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1. SUMMARY 

The site of type D (chondroitin 6-sulfate) oligosaccharide unit addition to human 

thyroglobulin (hTg) was localized. Furthermore, hTg and its fractions endowed with 

chondroitin 6-sulfate oligosaccaride units (hTg-CS) and devoid of it (hTg-CS-), were 

compared, with respect to their ability to induce experimental autoimmune thyroiditis (EAT) 

in CBA/J(H-2k) mice, by subcutaneous administration, in the presence of complete adjuvant. 

HTg was chromatographically separated into hTg-CS and hTg-CS- molecules, on the 

base of their uronic acid content. In an ample number of hTg preparations, the fraction of 

hTg-CS in total hTg ranged from 32.0 to 71.6 percent. By exploiting the electrophoretic 

mobility shift and metachromasia conferred by chondrotin-6-sulfate upon the products of 

limited proteolysis of hTg, chondroitin 6-sulfate was first restricted to a carboxy-terminal 

region, starting at residue 2513. A single chondroitin 6-sulfate-containing nonapeptide was 

isolated in pure form from the products of digestion of hTg with endoproteinase Glu-C, and 

its sequence was determined as being LTAGXGLRE (residues 2725-2733, X being Ser2729 

linked to the oligosaccharide chain). In an in vitro assay of enzymatic iodination, hTg-CS 

produced higher yields of 3,5,5’-triiodothyronine (T3) (171%) and 3,5,3’,5’-

tetraiodothyronine (T4) (134%), than hTg-CS-. Unfractionated hTg behaved as hTg-CS. Thus, 

chondroitin 6-sulfate addition to a subset of hTg molecules enhanced the overall level of T4 

and, particularly, T3 formation. Furthermore, the chondroitin 6-sulfate oligosaccharide unit of 

hTg-CS protected peptide bond Gly2713-Lys2714 from proteolysis, during the limited 

digestion of hTg-CS with trypsin. 

Although immunization with all forms of hTg was accompanied by thyroid cell damage, 

as judged from the increase of T4 in blood, a higher degree of mononuclear infiltration of the 

thyroid was associated with unfractionated hTg, in comparison both with hTg-CS and with 
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hTg-CS-. Thus, it appears that both hTg subfractions contributed to the immunopathogenic 

potency of unfractionated hTg, as neither one reproduced fully the histological picture 

associated with the latter. Significant differences were observed also upon restimulation in 

vitro of splenic lymphocytes obtained from mice immunized in vivo with the different forms 

of hTg. Restimulation in vitro with hTg-CS of splenocytes from mice immunized with the 

same antigen was followed by low-level, dose-dependent proliferation and IFN-γ production, 

whereas cross-stimulation with hTg-CS- of the same cells was followed by proliferative and 

secretory responses of even lower degree. On the other hand, restimulation in vitro with hTg-

CS- of splenocytes primed in vivo with the same antigen was followed by higher-level, dose-

dependent increases of IFN-γ production, accompanied by proliferative responses of low 

degree and inversely related with the antigen dose, while cross-stimulation with hTg-CS of 

the same cells was followed by dose-dependent increases, both of proliferation and IFN-γ 

production, of the highest level observed in this study. Similar results were obtained when 

splenocytes, primed in vivo with hTg-CS-, were restimulated with purified glycopeptide hTg-

CSgp, containing the chondroitin 6-sulfate unit, but not with its non-glycosylated, synthetic 

homologue. These data indicate that hTg-CS- was more effective than hTg-CS in priming 

autoreactive T lymphocytes, recognizing thyroiditogenic epitopes shared between murine and 

human Tg, whereas hTg-CS was a stronger inducer of proliferation of antigen-sensitized T 

cells. Moreover, different molecular signals, including structural determinant(s) associated 

with the chondroitin 6-sulfate chain, were required, in addition to epitope recognition, for the 

activation of T cell proliferation, together with IFN-γ production. 

These findings provide insights into the molecular mechanism of regulation of the 

hormonogenic efficiency and of the T4/T3 ratio in hTg, and may bear important implications 

in the processing and presentation of hTg as an autoantigen, and in the mechanisms of 

activation of Th-1-mediated and cytotoxic lymphocyte responses involved in EAT. 
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2. INTRODUCTION 

 

2.1. Generalities on autoimmune thyroid disease (AITD) 

Autoimmune thyroid disease (AITD) is quite common, affecting 2% of females and 

0.2% of males (Jacobson et al., 1997). Chronic autoimmune thyroiditis is the most frequent 

cause of acquired hypothyroidism with goitre in iodine-sufficient areas. It may present with or 

without goitre, and may progress from euthyroidism or, rarely, hyperthyroidism, to 

hypothyroidism with goitre (Hashimoto’s thyroiditis, HT) or atrophic thyroiditis (primary 

mixoedema). Graves’ disease (GD) is characterized by goitre and thyrotoxicosis, although 

hypothyroidism can develop in the course of the disease. Infiltrative ophthalmopathy and 

dermopathy are associated in 50 and 10% of cases, respectively. Both conditions are 

characterized by thyroid infiltration with T lymphocytes, proliferative responses of T 

lymphocytes against thyroid autoantigens in vitro, and production of autoantibodies against 

human thyroglobulin (hTg), thyroperoxidase (hTPO), and thyroid-stimulating hormone 

receptor. 

 

2.2. Genetic factors in AITD 

AITD develops as a result of complex interactions between multiple susceptibility 

genes, and environmental and endogenous factors (Weetman et al., 2003). Epidemiological 

evidences for a genetic predisposition include familial clustering, and the higher prevalence in 

females and concordance rate in monozygotic versus dizygotic twins (Brix et al., 2000; Brix 
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et al., 2001). Family-based studies indicated the linkage of GD to HLA genes (extended 

haplotype DRB1*0304-DQB1*02-DQA1*0501, region 6p21) (Heward et al., 1998) and 

CTLA-4 (2q33), (Vaydia et al., 1999) confirming earlier associations. The role played by 

polymorphic HLA-DR and HLA-DQ genes in the development of autoimmune thyroiditis in 

response to hTg was demonstrated in murine EAT, by introducing the permissive transgenes 

HLA-DRA /DRB1*0301 (DR3) and DQA1*0301⁄DQB1*0302 (DQ8) into class II-deficient H-

2Ab0 mice (Wan et al., 2002). Microsatellite-based, whole-genome linkage studies indicated 

additional susceptibility loci, such as AITD-1 (6p), hTg (8q), and region 10q for HT and GD, 

loci GD-1 (14q), GD-2 (20q) and region 7q for GD, and locus HT-2 (12q) for HT (Tomer et 

al., 2003). The association and linkage of the hTg gene with AITD was confirmed by direct 

analysis of chromosomal region 8q24 (Tomer et al., 2002). Thus, some AITD susceptibility 

genes may be immune-modifying genes, which increase the general susceptibility to 

autoimmunity (e.g. HLA, CTLA-4), while others may be thyroid-specific (e.g., hTg) (Tomer 

et al., 2002). 

 

2.3. Experimental autoimmune thyroiditis (EAT) 

Experimental autoimmune thyroiditis (EAT), a model of Hashimoto’s thyroiditis, can 

be induced in mice with  haplotype H-2s  and H-2k by immunization with mouse Tg (mTg) or 

human Tg (hTg) in complete Freund’s adjuvant (CFA) or lipolysaccharide (Rose et al., 1971). 

EAT is characterized by infiltration of thyroid by mononuclear cells, production of specific 

antibody and in vitro cell proliferative responses against Tg. EAT is a T cell-mediated disease 

that can be transferred from mice with immunized mTg to syngeneic hosts, by injecting mTg-

specific T-cell clones and cytotoxic T lymphocytes. CD4+ cells play a dominant role in EAT 

(Flynn et al., 1989). The analysis of the T cell receptor Vβ gene repertoire of thyroid-
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infiltrating T cells, after immunization with Tg or adoptive transfer of mTg-primed T cells, 

showed the clonal expansion of Vβ13+ T cells (Matsuoka et al., 1994; Nakashima et al., 

1996). Also the characterization of mTg-primed T cells, expanded in vitro with 

staphylococcal enterotoxin A, demonstrated the involvement of Vβ13+ and Vβ1+ T cells in 

subsequent thyroiditis transfer (Wan et al., 2001). T helper type-1 responses are crucial for 

thyroiditis development, as underscored by the impaired induction of EAT in interleukin-12-

deficient C57BL ⁄6 mice (Zaccone et al., 1999) and by the association between the IFN-γ gene 

deletion and the marked reduction of anti-mTg IgG1 and IgG2b production, and thyroid 

infiltration with T, B and plasma cells in spontaneous autoimmune thyroiditis (SAT) (Yu et 

al., 2002). Anti-Tg antibodies may also contribute to the pathogenesis of murine autoimmune 

thyroiditis. A selective correlation was found between the activity of EAT and the levels of 

anti-idiotypic antibodies to a mAb (3B8G), recognizing a thyroiditogenic tryptic fragment of 

pTg (Tange et al., 1990). Moreover, some murine mAbs facilitated the internalization of mTg 

by a murine B-cell hybridoma in vitro, and either suppressed or enhanced the presentation of 

the non-dominant pathogenic epitope 2549–2560 (Dai et al., 1999). In NOD-H-2h4 mice, the 

levels of mTg-specific IgG1 and IgG2b autoantibodies produced correlated closely with the 

severity of SAT (Braley-Mullen et al., 1999). Moreover, B cell-deficient NOD-H-2h4 mice 

developed minimal SAT, and B cell function could not be replaced by anti-mTg antibodies 

(Braley-Mullen et al., 2000). 

 

2.4. Genetic regulation of susceptibility to EAT  

The development of  EAT is under the influence of H-2 molecules of murine major 

hystocompatibility complex (Vladutiu, 1989; Beisel et al., 1992). High susceptibility strains 

include C3H(H-2k) and SJL(H-2s), while BALB/C(H-2d) and B10(H-2b) are relatively 
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resistant. Non-obese diabetic mice (NOD)(H-2g7), a strain susceptible to diabetes, are also 

prone to develop SAT, even though at a very low rate with aging (Damotte et al., 1997). 

However, in NOD(H2h4) transgenic mice, which express the H-2Ak allele, diabetes does not 

develop, while thyroiditis occurs at a much higher frequency and is accelerated and enhanced 

by the addition of iodide to drinking water (Braley-Mullen et al., 1999). In the context of the 

“high-responder” haplotype H-2k, the region H-2A of the H-2 complex is the major regulator 

of the susceptibility to EAT (Biesel et al., 1982), even though the regions K and D of the H-2 

complex also have influence (Kong et al., 1979). The primary response of mouse 

lymphocytes to epithelial syngeneic thyroid cells is under a similar control by the H-2 region, 

and their proliferation seems to be triggered  by the recognition of products of the I-A 

subregion (Salamero and Charreire, 1983a and 1983b). Therefore, the recognition of a limited 

number of thyroiditogenic epitopes of mTg and hTg by HLA-restricted T lymphocytes seems 

pivotal in the development of EAT. Apparently, H-2 molecules are able to present T cell 

thyroiditogenic epitopes shared by mTg and hTg. 

By using mice characterized by recombination within the H-2 region, differences in the 

genetic influence on the induction of EAT by thyroiditogenic peptides of Tg have been 

observed, in comparison with EAT induction by whole Tg, which is under strong influence by 

H-2Ak products. The rat Tg peptide TgP1 causes EAT with a  similar genetic pattern as entire 

Tg: B10.BR and C3H(H-2k) and SJL(H-2s) mice are susceptible, while BALB/C(H-2d) are 

partially resistant and B10(H-2b) are resistant. At variance from EAT induction by intact Tg, 

EAT induction by TgP1 (2495-2511), within the susceptible haplotype H-2k, requires the 

expression of H-2E products, while the H-2D region does not seem to have influence. Such 

divergences probably reflect differences in antigen processing and presentation between Tg 

and its peptides. The role of H-2E molecules in the presentation of peptides such as TgP1 

could be masked, if most thyroiditogenic Tg epitopes were H-2Ak-restricted. Moreover, the 



 10 

non-immunodominant peptide TgP1 could be displaced by other peptides of Tg in the 

interaction with H2-E molecules, or, alternatively, it may not be generated by antigen 

presenting cells (APC), in the course of Tg proteolysis, whereas it may be generated and 

presented by intrathyroidal MHC class I- or class II-positive cells (Chronopoulou et al., 

1993). Subsequently, it has been demonstrated that the 2496-2504 nonamer was the minimal 

T-cell epitope in TgP1 and could be presented within the context of the non-isotypic H-2Ek 

molecules of C3H(H-2k) mice and H-2As molecules of SJL(H-2s) mice (Rao et al., 1994). On 

the other hand, the genetic pattern of mouse susceptibility can vary, depending on the 

pathogenic epitope: rTg peptide 2696-2713 (TgP2) caused EAT in SJL(H-2s) mice, but not in 

C3H or B10.BR(H-2k), BALB/c(H-2d), and B10(H-2b) mice (Carayanniotis et al., 1994). 

Last, the role of polymorphic genes HLA-BR1 (DR3) in the development of EAT 

following Tg immunization has been addressed using HLA-DR and HLA-DQ transgenic mice: 

immunization of HLA-BR1*0301(DR3) transgenic mice with mTg or hTg resulted in severe 

thyroiditis, while transgenic mice expressing HLA-BR1*1502(DR2) gene were resistant to 

EAT (Kong et al., 1996). The introduction of the H-2Eak transgene into B10(H2b) or MHC 

class II-negative Ab0 mice, both resistant to EAT, conferred upon them susceptibility to EAT 

induced by bovine, porcine or human Tg, but not murine Tg (Wan et al., 1999). 

 

2.5. Structure and function of human thyroglobulin (hTg) 

The Tg gene: structure and evolution 

The hTg gene is located on chromosome 8 and it is one of the gratest genes known, 

encompassing 42 exons and spanning more than 300,000 base pairs (Baas et al., 1986). About 

two-thirds of Tg at its amino-terminal side consist of tandemly repeated cysteine-rich motifs 
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of various kinds. This portion of the hTg gene probably derives from duplication of an 

ancestral unit made of four exons. Subsequent unequal crossing-over events, and the partial 

“exonization” of some introns and the loss of several others, seem to have resulted in the 

present structure. The carboxy-terminal third of Tg is homomlogous with acetylcholinesterase 

and appears to have been originated from the duplication of an ancestral gene, in common 

with a superfamily of esterases (Takagi et al., 1991; Krejci et al., 1991). Thus, Tg appears to 

be made of two mojetes, an amino-terminal one and a carboxy-terminal one, with different 

evolutionary histories, both being able to support the biosynthesis of thyroid hormones.      

Structure of hTg 

The full-length sequence of the hTg mRNA has been determined from overlapping 

cDNA clones (Malthiéry and Lissitzky, 1987). It consists of 8448 nucleotides, including an 

untranslated 5′-end, an open reading frame, and an untranslated 3′-end, and encodes a 

polypeptide of 2767 amino acids. The first 19 residues probably represent a  hydrophobic 

signal sequence and are absent from the mature protein, which is composed of 2748 residues 

and has an expected Mr of 302,773. Two-thirds of the Tg sequence at its amino-terminal side 

consist of tandemly repeated motifs. The type-1 motif is 60-70-residue long, contains 6 

cysteinyl residues, and is repeated 10 times. The type-2 motif consists of 14 to 17 amino 

acids, 2 of which are cysteines, and is repeated 3 times at the center of Tg. Five type-3 

repeats, subdivided into three subtype-3a repeats, with 8 cysteines each, and 2 subtype-3b 

repeats, with 6 cysteines each, follow in alternating order. The type-1 motif is homologous 

with a cystein-rich motif of the invariant chain associated with the class II major 

histocompatibility antigen (McKnight et al., 1989). The sequence of 570 amino acids at the 

COOH-terminus of Tg shows a high degree of similarity (up to 60% in some regions) with 

those of the members of a superfamily of lipases and esterases, including the 
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acetylcholinesterase of Torpedo californica, human serum cholinesterase, and others (Takagi 

et al., 1991; Krejci et al., 1991). Mature hTg is a mixture of both non-covalent and covalent 

omodimers, having a molecular mass of 330,000.       

