signals in the 

presence of different apoptotic stimuli. As reported previously, treatment with aspirin dose 

dependently inhibited growth (Ricchi et al., 1997). Furthermore, aspirin (2–5 mM) did not 

significantly affect Caco-2 cells viability and counteracted G2/M phase transition induced by 

topoisomerase inhibitors (Ricchi et al., 2002). My data mentioned above on cell cycle further 

reinforced the idea that aspirin treatment could also regulate some of the proteins involved in 

control of cell cycle checkpoints. Furthermore, it was previously shown that p21Cip/WAF1, 

but not p27 levels, were elevated in terminal differentiated and nondividing Caco-2 cells 

(Evers et al., 1996; Gartel et al., 1996) and were almost undetectable in Caco-2 proliferating 

cells (Zarrilli et al., 1999). I therefore evaluated the effect of aspirin treatment on 

p21Cip/WAF1 expression. Because it has been reported that induction of p21Cip/WAF1 could 

be a downstream event of the activation of the AKT/PKB and ERK1/2 kinase pathways 

(Olson et al., 1998; Lawlor and Rotwein, 2000a,b), I also studied whether PD98059 or 

LY294002 treatment, alone or in combination with 2 and 5 mM aspirin for 96 h could modify 

p21Cip/WAF1 expression in Caco-2 serum-starved cells. 

 
 As shown in Fig.12, p21Cip/WAF1 levels increased by approximately 2-fold and 4-fold in 

cells treated with aspirin at 2 and 5 mM, compared with untreated cells. PD98059 alone, or in 

combination with 2 and 5 mM aspirin, increased p21Cip/WAF1 levels by 2.7-, 5-, and 4.4-
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fold, respectively, compared with untreated cells. On the contrary, LY294002 alone did not 

affect basal level of p21Cip/WAF1, whereas in combination with aspirin completely 

suppressed the increase of p21Cip/WAF1 expression induced by aspirin. The above-

mentioned data therefore demonstrated that the induction of p21Cip/WAF1 in Caco-2 serum-

starved cells was a downstream event of the activation of the PI3-kinase survival pathway. 

Then, I examined whether these treatments had any impact on cell cycle parameters under the 

same experimental conditions. Table 4 shows the effect of PD98059 and LY294002, alone or 

in combination with aspirin, on cell cycle distribution of Caco-2 cells. PD98059 alone and in 

the presence of aspirin increased the percentage of cells in G1 and S phases and almost 

suppressed the percentage of cells in G2/M phase of cell cycle compared with control cells. 

Interestingly, LY294002 alone increased the percentage of cells in G1 phase and reduced the 

percentage of cells in G2/M phase compared with control cells; on the contrary, LY294002 in 

cotreatment with aspirin at 2 and 5 mM increased the percentage of cells in G2/M phase from 

7 to 15%( p 0.05) and from 4 to 32% ( p 0.02) with respect to aspirin-treated cells. 

 

 

 
 

The occurrence of this molecular mechanism and this effect of aspirin also in vivo 
system. 
 

In this study, I aimed to test the ability of aspirin to activate PI3K/AKT pathway in vitro and 

in vivo in methylcholanthrene induced fibrosarcoma cells (Meth A) transplanted into BALB/c 

nude mice. 

Meth A cells were exposed for 72 hours at different concentrations of VP-16 and aspirin 

alone and in combination.Aspirin was used at 1, 2, and 3 mmol/L and VP-16 was used at 34 

and 68 µmol/L. Apoptosis was evaluated through the analysis of cells positive for Annexin V 

staining at flow cytometry. Spontaneous apoptosis of Meth A cells in culture medium was in 

the average 10%. Treatment with aspirin up to 3 mmol/L concentration did not increase 

significantly apoptosis in Meth A cells with respect to basal level (Fig. 13, top).  
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The percentage of apoptosis increased upto 11% following treatment with 5 mmol/L aspirin 

(data not shown). Conversely, VP-16 at 34 and 68 µmol/L dose dependently increased 

apoptosis from 26% to 46% (Fig. 14, top). In addition, the levels of apoptosis were 

significantly reduced (P < 0.05) for each concentration of VP-16 when given in the presence 

of all concentration of aspirin compared with single-agent treatment; Meth A cells cotreated 

with aspirin at 3 mmol/L were particularly resistant to VP-16-induced apoptosis (P < 0.002). 

Similar results were obtained when levels of apoptosis were evaluated with propidium iodide 

staining analysis (data not shown). These results indicated that VP-16 was an active 

anticancer agent in Meth A cells and that aspirin treatment reduced the ability of the drug to 

induce apoptosis. To evaluate whether the effects of aspirin cotreatment on anticancer drug 

responsiveness were also obtainable toward others anticancer agents, we tested the effect of 
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aspirin treatment on cisplatin-induced apoptosis. Meth A cells were cotreated with aspirin at 

1, 2, and 3 mmol/L and cisplatin at 2, 5, 10, and 20 µmol/L under the above mentioned 

experimental conditions. Aspirin cotreatment dose-dependently reduced cisplatin-induced 

apoptosis for each concentration of cisplatin tested. The effect of aspirin on apoptosis was of 

the same range of magnitude of that observed in VP-16 and aspirin cotreated Meth A cells 

(data not shown). 

