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ABBREVIATIONS 

 

 MS Multiple Sclerosis  

 MRI Magnetic Resonance Imaging 

 MR Magnetic Resonance 

 GM Gray matter 

 WM total White matter 

 aWM abnormal White matter 

 CSF Cerebrospinal Fluid 

 fGM fractional Gray matter (GM/ICV) 

 fWM total fractional White matter (WM/ICV) 

 faWM fractional abnormal White matter (aWM/ICV) 

 fCSF fractional Cerebrospinal Fluid (CSF/ICV) 

 ICV Intracranial volume 

 LL Lesion Load 

 RR Relapsing Remitting 

 PP Primary Progressive 

 SP Secondary Progressive  

 PD, N(H) Proton Density 

 TE echo time 

 TR repetition time 

 QMCI Quantitative Magnetic Color Imaging 

 ROI Region of Interest 

 PAWM Potentially abnormal WM 

 PL potential lesions 

 VBM Voxel-Based Morphometry 

 EDSS Expanded Disability Status Scale 

 DD Disease Duration 

 CI Confidence Interval 

 FWHM Full Width at Half Maximum 
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INTRODUCTION 

 

Multiple sclerosis (MS) is the most common neurological disease of young adults, 

and despite the fact that the disease was described over 130 years ago, 

understanding of pathogenesis remain elusive. The histopathologic features of MS 

include multiple foci of inflammation and demyelination as well as potentially 

substantial destructive or degenerative changes in both white matter (WM) and 

gray matter (GM) (Cifelli, 2002; Kidd, 1999; Peterson, 2001; Trapp, 1998). In the 

last 15 years, Magnetic Resonance Imaging (MRI) has assumed an important role 

as a tool to assist in the diagnosis of multiple sclerosis and to monitor the 

evolving disease in vivo. MRI allows to identify with high specificity white matter 

lesions, providing a sensitive measure of the evolving pathology, which is often 

not clinically apparent.  

Abnormalities have been reported also in the so-called normal appearing white 

matter and cortex using quantitative magnetic resonance methods, and 

pathological studies have confirmed the presence of disease in these regions. 

Furthermore, MRI data have led to the hypothesis that progression of the disease, 

up to a stage of no return, is dependent on the cumulative effect of axonal damage 

(De Stefano, 2001), which may ultimately result in MRI-visible brain atrophy 

(Miller, 2002).  

Tissue damage in MS is in fact not limited to the white matter (WM) as from 

inflammation axonal transection ensues (Ferguson, 1997; Trapp, 1998), and this 

process may extend by Wallerian degeneration, indirectly demonstrated by N-
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acetylaspartate reduction in MR spectroscopy studies (Davie, 1995; Davie, 1994; 

Rooney, 1997), possibly contributing to gray matter (GM) loss.  

Progression of brain atrophy, above normal age-related brain volume changes, has 

been detected in MS using linear measures of width of the ventricles and/or 

volumetric measures of the brain/intracranial volume (ICV) ratio (Adams and 

Koziol, 2000; Losseff, 1996; Rudick, 1999; Simon, 1999), over a period of time 

as short as 1 year. These findings raised the hypothesis that neurodegenerative 

pathology in MS may represent a major part in the development of permanent 

disability. Moreover the accumulation of damage to the nervous system may play 

a different role in the different clinical types of MS: relapsing-remitting (RR), 

primary progressive (PP), secondary progressive (SP). 

Consequently, there has been a growing interest on the possibilities offered by 

MRI to measure structural changes in the brain of MS patients, particularly 

regarding techniques which provide quantitative estimates of brain tissue 

volumes. 
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QUANTIFICATION OF BRAIN TISSUE VOLUMES WITH 

MRI: SEGMENTATION TECHNIQUES 

 

There has been an active search for sensitive MRI methods to measure brain 

atrophy and other objective parameters of tissue damage. In an effort to obtain 

reliable, reproducible, and objective measurements of brain atrophy, MRI 

methods have evolved from semiautomated, operator-dependent segmentation 

techniques to automated, operator-independent ones (Miller, 2002; Pelletier, 

2004). 

 

Quantification of brain tissue volumes involves the identification of each 

intracranial tissue, including GM, WM, CSF.  Such object-based processes may 

involve some or all of the following: detecting the presence of the tissues, 

localizing their boundary or the position of their centre, measuring their size, 

characterizing their shape and identifying their anatomical name or pathological 

type.   

These processes all depend on the fundamental underlying process of 

segmentation, that in a more general sense can be defined as the partitioning of 

the image into objects. Segmentation methods need to be reproducible, accurate 

and efficient. 

Segmenting a brain to divide it into regions  usually involves examining every 

voxel in the image and assigning it a label that associates it with a tissue.  The 

assignment can be based on properties of that voxel, properties of its neighbours, 

and/or similarity to other voxels which are already assigned to a region.  
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In medical images of the brain, the regions are usually referred to by experts with 

anatomical names for specific objects (such as “thalamus”) or with a names for a 

type of tissue, vis. gray matter (GM), white matter (WM), or cerebrospinal fluid 

(CSF). Structures are mainly recognized from their morphology and spatial 

relationships.  Many of the individual structures are composed of one class of 

tissue.  Various parameters of the segmented structures can be calculated, and 

compared with normal structures or previous measurements performed using the 

same technique. MR image segmentation allows the visualization of the 

individual anatomical structures in 3D, providing an aid to surgery and treatment 

planning, as well as a means for studying the effect of the locality of abnormal 

tissues in disease. 

 

In general, segmentation and labelling of MR images is a very difficult and time-

consuming process (Farmer, 1996; Kapur, 1995). Often there is not enough 

information in the image to segment a complete structure.  Low quality of data 

and having irregular shape which is difficult to represent mathematically makes 

MR segmentation more difficult. 

 

MR data characteristics 

Before focusing on segmentation techniques, it is worth to take a look to some 

characteristic of MR data that affect image segmentation: noise, partial volume 

effect, radio-frequency inhomogeneities and motion. 

 



 10 

1. Noise 

The signal to noise ratio can be relatively low for poor quality MR images. The 

commonly used techniques for image noise reduction involve some form of 

smoothing.  Smoothing modifies each pixel intensity according to the intensities 

of its spatial neighbors. While reducing the noise, these techniques also reduce the 

image contrast.  There are also other noise reduction techniques that make a priori 

assumptions about the statistical nature of the noise.  Noise is a frequent problem 

in any image acquisition process, including MRI.  In many cases segmentation 

techniques are evaluated on their relative sensitivity to noise. 

 

2.  Partial Volume Effect  

MR images have limited spatial resolution, thus, each voxel can be occupied by 

more than one tissue type; its intensity can be the average of the intensity from all 

component tissues, which blurs the intensity distinction between tissue classes at 

the boundary of the objects.  This effect blurs many of the tissue boundaries of an 

MR image, making tissue boundary detection difficult (Laidlaw, 1998). 

Furthermore MR images are usually acquired as a sequence of 2D slices, which 

are then stacked to form the image of a volume.  In-plane spatial resolution is 

typically higher than the slice thickness, leading to voxels which have cuboidal 

shape rather than cubic.  This anisotropic sampling can cause problems for certain 

types of segmentation algorithm. 

 

3. Intensity Inhomogeneity 
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MR images are subject to artefactual variation in signal intensity across the field 

of view. The main causes are inhomogeneity of the radio-frequency field resulting 

in non-linear gain artifact in the images.  This is problematic for brain 

segmentation algorithms that assume that voxels containing a particular tissue 

type have similar intensities throughout the MR volume.  The artefactual intensity 

variation perturbs the intensity distributions, increasing overlap and leading to 

substantial misclassification when methods based only on intensity are used.  

Methods to compensate for intensity inhomogeneity are thus important to improve 

the results of many segmentation algorithms. 

 

4. Motion  

Patient movement during the scan causes artefacts. Because signal acquisition 

occurs in the frequency domain, artefacts in the image space tend to have a 

complex appearance and are hard to correct by post-processing. The problem is 

more acute when multimodal datasets are acquired because the duration of image 

acquisition is usually longer. 

 

Segmentation methods 

Separating brain tissues can be done basically in two ways: based on the 

homogeneity of a region with the so-called region based methods, or if 

homogeneity is poor but contrast between regions is high with the so-called 

boundary based methods.  
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Region based techniques rely on the homogeneity of spatially localized features, 

whereas boundary based techniques attempt to identify the locations of significant 

changes in grey level, using discontinuity measures.   

Apart from the calculation algorithm used, another important characteristic of the 

segmentation methods is their operator dependence that goes from manual 

parcellation through semi-automated to completely automatic operator 

independent ones. 

 

1. Automatic  thresholding 

Thresholding is the simplest region-based method, where the similarity criterion is 

set by the threshold.  It is one of the most commonly use image segmentation 

processes.   

The automatic thresholding techniques usually involve four basic steps:  

1) A histogram of the MRI voxel intensities is produced 

2) A threshold is selected based on the fact that most of the relatively high 

intensity voxels in the MR image belong to the brain 

3) The threshold is then applied to the image to produce a binary mask 

4) Some kind of morphology and/or expert knowledge is applied to the 

binary mask to remove non-brain regions. The resulting mask identifies 

the brain and thus, the intracranial boundary.  

This procedure is usually applied to the histogram of the whole image (global 

thresholding), but can be performed also locally on any sub-region.   

Some authors use iterative thresholding to distinguish brain tissues from others in 

axial MR slices by means of an adaptive technique, that iteratively adjust the 
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initial threshold on the basis of the geometry of resulting masks (i.e. the head 

mask includes the brain mask) (Suzuki and Toriwaki, 1991). This method is 

ineffective in the presence of RF inhomogeneity and in slices where the brain is 

not one homogeneous region closely surrounded by the skull (e.g. in the 

lowermost slices where cerebellum and temporal tips are separated). 