Post-translational modifications of hTg: glycosilation 

Carbohydrate contribute about 10 per cent of the Tg mass. Two kinds of 

oligosaccharide units (A and B) are attached by glycosylamine linkages to asparagine residues 

of Tg. High-mannose A units contain a variable number (7-9) of mannose residues and 2 N-

acetylglucosamine residues. Complex B units contain 3 mannose residues and a variable 

number of N- acetylglucosamine, galactose, fucose, and sialic acid residues (Arima et al., 

1972). Human Tg also contains C and D oligosaccharide units. C units are linked to serine 

and threonine by O-glycosidic bonds and contain galactosamine; D units are chondroitin-6-

sulfate-like oligosaccharides linked to serine and contain a repeating unit of glucuronic acid 

and galactosamine, plus xylose, galactose, and sulfate (Spiro et al., 1977). 90 per  cent of the 

[35S]-sulfate incorporated into human Tg is equally distirbuted in: a) biantennary B units, 

containing galactose-3-sulfate, and tri- and tetra-antennary B units containing galactose-3-

sulfate and N-acetylglucosamine-6-sulfate; b) chondroitin-6-sulfate-like D units (Spiro and 

Bhoyroo,1988; Schneider et al., 1988). 

Post-translational modification of hTg: iodination, sulfation  and hormonogenesis 

Iodoamino acids in hTg include monoiodotyrosine (MIT), 3,5-diiodotyrosine (DIT), and 

the hormones 3,3′,5-triiodothyronine (T3) and 3,3′,5,5′-tetraiodothyronine (thyroxine, T4). 

Under normal conditions, the iodine level ranges from 10 to 40 moles of iodine atoms per 

mole of Tg. MIT, DIT and T4  appear to be in a precursor-product relationship, in the same 

order. For an iodine content of 0.5 per cent of the Tg weight (25 moles of iodine atoms per 

mole of Tg), 2.5-3 moles of T4 and less of than 1 mole of T3 are formed per mole of human 
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Tg. T3 and T4 are formed in Tg via the iodination of specific tyrosyl residues and the 

subsequent transfer of an iodophenoxyl group from a “donor” iodothyrosine, which provides 

the outer ring, to an “acceptor” iodothyrosine, which provides the inner ring. The main T4-

forming site of Tg has been located at tyrosine 5 (Lejeune et al., 1983). T4 formation in 

human Tg appears to involve tyrosine 5 as the acceptor site and tyrosine 130 as the donor site 

(Marriq et al., 1991). T4 is also formed at tyrosines 2553 and 2567 (Lamas et al., 1989). 

Dehydroalanine residues have been identified at several positions of Tg from various animal 

species, including  Tyr1375 of bovine Tg (Gentile et al., 1997). 

Several observations lead to the conclusion that the NH2- and COOH-terminal  regions 

of Tg represent autonomous hormone-forming domains. A mutation in amino acid 296 of Tg, 

resulting in premature termination and goitre in Dutch goats, determined the production of 

two NH2-terminal fragments, with masses of 40,000 and 32,000. However, these were 

capable of effiient thyroid hormone production, in the presence of iodide supplementation 

(Veenboer and de Vijlder, 1993). Thyroid hormones were also efficiently formed by the in 

vitro iodination of a carboxy-terminal fragment of rat Tg fused to Staphylococcal protein A 

(Asunciòn et al., 1992). 

 

2.6. Immunopathogenic epitopes of Tg and EAT 

The recognition of a certain number of conserved epitopes of mTg and hTg by H-2k- 

and H-2s-restricted T lymphocytes seems at the base of the development of murine EAT 

(Simon et al., 1986). Their current inventory is shown in Table 1. The epitopes recognized by 

autoreactive T cells are essentially linear in nature, as their reactivity was independent of 

polypeptide fragment size, and insensitive to thermal denaturation and reduction (Shimoio et 

al., 1988). By using two mTg-autoreactive T cell hybridomas, reacting selectively with T4-
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containing tryptic peptides of hTg, peptide 2551–2559, with T4 at position 2553, was 

identified among a set of synthetic peptides, centered on the four hormonogenic sites of hTg 

(Champion et al., 1991). Such a strategy was adopted because iodinated mTg was capable of 

inducing EAT and activating selectively autoreactive T cells in CBA ⁄J(H-2Ak) mice, whereas 

iodine-poor mTg only triggered the production of anti-mTg autoantibodies (Champion et al., 

1987). 

However, peptide 2549–2560, with T4 at position 2553, termed T4(2553), stimulated 

proliferative responses in vitro and the adoptive transfer of EAT by T cells, primed in vivo 

either with the same peptide or with mTg, but was incapable of direct EAT induction 

(Hutchings et al., 1992). Homologous peptides with tyrosine or deiodinated T4 at position 

2553 also failed to elicit proliferative T cell responses (Dawe et al., 1996). In contrast, others 

reported that in CBA ⁄J(H-2Ak) mice, synthetic hTg peptide 2549–2560, with thyronine (T0) 

at position 2553, was able to induce proliferative responses and activate the transfer of EAT 

by peptide-primed or mTg-primed lymphonode cells (LNCs), although with lower efficiency 

than peptide 2549–2560 with T4 2553 (Kong et al., 1995). On the other hand, peptide 1–12, 

containing T4 at position 5, this being the main hormonogenic site in Tg, elicited only mild 

thyroiditis and weakly stimulated mTg-primed, but not peptide-primed, LNCs to proliferate 

and adoptively transfer EAT (Kong et al., 1995; Wan et al., 1997). The observation that the 

peripheral blood T cells of patients with chronic autoimmune thyroiditis were equally 

responsive to hTg with variable iodine contents seemed to limit the immunopathogenic role of 

Tg iodination (Shimojo et al., 1988). However, it was later reported that T cells from patients 

with chronic thyroiditis and normal controls proliferated in response to minimally iodinated, 

but not iodine-free hTg (Rasooly et al., 1998). A different, non-iodinated peptide of hTg, 

spanning residues 1672–1711, named F40D, induced EAT in CBA⁄J mice. It was partly 

homologous with a tryptic pTg peptide, which activated a cytotoxic T cell hybridoma derived 
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from the LNCs of pTg- or hTg-primed mice (Texier et al., 1992) Two peptides of rat Tg 

(rTg), identified by using predictive algorithms, induced strong secondary proliferative 

responses by peptide-specific LNCs. Rat Tg peptide 2496–2512 (TgP1, p2495) caused 

extensive EAT in C3H(H-2k) and SJL(H-2s) mice (Chronopoulou et al., 1992). The nonamer 

2497–2505 was the minimal T-cell epitope in TgP1, and could be presented within the 

context of the non-isotypic H-2Ek and H-2As molecules. Instead, epitope 2500–2508, which 

was restricted to the H-2Ak and H-2As molecules, induced only weak EAT and did not elicit 

proliferative responses in either strain of mice (Rao et al., 1994). The rTg peptide 2696–2713 

(TgP2, p2695) caused only focal EAT by direct induction in H-2As mice, and extensive EAT 

by the adoptive transfer of peptide-specific LNCs to naive syngeneic recipients 

(Carayanniotis et al., 1994). A major immunopathogenic T-cell epitope was localized in the 

rTg peptide 2696–2707, while its human homologue, with the substitutions Glu2703Ser and 

Thr2704Ser, caused only focal thyroiditis by the adoptive transfer of LNCs, and did not 

stimulate secondary T-cell responses in vitro (Rao et al., 1997). Another hTg peptide (2730–

2743), selected because of its partial homology with sequence 118–131 of hTPO, activated 

only the adoptive transfer of EAT by mTg-primed LNCs (Hoshioka et al., 1993). All the 

epitopes described were non-dominant, as none was able to prime in vivo LNCs that could 

proliferate or transfer EAT to syngeneic hosts, upon stimulation with intact Tg in vitro. Only 

peptides 2496–2512 and 1672–1711 caused extensive EAT by direct induction, whereas most 

of them activated in vitro the transfer of  EAT by peptide-specific LNCs. Peptides 2496–2512 

and 2696–2713 could not stimulate in vitro hTg-primed LNCs, either. However, when SJL 

(H-2s) mice were immunized with maximally iodinated mTg (I-Tg, containing more than 60 

iodine atoms per Tg monomer), they developed more severe EAT, and the behaviour of 

peptide 2496–2512 changed to dominant, as though iodination enhanced the presentation of a 

cryptic epitope, which, in turn, activated resting autoreactive T cells. I-Tg-primed LNCs 
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proliferated strongly in vitro against peptide 2496–2512, and so did a peptide-specific T cell 

hybridoma, activated with I-Tg-pulsed splenocytes (Dai et al., 2002). On the basis of previous 

observations (Duthoit et al., 2000; Dunn et al., 1983), it is possible that mTg fragmentation 

and the exposure of cryptic epitopes had occurred already during the incorporation of non-

physiological iodine levels into mTg in vitro. All of the above peptides induced peptide-

specific antibody responses, but only peptides 2549–2560 withT4(2553) and 2496–2512 

induced the formation of anti-hTg antibodies (Kong et al., 1995; Wan et al., 1997; Rasooly et 

al., 1998; Texier et al., 1992; Chronopoulou and Carayanniotis, 1992). A recent search, 

conducted by using an algorithm for Ak-binding motifs in mTg, identified five additional 

immunogenic, non-iodinated and non-dominant epitopes, which induced the proliferation in 

vitro of peptide-primed, but not mTg-primed, LNCs (Table 1). Four of them (peptides 306–

320, 1579–1591, 1826–1835 and 2596–2608) induced very mild or mild EAT directly, and all 

induced EAT of low to moderate grade, by the adoptive transfer of peptide-primed LNCs. 

Peptides 2102–2116 and 2596–2608 elicited peptide-specific antibodies that did not react 

with intact mTg (Verginis et al., 2002). Finally, one (or more) non-dominant T-cell epitope(s) 

was (were) found in peptide 2340–2359 of hTg, which contained several Ek-binding motifs. 

This elicited mild to moderate EAT by direct subcutaneous challenge in complete Freund’s 

adjuvant in AKR⁄J mice, and specific proliferative and secretory responses by peptide-primed, 

but not hTg-primed, LNCs in vitro. Peptide-primed LNCs did not respond to intact hTg, 

either (Karras et al., 2003). Notably, this peptide coincided with a peptide (2339–2358, 

TgP15) recognized by Tg-reactive B cells in GD patients (Thrasyvoulides et al., 2001) (see 

Table 1 and Fig. 1). More recently, hTg p2340 has been found able to induce EAT in HLA-

DR3 transgenic mice, suggesting that it could be presented by DR3 molecules in patients with 

Hashimoto’s thyroiditis and participate in the development of the disease (Karras et al., 

2005). The EAT-causing epitopes of Tg are listed in Table 1, while Figure 1 illustrates their 
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location along the polypeptide chain of Tg, also in relation with its repetitive organization and 

with the epitopes recognized by human anti-hTg autoantibodies. Seven out of 13 epitopes 

were located within the AChE-homologous domain, and six of these were comprised within a 

fragment having a mass of 40,000, and starting at residue 2384, which was produced during 

the iodination or the oxidation of hTg in vitro and in vivo, and was recognized by the 

autoantibodies in the sera of AITD patients (Duthoit et al., 2000; Duthoit et al., 2001). 

Peptides 2102–2116 and 2696–2713 were also comprised within two cross-reacting tryptic 

fragments of hTg, with masses of 23,000 and 15,000, starting at residues 2089 and 2657, 

respectively, and bearing HT-related B cell epitopes (Saboori et al., 1995; Saboori et al., 

1999). Of particular interest was the coexistence of GD-related B cell epitopes and EAT-

causing T cell epitopes in the 20-mer peptide 2339–2358 (Thrasyvoulides et al., 2001; 

Verginis et al., 2002). The remaining EAT-causing peptides lay in cysteine-rich regions, 

namely repeats 1A.4, 3A.1 and 3B.1. The immunopathogenic, non-dominant character of 

these epitopes is compatible with the hypothesis, originally put forth for Tg type-1 motifs, 

that the cysteine-rich repeats of Tg may inhibit lysosomal proteases (Molina et al., 1996) and 

thus contain cryptic epitopes, which are not normally processed and presented to the immune 

system, and whose exposure may be responsible for the breaking of peripheral tolerance to 

hTg. Notwithstanding numerous studies, the diversity of immunogenic and pathogenic 

epitopes of hTg, and their location, are still open to investigation. All the EAT-related Tg 

epitopes characterized so far, mostly on the base of predictive algorithms, were non-

dominant. The detection of immunodominant epitopes may be precluded by the limitations of 

algorithm-based approaches (Verginis et al., 2002). The binding of peptide 2496–2512 to 

nonisotypic H-2As and H-2Ek products illustrates the fact that the requirements for the 

presentation of peptides on MHC molecules may exceed binding motifs, by incorporating 
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processing constraints (Rao et al., 1994). It can be expected that other determinants of 

pathogenic importance will be identified in Tg by more direct methods. 
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Table 1 – Immunopathogenic Tg peptides causing EAT in mice 

 

      EAT induction    

Position Historical name Murine 

strain 

H-2 

haplotype 

MHC 

restriction 

Tg Direct Adoptive T cell 

responses 

Abs Ref. 

1-12 (a) T4(5) CBA k ND hTg ± ± ± + 
Kong et al., 

1995 
Wan et al., 

1997 

306-320 (b) p306 CBA k Ak mTg + + + – Verginis et al., 
2002 

1579-1591 (b) p1579 CBA k Ak mTg ± + + – Karras et al., 
2003 

1672-1711 (a) F40D CBA k ND hTg + ND ND + Karras et al., 
2003 

1826-1835 (b) p1826 CBA k Ak mTg ± + + – Verginis et al., 
2002 

2102-2116 (b) p2102 CBA k Ak mTg – ± + + Karras et al., 
2003 

2340-2359 (c) p2340 AKR k Ek hTg + ND + + Karras et al., 
2003 
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2496-2512 (d) TgP1, p2495 

2495-2511 (a) 

B10.BR, 

C3H, SJL 

k, s Ek, As rTg + ND + + (e) Chronopoulou 
Carayannniotis

1994 

2497-2505 (d) 2496-2504 (a) C3H, SJL k, s Ek, As rTg + ND + + Rao et al. 1994 

2500-2508 (d) 2499-2507 (a) C3H, SJL k, s Ak, As rTg ± ND – – Rao et al. 1994 

2549-2560 (a) T4(2553) CBA k Ak hTg – + (f, g) + + 
Kong et al., 

1995 
Wan et al., 

1997 

2596-2608 (b) p2596 CBA k Ak mTg ± + + + Verginis et al., 
2002 

2696-2713 (d) TgP2, p2695 

2695-2713 (a) 

SJL s As rTg ± + + + Carayanniotis 
et al., 1994 

2696-2707 (d) 2695-2706 (a) SJL s As rTg ND + + + Rao and 
Carayanniotis, 

1997 

2730-2743 (a) 2730-2743 CBA k ND hTg – + (f) + ND Hoshioka et al. 
1993 

ND = not determined 
(a) Amino acid residues numbered as in the cDNA-derived sequence of hTg, according to Malthiéry and Lissitzky, 1987 
(b) Amino acid residues numbered as in the cDNA-derived sequence of mTg (Kim et al., 1998) 
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(c) Amino acid residues numbered as in the cDNA-derived sequence of hTg, as modified by van de Graaf et al., 1997. Peptide 2340-2359 

coincides with peptide 2339-2358 (TgP15) (Figure 1) whose extremities were numbered according to Malthiéry and Lissitzky, 1987 
(d) Amino acid residues numbered as in the cDNA-derived sequence of rTg (Hishinuma et al., 2000). The extremities of these rTg peptides 

were originally numbered as in the cDNA-derived sequence of hTg, according to Malthiéry and Lissitzky, 1987 
(e) Antibodies cross-reacting with Tgs of various animal species 
(f) By transfer of LNC primed in vivo and restimulated in vitro with the peptide 
(g) By transfer of LNC primed in vivo with mTg and restimulated in vitro with the peptide 



 22 

 



 23 

Figure 1. Diagrammatic representation of hTg, showing the epitope-bearing peptides 

recognized by human anti-hTg autoantibodies and the immunopathogenic peptides, 

causing EAT in mice. Tandem repeats of hTg are according to Malthiéry and Lissitzky, 

1987, and Molina et al., 1996a. Repeated motifs and other parts of hTg are represented as 

boxes filled as follows: black, type-1A repeats; horizontal hatch, type-1B repeats; grey, type-2 

repeats; upward right cross-hatch, type-3A repeats; downward right cross-hatch, type-3B 

repeats; upward right narrow cross-hatch, AChE-homologous domain; white, unrelated 

sequences interrupting individual repeats and spacers separating tandem repeats. Spacer 1 

indicates the region between type-1 and type-2 repeats, encompassing residues 1191-1435. 