To evaluate whether the cytoprotective effects of aspirin treatment on Meth A cells were 

dependent on the inhibition of COXs activity, I analyzed the effect of VP-16 cotreatments 

with DFU, a COX-2selective inhibitor, and with indomethacin, a nonsteroidal 

antiinflammatory drug that shows a COX-1/COX-2 ratio called the inhibition of COX isoform 

similar to that of aspirin. I used two different concentration of indomethacin and DFU both at 

doses well recognized to inhibit COX-1 and/or COX-2. Neither indomethacin at 50 and 100 

mol/L nor DFU at 0.1 and 0.5 mol/L, respectively, reduced VP-16-induced apoptosis in Meth 

A cells (Fig. 13, bottom). These results, therefore, indicated that the cytoprotective action was 

unique to aspirin and was not shared by indomethacin. 

To show that aspirin-induced cytoprotective effect correlated with the activation of AKT in 

Meth A cells, I assayed AKT activation status following VP-16 treatment in the presence or 

absence of aspirin. Lysates from cells treated with 1, 2, and 3 mmol/L aspirin alone or in the 

presence of VP-16 at 34 Amol/L for 72hours were probed for phosphorylated AKT at Ser473. 

The bands were quantified and normalized to total AKT protein kinases, respectively. As 

shown in Fig. 14, aspirin treatment, but not VP-16 treatment, induced activation of AKT 

protein with respect to control cells. 

 

 
 The relative densitometric analysis showed 7.4-, 9.5-, and 6.9-fold increase for AKT protein 

phosphorylation status following aspirin treatment at 1, 2, and 3 mmol/L, respectively (Fig. 

14). Moreover, phosphorylation status of AKT protein were 2-, 3.5-, and 4.2-fold increased 
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also in cells cotreated with 1, 2, and 3 mmol/L aspirin andVP-16, respectively, compared with 

untreated cells.To further confirm the involvement of PI3K/AKTsurvival pathway, I 

evaluated the effect of the PI3K inhibitor LY294002 on the activation of AKT in aspirin 

treated and cotreated Meth A cells. The use of LY294002 suppressed the activation induced 

by aspirin, restoring the basal level of AKT activation status (data not shown). 

To investigate whether our in vitro finding occurred also in vivo, I evaluated the effect of 

aspirin and VP-16 treatments in nude mice injected i.p. with Meth A tumor cells. 

BALB/c mice average starting weight was 24.75 g. Because the rapid growth of Meth A 

tumor cells induced ascites in control group, weight gain was used to monitor tumor burden in 

the animals. Figure 15 shows the percentage of increase in body weight with respect to initial 

weight in control group; after 5 days, when Meth A cells induced visible ascites, and after 14 

days from the inoculum, an average 10% and 53% increase (38.2g mean weight; data not 

shown) in weight was reached, respectively (Fig. 15). 

 
 

 

Later, surviving animals reaching a size not compatible with normal life and suffering for the 

great ascites developed were killed for bioethical reasons. Treatments started after 5 days 

from inoculum; animals (six for each group) were treated i.p. with either aspirin (15 and 45 

mg/kg) and VP-16 (4 mg/kg) alone or in combination with aspirin (at the dose of 15, 30, and 

45 mg/ kg) or with vehicle (control group). In case of coadministration, to mimic 

experimental condition obtained in vitro, aspirin and VP-16 were simultaneously injected at 

different sides of peritoneum. 

During the first 7 days of treatment (days 1–7), when animal death was not yet observed, 

follow-up was based on the calculation of the percentage of increase in animal weight with 

respect to first day of treatment (Fig. 16); during the subsequent days (days 8–32), the effects 

of different treatments were evaluated recording animal survival and were displayed with 

Kaplan-Meier curves (Fig. 17).  
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Treatment with VP-16 completely arrested tumor growth and ascites generation, and the 

suppression of Meth A tumor cell growth was associated with an 2 % of reduction in body 

weight at days 5 to 7 (Fig. 16). After 8 days from VP-16 treatment, 33.3% of animals died for 

causes not directly linked with weight increase (bleeding ascites and cachexia). In other 50% 

of animals, after a variable lag time from treatment, Meth A cells resumed a growth rate 

comparable with control, and animals were harvested for bioethical reason when they reached 

an average weight of 35 g (data not shown). In remaining 16.6% of animals, no tumor growth 

was detected until 25 days of observation (Fig. 17) and they remained tumor free for a period 

of observation of 40 days after treatment (data not shown). Therefore, although VP-16 

treatment was not able to definitively cure almost all animals, tumor growth was arrested and 