 

Automatic thresholding (Atkins and Mackiewich, 1998; Brummer, 1993) is often 

used to perform a crude segmentation of the brain.  Refinement of the brain 

contour is then performed using several approaches, including discontinuity-based 

morphological processing (Atkins and Mackiewich, 1998), active contour and 

deformable models (Kaus, 2003; Vaillant and Davatzikos, 1997), and other 

techniques (Chakraborty, 1994; Holden, 1995).   

 

2. Region growing  

Region growing methods require the identification of a seed point to start 

classification of voxel intensity and absorb neighbouring points satisfying a 

homogeneity measure to expand the region. For this region they are in general 

semi_automatic method.  

The homogeneity measure is computed based on some statistics from region 

and/or its local neighbourhood.  Pannizzo et al. (Pannizzo, 1992) consider the 

grey level change along horizontal line outward from the centre of the image 

(brain) to detect intracranial boundary.  They use an adaptive threshold to detect 

the first significant change in the intensity.  A running average of voxels along the 

line is used to refine the boundary.   
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Zijdenbos et al. (Zijdenbos, 1994) fitted a surface to the voxels initially labelled as 

a boundary.  They then calculated a new threshold and refined the boundary 

position by applying this threshold.  

 

Hojjatoleslami et al. (Hojjatoleslami and Kruggel, 2001) developed a region 

growing algorithm which starts from a high grey level point inside the white 

matter, absorbs the highest grey level point in its boundary to expand the region.  

A discontinuity measure, so called peripheral contrast, is employed to choose the 

boundary for the region. Peripheral contrast computes the difference between 

average grey level of internal boundary and the external boundary during the 

growing process.  It computes a global measure of discontinuity for the boundary 

of the region which is robust in the presence of noise.  The algorithm is used in 

two steps; in the first step, a starting point inside the scalp is used to segment the 

scalp and eyes, in the second step the algorithm starts from a seed point inside the 

white matter to segment brain tissues (WM, GM and CSF).  These two starting 

points are the only interactive settings used.  

 

3. Matching to a normalized template (atlas) 

Atlases have been used as a reference for segmentation of 3D MR images by 

some researchers. This is accomplished by first registering an atlas volume with 

the subject volume and then using the atlas to segment the mapped structures from 

the test image. The initial segmentation is then normally refined using various 

local properties (Dawant, 1999; Hartmann, 1999; Van Leemput, 2001ì). 
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Many different algorithms for registering the 3D atlas onto the MR volume have 

been used. An example is described by Hartmann (Hartmann, 1999) who used a 

two-step registration.   

 

4. Edge detection 

Edge detection methods rely on changes in the grey level, rather than their actual 

values, to produce closed boundary contours.  Edges can be detected using a 

variety of operators including Sobel, Laplace, Perwitt or Canny operators 

(Mohamed, 1999).  Prior smoothing with a Gaussian function, is often used.  

These operators are generally a type of gradient magnitude transform, the result of 

which is then thresholded to produce a large number of disconnected edge 

segments.  The disadvantages include the loss of edge detail in certain parts of the 

image, where magnitude of the edge strength is lower than the global threshold; 

and the fact that the edge segments are disconnected and must be linked to each 

other before any objects are extracted.  

 

Among Edge-detection method watershed algorithms are commonly applied to a 

gradient magnitude image, to divide the image into the small regions with closed 

boundaries, surrounding a single local minimum of magnitude.  Letterboer  et al. 

(Letteboer, 2004) applied the watershed method to anisotropically filtered MR 

images.  They evaluated a range of such operators for the purpose of interactive 

multi-scale segmentation of grey and white matter in T1 weighted 2D MR images.  

Along the watershed boundaries, the gradient magnitude is locally maximal in the 
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direction orthogonal to the edge.  The main disadvantage is that when the level of 

noise is high, a large number of small regions is generated.  It is almost always 

necessary to simplify the watershed segmentation by merging locally similar 

regions.  

 

5. Active Contour models 

Deformable models have been a popular technique for segmentation of medical 

data, in part because of their ability to incorporate approximate shape constraints. 

In 3D systems that use such models typically represent anatomical structures 

using stacks of deformable contours in 2D or may use a true 3D deformable 

surfaces.  Example systems include Chakraborty’s Fourier snakes (Chakraborty, 

1994).
 

Atkins (Atkins and Mackiewich, 1998) used an active contour model to refine the 

boundary between the brain and intracranial cavity.  They use a four-term energy 

function including curvature (to force the contour towards a circular shape), 

balloon (to push the contour outward to cover a larger region) intensity (to drive 

the contour toward low intensity area) and gradient (to force the contour toward 

strong gradient points).  The weighted sum of the energy functions is computed 

and every boundary point is moved to the point of minimum energy in its local 

neighbourhood. 

 

Chakraborty et al. (Chakraborty, 1994) combined a region-based method to 

provide an initial segmentation of the image, and then fit a parametrically 

deformable shape model to find the boundary of interesting features in the 
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segmented image.  Ranganath (Ranganath, 1995) used a snake algorithm to 

extract the contour from cardiac MRI studies by propagating the snake to 

sequence of images, with an intermediate processing step. The intermediate 

process prevents the snake contour from becoming trapped in local minima. The 

initial contour is crucial step in the snake algorithm. 

 

6. Multiparametric methods 

Some groups use multiple sets of MRI volumes to have more information on the 

images. For example Jackson and colleagues (Jackson, 1993) described a method 

which segmented the T2 and PD (2-dimensional) histogram into five classes 

corresponding to GM, WM, CSF MS lesions and other tissues using a cluster 

algorithm.  An ellipse enclosing the two standard deviation confidence limits was 

calculated and other parameters of the cluster were derived.  The ellipse could be 

extended or reduced interactively on the scatter plot, while viewing the image.  

Pixels thus classified were displayed in image space.   

A system described by Mitchell and colleagues (Mitchell, 1994) was similar to 

that of Jackson et al. but apparently allowed more interactions.  Mitchell’s 

parameterization of the feature space clusters allowed a location in feature space 

to have graded (fuzzy) membership of a cluster, and also to belong to more than 

one cluster.  This in turn meant that any pixels in the image having the 

(multispectral) intensity properties of a particular feature space location would 

also have the same (multi-tissue) fuzzy membership.   

Zijdenbos et al. (Zijdenbos, 1994) developed a method which used T1 as well as 

T2 and PD data sets. For forming feature space clusters, the user input a set of 
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training points.  A neural network algorithm constructed the clusters.  They 

showed that correction for intensity inhomogeneity had a profound effect on the 

results.  

Johnston et al. (Johnston, 1996) acquired dual echo (PD and T2 weighted) and 

discussed the extent of overlapping intensities of the important tissue classes, but 

they carried out initial segmentation using the intensity histogram of each echo 

separately. Class membership was expressed as a probability or fuzzy value, as 

with Mitchell et al. and Zijdenbos et al. Like other authors, they demonstrated the 

importance of correction for intensity inhomogeneity.  Kamber et al. (Kamber, 

1995)  registered MS patient scans with a probabilistic anatomical atlas.  This was 

then used to guide the lesion segmentation process with a reported high degree of 

agreement with manual segmentations. 

Udupa et al. (Udupa, 1997) have developed an approach to segmentation which 

they term “fuzzy-connectedness” and have applied this to the MS lesion 

quantification on dual echo MR images.  The background is masked by applying a 

threshold which is derived by identifying border voxels in a whole-image 

histogram of gradient magnitudes.  Intensity inhomogeneity is corrected by fitting 

a second order polynomial to a roughly segmented “CSF object”.  This is 

extracted by creating an image from the ratio of T2 and PD values which 

minimises the pre-correction intensity inhomogeneities.  They then use an 

empirical approach to derive parameters from the 2D histogram for the “fuzzy 

connectedness” analysis of white and grey matter.  In this application, fuzzy 

connectedness is an index of intensity similarity between two voxels.  This 

“similarity” is a complex function which is high if the mean intensity of the two 
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voxels is close to a neighbourhood mean, but is reduced if the difference between 

the intensities of the two voxels is close to a neighbourhood mean of differences.  

Fuzzy connected objects are then created by linking voxels which are similar to 

their neighbours; boundaries occur where there are low similarities (i.e. marked 

differences in intensity) which cannot be circumvented. 

 

Among the multiparametric systems is also included a more recently published 

method based on the calculation of relaxation properties of each brain voxel, 

based on signal intensities of MR conventional Spin echo images (T1-w, T2-w 

and PD-w) which allows to recognize and segment both normal brain tissues and 

MS lesions (Alfano, 1997; Alfano, 2000).  

As this method was the basis for the present work, it is described more in detail 

hereinafter in its original implementation. Ameliorations introduced for the 

purposes of the present work are then described (see below section on the first aim 

of the study). 
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A MULTIPARAMETRICAL FULLY AUTOMATED 

SEGMENTATION METHOD FOR MS  

 

Alfano et al. (Alfano, 2000) developed a fully automated segmentation method 

that included the identification and volume measurement of demyelinated white 

matter.   

The method is based a relaxometric characterization of brain tissues using 

calculated R1 (= 1/T1), R2 (= 1/T2) and proton density [N(H)] maps from spin-

echo MR acquisition sequences. The assessment of MS lesion distribution in the 

R1, R2, N(H) space indicated that MS lesion classification using the above 

procedure would require utilization of both relaxometric and geometric features of 

MS lesions for their classification (14). 

 

Generation of the multiparametric maps 

The Alfano’s multiparametric approach requires two sets of slices covering the 

whole brain obtained at 1 or 1.5 T MRI scanner, sampling the whole brain 

contiguously (Fig. 1). Each set includes conventional spin-echo sequences 

providing T1w and PD/T2w  axial images.  
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Fig.1  

The example of one axial slice from the MRI acquisition is displayed showing the contrast 

obtained from the spin-echo sequences. Images represent respectively: T1-weighted on the left, 

PD-weighted in the middle and T2-weighted on the right. 