Spacer 2 indicates the region between type-1B.2 and type-3 repeats, encompassing residues 

1546-1582. Spaces have been introduced for clarity between contiguous motifs and bear no 

relationship to gene introns; , glycosylation site;  , hormonogenic acceptor and  , donor 

tyrosine (filled symbols represent those demonstrated in hTg, empty symbols those found in 

other animal species). T cell- and B cell-related epitope-bearing peptides are identified by the 

amino acid numbers at their extremities, as in Table 1, and are represented as grey boxes on 

top of the hTg diagram, whose lenght is proportional to the polypeptide length. Peptides 

whose C termini are based on presumptive estimates are identified by their amino-terminal 

residue number only, and are represented by grey boxes with broken C-terminal extremities. 

Legend: a) chemically synthesized peptides; b) fragments produced by oxidative cleavage; c) 

peptides obtained by chemical or enzymatic proteolysis; d) recombinantly expressed peptides. 

Overlapping regions of different epitope-bearing peptides are connected by vertical broken 

lines (dotted lines for peptides with presumptive C termini). Notice that the B-cell epitope-

bearing peptide 2339-58 and the T-cell epitope-bearing peptide 2340-59, whose extremities 

were numbered as in the hTg sequences reported by Malthiéry and Lissitzky, 1987 and van de 

Graaf et al., 1997, respectively, actually coincide. 
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2.7. Chondroitin 6-sulfate oligosaccharide units and immune responses 

A number of studies were focused on the role of chondroitin sulfate oligosaccharide 

units in the modulation of immune responses. A small proportion of invariant chain molecules 

(Ii), associated with class II MHC molecules at the surface of antigen-presenting cells (APC), 

is modified with the addition of chondroitin sulfate oligosaccharide units (Ii-CS). Ii-CS 

dramatically enhances the ability of APC to stimulate mitogenic and allogeneic T cell 

response, through the interaction with CD44 (Naujokas et al., 1993). CD44, a transmembrane 

glycoprotein, widely expressed on leukocytes, fibroblasts, endothelial and epithelial cells, is 

the principal cell surface receptor for hyaluronan (HA), but recognizes also chondroitin 4- and 

6-sulfate, although with lower affinity (Aruffo, 1990; Sy, 1991). Its co-stimulatory role in T 

cell activation is supported by a number of studies (Sommer, 1995; Yashiro, 1998). 

Serglycine, a family of secretory granule proteoglycans, modified with chondroitin-4 

and -6 sulfate and expressed in lymphoid and myeloid cells, bind specifically CD44 and their 

addition to cytotoxic T lymphocytes (CTL) clones promotes the release of cytokines and 

proteases from secretory granules (Toyama-Sorimachi et al., 1997). CD44 also interacts with 

aggrecan, a major component of bovine and rat cartilage. Such binding is dependent on 

chondroitin sulfate-A and chondroitin sulfate-C lateral chains of aggrecan. The interaction of 

aggrecan with CD44 determines oligomerization of CD44 molecules and the activation of 

intracellular signaling (Fujimoto et al., 2001). CD44 also binds versican, a CS-bearing 

proteoglican, expressed in fibroblasts, keratinocytes and arterial smooth muscle cells in 

kidney, skin, brain, and other tissues. The interaction occurs through the chondroitin sulfate-B 

and -C side chains of versican (Kawashima et al., 2000). 
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3. AIM OF THE STUDY 

Tg is not only the molecular site of thyroid hormone formation, but also a major 

autoantigen, involved in the pathogenesis of thyroid autoimmunity. Numerous post-

translational modifications contribute to the molecular microheterogeneity of hTg. Iodine 

addition and hormone formation at specific sites have the most obvious effects on thyroid 

function, but effects of glycosylation on the hormone-forming efficiency at specific sites and 

on the immunogenicity of Tg have also been clearly documented Mallet et al., 1995; 

Fenouillet et al., 1986). HTg is modified with the addition of several kinds of oligosaccharide 

units among which N-linked type A (high-mannose) and type B (complex) units have been 

characterized best, as to their composition and localization (Arima et al., 1972; Arima and 

Spiro, 1972; Yang et al., 1996). Among O-linked oligosaccharide chains, type D units were 

reported to be composed of a repeating disaccharide of the chondroitin 6-sulfate type, 

attached to the polpeptide chain through a galactosyl-serine linkage region (Spiro, 1977; Spiro 

and Bhoyroo, 1988; Schneider et al., 1988). However, the number and localization of type D 

oligosaccharide units in the hTg molecule was not established. Several studies have suggested 

the influence of oligosaccharide chains in the processing and/or presentation of glycoproteic 

antigens (Glant et al., 1998; Vlad et al., 2002; Hanisch et al., 2003; Anderton, 2004), and the 

involvement of chondroitin 6-sulfate oligosaccharide chains in the modulation of cellular 

immune responses (Naujokas et al., 1993; Toyama-Sorimachi et al., 1997; Fujimoto et al., 

2001). Prompted by these observations, we set up to determine: 1) the number and 

localization of chondroitin 6-sulfate oligosaccharide chain(s) in hTg, and 2) the influence of 

post-translational addition of chondroitin 6-suoftae unit(s) on the immunopathogenicity of 

hTg in a murine model of experimental autoimmune thyroiditis. 
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4. MATERIALS AND METHODS 

4.1. Material 

Thermolysin from Bacillus thermo-proteolyticus rokko  (EC 3.4.24.4) and L-1-

tosylamide-2-phenylethylchloromethyl- (TosPheCH2Cl-) treated trypsin from bovine 

pancreas (EC 3.4.21.4), endoproteinase Glu-C from Staphylococcus areus (EC 3.4.21.19), 

lactoperoxidase from bovine milk (EC 1.11.1.7), and glucose oxidase from Aspergillus niger 

(EC 1.1.3.4) were purchased from Sigma-Aldrich (Milan, Italy), protease-free chondroitinase 

ABC from Proteus vulgaris (EC 4.2.2.4) from Boehringer Mannheim (Milan, Italy), 

aminopeptidase M from porcine kidney (EC 3.4.11.2) and pronase from Streptomyces griseus 

from Calbiochem (San Diego, CA, USA). Sephacryl S-300 HR, HiTrap™ Q Sepharose HR, 

DEAE-Sepharose Fast Flow, and Sephadex G50 fine were obtained from GE Healthcare, 

BioGel P-2 and electrophoresis products from Bio-Rad Laboratories (Milan, Italy), 

Immobilon P from Millipore (Vimodrone, Italy), HPLC-grade solvents from Carlo Erba 

(Milan, Italy), bicinchoninic acid (BCA) Protein Assay Reagent from Pierce (Rockford, IL, 

USA), diethyl-methyl-dibenzo-thiacarbocyanine (DMTCC, Stains All™) from ICN 

Biomedicals (Milano, Italy), solid-phase kits for radioimmunoassays of total T4 and T3 from 

Medical Systems (Rio Torbido, Italy), other analytical grade chemicals from Sigma-Aldrich. 

 

4.2. Purification of hTg and its chondroitin 6-sulfate-containing (hTg-CS) and 

chondroitin 6-sulfate-devoid (hTg-CS-) subfractions by ion-exchange 

chromatography on Hi-Trap™ Q-Sepharose HR (Q-IEC) 
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HTg was prepared from thyroid tissue obtained from informed euthyroid patients 

hemilaryngectomized for non-thyroidal disease, and patients undergoing subtotal 

thyroidectomy for non-familial, simple or multinodular goiter. HTg was prepared either by 

extraction or by homogenization with an Omnimixer homogenizer, in 0.05 M sodium 

phosphate, pH 7.2 (1 ml/g tissue), at 4 °C for 6 hours, followed by fractional precipitation 

with 1.4-1.8 ammonium sulphate, 0.05 M Tris.HCl, pH 7.2, and gel filtration on Sephacryl S-

300 in 0.13 M NaCl, 0.05 M Tris.HCl, pH 7.4 (buffer A). In order to increase the 

immunogenicity of hTg, poor-iodine hTg from goiter was iodinated enzymatically in vitro, 

using 2 µg/mL of bovine lactoperoxidase and 4 x 10-5 M KI, plus 0.23 µg/mL of glucose 

oxidase from Aspergillus niger and 1 mM D-glucose, as the H2O2 generating system, over 90 

min at 25 °C. Under these conditions, the amount of iodine incorporated into hTg was 

regularly 0.5%  (percent of hTg mass, corresponding to 25 moles of iodine atoms/mole of 

hTg). Subsequently, hTg was dialyzed against phosphate-buffered saline (PBS), containing 

136 mM NaCl, 6 mM Na2HPO4, 1,5 mM KH2PO4,, 3 mM KCl). Protein concentration was 

estimated by measuring the absorbance at 280 nm, using an extinction coefficient of 10 cm-1 

for a 1% solution. The iodine content was measured by a non-incinerative method, using L-

thyroxine as the standard (Palumbo et al., 1982). 

HTg molecules containing type D (chondroitin 6-sulfate) oligosaccharide units (hTg-CS) 

were separated from the residual hTg molecules, devoid of them (hTg-CS-), by ion-exchange 

chromatography on trimethylamino-substituted Q-Sepharose (Q-IEC), using 5-mL HiTrap™ 

Q-Sepharose HR columns (GE Healthcare), equilibrated in 0.025 M Tris/HCl, pH 7.4 (buffer 

A). Up to 20 mg of hTg in buffer A, plus 0.05 M NaCl, were applied to the column. After 

washing with buffer A, a linear gradient from 0 to 100% of buffer B (1.2 M NaCl in buffer A) 

was developed in 24 min, at the flow rate of 2.5 mL/min. 1-mL fractions were analyzed, or 

stored at -80 °C until use. Areas under peaks were calculated using the NIH Image software. 
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In order to minimize contamination of hTg preparations with bacterial products, namely 

endotoxins, both the head of the gel filtration column and anion-exchange column were 

provided with polyethersulphone ultrafiltration membrane Biomax, with 10 KDaltons pores 

(Pellicon XL, Millipore). The concentration of bacterial endotoxin in hTg preparations to be 

used both for mice immunization and stimulating lymphocytes proliferation, measured by 

Limulus amebocytes lysate test, resulted <0.01 Endotoxin Units (EU)/mL. Unfractionated 

hTg, hTgCS-  and hTgCS  have been concentrated by centrifugation in Centriprep-30 to a 

final concentration of 2.0 g/L and stored at -80°C until use. 

 

4.3. Compositional analysis of the fractions of the Q-IEC of hTg 

Uronic acids were assayed in Q-IEC fractions by the meta-hydroxy-biphenyl mehod 

(Blumenkrantz et al., 1973), using D-glucuronic acid (0-5 µg) as the standard. Duplicate 

samples of 30-500 µg of hTg were dialyzed against 0.01 M NH4HCO3, dried in speed vacuum 

concentrator, and redissolved in 0.2 mL of dH2O in borosilicate Pyrex tubes. Samples were 

processed by the addition of 1.2 mL of 0.0125 M Na2B4O7•10 H2O in H2SO4, followed, after 

heating in boiling water bath for 5 min and cooling on ice, by 0.02 mL of 0.15% m-hydroxy-

biphenyl in 0.5% NaOH, after which the optical absorbance at 520 nm was read. Correction 

for aspecific color development was provided by a replicate set of samples, which were 

treated identically, except that m-hydroxy-biphenyl in the 0.5% NaOH reagent was omitted. 

Total neutral hexoses were assayed in duplicate samples of 20-300 µg of hTg, by the anthrone 

method (Spiro, 1966), using D-galactose (0-20 µg) as the standard. Sialic acid was assayed in 

duplicate samples of 40-500 µg of hTg, by the thiobarbituric acid method (Warren, 1963), 

using N-acetylneuraminic acid (0-15 µg) as the standard. Iodine was assayed in duplicate 

samples of 30-200 µg of hTg, using the method cited (Palumbo et al., 1982). 
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4.4. Enzymatic in vitro iodination of hTg and analysis of the iodine, T3 and T4 content 

HTg from goiters, with an iodine content not exceeding 0.09% on a weight basis was 

iodinated enzymatically in vitro. Bulk iodination of 20 mg of unfractionated hTg, at the 

concentration of 0.45 g/L, was performed in 0.02 M imidazole/HCl, pH 7.0, using 2 µg/mL of 

bovine milk lactoperoxidase, 4 x 10-5 M KI, 1 mM D-glucose and 0.19 µg/mL of glucose 

oxidase from Aspergillus niger. Iodination was stopped with 0.05 M 2-mercapto-1-

methylimidazole (MMI). Comparative iodination of hTg, hTg-CS and hTg-CS- was 

performed with 0.65 mg of each protein, under identical conditions, except that 7.5 x 10-5 M 

KI, and 0.21 µg/mL of glucose oxidase were used. Aliquots of 0.1 mg of hTg were withdrawn 

at intervals of 5, 15, 30, 50, 70 and 90 min, supplemented with MMI, dialyzed against 0.01 M 

NH4HCO3, 0.005 M NaCl, and assayed in duplicate for protein content, using the BCA 

Protein Assay Reagent (Bio-Rad Laboratories) and bovine serum albumin as the standard, and 

iodine content, as already described. For the assay of T4 and T3, 10-15 µg of hTg were 

hydrolyzed at 37 °C with Pronase, at the enzyme/substrate weight ratio of 1/1, in 0.2 mL of 

0.1 M Tris/HCl, pH 8.0, 0.05 M MMI, to which 15 µl of toluene were added. After 24 h, 

aminopeptidase M was added, at the enzyme/substrate weight ratio of 1/10, and digestion 

prolonged for 24 h at 37 °C, after which T4 and T3 were measured by solid-phase RIA 

(Medical Systems). 

 

4.5. Limited proteolysis of hTg 

HTg, at the concentration of 1 g/l in 0.05 M Tris/HCl, 0.1 M NaCl, pH 7.4, was 

digested with thermolysin, at the enzyme/substrate weight ratio of 1/50, at 30 °C for 80 min, 
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or with TosPheCH2Cl-treated trypsin (henceforth referred to as trypsin), at the 

enzyme/substrate weight ratio of 1/100, at 30 °C for 20 or 40 min. Proteolytic digestion was 

stopped with 3 x 10-5 M antipain, 2 x 10-6 M aprotinin, 5 x 10-4 M benzamidine, 4 x 10-5 M 

leupeptin, 1 x 10-4 M tosyl-lysil-chloromethylketone, 2 x 10-5 M phenyl-methyl-sulfonyl 

fluoride, 5 x 10-3 M EDTA and, in the case of trypsin, soybean trypsin inhibitor, at the 

inhibitor/enzyme weight ratio of 3/1. Thereafter, concentrated SDS-PAGE sample buffer was 

added to a final concentration of 0.01 M Tris/HCl pH 6.8, 1% SDS, 5% 2-mercaptoethanol 

(v/v), 1.36 M glycerol, 0.0025% bromophenol blue, and the samples were heated in a boiling 

water bath for 1.5 min and immediately subjected to SDS-PAGE. 