mouse survival duration was significantly increased with respect to control (P < 0.001) for all 

the duration of follow-up. Aspirin treatment as single agent at 15 and 45 mg/kg had no effect 

on animal body weight and survival with respect to the control group (Figs. 16 and 17); no 

precocious mortality for gastric toxicity was observed in the aspirin-treated groups. The 

combination of aspirin at 45 mg/kg and VP-16 did not significantly inhibit xenograft ascitic 

growth and did not produce any effects on animal survival compared with VP-16-treated 

group (P < 0.001), displaying a trend similar to control group (Figs. 16 and 17). These data 

suggest that the highest dose of aspirin abolished the activity and the efficacy of VP-16 in 

tumor-bearing mice. 

The combination of aspirin at 30 mg/kg and VP-16 produced an increase in body weight of a 

lesser extent compared with that observed in control group. However, a more rapid increase in 

weight gain after 5 days of treatment was observed in cotreated animal when compared with 

animal treated with VP-16 alone (P < 0.002at day 7; Fig. 16). 

 
After this lag of time, a statistically significant difference in survival was observed between 

these two groups of animals (Fig. 17); in fact, in group of cotreated animals, 33% of the 
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animals died for causes not directly linked with weight increase, and after day 15 from 

treatment, no animal survived (Fig. 17). These results indicate that aspirin cotreatment at 30 

mg/kg attenuates the activity and the efficacy of VP-16 although at a lesser extent than 

cotreatment at 45 mg/kg. Finally, in animals treated with the combination of aspirin at 15 

mg/kg and VP-16, the body weight reduction was slightly minor (P < 0.02) compared with 

that observed in animal treated with VP-16 alone (Fig. 16). Similarly, a minimal but not 

statistically significant difference in survival probability was observed (Fig. 17). These results 

suggest that 15 mg/kg aspirin is able to reduce the activity but not the efficacy of VP-16-

based therapy. 

To analyze the molecular pathways associated with aspirin treatment in Meth A–bearing 

mice, one animal was harvested 4 hours after completing treatment and ascitic fluid 

containing tumor cells from previously considered experimental points was collected for 

biochemical evaluation. Consistently with our in vitro finding, treatment with aspirin at 15 

and 45 mg/kg alone determined a 3.8- and 6.5-fold increase in activation status of AKT 

compared with control group, respectively (Fig. 18). 

 
 

 In addition, aspirin cotreated groups showed higher levels of activation of AKT with respect 

to vehicle-treated group (Fig. 18). Between several downstream targets of AKT, GSK-3 

represents a convergence site of multiple signaling pathways involved in cell fate (Li et al. 

2000, Loberg et al. 2002). Phosphorylation at Ser21 (-isoform) or Ser9 (-isoform) of GSK-3h 

by AKT leads to inhibition of its activity and reduces apoptosis. Inactivation of GSK-3 by 

AKT may thus contribute to antiapoptotic effects of PI3K/AKT signaling (Loberg et al., 

2002). Therefore, I evaluated the effect of different treatments on activation status of GSK-3. 

As shown in Fig. 18B, phosphorylation status of GSK-3 in Ser9 was increased in aspirin-

treated mice. The effect was of lesser extent with respect to that observed for AKT 

phosphorylation and persisted, at 45 mg/kg aspirin treatment, also in the presence of VP-16. 

These results indicate that aspirin activates the AKT-dependent survival pathway leading to 

increased phosphorylation of GSK-3 at Ser9. 
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DISCUSSION 
 
Mounting evidence suggest that aspirin and other NSAID are able to interfere with mitogenic 

signalling causing arrest of cells in the G0/G1 phase of the cell cycle and, depending on the 

doses and the drug, to induce apoptosis as conventional cytotoxic drugs (Lu et al, 1995; Shiff 

et al, 1995, 1996; Piazza et al, 1995; Arber et al, 1997). 

For these properties NSAIDs have been sporadically employed in clinical cancer therapy; 

more frequently, they are utilised as analgesic, occasionally concurrently chemotherapy 

administration without a profound knowledge of the potential interaction with anticancer 

drugs and their efficacy. To date, very little information has been reported on this subject; a 

paper describes the first extensive screen of commercially available NSAIDs with anticancer 

drugs and discusses the potential clinical benefits of such combinations (Duffy et al, 1998). 