 

For each slice, relaxation-rate (R1 and R2) and proton-density [N(H)] maps are 

computed according to the following equations: 

 

[1] 

 

 

[2] 

 

where S is MR signal intensity, N(H) is proton density, K is a constant depending 

on total device performance and gain, R1 and R2 are spin-lattice  and spin-spin 

relaxation rates, respectively (with TE1 and TE2 indicating respectively the first 

and the second echo times of the double-echo sequences). Eqs. [1] and [2], 
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respectively valid in the transverse steady state for single-echo and double-echo 

sequences, were derived from the analysis of Bakker and colleagues (Bakker, 

1984). 

  

 

 

 

 

 

 

 

 

Fig. 2 

The example of the three maps derived from the triplet acquisition images of one axial slice 

according to the formulas [1] e [2]. Images represent respectively: R1 on the left, R2 in the middle 

and N(H) on the right. 

 

The three maps can be visualized in one color 

picture by driving the Red, Green and Blue 

channel with the R1, R2 and N(H) values 

respectively. The resulting so-called QMCI 

(Quantitative Magnetic Color Imaging) is 

shown in Fig. 3. 

 

Fig.3  

QMCI image of a representative axial slice. 
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Segmentation procedure 

After being calculated for the whole brain volume, the R1, R2 and N(H) values 

for each voxels of the volume are plotted in a three-dimensional space to identify 

clusters of voxels belonging to different brain tissues. Fig.4 presents the cluster 

distribution of the total brain volume in a normal subject, in which the high 

frequency components were eliminated to better identify clusters of different brain 

tissues. 

 

Fig. 4 
Voxel distribution in the R1-R2-N(H) space of a whole brain volume form a normal volunteer and 

a representative QMCI axial slice. The filtering of the high spatial frequency of the image allows 

to better identify clusters of different tissue types: WM (white matter), GM (gray matter), GP 

(globus pallidus), frWM (frontal WM), toWM (temporo-occipital WM), scWM (subcortical WM). 
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Clusters were interactively defined by expert observers with simultaneous 

comparative assessment of the original signal-intensity MR images, of the 

segmented images and of the cluster distributions. The resulting ROI boxes, as 

published (Alfano, 1997) are reported in Fig.5. 

 

Fig. 5 

Voxel distribution in the R1-R2-N(H) space of a whole brain volume from a normal volunteer and 

a representative QMCI image (lower left). Color scale (top) indicates voxel density. ROIs 

indicated on the R1-R2 plane identifies different brain tissues. 

 

It is evident from Fig.5 that a crucial step in ROI definition is the separation of the 

GM and WM clusters, whereas the CSF cluster seemed to be clearly distinct from 

the other two. The automated procedure for segmentation and volume 

measurements is based on the following steps: (a) preprocessing of the 



 25 

multispectral QMCI images; (b) correction for RF inhomogeneities; (c) 

calculation of GM/WM R2 cutoff and ROI coordinate updating; (d) creation of a 

preliminary 3D segmentation matrix; (e) elimination of the voxels belonging to 

extrameningeal tissues, which may fall in one of the cerebral tissue clusters; (f) 

classification of the remaining voxels; (g) volume calculation and display of the 

segmented images. The result of the segmentation algorithm with the 

classification of each voxel of the brain volume is depicted in Fig. 6. 

 

  

 

 

 

 

Fig. 6 An axial slice showing an example of the 

output of the segmentation program. Color coding 

for segmented images is: GM, gray; WM, white; 

CSF, blue; putamen, green; globus pallidus, bright 

red; muscle, dark red; low N(H) tissues, violet; fat, 

pink. 

 

1. Calculation of GM/WM R1 cutoff 

The algorithm in its published version included a calculation of the GM/WM R1 

cutoff that we modified in the present version of the program as described later 

on. An adjustment of the GM/WM R1 cutoff is necessary, because the separation 

of the GM and WM clusters is critically dependent upon their R1 values. 

Therefore the sum of the R1 histogram for all the slices of the study is obtained 

and smoothed. The two R1 values corresponding to 10% of the maximum of the 

histogram (“feet” of the distribution) are determined as shown in Fig. 7. The 
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GM/WM R1 cutoff value is set at 43% of the distance between the two feet. Such 

value provided the best GM/WM separation in the segmented images in a test 

population of 10 normal subjects (age range: 24 to 57 years) originally used to 

define the position of the normal brain tissue clusters in the multispectral R1, R2 

and N(H) space. The use of a predefined percentage of the distance between the 

edges of each distribution from prefiltered data results in a R1 cutoff value 

tailored to each subjects. 

 

Fig. 7 

Volume study performed in a 28-year-old normal subject: distribution along the R1 axis of voxels 

belonging to GM and WM ROIs in series of representative slices before (A) and after realignment 

(B) and corresponding sum of all histograms before (C) and after realignment (D). Legend 

between A and B indicates slice positions (Z axis offset in mm, cranial-caudal direction). 

 

After determining the ROIs positions in R1-R2-N(H) space that allow to assign 

each voxel to a specific brain tissue based on the test population, the segmentation 
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procedure was applied to a population of a 50 normal subjects to find age 

correlation of fraction tissue volumes (fGM, fWM and fCSF normalized for the 

total intracranial volume obtained from the sum of GM, WM and CSF). 

 

MS plaques automatic segmentation  

The Alfano’s segmentation method has been successfully applied to the 

segmentation of MRI studies from MS patients including in the software the 

automated identification  and volume measurements of demyelinated white 

matter. The assessment of MS lesion distribution in the R1, R2, N(H) space 

indicated (Fig. 8, 9) that MS lesion classification using the previously described 

procedure would require utilization of  both relaxometric and geometric features 

of MS lesions for their classification.  

 

Fig. 8  

Projection of the 3D histogram of brain voxels from the 22 MR studies in normal subjects onto the 

N(H)-R2 (left) and R1-R2 (right) planes. Color scale (right) indicates voxel density. Mean values 

of the plaques from 18 studies in MS patients are superimposed (green dots; intensity is 

proportional to plaque volumes). ROIs indicate respectively: 1, muscle; 2, fat; 3, globus pallidus; 

4, putamen; 5, white matter; 6, gray matter; 7, potentially abnormal white matter; 8, CSF. 

 
R2 

R1 N(H) 
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Fig. 9 

Projection of the 3D histogram of brain voxels onto R1-R2 plane (upper row) and QMCI maps at 

the level of the lateral ventricles (lower row) in a normal subject (left) and in two patients with 

different lesion load. WM 5 white matter, GM 5 gray matter, CSF 5 cerebrospinal fluid. In the two 

patients different degrees of the involvement of periventricular and subcortical WM (dark violet 

areas) are shown. The corresponding R1-R2 distributions show the position of abnormal WM. 

 

1. Identification of WM lesions 

Figure 10 shows a flow chart of the procedures for the classification of WM 

lesions.  
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Fig. 10 

Flow chart of the procedure for the classification of WM lesions. 

 

The classification of normal brain tissues is based on their distribution in the R1, 

R2, N(H) multifeature space, where the clusters of GM, WM, and CSF are well 

defined (Fig. 8, 9). To know the position of the cluster representing the 

demyelinated WM in the multifeature space, a preliminary analysis was 

performed on 18 MR studies in 18 subjects with MS. Three neuroradiologists with 

more than 4 years of experience in brain MRI interpretation, selected WM lesions 
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on original films [T1-, T2-, N(H)-weighted images] in the MS patients. 

Neuroradiologists were asked to identify lesions according to conventional 

diagnostic criteria. A subset of 253 MS lesions (representative of the whole 

spectrum of MR appearance), identified by at least two observers, were then 

outlined on the QMCI slices, using an interactive region growing routine written 

by the authors using Interactive Data Language (Research System, Boulder, CO). 

For each lesion, the mean value of R1, R2, and N(H) were calculated and 

superimposed onto a reference distribution of normal intracranial tissues obtained 

by averaging 22 normal studies (Fig. 8).  

 

In the multifeature space, abnormal WM voxels cover a wide range of R1, R2 

values (Fig. 8) and seem to originate from the normal WM cluster and migrate 

toward lower R1, R2 values. This is more clearly shown when comparing R1, R2 

distributions of normal subject with patients with a different lesion load (Fig. 9).  

Since in the multifeature space the MS lesions partially overlap the normal tissue 

distribution (Figs. 8, 9), voxel position alone does not allow unequivocal 

classification of MS lesions but only permits the definition of a ROI for tissues 

that can be classified as “potentially abnormal white matter” (PAWM). A PAWM 

ROI including the above-mentioned 253 MS lesions was defined (Fig. 9). To 

segment out MS lesions, the segmentation procedure was modified to operate in 

two steps: 

1. GM, WM, CSF, muscle, fat, globus pallidus, putamen, and PAWM voxels 

are classified based on their position in the multifeature space by obtaining 

a presegmented 3D matrix (256, 256, 32). 
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2. The 3D clusters composed of PAWM voxels are classified as lesion or 

normal tissue, taking into account their morphologic characteristics. 

The second step included a) identification of “potential lesions” (PL), b) 

fragmentation of spatial clusters, and c) lesion classification. 

 

1.1 Identification of “potential lesions” 

The presegmented 3D matrix is scanned to find the PAWM voxels forming 

clusters in the physical space, which are then labeled PL. When a PAWM voxel is 

found, a 3D region growing technique is applied, using this voxel as a “seed,” to 

define a spatial cluster formed by spatially contiguous PAWM voxels. 

 

1.2 Fragmentation of spatial clusters 

This step is aimed at improving classification of large lesions. In fact, the 

presence of large lesions increases the probability that normal tissue voxels, 

included in the PAWM, could be spatially connected to true lesion voxels. Thus, 

large PLs probably include thin connections between normal and abnormal 

tissues. PLs larger than 8 ml are broken up into different PL fragments using an 

erosion algorithm that cuts the connections thinner than 3 pixels. 