 

4.6. Enzymatic digestion of chondroitin 6-sulfate oligosaccharide units of hTg and hTg 

proteolytic fragments with chondroitinase ABC 

HTg or its proteolytic fragments in 0.1 M NaCl, 0.05 M Tris/HCl, pH 7.4 were 

supplemented with equal volumes of 0.1 M Na acetate, 0.1 M Tris/HCl, pH 8.0, and 200 

mU/mL of chondroitinase ABC from Proteus vulgaris, which degrades chondroitin 4-sulfate 

and 6-sulfate oligosaccharide chains into sulfated disaccharides, by hydrolizing the glycosidic 

bonds between glucuronic acid and N-acetylgalactosamine sulfate in the repeating 

disaccharide units. The protease inhibitors already indicated with regard to limited proteolysis 

were added, when not already present. Samples were incubated at 37 °C for 4 h, and then 

subjected to precipitation in methanol/chloroform/water (Wessel and Flügge, 1984) and 

immediately analyzed by SDS-PAGE. 

 

4.7. Separation and identification of the products of limited proteolysis of hTg 
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Analytical PAGE of the digestion products in Tris-glycine-SDS was performed, using 

4-17% total acrylamide, 2.7% N,N'-methylene-bis-acrylamide gradient gels. Molecular mass 

standards were: myosin (205,000), β-galactosidase (116,000), phosphorylase b (94,000), 

bovine serum albumin (68,000), ovalbumin (45,000), carbonic anhydrase (30,000), and 

soybean trypsin inhibitor (20,000). Two replicas of each gel were made. One was stained with 

0.1% Coomassie Brilliant Blue (CBB) R-250 in 25%(v/v) 2-propanol, 10%(v/v) acetic acid, 

destained in 25% (v/v) methanol, 10% acetic acid. The other was fixed in 25% (v/v) 2-

propanol, 10% acetic acid, thoroughly rinsed in double-distilled H2O, stained with 0.005% 

diethyl-methyl-dibenzo-thiacarbocyanine (DMTCC) in 50% formamide for 48 h, and finally 

destained in 5% glycerol (v/v) in tap water (Dahlberg et al., 1969). Bands were identified on 

the basis of their mobilities, according to the detailed characterization of their NH2-terminal 

peptide sequences provided in a previous study (Gentile and Salvatore, 1993). Proteolytic 

fragments to be identified ex novo were separated by reducing or non-reducing SDS-PAGE, 

in 4-17% acrylamide gradient gels, and transferred to polyvinylidene difluoride (PVDF) 

membranes (Immobilon P, Millipore) by semi-dry blotting in 25 mM Tris, 10 mM glycine, at 

the constant current of 0.8 mA/cm2 for 1 h. Membranes were rinsed in double-distilled H2O, 

stained with 0.1% CBB R-250 in 50% methanol, and destained in 50% methanol, 10% acetic 

acid. Bands were subjected to NH2-terminal peptide sequencing at the Protein Structure 

Laboratory, University of California, Davis. Peptide sequences were aligned with the cDNA-

derived sequence of hTg (Malthiéry and Lissitzky, 1987). 

 

4.8. Isolation and sequencing of glycopeptide hTg-CSgp 

Fifty mg of hTg-CS were denatured and reduced in 15 mL of 0.3 M Tris/HCl, pH 8.0, 6 

M guanidine/HCl, 1 mM EDTA, 10 mM dithiothreitol, at 37 °C for 2 h. The reduced protein 
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was carboxymethylated with a 5-fold molar excess of iodoacetamide, with respect to total –

SH groups, at room temperature for 30 min in the dark. Alkylation was stopped with excess 

dithiothreitol. The sample was dialyzed against 0.05 M phosphate, pH 7.8, and digested with 

endoproteinase Glu-C (protease V8) from Staphilococcus aureus, at the enzyme/substrate 

weight ratio of 1/100, at 37 °C for 18 h. The sample was adjusted with concentrated solutions 

to 0.025 M TrisHCl, 0.1 M NaCl, 2.0 M urea, pH 7.4 (buffer C), and loaded onto a 5-mL 

HiTrap™ Q-Sepharose HR column, equilibrated in the same buffer. After washing with 

buffer C, a gradient was started, from 0 to 100% of buffer D (1.2 M NaCl in buffer C) in 55 

min, followed by 100% buffer D for 10 min, at the flow rate of 1 mL/min. One-mL fractions 

were monitored for optical absorbance at 280 nm, and uronic acid content. A single uronic 

acid-containing peak was subjected to size exclusion chromatography on a 1.5-by-100-cm 

column of BioGel P-2 (Bio-Rad Laboratories), in 0.01 M NH4HCO3. An uronic acid-

containing peak, eluted in the void volume, was liophylized and further purified by gel 

chromatography on a 0.5-by-40-cm column of Sephadex G-50 fine (GE Healthcare), in 0.01 

M NH4HCO3. One-mL fractions were monitored for peptide-related optical absorbance at 220 

nm and uronic acid content, and a single peptide- and uronic acid-containing peak was 

liophylized. An aliquot of it was subjected to NH2-terminal peptide microsequencing. Purity 

was checked by PAGE in Tris-tricine-SDS, in a 16.5% T, 6% C gel, containing 6.0 M urea 

(Schägger and von Jagow, 1987), followed by semi-dry transfer to Immobilon P (Millipore), 

as already described, for 25 min. The membrane was stained with DMTCC in 50% 

formamide, and destained in tap water. 

 

4.9. Synthesis of a non-glycosilated peptide homologue of hTgCSgp 
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A chondroitin 6-sulfate-devoid peptide homologue of hTg chondroitin glycopeptide 

hTg-CSgp, with the LTAGSGLRE sequence, to be used as a negative control for the effects 

specifically due to the glycosidic unit of peptide hTg-CSgp, was synthesized at AnaSpec, Inc. 

(San Josè, California). The peptide was certified to be endotoxin-free. 

 

4.10. Isolation and characterization of tryptic fragment h4bisTR by HPLC and 

ElectroSpray Mass Spectrometry 

The fragments obtained from the limited digestion of 20 mg of hTg with trypsin for 20 

min, under the conditions described above, were freed from trypsin immediately after 

digestion, by passage through a 10-mL column of DEAE-Sepharose Fast Flow (GE 

Healthcare), in 0.025 M Tris/HCl, pH 7.2. HTg fragments were eluted with 0.15 M NaCl in 

0.025 M Tris/HCl, pH 7.2, and desalted by gel filtration on a 1.5-by-100-cm column of 

BioGel P-2 (Bio-Rad Laboratories), equilibrated with 0.01 M NH4HCO3. One-mg aliquots of 

the fragments were fractionated by reverse-phase HPLC, with a Vydac C-4 column (250 x 10 

mm, 5 µm), equilibrated in 0.1% (v/v) trifluoroacetic acid in H2O (solvent A), containing 2% 

of 0.07% trifluoroacetic acid in acetonitrile (solvent B). After 2 min at 35% of solvent B, the 

elution was conducted with a two-step linear gradient from 35 to 46% of solvent B over 35 

min, and from 46 to 55.5% over the following 35 min. The flow rate was 1 mL/min. Fractions 

were analyzed by SDS-PAGE in 4-17% total acrylamide gradient gels, under reducing and 

non-reducing conditions. Corresponding peaks from repeated runs were pooled for further 

mass spectrometric analysis. 

ES mass spectra of peptide h4bisTR were recorded with a PLATFORM mass 

spectrometer (Fisons, Manchester, UK), equipped with an electrospray ion source. Samples 

from the HPLC separation (10 µL, 20 pmol) were injected into the ion source at a flow rate of 
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10 µL/min; the spectra were scanned at the speed of 10 sec/scan. Mass calibration was carried 

out using the multiple charged ions from a separate introduction of horse heart myoglobin 

(average relative molecular mass of 16950.5). The quantitative analysis was performed by 

integration of the multiple charged ions of the single species. Molecular masses are reported 

as average values. The mass signals recorded in the spectra were associated with the 

corresponding peptides, on the basis of the expected molecular masses, using a dedicated 

software. 

 

4.11. Experimental animals 

All the experiments were conducted using female, 10-12 week-old, CBA/J(H-2k) mice 

genetically susceptible to EAT induction, purchased from Charles River. 

 

4.12. Induction of EAT 

On day 0, groups of 4-6 mice, were immunized s.c. with 100 µg of hTg, hTgCS-, 

hTgCS (2 mg/mL) in PBS, emulsified at 1:1 ratio in Complete Freund Adiuvant (CFA), 

containing 3.5 mg/mL Mycobacterium tuberculosis (H37-RA, Difco Laboratories, Detroit, 

Michigan). Ten 10 days later, mice were boosted s.c. with 50 µg of the same antigens in 

Incomplete Freund Adiuvant (IFA). Six weeks after the first immunization, mice were killed 

under anesthesia. Blood from tale veins, spleen and thyroid were immediately obtained. 

Serum was separated and stored at -20°C, thyroid lobes were fixed in 10% formalin and 

lymphocytes were used for proliferation assays. 



 35 

 

4.13. Histological scoring of EAT 

EAT was assessed by histological examination of the thyroid, using a modification of 

the criteria adopted by Dai et al., 2005. Mononuclear cell infiltration index was scored as 

follows: 0 = no infiltration; 1 = interstitial accumulation of cells between two or three 

follicles; 2 = one or two foci of cells at least the size of one follicle; 3 = extensive infiltration, 

10-40% of total area; 4 = extensive infiltration, 40-80% of total area, and 5 = extensive 

infiltration > 80% of total area. Each mouse was assigned the average infiltration index 

observed from both thyroid lobes (at least 10 sections per lobe were read and the average 

infiltration index per lobe was scored). 

 

4.14. Assay of T4 and T3 in serum 

T4 and T3 concentrations in the serum of experimental animals were determined on 10-

100-µL serum samples, by using solid-phase radio-immunometric assay kits (Medical 

Systems), with reference curves ranging from 0.3 to 7.7 pmoles for T4, and 30 to 920 fmoles 

for T3. 

 

4.15. Lymphocyte proliferation assays 
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Spleens were aseptically collected (soon after mice killing) in 60-mm Petri dishes in 5 

mL of RPMI medium, containing Na pyruvate, L-glutamine, 2x penicillin-streptomycin. 

Splenocytes have been obtained through mechanical disruption of the spleen with the upper 

extremity of a disposable syringe plunge and transferred to sterile 50 mL Falcon tubes, 

resuspended by gentle pipetting, after the addition of another 5 mL of medium, diluted 1/100 

with PBS and counted with a Burker cell. After centrifugation, medium was aspirated and 

cells were resuspended in complete medium containing 2% fetal bovine serum (FBS), so to 

obtain a cell density of 5x106 cells/mL. 100 µL aliquots of cell suspension (5x105 

cells/100µL/well) plus 80 µL of complete medium were cultured for proliferation assays in 

flat-bottom 96-well plates and incubated at 37°C, in a 5% CO2 90% air-humidified incubator 

in absence or in presence of 20 µL of varying concentrations of antigen (0-30 µg). 48 hours 

after initiation of culture cell, supernatants were removed from single well and frozen at-80° 

for cytokine assay. The remaining cells were cultured for additional 16 hours, pulsed with 

1µCi/well of [H3] thymidine, harvested on glass-fiber filters and counted in Betaplate liquid 

scintillation counter. All cultures were performed in triplicate, and results were expressed as 

Stimulation Index (S.I.), defined as follows: cpm in the presence of antigen/cpm in the 

absence of antigen. 

 

4.16. Detection of specific antibodies by ELISA 

The levels of hTg, hTgCS-, and hTgCS-specific total IgG, and IgG1, IgG2a and IgG3 

were determined by ELISA, using serum from individual mouse. The wells of 96-well plates 

were coated with 100µL of a 10µg/mL solution of hTg, hTg, hTgCS-, and hTgCS in 0.1 M 
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Na2HPO4, pH 9.6, and incubated overnight. After washing, the reactive sites were blocked 

with PBS-10%FCS for 30 minutes. For total IgG measurements, 100 µL of serum diluted 

1/6000 with 0.2% Tween 20 in PBS-10%FCS were added, and plates were incubated for 2 

hours at room temperature. After 4  washes, goat anti-mouse biotin-conjugated Abs diluted 

1/3000 were added for 1 hour. After 6 washes 1/500 ExtrAvidin peroxidase was added for 30 

minutes. The reaction was developed using o-phenylenediaminedihydrochloride (Sigma Fast 

OPD) as the peroxidase substrate, and the absorbance at 450 was after 30 min in an ELISA 

plates reader. IgG1 and IgG2a concentrations were determined in a similar manner, using 

goat biotin-conjugated, specific antibodies for IgG1 and IgG2a. Optimal dilutions of serum 

(1/6000 and 1/5000 for IgG1 and IgG2a, respectively) and subclass-specific antibodies 

(1/20000 and 1/500 for IgG1 and IgG2a, respectively) were determined in preliminary 

titrations. 

 

4.17. Cytokine assays 

Cytokine production was determined in culture supernatants. Assays of INFγ, IL-4 and 

IL-10 were performed by ELISA, using cytokine-specific capture and detection antibodies, 

according to the manufacturer’s instructions (Peprotech). Standard curves were generated for 

each cytokine, by using known amounts of murine rINFγ, rIL-4 and rIL-10. 

 

4.18. Statistical analysis 
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Data are expressed as mean ± SD, unless otherwise specified. Two-tailed Student’s, 

Kruskal-Wallis and Mann-Whitney tests were employed for statistical analysis. A value of p 

< 0.05 was considered to be statistically significant. 
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5. RESULTS 

 

5.1. A relevant fraction of hTg is regularly composed by hTg molecules provided with 

uronic acid-containing, type D (chondroitin 6-sulfate) oligosaccharide units (hTg-

CS) 

Type D (chondroitin 6-sulfate) oligosaccharide unit-containing hTg molecules were 

separated from residual hTg molecules, using ion-exchange chromatography on 

trimethylamino-substituted HiTrap™ Q-Sepharose HR (GE Healthcare). The Q-IEC of 40 

hTg preparations, mostly from simple and multinodular goiters but also from normal thyroids, 

using a NaCl gradient from 0 to 1.2 mol/L in 0.05 M Tris/HCl, pH 7.4, regularly resulted in 

the elution of two peaks (henceforth referred to as peaks Q1 and Q2, in elution order) at NaCl 

concentrations (at the column head) of 0.49 ± 0.01 M and 0.80 ± 0.01 M, respectively (Figure 

2). In 18 chromatograms, the area of the Q2 peak varied from 32.0 to 71.6% of total (mean, 

52.8%; median, 51.7%). The hTg subpopulations thus separated were stable, and separation 

was satisfactory for most practical purposes, as shown by pooling and rechromatography of 

the two peaks (Figure 3, panel A). We traced chondroitin 6-sulfate oligosaccharide units in 

hTg fractions, by assaying their uronic acid content, using a meta-hydroxybiphenyl-based 

method. Uronic acids were largely restricted in the Q2 peak, which thus coincided with a 

fraction of hTg, marked by the presence of uronic acid-containing, type D (chondroitin 6-

sulfate) oligosaccharide units (henceforth referred to as hTg-CS). Negligible amounts of 

uronic acids in the Q1 peak possibly reflected the presence of hTg molecules with very short, 

incomplete type D oligosaccharide chains (Figure 2 and Table 2). The neutral hexose content 

stayed constant or increased slightly, along the elution profile of several chromatograms, 

while the sialic acid content showed no variation or moderate changes in either sense. 



 40 



 41 



 42 

Figure 2 - Fractionation by ion-exchange chromatography on HiTrap™ Q-Sepharose 

HR (Q-IEC) of selected hTg preparations, and compositional analysis of the fractions. 