More recently, several studies have investigated the possibility of Cox-2 selective inhibitor-

mediated enhancement of chemotherapeutic drug toxicity (Soriano et al, 1999; Hida et al, 

2000). There are not reports comparing the effects of Cox-2 selective inhibition on 

responsiveness of colon cancer cells to chemotherapy with that obtained with aspirin, the 

most frequently used medicinal drug also for its anti-aggregating properties and in the clinical 

treatment of inflammatory diseases. In particular, the use of aspirin for analgesia and 

antipyresis (650 mg of oral administration, six times more on average than the anti-platelet 

dose) results in peak plasma concentration of 25 mg ml (which corresponds approximately to 

0.15 mM). On the other hand, the high dose of aspirin required for the treatment of arthritis (4 

– 6 g of oral administration) determines aspirin plasma level up to 300 mg ml, which 

corresponds to 2 mM (Insel, 2001). The main purpose of the first part of my  study is to 

evaluate if combined treatment in vitro would produce interactive effects that could be 

relevant in the clinical use. We have previously demonstrated that aspirin and NS-398 

treatments are both associated with the inhibition of proliferation and induction of apoptosis 

of Caco-2 cells (Ricchi et al, 1997; Di Popolo et al, 2000). Numerous studies suggest that any 

interference with mitogenic signalling and cell cycle cause a modification in the 

responsiveness to conventional cytotoxic drugs. In this study , I investigate whether aspirin 

and NS-398 interference with cell proliferation has any effect on Caco-2 cells responsiveness 

to the topoisomerase poisons irinotecan and etoposide, anticancer agents that specifically 

require DNA synthesis to exert their toxicity.The data reported herein demonstrate that aspirin 

and NS-398 act as anticancer agents in Caco-2 colon cancer cells with cytostatic properties 

and with different ability to induce apoptosis at high dosages. Also, I show that they 

differently modify anticancer responsiveness to chemotherapy of Caco-2 cells. I have 

evaluated this effect mainly towards the induction of apoptosis. In fact, there is emerging 

evidence that resistance to antitumour treatments relies on reduced sensitivity to apoptosis 

induction (Fisher, 1994; Nagata, 1997); in this regard, my results demonstrate that aspirin 

treatment is able to counteract the proapoptotic effect of anticancer drugs in vitro. Aspirin co-

treatment produces, at all concentrations investigated, a reduction of anticancer drug-induced 

apoptosis in Caco- 2 cells and, at 5 mM, a reduction of S/G2 phase cell cycle accumulation. 

I hypothesise that the effects of high doses of aspirin cotreatment on anticancer drug-induced 

toxicity could be mainly explained by the almost complete inhibition of DNA synthesis and 

G1 cell cycle arrest obtained at this dose of aspirin that have been shown also to alter cell 

cycle-related proteins (Law et al, 2000; Marra et al, 2000); the reduced ability of such 

anticancer drugs to induce apoptosis in quiescent cells have been already observed (Nitiss and 

Wang, 1996: Lin et al, 1998). Furthermore, it is a common observation that agents able to 

interfere with cell cycle usually prevent the action of drugs active in the next phase of cell 

cycle (Lin et al, 1998). 
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Moreover, I clearly demonstrate by PI- and annexin V-staining that the reduced levels of 

apoptosis obtained in aspirin co-treatments are associated with an increase in cell viability of 

Caco-2 cells; this effect is also evident by the analysis of plating efficiency in aspirin-Vp 16 

co-treated cells; thus, these data indicate that aspirin co-treatment interferes not only with 

apoptotic death but also with overall toxicity induced by these anticancer drugs. In this regard, 

aspirin and its metabolite sodium salicylate have been found to be protective against 

neurotoxicity elicited by the excitatory amino acid glutamate in rat primary neuronal cultures 

(Grilli et al, 1996); thus, my data may represent a further evidence of aspirin cytoprotective 

property against a cellular damage. 

In addition, PI- and annexin V-staining assay indicated that the cytoptotective effect of aspirin 

co-treatment is present not only in Caco-2 cells but also in the Cox-2 negative, Cox-1 positive 

Sw 480 colon cancer cell line. These data may suggest that aspirin interferes with 

topoisomerase poison-induced toxicity through a Cox-independent mechanism. On the other 

hand, my data show that NS-398 co-treatment may alternatively reduce or increase anticancer 

drug induced apopotosis, depending on the concentration. These effects are less powerful 

compared with those observed in the presence of aspirin. 

NS-398 at 1mm concentration completely inhibits the biosynthesis of prostaglandin E2 in 

Caco-2 cells (Acquaviva et al, unpublished data) without affecting anticancer drug 

responsiveness; NS 398, at 10 mm concentration, causes minimal enhancement of anticancer 

drug-induced apoptosis without modifying cell cycle parameters. On the contrary, my data 

show that NS-398, at dose of 50 mM, is cytoprotective and counteracts anticancer drugs 

induced cell cycle perturbation. Based on these findings, I postulated that the described 

effects of increasing dose of NS-398, as in the case of aspirin, might be dependent on 

regulation of cell cycle regulatory protein (Hung et al, 2000) and not related on the inhibition 

of Cox-2 activity; these data could also reinforce the hypothesis of the concurrent presence of 

Cox-2-dependent and independent mechanisms of action in the antiproliferative effect of 

individual selective Cox-2 inhibitors (Grosch et al, 2001; Smith et al, 2000). 