 

1.3 Lesion classification 

The aim of this task is to classify the spatial clusters based on their shape, 

dimension, and spatial relationship with WM. The criteria used to classify as 

lesion a 3D spatial cluster are based on the assumption that small MS lesions are 

roundish and surrounded by WM, while, as size increases, the shape becomes 
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more irregular, and a large interface with GM can occur. To realize this task, for 

each PL the following parameters are calculated: 

1. PL shape factor (PLSF): 

     

where nb is the number of voxels surrounding the PL, n is the number of voxels of 

PL. 

2. PL dimension factor (PLDF): 

     

3. Surface-volume factor (SVF): 

     

where P1 and P2 are the weight factors determined in the algorithm optimization 

(see below). 

4. Center of mass of PL and of surrounding WM (SWM) in the R1, R2, N(H) 

space according to the formula: 

     

where xi is the i th coordinate of the center of mass of a tissue spatial cluster in the 

multifeature space, and n is the number of voxels of that cluster. 

A PL is classified as lesion if the percentage of surrounding WM (SWM/nb) is 

greater than the surfacevolume factor. The procedure at this stage would 

erroneously classify as lesions some very small spatial clusters (one or two 

voxels) surrounded by normal WM. In fact, since in the multifeature space the 
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PAWM ROI is contiguous to normal WM ROI (Fig. 10), some normal WM 

voxels can fall into PAWM ROI due to noise; being surrounded in the physical 

space by WM, they would be erroneously classified as lesions. 

To avoid this, a PL is classified as lesion only if the following additional 

condition is verified in the normalized R1, R2, N(H) space: 

    

where :  is the vector joining the centers of mass of SWM and PL,  is the unit 

vector oriented from the center of mass of abnormal WM to the center of mass of 

normal WM (obtained from the 40 studies used for optimization of the algorithm), 

D is the lowest distance in the parametric space necessary for detection of a lesion 

(ie, the minimum color contrast to detect a plaque in the QMCI images) according 

to two experienced neuroradiologists (A.B., M.Q.) (D 5 5.4 normalized units). 

The normalization of the multiparametric space was obtained by dividing spatial 

coordinates by NFx, NFy, NFz: 

    

where R1SD, R2SD, and N(H)SD are respectively R1, R2, and N(H) standard 

deviations of a manually selected pure frontal WM distribution in the same space. 

If PL is not classified as lesion, it is classified as GM, WM, or CSF depending on 

its mean R1 and R2. 

 

Validation 

To compare the results of the fully automated segmentation program (hereinafter 

referred to as “unsupervised segmentation”) with manual selection of abnormal 
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WM (reference standard, hereinafter referred to as “supervised segmentation”), 

manual editing of the unsupervised segmentation results was performed using a 

commercial PC-based photo-editing program (Photoshop, Adobe, Mountain 

View, CA). The unsupervised segmentation program calculates normal and 

abnormal tissue volumes and provides segmented images by codifying different 

tissues with different colors (Fig. 11). Furthermore, it adds to each QMCI image, 

besides the three RGB channels containing the R1, R2, and N(H) maps, a fourth 

channel containing a map of the segmented MS lesions that can be displayed, as a 

selection, onto the QMCI images (Fig. 11). The neuroradiologist verifies the 

accuracy of the automated classification by comparison with the original MR 

images and, if that be the case, he/she can interactively modify the selection 

adding WM lesions not identified by the unsupervised method (false negative) or 

deselecting areas incorrectly classified as WM lesions by the unsupervised 

method (false positive). Supervised segmentation results are saved into an 

additional channel of the images, allowing pixel by pixel comparison of different 

segmentation techniques and inter-/intraoperator comparison. 
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Fig. 11 

Axial slices at the level of lateral ventricles in an MS patient with medium lesion load. Column on 

the left multifeature QMCI image are shown where MS lesions appear violet, while column on the 

right corresponding. unsupervised segmented image are displayed. MS lesions are displayed in 

yellow.  

 

In the repeatability studies, to minimize the intraoperator variability (as required 

in clinical trials, when analyzing studies performed before and after therapy), 

simultaneous supervised segmentation of two studies was also performed. This 

type of analysis is hereinafter referred to as “comparative supervised 

segmentation.”  
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To validate the technique, 16 MR studies in MS patients, not previously used for 

algorithm optimization, were analyzed with the unsupervised method and then 

analyzed under supervision by three experienced neuroradiologists. Furthermore, 

for interstudy reproducibility assessment, four patients with heterogeneous lesion 

load underwent two studies within the same day. No special care was taken to 

ensure that the same head and/or slice positioning was obtained in both studies. 

 

1. Specificity of  the method 

For specificity assessment, false-positive lesion volume was defined as the 

amount of abnormal WM detected in ormal subjects (24 MR studies). Mean 

volume of the “apparently abnormal” WM detected  by the unsupervised 

procedure in normal volunteers was 0.11 ml (range 0–0.59 ml). 

 

2. Sensitivity of the method 

Sensitivity was evaluated using the results of supervised segmentation as the gold 

standard: it was expressed as the percentage of WM-lesion voxels, as defined by 

the supervised technique, correctly classified by the unsupervised technique (true 

positive) in the 16 MS patients. In 16 studies in MS patients, not used for 

algorithm optimization, average lesion load was 31.0 ml (range 1.1–132.5). The 

unsupervised method correctly classified as abnormal WM 87.3% of the total 

lesion volume detected using the supervised technique in the 16 patients 

(mean sensitivity per patient 81.2%). In Fig. 5, regression of unsupervised vs. 

supervised technique is displayed. Slope and intercept were respectively 1.08 ± 

0.03 and 1.34 ± 1.34. 
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3. A posteriori correction of GM and WM volumes 

The segmentation technique relays mainly on calculated relaxation rates of 

normal brain tissues, which are fixed for each tissue and relatively independent on 

sequence parameters, to individuate GM, WM, CSF, and MS plaques. The only 

parameter tailored on each study is the R1 cutoff between GM and WM, which is 

calculated at a fixed percentage between the two tissue clusters (see above). 

However, Quarantelli et al. (Quarantelli, 2003) demonstrated the presence of a 

bias introduced in the segmentation of normal brain tissues by the presence of 

aWM (with R1 values comparable to GM), which could in theory modify the 

definition of the R1 threshold between GM and WM clusters.  

The relationship between aWM presence and the accuracy in fractional normal 

tissue volumes and the resulting correction factors were reported with a posteriori 

correction of GM and WM volumes as assessed by linear regression analysis (Fig. 

12). 

 

Fig. 12 

Effect of the presence of aWM on the accuracy of automated measures of fGM (A), fWM (B), and 

fCSF (C) volumes, compared with corresponding fractional volume changes of brain normal 

tissues in MS patients. The fractional volumes are expressed as percentage of their original value 

(measured before aWM addition) for simulated MS studies (filled squares) and as percentage of 

the value expected for patient age in MS studies (empty squares). For simulated data, significant 

regression lines are reported along with corresponding equations and R values. A small although 

significant overestimation of fWM and fCSF and underestimation of fGM is detectable, largely 

below the observed changes in fGM and fCSF in MS patients. 
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BRAIN TISSUE VOLUMES IN MS: PREVIOUS RESULTS 

 

Only a few studies have assessed volume changes in both WM and GM in mixed 

MS population (Liu, 1999) (De Stefano, 2001) and in purely RR (Chard, 2002; 

Ge, 2001; Quarantelli, 2003), but whether they are simultaneously present and 

sizeable is currently debated. Liu et al. reported loss in GM  and WM in both RR 

and SP MS patients, while De Stefano at al. assessed only GM loss (he did not 

search for WM loss) in RR and PP separately. For the groups that studied purely 

RR MS patients, in one case (Ge, 2001) tissue loss appeared limited to WM, 

albeit a significant correlation between GM and abnormal white matter volume 

(aWM) was found, while a second study (Chard, 2002) found a decrease in both 

GM and WM fractions, although lesion load (LL) correlated only with GM loss 

and the third study (Quarantelli, 2003) found  only a GM loss strongly correlated 

with LL. 

Moreover, in a recent study on a group of patients with clinically isolated 

syndromes suggestive of MS (Dalton, 2004) GM loss (but not WM loss) was 

found in the subgroup of patients who developed in 3 years clinically defined MS, 

thus confirming the presence of GM atrophy already in the very early stages of 

the disease.  

Although all of these studies provided consistent evidence that brain atrophy is a 

relevant feature of MS, the differential involvement of WM and GM in patients 

with different disease courses as well as the intercorrelations between WM and 

GM atrophy and lesion load, and the correlations between WM and GM atrophy 

and clinical features, have been only partially defined.  
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In addition none of these studies addresses the question of whether the observed 

tissue loss is homogeneously distributed or rather localized in specific cortical or 

subcortical regions. 

In previous studies assessing brain tissue loss over specific pre-defined brain 

regions, decreases in both area and axonal density in corpus callosum (Evangelou, 

2000) and in thalamic GM (Cifelli, 2002) have been reported. 

Nevertheless, to date a comprehensive look at the GM regional changes has been 

done, to the best of our knowledge, only in one study (Sailer, 2003) using 

automatic surface reconstruction to measure the cortical thickness across the 

entire brain in a group of MS patients, including both RR and secondary 

progressive subtypes of the disease. 

That work reported a highly significant focal atrophy bilaterally in frontal, 

temporal and motor areas in the MS patients, motor cortex involvement being 

related to physical disability. 
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AIM OF THE WORK 

 

Aim of the present work was threefold:  

1. to improve the multiparametric segmentation technique originally 

developed at our laboratory (Alfano’s method) by optimizing GM/WM 

separation to eliminate the bias in favor of WM volumes which had been 

demonstrated in presence of MS lesions. 

2. to quantify cerebral tissue volumes in a large population of MS patients to 

rule out controversies of the updated literature in the field. 

3. to assess whether GM loss in MS is preferentially located in specific brain 

region.  

For the first aim, we implemented a multigaussian fit routine to detect more 

accurately in each study the GM/WM R1 cutoff (i.e. the R1 value separating the 

GM and WM clusters). The resulting optimized segmentation routine was 

validated in a series of simulated MS studies. 