Twenty-mg aliquots of hTg preparation O. (panel A), Ma. (panel B), and D. (panel C), in 

0.025 M Tris/HCl, 0.065 M NaCl, pH 7.4, were loaded onto a HiTrap™ Q-Sepharose HR 5-

mL column, equilibrated with 0.025 M Tris/HCl, pH 7.4 (buffer A). After washing with 

buffer A, a linear gradient from 0 to 100% of buffer B (1.2 M NaCl in buffer A), in 24 min, at 

the flow rate of 2.5 mL/min, was applied (dashed-dotted line). One-mL fractions were 

monitored for protein content, by measuring the optical absorbance at 280 nm (continuous 

line), and carbohydrate content. Legend: neutral hexoses, mmol/L (hatched line) and % on a 

weight basis (❍); uronic acid, µmol/L (dashed line) and mol/Tg mol (●); N-acetylneuraminic 

acid (NANA), mol/Tg mol (▲). The analysis of a fraction every other three by PAGE under 

native conditions, in a 4-9% total acrylamide gradient gel stained with CBB R-250, is shown 

on top of panels A and B. The analysis by SDS-PAGE, in a 4-9% total acrylamide gradient 

gel stained with DMTCC, also shown on top of panel A, evidences the metachromasia, on 

going from the Q1 peak to the Q2 peak, along the elution profile of the Q-IEC. 
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TABLE II – Compositional analysis of selected hTg preparations subjected to Q-IEC on 

HyTrap™ Q-Sepharose HR 

hTg 

preparation a) 

hTg-CS, % 

of hTg 

Uronic Acid in Q2 peak Iodine, % of 

hTg mass 

  mmol/L b) mmol/hTg mol b) range c), 

mmol/hTg mol 

 

O. d 48.0 11.8 10.0 3.8-14.3 0.50 

Ma. 38.9 3.9 7.0 3.9-14.0 0.12 

T. 48.3 7.2 7.7 3.7-14.0 0.02 

C. 51.2 7.5 7.3 2.8-14.2 0.45 

D. 66.3 14.8 11.7 3.9-15.7 0.16 

Mi. 71.6 20.9 15.6 3.1-23.8 0.16 

Mi. Nod. e) 63.1 16.8 12.0 3.6-24.0 0.08 

Mi. Nod. Q2 

peak in urea f) 

68.0 20.2 13.6 3.2-14.8 - 

 
 a) hTg preparations were named after the patients (last name initial). All preparations were 

from non-familial, simple or multinodular goiters, except preparation O.; 
b) Values measured in the fractions with maximal protein concentration in the Q2 peak; 
 c) Indicates the uronic acid concentration range across the span of peak Q2, starting from the 

valley between peaks Q1 and Q2; 
 d) hTg preparation from normal thyroid tissue of an euthyroid patient, hemilaryngectomized 

for a non-thyroidal disease; 
e) Preparation obtained from a large 2 x 3-cm colloid nodule, surrounded by apparently 

normal thyroid tissue, of patient Mi.; 
f) Pooled fractions of the Q2 peak from the Q-IEC of hTg preparation Mi. Nod. were 

dissociated in 2.5 M Urea, 0.04 M Tris/HCl, pH 9.0 for 18 h at 20 °C, and then subjected 

again to Q-IEC, using a gradient from 0 to 1.2 M NaCl in 2.5 M urea, 0.055 M Tris/HCl, 

pH 7.4. 
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Instead, the number of moles of uronic acid per hTg mole regularly exhibited a linear 

increase across the fractions of the Q2 peak, spanning the range between 3 and 14 moles, in 

several hTg preparations in which hTg-CS was between 39 and 51% of total, but reaching 

values of 24, in preparations more enriched with hTg-CS (Table II). In particular, preparations 

Mi. and Mi. Nod. had elution profiles, in which shoulders in the trailing edge of the Q2 peak 

indicated the presence of a secondary component, eluting at 0.9 M NaCl (Figure 3, panel B). 

We hypothesized that the complexity and extended span of uronic acid content of these Q2 

peaks may reflect the coexistence of heterodimeric hTg-CS, with a single chondroitin 6-

sulfate-bearing subunit, and homodimeric hTg-CS. Pooled fractions of the Q2 peak from the 

Q-IEC of hTg Mi. Nod. were dissociated in 2.5 M urea, 0.04 M Tris/HCl, pH 9.0, at 20 °C 

over night, as previously reported (Veneziani et al., 1998), and subjected again to Q-IEC, in 

the presence of 2.5 M urea. As shown in figure 3, panel B, the hTg monomers produced by 

the dissociation of hTg-CS in urea were separated into peaks Q1 and Q2, eluting at NaCl 

concentrations of 0.48 and 0.81 mol/L, respectively. Once again, uronic acids were restricted 

largely in the Q2 peak, and their concentration showed a linear increase from 3.2 to 14.8 

moles/hTg mole across the peak span, as opposed to the increase from 3.6 to 24.0 moles/mole 

of undissociated hTg-CS (Table II). The Q2 peak of monomeric hTg-CS was superimposed 

on the primary, leading component of the Q2 peak of native hTg-CS, with no secondary 

shoulder at the trailing edge. The Q2/Q1 ratio of hTg-CS dissociated in urea was 2/1. These 

data demonstrate that the native hTg-CS pool of hTg Mi. Nod. included both an earlier-

eluting, heterodimeric subfraction, composed of chondroitinated and non-chondroitinated 

monomers in the 1/1 ratio, and a later-eluting, homodimeric component, composed only of 

chondroitinated subunits, and representing about one-third of total hTg-CS. Thus, hTg-CS 

regularly represented a relevant and, sometimes, predominant fraction of hTg. It was 

microheterogeneous, conceivably because of the variable number of repeating disaccharide 
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units per oligosaccharide chain, which is typical of glycosaminoglycans (Malsch et al., 1996). 

In hTg preparations with the highest fractions of hTg-CS, heterodimeric hTg-CS molecules 

coexisted with homodimeric ones. Panels A and B of figure 2 also show the PAGE, under 

native conditions, of the Q-IEC fractions of hTg preparations O. and M., evidencing the 

anodal shift, on going from the Q1 to the Q2 peak, due to the added negative charge of 

glucuronic acid residues and sulfate groups of the chondroitin 6-sulfate unit(s). 
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Figure 3 - Fractionation of selected hTg preparations by Q-IEC, followed by 

rechromatography of subfractions under various conditions. 

Panel A: following the Q-IEC of 20 mg of hTg preparation I., as specified under 

Experimental Procedures and in the legend to Fig. 1, the fractions of the Q1 peak and the Q2 

peak were reunited in separate pools, with the exclusion of three fractions at the valley 

between peaks, dialyzed against buffer A, and each pool was subjected to rechromatography, 

under identical conditions. The optical absorbance at 280 nm of the fractions of the Q-IEC 

(continuous line), and of the rechromatography of the Q1 peak (dotted line) and Q2 peak 

(dashed line) was monitored. Panel B: following the Q-IEC of 20 mg of hTg preparation Mi. 

Nod., the fractions of the Q2 peak were pooled, dialyzed against buffer A, dissociated in 0.04 

M Tris/HCl, 2.5 M urea, pH 9.0 at 20 °C over night, as previously reported (30), and 

subjected to Q-IEC, using a NaCl gradient from 0 to 1.2 mol/L in 2.5 M urea, 0.055 M 

Tris/HCl, pH 7.4. Legend: optical absorbance at 280 nm of the fractions of primary Q-IEC 

(continuous line), and Q2 peak rechromatography (dashed line); uronic acid, µmol/L of 

primary Q-IEC (dense-hatched line) and rechromatography (loose-hatched line); uronic acid, 

mol/Tg mol of primary Q-IEC (●) and rechromatography (❍). 
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5.2. hTg-CS has a higher efficiency of T4 and, especially, T3 formation than hTg-CS-, 

and enhances the overall hormonogenic efficiency of hTg 

The proximity of Ser2729 to the preferential site of T3 formation (Ser2746) (Fassler et 

al., 1988; Lamas et al., 1989) prompted us to investigate the possible influence of the 

chondroitin 6-sulfate oligosaccharide unit(s) on the hormonogenic function of hTg-CS, in 

comparison with hTg-CS-, and unfractionated hTg. To this aim, iodine-poor hTg, hTg-CS and 

hTg-CS- from goiters (with no more than 0.09% of iodine, on a weight basis) were iodinated 

enzymatically in vitro, using 2 µg/mL of bovine lactoperoxidase and 7.5 x 10-5 M KI, 0.21 

µg/mL of glucose oxidase from Aspergillus niger and 1 mM D-glucose, over 90 min at 25 °C 

(Lamas et al., 1986). Figure 4 shows the mean amounts of iodine incorporated into hTg, 

expressed as percent of the hTg mass, during 4 time-course experiments, and the levels of T3 

and T4 formed, as a function of iodine bound. Similar amounts of iodine were incorporated at 

plateau in hTg and hTg-CS, and slightly higher amounts in hTg-CS- (Figure 4, panel A). 

However, the number of T3 mmoles (panel B) and T4 moles (panel C) synthesized per hTg-

CS mole were in the ratios of 1.70 and 1.34, respectively, with those synthesized per hTg-CS- 

mole. Instead, hTg and hTg-CS did no differ, as for the efficiency of formation of T3 and T4. 

These data indicated that hTg-CS had a higher efficiency of T4 and, especially, T3 formation 

than hTg-CS-, and that the entire population of unfractionated hTg molecules benefited from 

this property of hTg-CS. This conclusion was supported by the observation that no significant 

variations were observed in the yields of T3 and T4, among the different fractions of various 

preparations of hTg, which were first iodinated as a whole, and then subjected to Q-IEC. 

These included hTg from normal subjects, physiologically iodinated in vivo (Figure 5, panel 

A), and hTg from patients with goiter, which had undergone low-level iodination in vivo 

(Figure 5, panel B), or enzymatic iodination in vitro (Figure 5, panel C). 
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Figure 4 - Enzymatic in vitro iodination and analysis of the hormone-forming efficiency 

of hTg, hTg-CS and hTg-CS-. 

Iodine- and hormone-poor hTg (●), and subfractions hTg-CS- (■) and hTg-CS (❍), prepared 

by Q-IEC, at the concentration of 0.45 g/L in 0.02 M imidazole/HCl, pH 7.0, were iodinated 

enzymatically in vitro, using 2 µg/mL of bovine lactoperoxidase, 7.5 x 10-5 M KI, 0.21 µg/mL 

of glucose oxidase from Aspergillus niger and 1 mM D-glucose, over 90 min at 25 °C. At 

times indicated, aliquots were removed, dialyzed against 0.01 M NH4HCO3, 5 mM NaCl, and 

the iodine content was assayed and expressed as percent of the protein content on a weight 

basis (Panel A). After digestion with Pronase and aminopeptidase M, as described in 

Experimental Procedures, T3 (Panel B) and T4 (Panel C) were also assayed by 

radioimmunoassay. Points represent mean ± S.E.M. values of 4 experiments. For the sake of 

clarity, S.E.M. are indicated only for hTg-CS and hTg-CS-. 
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Figure 5 - Iodine and hormone content of fractions of the Q-IEC of selected hTg 

preparations, iodinated both physiologically and in vitro. 

The three hTg preparations shown were subjected to Q-IEC, and the fractions obtained were 

analyzed for their iodine (▲), T3 (●) and T4 (❍) content, as described under Experimental 

Procedures. Panel A, physiologically iodinated hTg preparation O., from normal thyroid 

tissue, containing 0.50% iodine (w/w). Panel B, low-iodine, goitrous hTg preparation Ma., 

containing 0.12% iodine (w/w). Panel C, low-iodine, goitrous hTg preparation P., containing 

0.09% iodine (w/w), was iodinated enzymatically in vitro to the iodine content of 0.45% 

(w/w), and subsequently fractionated by Q-IEC. 
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5.3. Limited proteolysis indicates that the chondroitin 6-sulfate oligosaccharide unit(s) 

of hTg-CS are restricted in the carboxy-terminal domain, downstream Thr2513 

We were able to differentiate hTg-CS from hTg-CS- in SDS-PAGE gels, by staining 

with diethyl-methyl-dibenzo-thiacarbocyanine (DMTCC) (Stains All™, ICN). This dye was 

reported to stain mucopolysaccharides metachromatically and, particularly, chondroitin 

sulfate purple, while staining proteins red (Bader et al., 1972). In fact, fractions in the Q1 

(hTg-CS) peak were stained pink red with DMTCC, whereas those in the Q2 (hTg-CS-) peak 

were stained purple (Figure 2, panel A). Side-by-side comparison of the two peak fractions 

revealed also a subtle cathodal shift in hTg-CS. Both metachromasia and the mobility shift 

were abolished by digestion with 200 mU/mL of chondroitinase ABC, at 37 °C for 4 h, prior 

to SDS-PAGE (Figure 6, panel A). In order to identify the chondroitin 6-sulfate-containing 

region(s) of hTg, the Q-IEC fractions of hTg were subjected to limited digestion with 

thermolysin and trypsin, using DMTCC as a probe. The proteolytic fragments, separated by 

reducing SDS-PAGE, corresponded exactly to those characterized previously by NH2-

terminal peptide sequencing (Gentile and Salvatore, 1993), and were identified on the base of 

their mobilities. Figure 6, panel B shows the SDS-PAGE of the digestion products of 

fractions 29, 40, 48, and 56 of hTg preparation O. with thermolysin. Bands h2TL, h5TL and 

h7TL exhibited metachromasia and a cathodal shift, whose extent was inversely related with 

the fragment apparent mass, on going from fraction 29, in the Q1 peak, to fractions 48 and 56, 

in the Q2 peak. This is in keeping with the notion that peptides with high negative net charges 

bind lower than average amounts of SDS, and exhibit lower than average mobilities in SDS-

PAGE (Pitt-Rivers and Ambesi-Impiombato, 1968). A mixed pattern was apparent in fraction 

40, in the valley between the Q1 and Q2 peaks. Both changes were reverted by digestion of 

the proteolytic fragments of fraction 48 with chondroitinase ABC, prior to SDS-PAGE, while 
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no changes were brought about in fraction 29 (Figure 6, panel C). Inspection of the flow-

diagram of the limited proteolysis of hTg with thermolysin revealed that fragments h2TL, 

h5TL and h7TL were all located at the carboxy-terminal side of hTg, and shared the region 

downstream Leu1831 (Figure 7, panel A). 

On the other hand, a diffuse band (h8CSTR), with an average apparent mass of 41000, 

appeared among the tryptic fragments of hTg, on going from fraction 29 to fraction 40. It was 

stained purple with DMTCC, but was inapparent in the gel stained with CBB R-250. Its 

intensity of staining and apparent mass increased, on going from fraction 40 to 56 (Figure 6, 

panel D), in keeping with the increase of the uronic acid content revealed by the analysis of 

the Q-IEC fractions along the Q2 peak (Figure 2 and Table II). Upon digestion of the tryptic 

fragments of fraction 48 with chondroitinase ABC, band h8CSTR was replaced by a well-

focused band (h8CS-
TR), with an apparent mass of 36000, which was stained blue with CBB 

R-250, and red with DMTCC. No changes were caused by chondroitinase ABC in fraction 29 

(Figure 6, panel E). Band h8CS-
TR was prepared by limited tryptic digestion of 0.5 mg of 

hTg-CS, followed by chondroitinase digestion, reducing SDS-PAGE and transfer to PVDF. 