The second aim of my study, was tried to better elucidate the molecular mechanisms that link 

the aspirin-dependent effect on cell cycle to the resistance to other apoptotic stimuli. I used 

serum deprivation-induced apoptosis in Caco-2 cells as a model system to evaluate aspirin 

interference with death/ survival pathways. My data show that in Caco-2 cells apoptosis 

induced by serum deprivation is a late event accompanied with increase in G2/M cell cycle 

phase. These findings are in agreement with those obtained in different experimental systems 

in which PI3-kinase activity was found to be required for growth factor-dependent survival 

and differentiation (Kennedy et al., 1997; Eves et al., 1998) and in which MAP kinase 

cascade was responsible for cell cycle progression (Aliaga et al., 1999; Abbott and Holt, 

1999). My data show that aspirin treatment in Caco-2 cells interferes with serum deprivation-

induced apoptosis through PI3-kinase and ERK kinase pathways. I also show that the effect of 

aspirin on survival is mediated through the activation of the PI3-kinase. In fact, aspirin 

treatment in the presence of the specific PI3-kinase inhibitor LY294002 is able to revert the 

effect of aspirin on Caco-2 cells survival being even more toxic than LY294002 alone. On the 

other hand, the inhibition of MEK activity by PD98059 alone or in cotreatment with aspirin 

does not have the same effect of LY294002 and maintain the cytoprotective effect of aspirin. 

Further studies are needed to clarify at molecular level the role of PI3-kinase pathway in the 

observed aspirin-dependent activation of ERK kinase. That aspirin treatment has a direct 

effect on PI3-kinase and ERK kinase pathways is demonstrated by my data showing a 

transient activation of these pathways by acute aspirin treatment. However, because the 

majority of my data are obtained with aspirin long-term treatment, I cannot exclude that 

aspirin might have also an indirect effect through the IGFII/IGF-Ir autocrine loop that sustains 

Caco-2 cells survival (Zarrilli et al., 1994, 1996). Therefore, further studies are needed also to 

elucidate at molecular levels the site(s) of aspirin interference with the IGFII/IGF-Ir-
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dependent PI3-kinase survival pathway and the mechanism(s) responsible for PI3-kinase 

activation. 

My data show that aspirin not only prevents apoptosis but also the increase in G2 cell cycle 

after Caco-2 cells serum deprivation and dose dependently induces p21Cip/WAF1 expression. 

Mounting evidence indicates that p21Cip/WAF1 is a downstream target of the PI3-

kinase/AKT pathway. In fact, it has been shown in muscle cells that IGFI/IGF-I receptor 

activation regulates survival and differentiation through the stimulation of PI3-kinase that in 

turn activates AKT, which stimulates the expression of p21Cip/WAF1 (Lawlor and Rotwein, 

2000a,b). 

However, although it has been shown that AKT stimulates p21Cip/WAF1 expression, other 

reports indicate that the activated AKT phosphorylates p21Cip/WAF1 to prevent 

p21Cip/WAF1 nuclear localization and the p21Cip/WAF1-dependent cell cycle arrest, as well 

as Mdm2, to prevent Mdm2 nuclear localization and Mdm2-dependent degradation of p53, 

thus determining cell cycle progression (Zhou et al., 2001a,b). The data presented herein 

indicate that aspirin activates a survival pathway that is responsible for the induction of 

p21Cip/WAF1 also in Caco-2 cells and that there is a strict correlation between p21Cip/WAF1 

expression and its inhibitory function toward cell cycle progression. In fact, as well as 

restoring apoptosis induced by serum deprivation, treatment with LY294002 in the presence 

of aspirin leads to p21Cip/ WAF1 suppression and G2/M accumulation. Thus, the aspirin 

dependent activation of AKT/PKB protein and the induction of p21Cip/WAF1expression 

provides a mechanism for its ability to prevent apoptosis and G2/M phase accumulation 

induced by prolonged serum deprivation and Etoposide treatment and indicates a novel tool 

by which aspirin may control cell cycle without resulting in a toxic treatment in Caco-2 cells. 

In accordance with our data, the activation of a similar pattern has been recently shown by Yu 

and collaborators, who demonstrated that the overexpression of the receptor tyrosine kinase 

p185ERbB2 increased p21Cip/WAF1 expression, conferred resistance to taxol-induced 

apoptosis, and prevented cell entrance to G2/M phase (Yu et al., 1998). On the other hand, we 

found also that inhibition of the MEK pathway led to induction of p21Cip/WAF1 expression 

and G2/M cell cycle phase reduction; similarly, the highest increase of G2/M phase was 

observed during 5 mM aspirin and LY294002 cotreatment in presence of activation of 

ERK1/2 kinases and p21Cip/WAF1 suppression. Although the mechanism by which PD98059 

treatment increases p21Cip/WAF1 level remains unclear, the above-mentioned data both 

confirme the protective effect of PD98059 against apoptotic stimuli (Cho et al., 2002; Cuda et 

al., 2002) and strongly suggest that the apoptotic response to serum deprivation in Caco-2 

cells involves also the activation of MAP kinase pathway and p21Cip/WAF1 suppression both 

responsible for G2/M accumulation. 