For the second aim we sought to measure WM and GM atrophy and lesion load in 

a large population of patients with MS using the fully automated, operator-

independent, multiparametric segmentation method previously described. The 

intercorrelations between WM and GM atrophy and lesion load and the 

correlations between clinical and MRI data were also assessed. This was 

accomplished by organizing a multicenter study, in which an MRI machine 

housed in a truck traveled to different locations to perform the same MRI protocol 

in all patients. 
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For the third aim we have used the Voxel Based Morphometry (VBM) 

(Ashburner and Friston, 2000), to compare on a voxel-by-voxel basis GM and 

WM volumes as measured by segmentation of conventional spin-echo MR 

images. VBM allows to compare structural features across scans of different 

subjects in a fully automated manner, thus overcoming problems of intra- and 

inter-observer bias and sensitivity, as well as the need for a-priori definition of 

structures of interest. We applied VBM to a selected group of RR-MS patients 

and to an age-matched control group to assess regional GM loss on a voxel-by-

voxel basis. VBM was also used to search for an asymmetric effect of the 

pathology between left and right hemispheres, and to search the whole brain on a 

voxel-by-voxel basis for correlations between local GM volumes and disease 

duration, Expanded Disability Status Scale (EDSS) score and the abnormal WM 

(aWM) volume (hereinafter referred to as lesion load, LL).  
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FIRST AIM: 

OPTIMIZATION OF MULTIPARAMETRIC 

SEGMENTATION FOR MS 

 

To improve the segmentation method, a new technique to calculate GM/WM R1 

cutoff was introduced to eliminate the previously observed slight underestimation 

of fGM in the presence of high LL (Quarantelli, 2003). 

 

Calculation of GM/WM R1 cutoff with multigaussian fitting 

As described in the previous chapter the Alfano’s method was based on an 

adaptive threshold to separate in R1 WM and GM, that was recalculated for each 

study. Once the multiparametric maps were obtained the program calculated the 

histogram in R1 of all the slices in a volume and summed it to obtain an R1 

distribution for each patients. As shown in Fig.12 the R1 resulting distribution for 

a normal subject is characterized by the presence of two peaks, the one to the left 

relative to GM voxel distribution and one to the right relative to WM distribution.  

The presence of a medium-high LL in R1 distribution due to MS plaques changes 

the R1 distribution increasing above normal GM peak and decreasing WM peak 

due to the relaxation properties of MS plaques (see Fig. 9). 
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Fig. 12  

R1 histogram obtained from the sum of the histograms of all slices in a volume from a normal 

subject. In the histogram are clearly distinguishable the GM and WM peaks. The cutoff between 

GM and WM, calculated as described in Alfano et al. (Alfano, 1997) is drawn in purple. 

 

In Fig. 13 the R1 histogram of a representative MS-RR patient with a medium LL 

(LL=3,04% of total ICV) is shown. The cutoff between GM and WM distribution, 

calculated as the 43% of the distance between the two feet moves towards GM 

peak underestimating GM volume in favor of a overestimation of WM volume. 

This is due to the way of calculating the feet of the distribution as the 10% of the 

maximum peak that in the “normal” case is the WM peak, but in the 

“pathological” case could be the GM peak as shown in Fig.13.  
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Fig. 13 

R1 histogram obtained from the sum of the histograms of all slices in a volume from an MS-RR 

patient with a medium lesion load (LL=3,04% of total ICV). In the histogram is clearly shown the 

increase in GM peak due to the migration of MS plaques towards GM R1 values. The cutoff 

between GM and WM, calculated as described in Alfano et al. (Alfano, 1997) is drawn in purple. 

 

To avoid correction a posteriori of the underestimation of GM volumes 

(Quarantelli, 2003) we introduced a new method to calculate GM/WM cutoff 

based on a multigaussina fitting of the R1 histogram based on the hypothesis of a 

Gaussian distribution of GM and WM voxel values. The procedure is now based 

on the following steps: 

• Searching of the GM peak of the R1 distribution (blue line in Fig. 15) 

• Fitting of GM voxel R1 distribution with a Gaussian function with 

constrains based on the rise shape of R1 histagram (purple line in Fig. 15) 

• Subtraction of GM gaussian fit from R1 histogram that gives the WM 

pseudo-gaussian distribution (yellow line in Fig. 15) 

• Calculation of the two feet of the distribution: the right feet equal to 10% 

of GM peak, the left feet equal to 10% for the WM peak. This new way of 

measuring the feet of the distribution stabilize their values even in 

presence of high LL. 
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• Calculation of the cutoff between GM and WM clusters as the 43% of the 

distance between the two feet (cyan line in Fig. 15) 

 

 

 

 

 

 

 

 

Fig. 15 

Multigaussian fitting of the R1 histogram obtained from the sum of the histograms of all slices in a 

volume from an normal subject (blue line). Purple line shows the Gaussian fitting of the GM 

distribution, Yellow line indicates the pseudo-gaussian residual that fit the WM distribution, cyan 

line shows the threshold between GM and WM clusters. 

 

Validation of multigaussian fitting in MS simulated studies 

A validation of the accuracy of normal brain tissue volumes in the presence of 

aWM after the introduction of the multigaussian fitting of R1 histogram was 

performed, to verify the elimination of the slightly underestimation of GM 

volumes in the presence of medium/high LL in MS patients. 

A set of simulated MS studies was thus generated by substituting in 4 NV studies 

variable amounts of WM with plaques selected from 4 MS studies with mid to 

high lesion load. The voxel clusters identified in the MS studies by the 

segmentation program as aWM were substituted to randomly selected areas 

segmented as WM in the 4 NV studies. The procedure was iteratively replicated 

after a 1-voxel 2D erosion of the plaques to generate 37 simulated MS studies 
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with progressively decreasing LL ranging from 230.2 ml to 0 (43 ± 58.7 ml; mean 

± standard deviation). 

The relationship between aWM presence and the accuracy in fractional normal 

tissue volumes were assessed by linear regression analysis (Fig. 16). The measure 

of GM volumes of the simulated data shows a completely recover of GM volume 

with a residual error (slope of the linear regression) that is less than the standard 

deviation of the slope of the linear regression that fits GM loss of the MS 

population. This demonstrated that with the multigaussian fits of the R1 histogram 

for the calculation of  GM/WM cutoff the a posteriori correction of GM and WM 

volumes is not needed anymore. The software for generation of simulated MS 

studies was written using Interactive Data Language (IDL, Research Systems, 

Inc.; Boulder, CO). 

 

 

 

Fig. 16 
Results of the 

simulation procedure. 

Blue dots represents 

fractional GM 

volumes of the MS 

population plotted 

versus fractional 

aWM fitted with a 

linear regression. 

Yellow dots 

represents the results 

of the simulated MS 

studies in the version as published by Alfano et al. (Alfano, 1997) showing the slight 

underestimation versus LL. Pink dots represents the GM volumes of the same simulated data with 

the new version of the algorithm. The slope of the linear regression is smaller that the standard 

deviation of the slope of the linear regression of the GM loss in MS.  
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SECOND AIM: 

QUANTIFICATION OF GLOBAL BRAIN TISSUE VOLUMES 

IN A LARGE POPULATION OF MS PATIENTS 

 

The segmentation method previously described in detail has been applied to 

simultaneously measure in vivo volumes of GM, normal white matter (WM), 

abnormal white matter (aWM), and cerebro-spinal fluid (CSF), and to assess their 

relationship in 50 patients with relapsing-remitting multiple sclerosis by 

Qurantelli et al. (Quarantelli, 2003). That work reported that brain atrophy in RR-

MS mainly relates to GM loss, which in turn correlates with lesion load, global 

WM volume appearing unaffected by the pathology once MS plaque volume is 

taken into account. LL and GM loss, as well as corresponding CSF increase, do 

not appear to significantly affect the clinical status as assessed by EDSS, which 

correlates instead with disease duration. We sought to measure WM and GM 

atrophy and lesion load in a large population of patients with MS of mixed 

courses (RR, PP and SP) using the Alfano’s segmentation method modified as 

described above and to investigate the intercorrelations between WM and GM 

atrophy and lesion load and the correlations between clinical and MRI data. This 

work was accomplished by organizing a multicenter study, in which an MRI 

machine housed in a truck traveled to different locations to perform the same MRI 

protocol in all patients. 

 

Patient recruitment 
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The study design was cross-sectional. During a predefined 6-month time window, 

all consecutive patients with MS, on the basis of a prescheduled visit, and all 

consecutive 20- to 50-year-old sex-matched healthy volunteers were included. 

Patients with definite MS (McDonald, 2001) were recruited from the MS 

outpatient clinics of seven university hospitals (Second University of Naples, 

University “Federico II” of Naples, and Universities of Bari, Catanzaro, Messina, 

Catania, and Palermo) and the regional hospital of Potenza. Because these centers 

supply interferons (IFNs) 

and other immunomodulators to patients with MS, and considering the high 

frequency of treatment in Italian patients with MS, it is likely that the patients of 

our sample are representative of the general MS population. Another selection 

bias may be due to the number of patients who disagreed to participate to the 

study. Indeed, the percentage of refusals was very low (<5%). All enrolled 

subjects were examined on the same day as the MRI session. Criteria for 

excluding patients were ongoing clinical relapse, other major medical illnesses, 

history of substance abuse, and corticosteroid treatment within 12 weeks of the 

start of the study. Criteria for excluding volunteers were neurologic disorders, 

major medical illnesses, history of substance abuse, and current drug treatment. 