NH2-terminal peptide microsequencing revealed a single sequence (TSSKTA), corresponding 

to hTg residues 2513-2518 (Malthiéry and Lissitzky, 1987) (Table III). The flow-diagram of 

the proteolysis of hTg with trypsin shows the carboxy-terminal location of peptide h8-CSTR, 

in keeping with the results with thermolysin (Figure 7, panel B). Because the NH2-terminal 

sequence of peptide h8TR was identical with one of two sequences previously found in band 

h4TR (Gentile and Salvatore, 1993), we determined also the sequence of band h4TR, obtained 

from hTg-CS. As expected, two sequences were found, one starting at the residue 1 of hTg 

(h4TR), and another at residue 2513 (h4bisTR) (Gentile and Salvatore, 1993). Thus, of two 
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peptides, both starting at residue 2513, one (h8-CSTR) contained chondroitin 6-sulfate 

oligosaccharide unit(s), while the other (h4bisTR) did not. Inspection of figure 6, panel D 

reveals that the increase of staining intensity of band h8-CSTR, on going from fraction 40 to 

56, was paralleled by a decrease of intensity of band h4TR, in keeping with the finding that 

heterodimeric hTg-CS, yielding peptides h8-CSTR and h4bisTR, co-existed with homodimeric 

hTg-CS, yielding only peptide h8-CSTR, in the late part of the Q2 peak (Figure 3, panel B). 
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Figure 6 - SDS-PAGE under reducing conditions of selected fractions from the Q-IEC of 

hTg, with and without limited proteolysis with thermolysin or trypsin, and/or digestion 

with chondroitinase ABC. 

Panel A, fractions corresponding to the Q1 peak (#29) and Q2 peak (#48) of the Q-IEC of 

hTg preparation O., analyzed before (-) and after (+) digestion with 200 mU/mL of 

chondroitinase ABC (ABC), in a 4-13% total acrylamide gradient gel stained with DMTCC. 

The positions of chondroitinase ABC (ABC), and carrier bovine serum albumin (BSA), are 

indicated. Panel B, digestion products of the fractions indicated with thermolysin (TL), at the 

TL/hTg ratio of 1:50, pH 7.8 and 30 °C for 80 min, analyzed in replicate 4-17% total 

acrylamide gels, stained with CBB R-250 (left) and DMTCC (right). Fragments produced are 

marked at right, in accordance with ref. 21. Fragments exhibiting cathodal shifts and 

metachromasia, on going from the Q1 to the Q2 peak, are marked in purple. Panel C, results 

of further digestion with chondroitinase ABC of the proteolysis products of fractions #29 and 

#48 with thermolysin. Panel D, digestion products of the fractions indicated with trypsin 

(TR), at the TR/hTg ratio of 1:100, pH 7.8 and 30 °C for 40 min. Panel E, further digestion 

with chondroitinase ABC of the proteolysis products of fractions #29 and #48 with trypsin. 

Band h8CS-TR is circled. In all panels, molecular mass standards are marked at the left side of 

the gels. 
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Figure 7 - Flow-diagrams of the limited proteolysis of hTg with thermolysin (Panel A) 

and trypsin (Panel B) (modified from Gentile and Salvatore, 1993). 

Each bar represents a peptide, with the peptide number above the bar, the apparent relative 

molecular mass below at right and the amino-terminal residue number below at left, according 

to Gentile and Salvatore, 1993. Fragments of hTg-CS, which exhibited metachromasia upon 

staining with DMTCC and cathodal shifts, with respect to their counterparts from hTg-CS-, 

were drawn gray. Their apparent relative molecular masses, both before and after digestion 

with chondroitinase ABC (ABC), are indicated. Cross-hatching of bars h4TL and h2TR 

indicates that, under the digestion conditions employed, the corresponding peptides were not 

visible any more in the gels shown in Fig. 6. 
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TABLE III – NH2-terminal microsequence analysis of tryptic peptides of hTg-CS and hTg 

The phenylthiohydantoin derivatives detected by HPLC analysis for subsequent cycles of 

Edman degradation are shown. Amino acid residues are indicated using the single-letter code, 

while the numbers that follow the residues are the yields in picomoles. 

Cycle hTg-CS hTg 

 h4TR
 a) h8-CS-

TR
  b) h4TR-NR

 c) 

 h4TR h4bis,TR  Sequence 1 Sequence 2 

1 N 9 T 8 T  T 70 T - 

2 I 13 S 3 S  S 35 A 12 

3 F 21 X - S  S 29 F 6 

4 E 11 K 6 K  K 19 Y 5 

5 X - T 5 T  T 26 Q 6 

6 Q 8 A 7 A  A 39 A - 

7       F 19 L 8 

8       Y 9 Q 5 

9       Q 17 N 5 

10       A 20 S 8 

11       L 14 L - 

12       Q 12 - - 
a) h4TR was obtained by digestion of hTg-CS with trypsin, at the enzyme/substrate weight 

ratio of 1/100, at 30 °C for 40 min, followed by SDS-PAGE of the fragments in a 4-17% 

total acrylamide gel, under reducing conditions, and electrophoretic transfer to PVDF; 
b) h8-CS-

TR was obtained from hTg-CS as indicated for h4TR, with the difference that 

proteolysis with trypsin was followed by digestion with 200 mU/mL of chondroitinase 

ABC of Proteus vulgaris, in 0.1 M Na acetate, 0.1 M Tris/HCl, pH 8.0, at 37 °C for 4 h; 
c) h4TR-NR was obtained by digestion of unfractionated hTg with trypsin, at the 

enzyme/substrate weight ratio of 1/100, at 30 °C for 20 min, followed by SDS-PAGE of 

the fragments in a non-reducing 4-16.5% acrylamide gel, and transfer to PVDF.
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5.4. A single chondroitin 6-sulfate oligosaccharide unit is linked to Ser2729 of hTg-CS 

Fifty mg of hTg-CS were reduced and carboxymethylated with iodoacetamide, as 

described in Experimental Procedures, and hydrolyzed with endoproteinase Glu-C from 

Staphylococcus aureus, at the enzyme/substrate weight ratio of 1/100, in 0.05 M phosphate 

buffer, pH 7.8, at 37 °C for 18 h. Digestion products were subjected to Q-IEC on a 5-mL 

HiTrap™ Q-Sepharose HR column, using a gradient from 0.1 to 1.2 M NaCl in 0.025 M 

Tris/HCl, 2.0 M urea, pH 7.4, in 55 min, at the flow rate of 1 mL/min. Most of the protein 

was discarded in the flow-through, while a unique uronic-acid containing peak, having 

negligible absorbance at 280 nm, was eluted in the late portion of the gradient (Figure 7, panel 

A). This was subjected to size exclusion chromatography on BioGel P-2 (size exclusion limit 

of 1800 relative mass units), in 0.01 M NH4HCO3, which yielded an uronic acid-containing 

peak in the void volume. Its further purification by size exclusion chromatography on 

Sephadex G-50 fine, in 0.01 M NH4HCO3, monitored at 220 nm, is shown in panel B of 

figure 8. Of two peaks resolved, only one contained uronic acid. NH2-terminal peptide 

microsequencing of this material revealed a single, homogeneous nonapeptide with the 

LTAGXGLRE sequence, corresponding to residues 2725-2733 of the cDNA-derived 

sequence of hTg (Malthiéry and Lissitzky, 1987), X being Ser2729 linked with the 

chondroitin 6-sulfate oligosaccharide unit. This glycopeptide will be henceforth referred to as 

hTg-CSgp. The comparison between the sequence surrounding Ser2729 and a consensus for 

the recognition of core protein serine residues by UDP-D-xylose:proteoglycan core protein β-

D-xylosyltransferase, deriving from the alignment of 51 chondroitin 6-sulfate attachment sites 

from 19 proteoglycan core proteins (Brinkmann et al., 1997), revealed a 90% concordance, 

provided that two insertions of 3 and 2 residues were allowed (Figure 9). Electrophoresis of 

hTg-CSgp in a 16% polyacrylamide gel in Tris-tricine-SDS, followed by transfer to a PVDF 

membrane, stained with DMTCC, revealed an intensely metachromatic band, with the typical, 
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diffuse migration of glycosaminoglycans (Dahlberg et al., 1969; Naujokas et al., 1993), and 

an apparent molecular mass of 13,000-20,000 (Figure 8, panel C). 
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Figure 8 - Isolation and purification of the chondroitin 6-sulfate-containing glycopeptide 

hTg-CSgp. 

Panel A, the products of digestion of 50 mg of carboxymethylated hTg-CS with 

endoproteinase Glu-C were loaded onto a 5-mL HiTrap™ Q-Sepharose HR column in 0.025 

M Tris/HCl, 0.1 M NaCl, 2.0 M urea, pH 7.4, and eluted with a gradient from 0.1 to 1.2 M 

NaCl; one-mL fractions were monitored for protein content, by measuring the optical 

absorbance at 280 nm, and uronic acid content. Panel B, size-exclusion chromatography on 

Sephadex G-50, in 0.01 M NH4HCO3, of the uronic acid-containing peak eluted in the void 

volume of the size-exclusion gel chromatography on BioGel P-2 (not shown) of the uronic 

acid-containing fractions of the Q-IEC shown in panel A; one-mL fractions were monitored 

for peptide content, by measuring the optical absorbance at 220 nm (continuous line), and 

uronic acid content (dotted line). Panel C, Analysis of the purity of glycopeptide hTg-CSgp, 

by electrophoresis in a 16% polyacrylamide gel in Tris-tricine-SDS (Schägger and von 

Jagow, 1987), and electrophoretic transfer to a PVDF membrane, stained with DMTCC. 

Molecular mass standards (myoglobin cleavage products and glucagon from Sigma Marker 

Kit MW-SDS-17S). 
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Figure 9. Diagrammatic representation of the localization and structure of the type D 

(chondroitin 6-sulfate) oligosaccharide unit of hTg. The cDNA-deduced amino acid sequence 

of hTg, from residue 2710 to residue 2748, is represented in single-letter code (Malthiéry and 

Lissitzky, 1987). Black circles with white lettering mark the sequence found for the purified 

glycopeptide hTg-CSgp (with the exclusion of Ser2729, which appeared as a blank). A 

diagram of the chondroitin 6-sulfate oligosaccharide unit attached to Ser2729 is shown. 

Legend: Xyl, xylose; Gal, galactose; GluA, glucuronic acid; GalNAc, N-acetylgalactosamine. 

A consensus sequence for the recognition of core protein serine residues by UDP-D-

xylose:proteoglycan core protein β-D-xylosyltransferase (37) is aligned with the hTg 

sequence, and concordances are indicated. The two sites of tryptic cleavage between residues 

2713-2714 and 2744-2745, and the preferential site of T3 formation at Tyr2746 (Fassler et al., 

1988; Lamas et al., 1989), are also evidenced. 
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5.5. The chondroitin 6-sulfate oligosaccharide unit of hTg-CS protects peptide bond 

Lys2713-Gly2714 from proteolysis 

Next, we seeked explanation for the difference between the apparent molecular masses 

of peptides h8CS-TR (36,000) and h4bisTR (29,000), by determining the carboxyl terminus of 

the latter. Although, in the experiments described above, peptide h4bisTR co-migrated with 

h4TR in reducing SDS-PAGE, previous observations indicated that the homologous peptide 

b11TR of bovine Tg was obtained free of co-migrating species, under non-reducing 

conditions, as it was the only fragment not bound to the others by disulfide bridges 

(Veneziani et al., 1998). In fact, non-reducing SDS-PAGE of the tryptic fragments of hTg 

yielded only two bands, instead of several bands seen under reducing conditions (Figure 10, 

panel B). NH2-terminal microsequencing of band h4TR-NR, transferred to PVDF, revealed the 

same sequence as peptide h4bisTR, starting at residue 2513, together with traces of a sequence 

starting at residue 2517 (Table III). Therefore, the products of limited digestion of hTg with 

trypsin, at the enzyme/substrate weight ratio of 1/100, at 30 °C for 20 min, were subjected to 

RP-HPLC in the absence of reduction, using a Vydac C-4 column (250 x 10 mm, 5 µm) and 

an acetonitrile gradient (Figure 10, panel A). Non-reducing SDS-PAGE of the resulting peaks 

revealed band h4TR-NR in peak 2. Upon reduction, this band exhibited the same apparent mass 

as peptide h4bisTR (Figure 10, panel B). The mass of peptide h4bisTR was determined by 

ES/MS. The results (Table IV) defined a peptide with ragged amino- and carboxy-terminal 

ends (residues 2511-2513 and 2712-2713, respectively) and a high-mannose oligosaccharide 

unit, composed of 2 N-acetylglucosamine and 8 or 9 mannose residues, linked to Asn2562, in 

agreement with previous data (Rawitch et al., 1968; Yang et al., 1996). ES/MS analysis of 

HPLC peak 1 also revealed a mass value corresponding to hTg peptide 2714-2744 (Table IV). 



 65 

Thus, peptide h4bisTR was truncated at Lys2713, whilst peptide bond Lys2713-Gly2714 was 

protected from proteolysis in peptide h8-CSTR, which included Ser2729, with its bound 

chondroitin 6-sulfate unit. A tryptic site also lay between Lys2744 and Thr2745 (Figure 9). 

 



 66 

Figure 10 - Isolation of the carboxy-terminal tryptic fragment h4bisTR of hTg. 

Panel A, reverse-phase HPLC of the non-reduced products of limited tryptic digestion of hTg. 

One-mg aliquots of the digestion products of hTg with trypsin, at the enzyme/substrate weight 

ratio of 1/100, at ph 7.8 and 30 °C for 20 min, were fractionated with a Vydac C-4 column 

(250 x 10 mm, 5 µm) equilibrated in 0.1% (v/v) trifluoroacetic acid in water (solvent A), 

containing 2% of 0.07% TFA in acetonitrile (solvent B). The column was developed with the 

gradient of solvent B indicated by the dotted line (see under Experimental Procedures for 

details). One-mL fractions were collected, and monitored for peptide content, by measuring 

the optical absorbance at 220 nm (continuous line), and uronic acid content (dotted line). The 

main peaks are numbered. Panel B, Analysis in SDS-PAGE of the mixture of tryptic 

digestion products of hTg (Tot), and of peaks 2 and 3 of the HPLC shown in panel A, in a 4-

17% total acrylamide gradient gel, under reducing and non-reducing conditions, as indicated. 

Bands h4TR and h4TR-NR are indicated. Molecular mass standards are marked at right. 
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TABLE IV – Analysis by ES/MS of selected peaks of the RP-HPLC on a Vydac C-4 

column of the products of digestion of hTg with trypsin 

hTg was digested with trypsin, at the enzyme/substrate weight ratio of 1/100, at 30 °C for 20 

min. One-mg aliquots of the fragment mixture were fractionated, in the absence of reduction, 

by reverse-phase HPLC, using a Vydac C-4 column (250 x 10 mm, 5 µm). and corresponding 

peaks from repeated runs were pooled and dried under nitrogen for subsequent analysis by 

ES/MS, as described under Experimental Procedures. 