These finding are in agreement with other reports showing that p21Cip/WAF1 expression 

could play a role in enhancing cell survival (Cheng et al., 2000), protecting various cell types 

from apoptosis after anticancer drug treatment (Waldman et al., 1997). Further studies are 

needed to clarify the effect of aspirin treatment on p21Cip/WAF1 expression and its 

phosphorylation status on the control of cell cycle check points in Caco-2 cells and the 

mechanism by which the coordinated activity of PI3-kinase and MAP kinase pathways 

regulates its expression and the  survival signaling. I found previously the involvement of 

PI3K/AKT pathway in cytoprotective property of aspirin in cultured colon cancer Caco-2cells 

(19).To verify that aspirin is able to activate this pathway in other cancer cells and ,also in 

vivo, I used the fibrosarcoma Meth A cells as a system to evaluate aspirin interference with 

anticancer drug-induced apoptosis in vitro and in vivo. My data showed for the first time that 

the antiapoptotic effects of aspirin are not cell type specific and operated in vivo through the 

activation of PI3K/AKT pathway. My data showed that aspirin exposure, but not other COX-

2selective and nonselective inhibitors, prevented apoptosis induced by VP-16 and cisplatin in 

Meth A cells. The in vitro data were consistent with previous results showing that aspirin 

protected cells from apoptosis through activation of PI3K/AKT. Because the AKT protein is 
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the downstream effector of PI3K, further studies are needed to clarify at molecular levels the 

site(s) of aspirin interference with the PI3K survival pathway and the mechanism(s) 

responsible for PI3K activation. Preliminary data from our group indicate that aspirin is able 

to induce acetylation status of p85 regulative subunit of PI3K. It is possible to postulate that 

the structural change by acetylation increase the level of PIP3, as shown previously (19), and 

induce activation of PDK1 kinase. 

Furthermore, the in vitro data reinforce the evidence coming from our and other previous 

experiments (6, 18, 19, 24) that high doses of aspirin slightly affected or may increase basal 

level of apoptosis but were protective from apoptosis induced by external toxic stimuli. This 

at the molecular level confirms the aspirin pleiotropic activity and suggests that the aspirin 

interference with different survival/death pathways determines a global prosurvival promoting 

effect. 

One of the major purposes of this study was to evaluate whether combined treatment in vivo 

would produce effects that could be relevant in the clinical use.My data indicated that aspirin 

as single agent did not affect Meth A cell growth while provided evidence that aspirin 

administration reduced in vivo the activity and the efficacy of VP-16 treatment in Meth A–

bearing mice. My data indicated also that in vivo aspirin operated in a dose-response fashion 

to reduce the outcome of anticancer treatment. This trend was evident behind the lowest dose 

and indicated that coadministration of minimum 30 mg/kg aspirin was required to produce a 

significant effect on animal survival. 

Furthermore, aspirin-induced increase of animal body weight and decrease of survival strictly 

correlates with the activation of AKT. My results agree with previous data showing that AKT 

activation in vivo is a major factor in the resistance of tumor cells to apoptosis induced by 

chemotherapeutic drugs (29). 

In addition, my in vivo data indicated that aspirin inhibited the activity of GSK-3, a key factor 

not only for survival and chemoresistance (30) but also for the attenuation of the cellular 

action of insulin (31). Because it has been shown that high-dose aspirin could improve 

glucose metabolism in humans (16) and that GSK-3 activity inhibitors may therapeutically 

benefit in treating insulin resistance and type 2diabetes (32), the data of this report should 

encourage further evaluation of the in vivo mechanism for aspirin hypoglycemic effect. 

Although an expanding literature is showing the role of nonsteroidal anti-inflammatory drugs 

used alone or in combination with conventional anticancer drugs and their ability to alter 

toxicity profile of anticancer drugs (33, 34), the use of aspirin in combination with anticancer 

drugs has never been investigated in vivo. In this study, I used doses of aspirin in vitro and in 

vivo approximately corresponding to that required for the treatment of arthritis and rheumatic 

fever. In fact, the clinical treatment of inflammation requires 2 to 5 g aspirin oral 

administration, which determines aspirin plasma level up to 1 to 3 mmol/L (35). In my 

experiments, the antiapoptotic effect of aspirin was observed starting at dose at least 10 times 

higher than those used for antiplatelet therapy (75 mg/d). Therefore, our finding could be of 

relevance in the clinical condition where treatment schedules involving both cytotoxic agents 

and high doses of aspirin are required, suggesting that cotreatment with aspirin could limit the 

outcome of anticancer therapy. 