Seven hundred thirty-three subjects took part in the study: 629 patients with MS 

and 104 control subjects. Thirty-two patients with MS were not included in the 

final analysis because they did not complete the MRI exam or because of motion 

artifacts, so the study results are based on 597 patients with MS and 104 control 

subjects. The protocol was approved by local ethics committees. All participants 

gave written informed consent. 
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MRI studies 

The same MRI protocol was performed in all subjects using the same MRI 

scanner (1.0 T Genesys Signa; GE Medical Systems, Milwaukee, WI). For each 

study, two interleaved sets of 15 slices (4 mm thick) covering the entire brain 

were acquired, using for each set two conventional spin echo sequences 

(repetition time/echo time [TR/TE] 600/15 milliseconds, two averages; TR/TE 

2300/15 – 90 millisecond dual-echo sequence, one average; both with 90° flip 

angle and 256 x 192 matrix). All the studies were segmented using a the fully 

automated Alfano’s method, based on relaxometric characterization of brain 

tissues. The program gives complete sets of multifeature images (R1 [=1/T1], R2 

[= 1/T2], proton density [N(H)-based]) and segmented images and calculates the 

volumes of the following intracranial tissues: CSF, GM, normal appearing WM, 

abnormal WM (aWM), and global WM (gWM; calculated as the sum of normal 

appearing WM and aWM). To normalize for head size variability, the volumes of 

intracranial tissues were expressed as fractions (f) of the intracranial volume, 

which were calculated for each subject as the sum of all intracranial tissues. 

faWM is a measure of lesion load as determined by the R1, R2, and N(H) 

information and morphologic characteristics, the reduction of fWM indicates WM 

atrophy, and the reduction of fGM indicates GM atrophy.  

For each study, a couple of interactive interslice movies of both multispectral and 

segmented images were produced, and two neuroimaging experts reviewed them 

(for a maximum of 2 minutes) to detect motion artifacts and segmentation errors 

due to the imperfect separation of nasal mucosa and vitreous humor from brain 
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issue. In 111 studies (15.8%) in which nasal mucosa or vitreous humor was 

erroneously classified as GM or CSF, manual cuts of thin connections between 

intra- and extracerebral tissues in the multispectral image set were performed, 

allowing the program to outcome correct segmentation and volumetry. 

 

Results of the segmentation of a large population of MS patients 

The study population of patients with MS consisted of 383 women and 214 men 

(women/men ratio = 1.8) ages 16 to 68 years (mean ± SD 38.1 ± 10.3 years). 

Their age at disease onset was 10 to 61 years (28.4 ± 9.1 years), and their EDSS 

scores19 were 0 to 8.5 points (2.99 ± 1.7 points). Disease duration was 9.73 ± 

7.26 years, and number of relapses in the previous 2 years was 1.04 ± 1.3. The 

clinical course was RR in 427 (71.5%), SP in 140 (23.5%), and PP in 30 (5.0%). 

EDSS score was = 3.5 in 452 patients (88.3% RR, 7.5% SP, 4.2% PP), between 4 

and 6 in 110 patients (22.7% RR, 60.9% SP, 16.4% PP), and = 6.5 in 35 patients 

(57.1% SP, 42.9% PP). 

Measurements of segmented MRI volumes in the patients with MS and controls 

are presented in Fig. 17. fGM (blue dots), fWM (yellow dots) and CSF (pink dots) 

of MS patients are plotted versus faWM with the corresponding linear regression 

fitting. fGM and fCSF values are age-corrected based on fGM and fCSF volume 

changes with age derived from NV populations. fWM do not show any change 

with age and do not need to be corrected. As depicted in Fig. 17 both fGM, fWM 

loss in MS patients are strongly correlated with faWM ( p < 0.001) with a 

corresponding increase in fCSF. 
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In patients with MS, the mean value of faWM was 1.4% 95% CI 1.3 to 1.5), 

which corresponds to a lesion load of about 17 cm
3
 in an average brain of 1200 

cm
3
. fWM was (p < 0.001) reduced in patients with MS by 1.3% (95% CI 0.5 to 

2.1), which corresponds to a volume loss of about 15.6 cm
3
 in an average brain of 

1200 cm
3
. fGM was reduced (p < 0.001) in patients with MS by 2.1% (95% CI 1.4 

to 2.8), which corresponds to a volume loss of about 25 cm
3
 in an average brain of 

1200 cm
3
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 

Scatterplot of fGM (blue dots), fWM (yellow triangles), and fCSF fraction (pink boxes), vs faWM. 

fGM and fCSF values are adjusted to patients mean age (38.3 years). Where significant, regression 

lines are reported along with the corresponding equations and R values. Increasing loss of GM and 

WM (which includes also the WM lesion volume) with corresponding increase in CSF is apparent 

with increasing faWM. 

 

Table 1 shows the comparisons of segmented MRI volumes in patients with MS 

with different disease courses. Between-group comparisons showed significant 
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differences of MRI parameters only in RR patients with respect to SP patients. 

Both fWM and fGM were significantly lower in the SP group than in the RR 

group. The magnitude of the fWM reduction was similar to that of fGM, being 

1.4% (95% CI 0.8 to 2.0) for both. Furthermore, faWM was significantly higher in 

the SP group than in the RR group (0.7%; 95% CI 0.3 to 1.1). 

  Mean (95% CI     

 RR, n=427 SP, n=140 PP, n=30 RR vs SP RR vs PP SP vs PP 

faWM 1.2 (1.0-1.4) 1.9 (1.6-2.2) 1.8 (1.2-2.5) <0.001 NS NS 

fWM 34.2 (33.9-

34.5) 

32.8 (32.3-33.4) 33.1 (31.9-34.2) <0.001 NS NS 

fGM 51.4 (51.1-

51.7) 

50.0 (49.4-50.5) 50.7 (49.2-51.5) <0.001 NS NS 

* Adjusted for age, sex, and education 

Table 1 

Comparisons of adjusted* MRI volumes (as % of whole brain volume) for different MS courses 

RR= relapsing-remitting, SP= secondary progressive, PP= primary progressive, AWM-f=abnormal 

WM fraction, gWM-f = global WM fraction, GM-f= GM fraction 

 

From the multivariate correlations of MRI fractions with clinical features, three 

significant predictors of lesion load were obtained: EDSS, age at disease onset, 

and drug treatment (IFNβ vs never treated). The strongest predictor was disability: 

a 1-point increase in the EDSS score corresponded to about a 0.24% increase of 

faWM 2.9 cm3 for an average brain of 1200 cm3). Furthermore, a 0.15% increase 

of faWM was found for each 5 years earlier that the MS had its onset. 

IFNβ-treated patients had a higher lesion load (adjusted mean of 1.6%; 95% CI 

1.4 to 1.7) than did patients who had never been treated (1.2%; 95% CI 1.0 to 1.5, 

p < 0.008). 
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With regard to WM atrophy, the strongest predictor was age at onset followed by 

disability: a 0.45% decrease of fWM was found for each 5 years earlier of MS 

onset. Furthermore, a 1-point increase in the EDSS score corresponded to about a 

0.41% decrease of fWM(about 5 cm3 for an average brain of 1200 cm3). 
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THIRD AIM: 

REGIONAL ANALYSYS OF GRAY MATTER AND WHITE 

MATTER LOSS IN RELAPSING-REMITTING MULTIPLE 

SCLEROSIS  

 

In the final part of the work we addressed the question of if and where GM and 

WM loss in MS patients is localized by means of  optimized Voxel-Based 

Morphometry method applied to MRI studies of a population of  patients with 

clinically defined Relapsing-Remitting MS and a population of age-matched 

normal subjects, segmented into normal and abnormal brain tissues using the 

modified version of Alfano’s method described above. Segmented GM and WM 

volumes where subsequently compared on a voxel-by-voxel basis to highlight 

regions of relative GM and WM loss (p<0.05, corrected for multiple comparisons 

at AnCova). 

Additionally, localized differences in brain asymmetry between the MS and the 

control groups were assessed by comparing on a voxel-by-voxel basis maps of 

GM differences between the two hemispheres (p<0.05 corrected for multiple 

comparisons). 

 

Subjects 

Eighty-three patients with clinically defined multiple sclerosis according to Poser 

criteria (Poser, 1983) with a RR course (Lublin and Reingold, 1996)  (54 female) 

and thirty-four normal volunteer (NV, 15 female) were recruited in the study. The 

mean age of the patient group was 38.6 ± 7.5 years (age range 17 – 58), with a 
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mean disease duration of 11 ± 6.8 years (range 0 – 34) and a median EDSS 

(Kurtzke, 1983) score of 2.6 (range 1 – 6). All patients had been previously 

treated only by brief courses of steroids during clinical exacerbations. Mean age 

of the NV group was 43.2 ± 13.2 (range 22 – 69). Exclusion criteria for NV were 

evidence of cardiovascular, metabolic, neurological, and psychiatric impairment, 

as well as abnormal MRI examination. All MS patients and NV were right-

handed. 

Both NV and MS patients agreed to participate in the study by signing a written 

informed consent, and the ethical committees of participating Institutions 

previously approved the protocol. 

 

MRI studies 

MRI protocol included two interleaved sets of 16 slices each covering the whole 

brain obtained at 1.5 T (Intera, Philips Medical Systems, The Netherland), 

sampling the brain at a total of 32 contiguous levels. Each of the two sets included 

conventional spin-echo sequences providing T1w (520/15 msec TR/TE) and 

PD/T2w (1800/15-90 msec TR/TE) 4mm-thick axial images (24cm FOV, 

256x256 acquisition matrix). Images from all studies were segmented using 

Alfano’s method in the modified version previously described. 

 

Optimized VBM 

Voxel Based Morphometry (Ashburner and Friston, 2000) was used in an 

optimized version (Good, 2001b) to process and analyze segmented GM and WM 

maps using Statistical Parametric Mapping software (SPM2, Wellcome 
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Department of Cognitive Neurology, London, UK, www.fil.ion.ucl.ac.uk/spm) 

(Friston, 1995) running under MATLAB version 6 (the Mathworks, Inc., MA, 

USA). 

To minimize potential normalization problems related to differences of 

registration to the standard space between normal and pathological brains (Karas, 

2003), we created a site- and study-specific template. This was done by firstly 

normalizing the segmented GM volumes of each subjects (both NV and MS) to a 

standard space with a 12-parameter affine model without any nonlinear 

component (Ashburner, 1997). The GM prior provided with SPM2 was used as 

standard space model. The resulting roughly normalized GM images of all the 

subjects were averaged, and the resulting volume was smoothed with a Gaussian 

filter of 8 mm full-width at half-maximum (FWHM) (Fig. 18). Nonlinear 

components were not used for template creation in order to preserve group affine 

geometry (Woods, 1998). 