 

HPLC 

peak  a) 

Measured mass  b) 

(mean ± SD) 

Theoretical 

mass  c) 

Peptide  d) Post-translational 

modifications  e) 

1 3204.0 ± 0.3 3204.1 2714-2744 - 

2 24296.9 ± 1.5 24296.3 2513-2712 GlcNAc2-Man8 

 24422.2 ± 4.9 24424.4 2513-2713 GlcNAc2-Man8 

 24458.6 ± 1.7 24458.4 2513-2712 GlcNAc2-Man9 

 24587.7 ± 1.9 24586.6 2513-2713 GlcNAc2-Man9 

 24510.2 ± 1.1 24509.5 2511-2712 GlcNAc2-Man8 

 24671.3 ± 4.9 24671.7 2511-2712 GlcNAc2-Man9 

 24797.5 ± 4.0 24799.8 2511-2713 GlcNAc2-Man9 

 
a) Numbers refer to the peaks of the chromatogram shown in Fig. 10, panel A; 
b) Average relative molecular masses (mean ± S.D.) obtained by integrating the multiple peaks 

corresponding to each molecular species, differing only in the total number of charges, 

measured by ES/MS; 
c) Numbers indicate the amino acid residues at the extremities of each peptide, numbered 

according to Malthiéry and Lissitzky, 1987; 
d) Masses calculated on the basis of the cDNA-derived sequence of human Tg (Malthiéry and 

Lissitzky, 1987), taking into account the post-translational modifications indicated; 
e) Composition of the N-linked high-mannose oligosaccharide unit linked to Asn2562 

(Rawitch et al., 1968; Yang et al., 1996). 
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5.6. Immunization of CBA/J(H-2k) mice with either hTg-CS or hTg-CS- did not 

reproduce fully the histological picture associated with immunization with 

unfractionated hTg 

Next, we compared the ability of hTg, hTg-CS and hTg-CS- to induce EAT in 

CBA/J(H-2k) mice. Groups of 4-6 animals were immunized with 100 µg of each antigen, in 

50 µL of PBS, emulsionated with 50 µL of CFA and administered subcutaneously in the 

dorsal region. A second dose of 50 µg of antigen, in incomplete Freund’s adjuvant, was 

administered 10 days later, by the same route. Experimental animals were sacrificed 4 weeks 

later, by excess anesthesia, and the thyroids were evaluated histologically, as described in 

detail in Materials and Methods. Typical aspects of thyroid infiltration with mononuclear cells 

obtained following the immunization with the three antigens are shown in Figure 11, 12 and 

13, respectively. Histological scores are reported in Table V. Thyroiditis developed in all 

experimental groups of mice; however, the most severe scores were observed in mice 

immunized with unfractionated hTg. Instead, the immunization with both hTg-CS and hTg-

CS- resulted associated with lower scores of EAT. Thus, it appears that both hTg subfractions 

contributed to the immunopathogenic potency of unfractionated hTg. No thyroid infiltration 

was seen in control mice. 
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Table V – Histological EAT score, indicating the severity of mononuclear infiltration of 

thyroids of CBA/J(H-2k) mice immunized with the different forms of hTg 

The EAT score was calculated, using a modification of the criteria adopted by Dai et al., 

2005: 0 = no infiltration; 1 = interstitial accumulation of cells between two or three follicles; 2 

= one or two foci of cells at least the size of one follicle; 3 = extensive infiltration, 10-40% of 

total area; 4 = extensive infiltration, 40-80% of total area, and 5 = extensive infiltration > 80% 

of total area. Each mouse was assigned the average infiltration index observed from both 

thyroid lobes (at least 10 sections per lobe were evaluated and the average infiltration index 

per lobe was scored). Data are referred to three experiments (n = 17). 

 

Immunizing agent EAT Score 

 0 1 2 3 4 

 % of animals 

Unfractionated hTg 
35 35 24 6 0 

hTg-C6S 
41 35 24 0 0 

hTg-C6S- 
53 29 12 6 0 
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Figure 11 – Typical histological pictures of mononuclear infiltration of the thyroid.  

The thyroid sections shown were prepared from CBA/J(H-2k) mice immunized with hTg (A), 

hTg-CS (B), and hTg-CS- (C) 
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5.7. Immunization with hTg, hTg-CS and hTg-CS- is associated with thyroid cell 

damage 

Significant tissue damage in all groups of immunized animals accompanied the 

immunization, as judged by the increased levels of T4 in serum, compared to control mice 

(2.4 ± 0.8 mg/L), without any significant difference between mice immunized with hTg, 

hTgCS, and hTgCS- (Figure 12). Instead, serum levels of T3 were not increased in immunized 

mice, in comparison with control mice (87.3 ± 15.1 ng/L). These findings could reflect the 

limited extent of intrathyroidal deiodination of T4 to T3 in mice. 

        

Figure 12 – Serum T4 levels in CBA/J(H-2k) mice immunized with: ■■■■ hTg; ���� hTg-CS-; 

■■■■ hTg-CS, and ■■■■ control animals. 
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5.8. Proliferative responses and IFN-γγγγ production by splenic lymphocytes in vitro are 

maximal after immunization of mice with hTg-CS- and restimulation with hTg-CS 

The T cell responses to hTg, hTgCS, hTgCS- and to glycopeptide hTgC6Sgp were 

tested on splenic lymphocytes taken at the time of sacrifice from mice immunized with hTg, 

htg-CS and hTg-CS-, and cultured for 72 h in the absence or presence of different 

concentrations of antigens. Panel A of Figure 13 shows the results of the restimulation in vitro 

of the splenic lymphocytes of each one of the three experimental groups with the same 

antigen respectively used for immunization. Results are expressed in terms of stimulation 

indices (SI). Panels B and C, on the other hand, show the results of the cross-stimulation of 

the splenic lymphocytes from the three experimental groups with hTg-CS- and hTg-CS, 

respectively. Panels D-F show the results of the assays of INFγ production measured in the 

supernatants of the cell cultures, whose stimulation indices are shown in panels A-C, 

respectively. An inspection of panels A and D reveals that the restimulation with hTg-CS of 

splenocytes from mice immunized with the same antigen was followed by low-level, dose-

dependent proliferative responses, accompanied by proportional IFN-γ production, whereas 

restimulation with hTg-CS- of splenocytes primed in vivo with the same antigen was followed 

by higher-level, dose-dependent increases of IFN-γ production, accompanied by proliferative 

responses inversely related with the antigen dose. Finally, a mixed response characterized the 

restimulation with hTg of hTg-primed splenocytes in which a dose-dependent production of 

IFN-γ and a non-monotonic trend of cell proliferation, peaking at the dose of 15µg/mL, were 

observed. Altogether, these data showed a dissociation between T cell proliferation and IFN-

γ production. The former was more pronounced in hTg-primed splenocytes restimulated with 

the same antigen (with the exclusion of the dose of 5µg/mL), while the latter reached the 

maximum levels in the culture supernatants of mice immunized and restimulated with hTgCS-
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. On the other hand, the cross-stimulation in vitro with hTg-CS- of splenocytes primed in vivo 

with hTg or hTg-CS was followed by a similar pattern of proliferative and secretory 

responses, although lower in level, as observed upon restimulation with the respective 

immunizing agents (panels B and E). Instead, hTg-CS--primed splenocytes exhibited strong, 

dose-dependent responses to the cross-stimulation with hTg-CS, both in terms of proliferation 

and IFN-γ production; similar, albeit milder responses were observed in mice immunized with 

hTg and restimulated with hTg-CS (panels C and F). On the whole, maximal and concordant 

T cell proliferation and INF-γ production were recorded following cross-stimulation with 

hTgCS of splenocytes from mice immunized with hTgCS-. Moreover, a dissociation between 

INF-γ production and T cell proliferation was seen when hTgCS--primed lymphocytes were 

restimulated in vitro with the same antigen. 

Furthermore, Figure 14 shows the results observed upon restimulation in vitro of the 

splenic lymphocytes obtained from mice immunized in vivo with the different forms of hTg, 

cultured in the presence of purified hTgC6Sgp (panels A and C) or its synthetic, non-

glycosilated homologue with the LTAGSGLRE sequence (panels B and D). Restimulation 

with hTgC6Sgp of hTg-CS--primed lymphocytes was accompanied by dose-dependent 

proliferative responses and proportional INF-γ production. At variance, synthetic peptide 

LTAGSGLRE, bearing the same peptide sequence as hTgC6Sgp, but devoid of carbohydrate 

chains, was not able to elicit either proliferative responses or cytokine production. 

Glycopeptide hTgC6Sgp also induced proliferation, but not INF-γ production, of splenocytes 

from control mice, possibly owing to aspecific mitogenic properties. 
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Figure 13 (previous page) – Proliferative responses (panels A-C) and IFN-γγγγ production 

(panels D-F) by splenic lymphocytes from CBA/J(H-2k) mice immunized and 

restimulated in vitro with the various forms of hTg. The responses are shown of mice 

immunized with: ■ hTg; � hTg-CS-; ■ hTg-CS and restimulated with the same antigen used 

for immunization (A, D), hTg-CS- (B, E) or hTg-CS (C, F). 

        

Figure 14. Proliferative responses (panels A, B) and IFN-γγγγ poduction (panels C, D) by 

splenic lymphocytes of CBA/J(H-2k) mice immunized with: ■■■■ hTg; ���� hTg-C6S-; ■■■■ hTg-
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C6S and restimulated in vitro with the hTgC6Sgp glycopeptide (A, C), or the synthetic, 

non-glycosylated homologue 2725-2733 LTAGSGLRE (B, D). 
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5.9. IgG2a antibody responses of immunized mice parallel thyroid histological disease 

scores 

We also investigated the effects of hTg, hTgCS and hTgCS- on the production of 

antibodies of the IgG class (Figure 15) and for IgG1 and IgG2a subclasses (Figure 16). 

Immunization with hTg, hTgCS and hTgCS- caused the production of comparable serum 

levels of total IgG and IgG1. Instead, the levels of IgG2a against all three antigens were 

maximal in the animals immunized with unfractionated hTg. Mice immunized with hTgCS 

produced levels of IgG2a almost as high, while the lowest levels of IgG2a were found 

following hTgCS- immunization. These findings seem to indicate that the presence of the 

chondroitin 6-sulfate was essential for the development of Th-1-polarized responses to hTg, 

as judged from IgG2a production (Snapper et al., 1993). 
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Figure 15 – Concentrations of IgG against: ■■■■ hTg; ���� hTg-CS-; ■■■■ hTg-CS in the sera of 

CBA/J(H-2k) mice immunized with each one of the three antigens. 
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Figure 16 – Concentrations of IgG1 (A) and IgG2a (B) against: ■■■■ hTg; ���� hTg-CS-; ■■■■ 

hTg-CS in the sera of CBA/J(H-2k) mice immunized with each one of the three antigens. 
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6. DISCUSSION 

 

The present study documents that type D (chondroitin 6-sulfate) oligosaccharide chains 

are a main source of microheterogeneity of hTg, being regularly found in a significant, and 

sometimes predominant fraction of hTg molecules. We developed an ion-exchange 

chromatographic method, which permitted us to separate chondroitin 6-sulfate-containing hTg 

molecules (hTg-CS) from residual hTg molecules (hTg-CS-). By exploiting the changes of 

electrophoretic mobility and staining properties imparted by chondroitin 6-sulfate chains upon 

the fragments deriving from the limited proteolysis of hTg, we were able to restrict the search 

for chondroitin 6-sulfate-containing regions of hTg to a carboxy-terminal peptide, starting at 

Thr2515. Subsequent purification, from the products of digestion of hTg-CS with 

endoproteinase Glu-C, of a homogeneous, glucuronic acid-containing nonapeptide, whose 

sequence corresponded to residues 2725-2733 and bore substantial homology with a 

consensus sequence for the recognition of core protein serine residues by UDP-D-

xylose:proteoglycan core protein β-D-xylosyltransferase, permitted us to establish Ser2729 as 

the sole site of chondroitin 6-sulfate addition in hTg. The presence of two insertions in this 

peptide, with respect to the consensus sequence, is in keeping with the observation that 

proteins which are not modified quantitatively with chondroitin sulfate, such as aggrecan and 

type IX collagen, have recognition sequences for xylosyltransferase that match the consensus 

sequence less well than those of proteins, such as bikunin, which are modified quantitatively 

(Brinkmann et al., 1997). Spiro reported previously the presence of O-linked oligosaccharide 

units in hTg, containing from 7 to 11 moles of glucuronic acid and N-acetylgalactosamine, 1 

mole of xylose, 2 moles of galactose and up to 14 moles of sulfate per mole of serine residues 
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(Spiro, 1977). She suggested that hTg may contain one chondroitin sulfate unit per protein 

monomer. Subsequently, Schneider et al. showed that the repeating disaccharide units were of 

the chondroitin 6-sulfate kind (Schneider et al., 1988). However, none of them conclusively 

established the number of type D oligosaccharide chains, nor their localization in hTg. Our 

data demonstrate that hTg-CS molecules contain a single chondroitin 6-sulfate unit per 

polypeptide chain, which is usually made of a variable number of repeating disaccharide 

units. By taking into account that, in hTg preparations with the highest content of hTg-CS, 

heterodimeric hTg-CS molecules, containing a single chondroitin 6-sulfate-bearing protein 

subunit, coexisted with homodimeric hTg-CS molecules, containing up to 24 moles of 

glucuronic acid per hTg mole, the maximum number of repeating disaccharide units in 

chondroitin 6-sulfate chains of hTg is not in excess of 12. 

We also show that hTg-CS has a higher efficiency of hormone, particularly T3, 

formation than hTg-CS-, and that all molecules in unfractionated hTg benefit fom this 

property of hTg-CS. The relatively greater advantage conferred by chondroitin 6-sulfate 

addition upon T3, with respect to T4 formation, and the proximity of Ser2729 to the site of 

preferential T3 formation at Tyr2746, suggest that the effects of the chondroitin 6-sulfate 

oligosaccharide chain in hormonogenesis may entail intermolecular interactions between the 

carboxy-terminal domains of both hTg-CS and hTg-CS- molecules. Thus, chondroitin 6-

sulfate addition seems to constitute an ergonomic mechanism, by which post-translational 

modification of a fraction of hTg molecules influences the overall hormone-forming 

efficiency of hTg. The regulation of the T4/T3 ratio in thyroid secretion is crucial for 

achieving and maintaining physiological concentrations of active thyroid hormone (T3) in 

blood, and is finely tuned by multiple mechanisms, all of which are under the control of TSH. 

A prominent mechanism is the intrathyroidal conversion of T4 to T3, especially in severe 

iodine deficiency, through the action of a thyroid iodothyronine 5'-deiodinase (Ishii, 1983). 
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Enhanced T3 release from Tg under hyperstimulation by TSH results also from increased 

proteolysis at the COOH-terminus of Tg by cathepsin B (Dunn, 1991). However, the T4/T3 

ratio is regulated first at the biosynthetic level in Tg, which decreases in experimental animals 

given TSH (Fassler, 1988). In several animal species studied, Tyr5 is the main site of T4 

formation in Tg (Lejeune, 1983; Rawitch et al., 1983, 1984; Dunn et al., 1987; Fassler et al., 

1988), while Tyr2746 represents the site of preferential T3 formation (Dunn et al., 1987; 

Fassler, 1988; Lamas, 1989; Marriq, 1983). In rabbit and guinea pig Tg, TSH stimulated T3 

formation at tyrosine 2746, and decreased T4 synthesis at tyrosine 5. The diminished T4 

formation at the amino terminus was mediated by the TSH-stimulated maturation of N-linked 

oligosaccharide chains linked to Asn91 from the high-mannose to the complex type (Mallet, 

1995). Should the addition of chondroitin 6-sulfate chain to hTg be also controlled by TSH, a 

common mechanism, mediated by TSH-dependent modifications of the composition and 

number of N-linked and O-linked oligosaccharide chains in Tg, could account for the changes 

in hormonogenic efficiency at both Tg termini, affecting the overall ratio of T4 over T3 

formation. For hormone release to occur, Tg must be internalized into thyroid follicular cells 

by fluid-phase pinocytosis, followed by degradation of hTg in lysosomes. A part of Tg, which 

is internalized via the endocytic receptor megalin, bypasses lysosomes and is transcytosed 

across cells and released from basolateral membranes into the bloodstream (Marinò, 1999, 

2000). A heparin-binding region of rat Tg, and its homologous region of hTg, encompassing 

residues 2469-2483, are involved in Tg binding to megalin (Marinò, 1999a), which is 

facilitated by accessory interactions with heparin-like molecules (heparan-sulfate 

proteoglycans) on the surface of thyroid cells (Marinò, 1999b). Experiments are in progress to 

establish whether chondroitin 6-sulfate units interfere with hTg binding to megalin. In FRTL-

5 cells, Tg molecules with a low hormone content are favored over those with a high hormone 

content for megalin-mediated transcytosis, which, therefore, appears to promote lysosomal 
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degradation of hormone-rich Tg, by diverting hormone-poor Tg from lysosomes (Lisi, 2003). 

Conceivably, chondroitin 6-sulfate addition to hTg, in addition to improving the yield of 

active hormone, may also prevent the non-productive internalization of hTg by transcytosis. 