In conclusion, my data reinforce the emerging and wide observation coming from neuronal 

models (17) that aspirin operates also in vivo as cytoprotective agent. I also show that aspirin 

cytoprotective effect is mediated through the activation of AKT pathway. Because AKT 

pathway mediates survival against a wide variety apoptotic stimuli, it should be also verified 

the possible involvement of this pathway as mechanism by which aspirin exerts 

neuroprotection. 

 

 

 

 



 30 

MATERIALS AND METHODS 

 

Cell growth and culture. Caco-2 cells were routinely grown in 100 mm plastic dishes at 

37°C in a humidified incubator 5% CO2-95% air atmosphere in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% foetal calf serum, glutamine (2 mM), penicillin 

(100 u ml71), and streptomycin (100 mg ml71) and buffered with N-2-

hydroxyethylpiperazine-N'-2-ethane sulphonic acid (HEPES) (20 mM). The culture medium 

was changed every other day. Confluence was reached 6 – 8 days. 

Etoposide and irinotecan were a gift from Bristol-Myers- Squibb (Rome, Italy) and Rhone 

Poulen, respectively; anticancer drugs were diluted in DMEM to prepare 500x concentrated 

solutions. Aspirin (Sigma, Milan, Italy) was dissolved in a 0.1 M Tris-HCl pH 7.8 solution. 

The solutions were buffered with Tris base to obtain the final pH equal to that of control 

DMEM medium and prepared every two weeks. Experiments were performed in the absence 

or in the presence of aspirin. In aspirin untreated cells (control) anticancer drugs were added 

for 48 h at day 4 of culture. In treated cells aspirin was added at day 3 of culture for 24 h. 

Anticancer drugs were added for 48 h in presence of aspirin or NS 398 (co-treatment) without 

changing media. LY294002 (Calbiochem, Darmstadt, Germany) was dissolved in dimethyl 

sulfoxide and prepared as a 16.2 mM stock solution and added at a final concentration of 50 

 M. PD98059 (Calbiochem) was dissolved in dimethyl sulfoxide and prepared as an 8 mM 

stock solution and added at final concentration of 40µM. 

The transplantable sarcoma Meth A cells were kindly provided from Dr. Pramod 

Srivastava.Original tumor cell lines were induced by a single s.c. injection of 0.1 mg 3-

methylcholantrene dissolved in 0.1 mL sesame oil. Meth A cells have a welldefined 

immunogenicity and typically produce either solid (20, 21). The cells were maintained by 

continuous propagation in the peritoneal cavity of BALB/c mice (6–7 weeks old). 

In addition, Meth A cells can routinely grown in 100-mm plastic dishes at 37°C in a 

humidified atmosphere of 5% CO2 in air in DMEM supplemented with 10% FCS, glutamine 

(2mmol/L), penicillin (100 units/mL), and streptomycin (100 Ag/mL) and buffered with 

HEPES (20 mmol/L). All experiments in vitro were done after one passage from peritoneal 

cavity. 

Indomethacin (Sigma, Milan, Italy) was dissolved in DMSO and prepared every week, 5,5-

Dimethyl-3-(3-fluorophenyl)-4-(4-methylsulfonyl)-phenyl-2(5H)-furanone (DFU) was kindly 

provided by Merck Frosst (Kirkland, Quebec, Canada), dissolved in DMSO, and prepared as 

10 mmol/L stock solutio 

 

Cell cycle analysis and apoptosis detection.In order to define the cell cycle distribution and 

apoptosis rate, Caco-2cells  were trypsinised, pelletted, fixed and Propidium Iodide (PI) 

stained as previously described (Nicoletti et al, 1991). PI staining fluorescence of individual 

cells was analysed by using a FACS Calibur flow cytometer apparatus (Becton & Dickinson, 

Mountain View, CA, USA) and the MODFIT analysis software. For each sample, at least 20 

000 events were stored. Apoptosis/necrosis ratio was additionally evaluated by using annexin 

V-FITC/PI double staining technique. Briefly, trypsinized Caco-2 and Meth-A were collected, 

including floating apoptotic cells and the cells spontaneously detached during washing 

procedure, and annexin V-FITC and PI co-stained by using a detection kit from Medical & 

Biological Laboratories Co, Ltd, Naka-ku Nagoya Japan, according to the manufacturer’s 

instructions. Fluorescence analysis was performed by a flow cytometer apparatus (Becton & 

Dickinson, Mountain View, CA, USA) and the Cell Quest analysis software. For each sample, 

at least 30 000 events were stored. Quadrant settings were based on the negative control. Each 

experiment was repeated at least three times.  

 

Plating efficiency assay. To determine anticancer drug responsiveness of Caco-2 cells a 

plating efficiency assay was performed following drug removal. After each treatment, cells 
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were trypsinised, washed and seeded (15 000 cells 6 well) in triplicate in 24 multiwell cluster 

dishes and counted at days 1, 4, 6, 8 and 11 of culture. 