 

The use of a site- and group-specific template, created including both normal and 

pathological volumes, reduces systematic registration bias to any of the two 

groups. 

GM maps of each subject were then normalized to the GM specific template by 

performing affine registration and 16 nonlinear iterations using 6 x 8 x 6 basis 

functions to account for global nonlinear shape differences (Ashburner and 

Friston, 1999). Normalized images were resampled by trilinear interpolation to 1 

x 1 x1 mm voxel size. In addition WM maps were normalized by means of the 

GM normalization matrices and resampled by trilinear interpolation to 1 x 1 x 1 
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mm voxel size. The use of GM normalization matrices for WM analysis, rather 

than building a WM specific template, was choose to minimize normalization 

errors since GM normalization matrices gave more reperee on head shape. 

For each patient study, we also applied the GM-derived normalization matrix to 

corresponding aWM volume and averaged the resulting normalized aWM 

volumes to visually assess plaque distribution in our patient population (Fig.18), 

and to derive left and right hemisphere lesion load for subsequent symmetry 

analysis (see below). 

 

Fig. 18  

Mean of the normalized distribution of aWM in the patient population (in colour scale) 

superimposed to the unsmoothed GM template (in greyscale). Images are scaled to their own 

maximum. Plaques are almost symmetrically distributed and concentrated more toward the 

posterior part of the brain leaving the centrum semiovalia almost unaffected. 
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Since nonlinear normalization implies that certain regions of the brain expand or 

contract to match the template, it was important to correct for the effect of these 

deformation onto regional volumes, as our goal was to assess regional change in 

GM and WM volumes. This was done by “modulating” the voxel values of the 

normalized maps to preserve the total tissue volume in the images, meaning that 

areas that were expanded during normalization were correspondingly reduced in 

values to preserve the information on their original size while the values of the 

voxels from shrunken areas were correspondingly increased. 

Modulation was performed by multiplying GM and WM voxels by the Jacobians 

derived from spatial normalization to preserve the amount of the specific tissue in 

each voxel (Ashburner and Friston, 2000). 

Finally, modulated images were smoothed with a 12-mm FWHM isotropic 

Gaussian filter to reduce confounding by individual variations in gyral anatomy 

and to render the data more normally distributed as per the Gaussian random field 

model underlying the statistical process used for adjusting p values (Ashburner, 

1997). 

It should be noted here that the optimized VBM method, as described in literature, 

implies a preliminary iterative normalization/segmentation procedure to improve 

the accuracy of segmentation. This was however not needed in our case, as the 

segmentation technique that we used is not based on prior probability distributions 

in a normalized space, and as such does not need a preliminary normalization to 

create site-specific GM, WM and CSF priors. 

Also the erosion/dilation procedure described by Karas at al. (Karas, 2003), 

introduced in optimized VBM to eliminate the misclassification of voxels lying at 
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the interface of ventricular CSF and periventricular white matter, was not needed 

in our case as this segmentation error was not appreciable in our GM maps 

(Fig.18). 

 

Statistical analysis 

The effect of the disease onto GM volumes was preliminarily tested by stepwise 

multiple regression analysis using SPSS (SPSS Inc., Chicago, Il, USA). Total 

intracranial volume (ICV, derived from the sum of GM, normal WM, abnormal 

WM, and CSF), age and sex were entered first in the model to account for the 

possible effects of these variables. 

Subject group (NV versus MS patient) was then entered to explore the effect of 

the disease. 

Normalized modulated GM and WM maps were statistically analyzed using the 

general linear model based on the random Gaussian field theory (Friston, 1995). 

The design matrix was constructed to test for regional differences in GM and WM 

respectively between RR-MS group and normal subjects. To take into account 

their effect on brain tissue volumes, age and sex were entered as nuisance 

regressors (confounding covariates) in an analysis of covariance (AnCova), while 

ICV was entered in the model to normalize for head size (Friston, 1995). Prior to 

regression analysis scans were thresholded at 40% of global intensity to reduce 

the influence of any remaining non-brain tissue. This analysis allows to test for 

morphological differences between the two groups across the whole brain on a 

voxel-by-voxel basis; a threshold of p<0.05 was used, corrected for multiple 
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comparisons at the voxel level. Both positive (NV > MS) and negative (NV < 

MS) contrasts were calculated. 

The effect of LL and clinical parameters (EDSS and DD) onto GM volumes was 

preliminarily assessed by performing VBM on subgroups of MS patients defined 

based on clinical parameters.  

To test for effect of LL,  MS patients were divided in two groups: 59 patients with 

LL < 2% of total ICV (mean = 0.94 %, range 0.07 – 1.97) and 24 patients with LL 

> 2% of ICV (mean = 3.53%, range 2.12 – 7.08). The cutoff of 2% was the mean 

value of the total population. 

To test for the effect of DD, MS patients were divided into three groups of almost 

equal size: 30 patients with DD < 8 years (mean = 4.4 yy,  range 0 – 7.8), 26 

patients with 8 < DD < 13 years (mean = 10.68 yy, range 8.1 – 12.7), 27 patients 

with DD > 13 years (mean = 18.8 yy, range 13 – 33.3). 

To test for the effect of EDSS patients were divided in two groups: 53 patients 

with EDSS ≤ 2.5 (mean = 2.01, range 1 – 2.5). The cutoff was selected to separate 

mild to moderate severity. 

Each of the above group was statistically compared on a voxel basis to the NV 

group. 

Additionally, voxel-wise linear regression analysis between probability of grey-

matter and EDSS, disease duration, and LL, was performed with age and sex as 

nuisance covariates, to identify clusters of voxels whose grey-matter density 

relates to these parameters; a threshold of p<0.05 was used, corrected for multiple 

comparisons at the voxel level.  
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Analysis of brain asymmetry 

Localized GM loss, if preferentially located on one side of the brain, would alter 

the physiologic asymmetry pattern of the normal brain. 

To explore this possibility, we checked for differences in brain asymmetry 

between the MS and the control groups by using an analysis technique similarly to 

what previously done by Luders et al. (Luders, 2004). 

First, a symmetric site- and study-specific template was created by flipping left-

right the GM normalized images from all subjects used to create the GM template 

for VBM. The resulting normalized flipped GM images of all the subjects were 

averaged together with the unflipped ones and smoothed with a Gaussian filter of 

8 mm full-width at half-maximum (FWHM) to create a symmetric GM template 

(Good, 2001a; Luders, 2004). The GM original images of all the subjects were 

normalized to the symmetric GM specific template by performing affine 

registration and 16 nonlinear iterations using 6 x 8 x 6 basis functions as for 

optimized VBM. Normalized images were modulated and resampled by trilinear 

interpolation to 1 x 1 x1 mm voxel size. To verify for the presence of statistically 

significant differences in asymmetry between MS and NV groups we generated 

for each subject a new set of images, the Asymmetry Index maps, as described in 

detail by Luders et al. (Luders, 2004), that represent the GM differences between 

the two hemispheres. The Asymmetry Index maps of the two groups were 

compared using a one-way analysis of covariance (AnCova) with age and sex 

entered as nuisance variables. 

This analysis was meant to integrate the VBM analysis by exploring, if localized 

GM loss was detected, if it was significantly lateralized, a condition which would 
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induce a significant difference between the asymmetries of MS group respect to 

NV. The statistical map was thresholded at a level of p<0.05, corrected for 

multiple comparisons. 

Additionally, hemispheric lesion loads were tested to detect any asymmetry in 

aWM distribution between the two hemispheres using paired t-test.  

 

Results 

The preliminary analysis of global GM volumes confirmed previous findings 

(Chard, 2002; Quarantelli, 2003) of GM loss in MS patients as compared to NV 

(607.7 ± 66.1 ml vs. 660.1 ± 49.7 ml, respectively corresponding to 45.7% and 

47.0% of ICV), the difference being significant at multiple regression analysis 

(p<0.001). WM loss also in our population of MS patients results reduced as 

compared to NV (499.8 ± 64.9 ml vs. 562.2 ± 66,8 ml, respectively corresponding 

to 37,4% and 39.88% of ICV) 

MS patients showed a moderate LL, aWM volume being 22.8±18.8 ml (range 1.8 

84.9). 

In figure 18 the site- and study-specific unsmoothed GM template is displayed in 

greyscale. Superimposed in colour scale is the average distribution of aWM in the 

83 MS studies, showing a mostly supratentorial, periventricular symmetric 

distribution. Clusters of significant GM loss in RR-MS as compared to NV after 

correcting for age, sex and ICV are illustrated in figures 19 and 20. Significance 

level is set at p < 0.05, corrected for multiple comparisons at voxel level. 
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Fig. 19  

Regions of significantly 

reduced cortical GM 

volume in RR patients 

(p<0.05 corrected for 

multiple comparisons at 

voxel level, i.e. T-score > 

4.79) as compared to 

normal subjects. 

Significant clusters are 

overlaid in colour scale 

onto the surface of a single 

subject normalized brain. 

 

 

Fig. 20  

Axial sections (patient’s left side is on the observer’s left side) from selected levels of the 

unsmoothed GM template (in greyscale). The regions of significant GM loss in MS patients are 

overlaid (in yellow). 
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For each cluster, the size, involved Brodmann Areas (BA) and the Talairach 

coordinates of the peak are reported in Table 2. 

Clusters of significant GM loss in RR-MS patients were located predominantly in 

the left dorso-lateral frontal lobe, including motor area (BAs 4 and 6) extending 

into the transverse temporal gyrus (BA 41), as well as Brodmann areas 8, 9 and 

44. 

Other clusters of significant GM loss were located bilaterally in the anterior 

cingulate gyrus (BA 24) and caudate heads, as well as in the left precuneus 

(BA19) extending into the left parietal lobule (BA 40) and cuneus (BA 7), left 

insula (BA 13) extending into superior temporal gyrus (BA 22) and right 

postcentral gyrus (BA 3).  