Furthermore, we have identified two sites, namely Lys2713-Gly2714 and Lys2744-

Thr2745, in the vicinity of the site of chondroitin 6-sulfate addition, which were amenable to 

cleavage, during the limited proteolysis of hTg with trypsin. The data that we present 

document that the former, at least, was protected from proteolysis in hTg-CS, but not in hTg-

CS- molecules. The influence of the C6S oligosaccharide chain on the proteolytic 

susceptibility of the extreme carboxy-terminal region of hTg could have important 

implications in modifying the processing and presentation of hTg by antigen-presenting cells 

(APCs) and in the ability of hTg to function as an autoantigen, particularly because the site of 

chondroitin 6-sulfate addition to hTg is localized within an epitope-rich region, harboring 

several T cell-related epitopes, capable of causing EAT in genetically susceptible mice, and B 

cell-related epitopes, recognized by circulating autoantibodies of patients with AITD (Gentile, 

2004). On the other hand, the effects of N-linked and O-linked glycosylation on the activity of 

proteolytic enzymes involved in antigen processing, as well as on the affinity of epitope 

binding to MHC or T-cell receptor molecules, have been reviewed (Anderton, 2004). To 

determine whether the addition of oligosaccharide unit C6S to hTg would modify its 

immunopathogenicity, we used intact hTg, hTgCS and hTgCS- to induce EAT in CBA/J 

susceptible mice. By using this animal model, we provided evidence that the presence of C6S 

oligosaccharide unit modulates the immunopathogenic properties of hTg. In fact, although, 

both subunit are able to provoke thyroid damage, as judged from serum FT4 increases, 

hTgCS- immunization was accompanied by a less severe thyroidal mononuclear cell 

infiltration compared to hTgCS. However, neither one fully reproduced the histological 

picture associated with unfractionated hTg. Apparently, the two isoforms possess distinct 



 86 

molecular pathogenic determinants necessary to obtain the full development of the organ 

disease. This initial conclusion has been confirmed by restimulation experiments of splenic 

lympocytes. Restimulation with hTg-CS of splenocytes from mice immunized with the same 

antigen was followed by low-level, dose-dependent proliferative responses, and IFN-γ 

production, whereas restimulation with hTg-CS- of splenocytes primed in vivo with the same 

antigen was followed by higher-level, dose-dependent increases of IFN-γ production, 

accompanied by proliferative responses inversely related with the antigen dose. Thus, an 

evident dissociation between INFγ production and T cell proliferation has been recorded after 

restimulation with hTgCS- of splenic lymphocytes from mice immunized with the same 

antigen. To this respect, it has been reported that myelin basic protein (MBP)-reactive T cells 

may express variable pattern of cytokine production and proliferation in a model of 

experimental autoimmune encephalomyelitis, depending from dose and type of antigen. In 

particular, encephalitogenic peptide MBP (68-88) stimulated considerable amounts of 

INFγ by MBP-reactive T cells in the absence of cell proliferation (Sun et al., 1995), when 

stimulated with suboptimal dose of antigen. Other peptides may have capacity to induce IL-4 

production, but not proliferation of the responder T cells (Evavold and Allen, 1991; Allen et 

al., 1994). Further studies demonstrated that activation of T helper cells to a threshold 

required for INFγ or IL-2 production or proliferation is not required to achieve induction of T 

helper cell effector functions (Brown et al., 1997). On the other hand, a model of Th1 cell 

activation has been already described, which requires two types of signals: one for cytokine 

production and a separate one other for proliferation (Sommer et al., 1995). These findings 

further illustrate the complexity of T-cell-mediated autoimmune diseases; a same T cell 

population may express distinct immune function, depending on the degree they are activated, 

by the quality and quantity of antigens available.  
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Interestigly, we also observed that in vitro cross-stimulation with hTg-CS- of 

splenocytes from mice immunized with hTg-CS was followed by a similar pattern of 

proliferative and secretory responses, although lower in level, as observed upon restimulation 

with hTg-CS-. Instead, cross-stimulation with hTg-CS of splenocytes primed in vivo with 

hTg-CS- was followed by maximal., dose-dependent increases both of proliferative responses 

and IFN-γ production. These data indicate that hTg-CS- is more effective than hTg-CS in the 

priming of autoreactive T lymphocytes, recognizing shared autoepitopes between murine and 

human Tg, whereas hTg-CS is a stronger inducer of proliferation of antigen-sensitized T cell 

clones. In keeping with these conclusions,  are the similar results obtained when splenocytes 

primed in vivo with hTg-CS-, were restimulated with purified glycopeptide hTg-CSgp, 

containing the chondroitin 6-sulfate unit, but not with its synthetic, non-glycosylated 

homologue peptide. It is clear that a diversity of molecular signals, including structural 

determinant(s) associated with the chondroitin 6-sulfate chain, are required for the 

concomitant activation of T cell proliferation and IFN-γ production, possibly via the 

interaction with specialized T cell subsets. Among the implications of our results the 

possibility of using an immunizing protocol in which mice primed with hTgCS- are cross-

stimulated with hTgCS appear very promising as it could lead to a more severe thyroiditis 

compared to that induced with unfractionated hTg, usually mild and focal., and therefore 

more resembling to human thyroiditis. This model could represent an appropriate tool in the 

hands of the researchers to better understand the cellular and molecular mechanisms of 

chronic autoimmune thyroiditis.         

 The observation that hTgCS- is more effective than hTgCS in priming autoreactive T 

cells is in agreement with the role of oligosaccharide chains on the activity of proteolytic 

enzymes involved in antigen processing, as well as on the affinity of epitope binding to MHC 

or T-cell receptor molecules. (Anderton, 2004).  O-linked mono- and disaccharides in tumor-
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associated glycoprotein MUC1 were not removed during processing by dendritic cells (Vlad, 

2002). They restricted the repertory of epitopes produced and/or presented in a site-specific 

manner, either by limiting the accessibility of specific cleavage sites to cathepsin L (Hanisch, 

2003), or by preventing epitope recognition by a peptide-specific T cell hybridoma. However, 

they could also enrich the epitope repertory, as some of the disaccharide-substituted peptides, 

presented by dendritic cells, were able to prime and reactivate specific T cell clones (Vlad, 

2002). N-linked oligosaccharide chains also inhibited the generation of a self epitope from 

glutamate receptor subunit 3, by limiting extracellular cleavage by granzyme B (Gahring, 

2001), and the endosomal generation of cytotoxic lymphocyte-specific epitopes from 

influenza A nucleoprotein (Wood, 1998). As for glycosaminoglycan chains, a keratan sulfate 

chain was reported to mask an arthritogenic T cell epitope in the G1 domain of aggrecan, a 

high density proteolycan of human adult cartilage, whereas the enzymatic depletion of 

multiple chondroitin sulfate side chains generated clusters of chondroitin sulfate stubs, which 

activated specific B cells to function as APCs in the development of T cell responses (Glant, 

1998). The chondroitin 6-sulfate chain of hTg is expected to inhibit the processing of hTg 

peptide 2730-2743, among several peptides known for their immunopathogenic properties in 

CBA mice. Although incapable of direct EAT induction, this peptide, bearing partial 

homology with sequence 118-131 of human thyroperoxidase, stimulated in vitro strong 

proliferative responses and the adoptive transfer of EAT by splenic lymphocytes of CBA 

mice immunized with mouse Tg (Hoshioka, 1993). Other epitopes may be abrogated by the 

chondroitin 6-sulfate chain of hTg, whose generation requires cleavage at or in the vicinity of 

Ser2729, within a range which includes, on the amino side, the Lys2713-Gly2714 peptide 

bond. 

The probability that the chondroitin 6-sulfate unit influence the immunopathogenic 

properties of hTg is augmented by the documented effects of chondroitin sulfate 



 89 

oligosaccharide units on cellular immune responses. A small percentage (2-5%) of invariant 

chain (Ii) molecules associated with class II MHC molecules are modified with the addition of 

a single chondroitin sulfate chain at Ser 291. In this form, they remain associated with class II 

molecules at the surface of APCs (Sant, 1985; Miller, 1988), where they act as accessory 

molecules in antigen presentation, facilitating the interactions between APCs and T cells, and 

greatly enhancing class II-dependent allogeneic and mitogenic T cell responses. Such an 

effect occurs through interaction of Ii-CS with CD44 on responding T cells, as it can be 

inhibited both by anti-CD44 antibodies, and by a soluble form of CD44 (CD44Rg), which 

binds Ii-CS directly (Naujokas, 1993). Treatment of spleen cells with xyloside, which inhibits 

glycosaminoglycan addition, interferes with their antigen-presenting capabilities (Rosamond, 

1987). It was suggested that Ii-CS may allow stimulation of memory T cells, which express 

high levels of CD44 (Butterfield, 1989), by APC types that either are lacking other types of 

co-stimulatory molecules, or only express them after an initial encounter with T cells 

(Naujokas, 1993). CD44, a broadly distributed transmembrane glycoprotein, is the principal 

cell surface receptor for hyaluronan (HA), but recognizes also chondroitin 4- and 6-sulfate, 

although with lower affinity (Aruffo, 1990; Sy, 1991). Among various carbohydrates, it can 

be modified by chondroitination. Its co-stimulatory role in T cell activation is supported by a 

number of studies (Sommer, 1995; Yashiro, 1998). Moreover, monoclonal antibodies directed 

against CD44 at the surface of cytotoxic T lymphocytes were able to trigger cytolytic activity 

in a TCR-independent manner (Seth, 1991). Serglycins, small proteoglycans stored in 

secretory granules of hematopoietic cells, activate the CD3-dependent release of cytokines 

and proteases from CD44-positive CTL clones (Toyama-Sorimachi, 1995), by interacting 

with CD44 through their chondroitin 4-sulfate and 6-sulfate side chains (Toyama-Sorimachi, 

1997). Moreover, CD44 binding to aggrecan, a major proteoglycan of the cartilage matrix, 

through the chondroitin 4- and 6-sulfate side chains of the latter, can trigger oligomerization 
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of CD44 molecules and activation of intracellular signaling (Fujimoto, 2001). Expression of 

CD44 in an active form, which is capable of hyaluronan binding and primary adhesion, can be 

induced by antigen stimulation of the TCR (DeGrendele, 1997a), and is required for 

extravasation of activated T lymphocytes and monocytes to sites of inflammation 

(DeGrendele, 1997b; Stoop, 2002; Weiss, 1998). Increased CD44 expression ensues also B 

cell activation (Camp, 1991). The number of circulating T cells showing functional activation 

of CD44 expression is increased in patients with systemic lupus erythematosus and arthritis 

(Estess, 1998), and administration of anti-CD44 antibodies inhibits inflammation in murine 

models of inflammatory bowel disease and of collagen- and proteoglycan-induced arthritis 

(Pure, 2001). For these reasons, CD44 has raised interest as a marker of disease activity or a 

target for therapeutic intervention in autoimmune diseases. Different effects of the CD44 

stimulation in different cell types depend on the CD44 isoforms involved, which vary by the 

insertion of variant exon products between exon 5 and 6 of the CD44 standard isoform 

(CD44s) (Ponta, 2003). Both CD44v6 and CD44v7 are transiently up-regulated during 

lymphocyte activation, the former being mainly expressed on T cells, and the latter on a 

fraction of CD4+ cells, B cells and monocytes. Antibodies to CD44s and CD44v7 inhibit 

antigenic and mitogenic T and B cell responses, while antibodies to CD44v6 selectively 

inhibit T cell responses (Seiter, 2000). Both mitigate delayed-type hypersensitivity reactions, 

although by different mechanisms. Blockade of the former prevented activation of CD8+ cells 

and secretion of IL-2 and IFN-γ from CD4+ and CD8+ cells, whereas blockade of the latter 

apparently interfered with the delivery of signals from monocytes, resulting in decereased IL-

12 secretion by B cells, and increased IL-10 secretion by B and CD4+ cells (Seiter, 2000). 

Finally, cross-linking of CD44v6, but not CD44s, promoted TCR/CD3-independent 

proliferation of T lymphoma cells, accompanied by IL-2 production and activation of MAP 

and SAP kinases (Marhaba, 2005). 
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Finally, the close clinical and temporal association between Graves’ hyperthyroidism 

and thyroid-associated ophthalmopathy (TAO) led to the hypothesis that the latter is the result 

of an autoimmune response directed against one or more orbital autoantigens that are also 

present within the thyroid. Much effort has been directed at identifying target cells and 

mapping critical epitope(s) on autoantigens they display. Candidate antigens, besides the TSH 

receptor, have included Tg (reviewed in ref. Prabhakar, 2003). Some Authors detected Tg in 

orbital tissues in patients with TAO, and hypothesized that transfer of Tg to orbital tissues 

might occur via thyroid-orbit connections evidenced by radioisotope-based lymphography 

(Marinò, 2001). Tg was found to be predominantly localized in fibroadipose tissue (Lisi, 

2002). The same Authors proposed that the ability of hTg to bind to GAGs, including 

chondroitin sulfate B and C, may mediate its localization in orbital tissues, where it may 

function as the target of immune responses originally directed towards the thyroid (Marinò, 

2003). Metachromatic GAGs accumulate in thyroid-associated ophthalmopathy and 

dermopathy (Prabhakar, 2003). Edematous connective perimysial tissues of patients with 

TAO are composed predominantly of hyaluronan and chondroitin sulfate (Kahaly, 1998). 

Accumulation of GAGs, together with adipose tissue expansion, is also apparent in the fatty 

connective tissue of the posterior orbit (Hufnagel, 1984). UDP-glucose dehydrogenase, the 

enzyme which catalyzes the conversion of UDP-glucose to UDP-glucuronate, was induced by 

proinflammatory cytokines in orbital fibroblasts (Spicer, 1998). In our opinion, the presence 

of an integral GAG chain in a subpopulation of hTg molecules may represent a more direct 

mechanism, by which autoaggressive responses towards hTg may spread to connective tissue 

antigen with shared GAG chains, particularly in the event that the synthesis of both be 

quantitatively and/or qualitatively disregulated by pathogenic stimuli. Proving such an 

hypothesis will require the fine structural characterization of the chondroitin 6-sulfate chains 
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of hTg and of the GAGs of orbital connective tissues, and the demonstration of cross-reacting 

autoantibodies and/or T cell clones in the tissues and/or blood of patients with TAO.   

In conclusion, in dozens of hTg preparations examined, mostly from goiters, hTg-CS 

was constantly found, its abundance varying broadly from 31 to 72%. The presence of a 

single chondroitin 6-sulfate chain linked to Ser2729 of hTg influenced significantly the 

hormone-forming efficiency of hTg, the proteolytic accessibility of its carboxy-terminal 

domain, and its immunopathogenic capacity in CBA/J(H-2k) mice, by a complex mechanism. 

Further work will be aiming to determine: 

1) the physiological limits of hTg-CS abundance in hTg; 

2) the regulation of the synthesis of chondroitin 6-sulfate chains of hTg, with particular 

regard to the role of TSH, and the possible adaptive role of changes in hTg-CS 

abundance in the presence of iodine deficiency or inherited defects of hormone 

synthesis and/or secretion; 

3) the possible correlations between variations of the hTg-CS/hTg-CS- ratio and thyroid 

function. It is our opinion that a systematic investigation could shed light on the 

pathogenesis of thyroid disease, particularly AITD; 

4) the effects of the immunization of CBA/J(H-2k) mice, using hTgCS- for priming, and 

hTgCS for boosting, in comparison with the use of unfractionated hTg for both; such a 

protocol may lead to a fuller-blown form of EAT and a better model of AITD; 

5) the effects of the immunization of CBA/J(H-2k) mice with hTg peptide 2714-2744, 

containing peptide bonds which are protected from proteolysis in hTgCS, and, perhaps, 

epitopes whose processing by APCs is inhibited in hTg-CS; 

6) the effects of the stimulation with hTgCSgp of autoreactive T cell clones from 

CBA/J(H-2k) mice immunized with the various forms of hTg, using such techniques as 
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gene microarrays, 2-D proteome analysis and differential mRNA display, and paying 

particular attention to the activation of signal transduction cascades. 
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