 

Western blot analysis. Mouse monoclonal antibody anti- Bcl-2, rabbit polyclonal anti-human 

p21Cip/WAF1 antibody, mouse monoclonal antibodies against phosphorylated ERK1/2, and 

rabbit polyclonal against total ERK2 protein were from Santa Cruz Biotechnology, Inc. (Santa 

Cruz, CA). (Ser 473) Phosphorylated AKT and total AKT, phosphorylated glycogen synthase 

kinase (GSK)-3α/β (Ser21/Ser9) and GSK-3β were detected by using rabbit polyclonal 

antibody and mouse monoclonal antibody, from Cell Signaling Technology Inc. (Beverly, 

MA).Lysates from adherent cells collected by scraping were centrifuged at 12 000 g for 15 

min at 4°C. The protein concentration in cell lysates was determined by Bio-Rad Protein 

Assay (Bio-Rad, Richmond CA, USA) and 70µg of total protein from each sample was 

analysed. Proteins were separated by a 12% SDS-polyacrylamide gel electrophoresis and 

transferred on nitrocellulose membrane (Hybond-ECL Nitrocellulose, Amsherman, Rainham, 

UK). Membranes were blocked in 5% non-fat dry milk, and after three washes, were 

incubated for 1 h at 4°C with 0.5 mg ml71 of mouse monoclonal primary antibody in PBS. 

After five washes, filters were 

incubated for 1 h at 4°C with horseradish peroxidase-conjugated anti-mouse secondary 

antibodies (Bio Rad) diluted 1 : 2000 in PBS, 0.1% Tween. The membranes were then 

washed and protein bands were detected by an enhanced chemiluminescence system 

(Amersham Pharmacia Biotech). Control for loading and transfer was obtained by probing 

with anti-a-tubulin (Sigma) at1 : 4000 dilution. For quantitation of immunoblots, relative 

intensities of bands were quantified by densitometry with a desk scanner (Pharmacia 

Discovery system) and RFLPrint software (PDI, New York, USA). Cells were washed in cold 

PBS and lysed for 10 min at 48C with 1 ml of lysis buffer (50 mM Tris, pH 7.4, 0.5% NP40, 

0.01% SDS) containing protease inhibitors. 

 

PI3-Kinase Assay. Cells lysates (300 µg) were immunoprecipitated with a pTyr antibody 

(Santa Cruz Biotechnology, Inc.). Pellets were washed in cold PBS and then in 100 mM Tris-

HCl, pH 7.4, supplemented with 500 mM LiCl, 1 mM EDTA, and 0.2 mM NaVO4. 

Pellets were further resuspended in 30mMHEPES, pH 7.5, and 6.25mM MgCl2 and 125  M 

cold ATP; the kinase reaction was initiated by addition of 2  g/ l phosphatidylinositol (Sigma) 

and 10  Ci/ l [32P]ATP (3000 Ci/mmol) and performed for 15 min at 37°; the reaction was 

stopped by addition of 5 M HCl and 0.5 M EDTA and methanol/chloroform (1:1). After 

mixing vigorously and centrifuging to separate the phases, the organic layer was collected and 

separated by thin layer chromatography (TLC). [32P]phosphoinositides were visualized by 

autoradiographs, scraped from TLC, and counts per minute were quantified by a  -counter 

(Beckman Coulter, Inc., Fullerton,CA). 

 

Statistical Analysis. Statistical comparisons were performed using the Mann-Whitney U test. 

A probability value  0.05 was considered a significant difference. 

 

In vivo Studies. Female BALB/c mice (6–7 weeks old) were purchased from Charles River 

Laboratories (Milan, Italy). The research protocol was approved and mice were maintained in 

accordance to institutional guidelines of the University of Naples Animal Care and Use 

Committee. Mice were acclimatized at the University of Naples Medical School Animal 

Facility for 1 week before injection with cancer cells. All these animals received 1 million 

Meth A tumor cells in 0.2mL saline on day 0. VP-16 was used at 4 mg/kg, and aspirin was 

used at 15,30, and 45 mg/kg. After 5 days, when established ascites were evident and animal 

weight started to increase, seven mice per group were treated i.p. at the indicated doses of 

aspirin alone or in combination with VP-16. Drugs were given (on days 1–3) for 3 days every 

2 4hours. Control group was injected with vehicle. All animals were injected i.p. with an 
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equal volume of solvent as a control (300 AL). Then, mice were randomly divided into seven 

groups [1 control group, 1 VP-16-treated group, 2aspirin-treated groups (15 and 45 mg/kg), 

and 3 aspirin and VP-16 cotreated groups], with each group containing seven animals. Of 

each group, six animals were observed daily to monitor their survival and their weight 

increase and one animal was killed 4 hours after completing treatment; ascitic fluid containing 

tumor cells was collected in PBS with proteases and phosphatases inhibitors and processed as 

described in Western Blot Analysis. 

Statistical Analysis. Statistical comparisons were done using the Mann-Whitney U test and 

log-rank test. P < 0.05 was considered a significant difference. 
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