The search for inverse contrasts (increase tissue volumes in MS patients) did not 

show any significant region. 
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     Coordinates (mm) 

Region Side BA N. voxel T x y Z 

Precentral Gyrus L 4/6 20085 6.96 -32 -24 52 

Transverse Temporal Gyrus L 41      

Middle Frontal Gyrus L 9/8 3080 6.41 -42 22 33 

Precentral Gyrus L 44      

Inferior Frontal Gyrus L 9      

Superior Frontal Gyrus L 6      

Cingulate Gyrus bilateral 24 3251 5.97 -4 3 35 

Caudate Head L n/a 910 5.97 -7 14 1 

Precuneus L 19/31 1703 5.85 -30 -76 79 

Parietal Lobule L 40/7      

Cuneus L 7      

Postcentral Gyrus R 3 323 5.56 59 -14 45 

Insula L 13 680 5.31 -44 13 0 

Superior Temporal Gyrus L 22      

Caudate Head R n/a 217 5.28 9 15 -2 

 

Table 2  

Clusters of significant GM loss in RR-MS patients, relative to controls. For each cluster are 

reported the extension and the corresponding Brodmann Areas (BA) in which local maxima are 

located, along with the coordinates in the Talairach space (Talairach and Tournoux, 1988) and the 

T level of the most significant voxel. 

n/a: not applicable 

 

The results of the  GM asymmetry analysis are displayed in Figure 21. A cluster 

of reduced GM is present on the left in MS, extending  from pre-rolandic cortex to 

the superior temporal area, co-localized with major GM loss regions, , confirming 
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a preferential left-sided GM loss at this level. aWM did not show a significantly 

asymmetric distribution across the two hemispheres, left hemisphere containing  

49.0% ± 12,2% of LL, the difference between the two hemispheres not being 

significant at paired  T-test (P=0.53). 

 

Fig. 21  

Region of significant 

differences in GM asymmetry 

in RR patients (p<0.05 

corrected for multiple 

comparisons, i.e. T-score > 

4.93) as compared to normal 

subjects. The significant 

cluster of reduced GM in RR 

patients is overlaid in colour 

onto the surface of a single 

subject normalized brain. 

Contours of the regions of 

GM loss resulting from VBM 

analysis are overlaid in blue. 

 

No significant correlation emerged between regional GM volume EDSS and 

disease duration. 

Results of the voxle-wise linear regression analysis between GM loss and LL is 

shown in Fig. 23 (p<0.05 was used, corrected for multiple comparisons at the 

voxel level). 

Regions of significantly reduced cortical GM volume in RR patients that linearly 

correlated with LL are preferentially located at the level of right and left caudate 

heads, left hippocampus, right and left primary motor areas and left and right 

frontal lobe. 
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Fig. 23 

Regions of significantly 

reduced cortical GM volume 

in RR patients that linearly 

correlated with LL (p<0.05 

corrected for multiple 

comparisons at voxel level, 

i.e. T-score > 4.63). 

Significant clusters are 

overlaid in colour scale onto 

the surface of a single 

subject normalized brain. 

 

 

Clusters of significant GM loss in the subgroups of MS patients on the basis of 

their LL, DD and EDSS as compared to NV after correcting for age, sex and ICV 

are illustrated respectively in figures 24, 25 and 26. Significance level is set at p < 

0.05, corrected for multiple comparisons at voxel level.  

 

Fig. 24  
Regions of significantly reduced cortical GM volume in two subgroups of RR patients: A) 59 

patients with LL < 2%, B) 34 patients with LL > 2% (p<0.05 corrected for multiple comparisons at 

voxel level, i.e. T-score > 4.7). Significant clusters are overlaid in colour scale onto the surface of 

a single subject normalized brain. 

A) B) 
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Fig. 25 

Regions of significantly reduced cortical GM volume in three subgroups of RR patients: A) 30 

patients with DD < 8 years,  B) 26 patients with 8 < DD < 13 years, C) 27 patients with DD > 13 

years (p<0.05 corrected for multiple comparisons at voxel level, i.e. T-score > 4.7). Significant 

clusters are overlaid in colour scale onto the surface of a single subject normalized brain. 

 

 

Fig. 26 

Regions of significantly reduced cortical GM volume in two subgroups of RR patients: A) 53 

patients with EDSS < 2.5,  B) 30 patients with EDSS > 2.5 (p<0.05 corrected for multiple 

comparisons at voxel level, i.e. T-score > 4.7). Significant clusters are overlaid in colour scale onto 

the surface of a single subject normalized brain. 

A CB

A) B) 
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For all of the parameters tested regions of significantly reduced GM as LL, EDSS 

and DD increase showed a good co-localization with GM reduced regions of the 

entire population. 

Clusters of significant WM loss in RR-MS as compared to NV after correcting for 

age, sex and ICV are illustrated in figure 22. Significance level is set at p < 0.05, 

corrected for multiple comparisons at voxel level. WM loss is almost 

symmetrically distributed and preferentially located at the level of supratentorial 

periventricular regions. 

 

Fig. 22 
Regions of significantly reduced WM volume in RR patients (p<0.05 corrected for multiple 

comparisons at voxel level, i.e. T-score > 5.12) as compared to normal subjects. Significant 

clusters are overlaid in colour scale onto the MR volume studies of  a single subject normalized 

brain. 
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DISCUSSION 

 

In this work, a fully automated segmentation technique was used in an optimized 

version in a large MS population to assess both WM and GM atrophy and lesion 

load as well as to investigate the intercorrelations between MRI measurements of 

atrophy and lesion load and the correlations between clinical and MRI data. 

We have also applied an optimized VBM method to a selected group of RR-MS 

patients to investigate regional GM and WM loss in this specific disease subtypes. 

Our results demonstrated a preferential left-sided fronto-temporal GM loss, with 

other areas located  in the left precuneus and bilaterally in anterior cingulate gyrus 

and caudate nuclei. 

These results integrate previous findings demonstrating global GM volume 

reduction selectively in RR MS (Chard, 2002; Ge, 2001; Quarantelli, 2003). 

However, before discussing findings both on global values and in the 

localization/lateralization of GM loss, as well as possible implications on our 

understanding of the underlying mechanisms, some methodological issues, 

pertaining to both segmentation and VBM, should be examined. 

 

Methodological Issues: segmentation 

We used a fully automated procedure, based on segmented 2D conventional SE 

MR images, which is suitable for the analysis of data from large clinical trial, 

which typically do not include high-resolution 3D volumes. With this respect it is 

of note that the accuracy of the multiparametric segmentation method when 

analysing 4mm thick slices has been validated in previous work (Alfano, 1998), 
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while the use of 4mm thick slices is unlikely to affect VBM, which includes a 

three times larger smoothing (12mm FWHM). 

The multiparametric segmentation method was modified to increase the 

robustness of GM/WM separation in presence of aWM, demonstrating over 

simulated MS studies a high degree of accuracy in determining the GM volume. 

Although a region-specific lesion-associated segmentation bias may still be 

present in our data, it should be considered that such an error would result in a 

regional GM loss strongly correlated with LL, a finding which is not present in 

our results, apart from the caudate nuclei, which however have been demonstrated 

to be affected also using manual parcellation methods (Bermel, 2003). 

Consequently, these results are not explained by a region-specific lesion-

associated segmentation bias. 

Also, the presence of juxtacortical plaques could in theory have biased our results 

by inducing underestimation of the adjacent grey matter. However the assessment 

in the same standard space of the regions of GM loss and of the mean aWM 

distribution suggests that this is not the case at least for the frontal cortex, which is 

far from the bulk of the LL, located in the periventricular region. 

Finally, the presence of intracortical lesions may additionally have induced 

individual variability in the GM by altering the segmentation of adjacent GM, 

introducing an inter-individual local variability that may partly obstruct the 

detection of local GM differences. It should be however considered that signal 

intensity changes in intracortical plaques are subtle at MRI (Kidd, 1999), reducing 

their possible effects onto the segmentation procedure, especially in a population 

with a relatively low lesion load as in this case. 
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Methodological Issues: VBM 

Several factors may affect the capacity of VBM to detect regional GM loss, 

including physiological inter-individual variability in the NV cohort (which may 

preclude the detection of subtle changes in MS patients), the heterogeneity 

intrinsic to the pathology (which may be enhanced when different disease 

durations are included), and noise of the measurement (derived from noise of the 

MR images and from segmentation and normalization errors). Additionally, it 

should be considered that all these factors may in principle have a different effect 

in different areas of the brain which in turn may render VBM differently sensitive 

to atrophy in different areas of the brain. 

However the relative sparing of the occipital lobe and of the infratentorial regions, 

emerging from our findings, is compatible with previous studies showing a 

significant preservation of infratentorial structures in MS patients with mixed 

disease courses (Sailer, 2003), as well as in RR-MS as compared to secondary 

progressive MS patients (Edwards, 1999). 

 

Global tissue volumes 

Overall, compared with controls, patients with MS had more atrophy of both WM 

(−1.3%) and GM (−2.1%), and the burden of MS on brain volume, with respect to 

an average brain of 1200 cm3, can be summarized by the appearance of 17 cm3 of 

faWM and by the lack of about 16 cm3 of fWM and 25 cm3 and of fGM. In more 

detail, patients with MS lost 17 cm3 of WM because of MRI-identifiable lesions 

(faWM) and 16 cm3 because of volumetric measurable atrophy (fWM). Our 
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results are in agreement with previously published data (Chard, 2002) which 

described, in 26 patients with MS, a significant reduction of both WM 

(approximately −4.9%) and GM fractions (approximately −2.8%). The slight 

differences in the amount of WM and GM atrophy may be due to a large 

difference in the number of patients studied, although a difference in the 

segmentation methods cannot be ruled out. In a small group of RR patients, the 

loss of parenchymal volume in RR MS was predominantly confined to WM (Ge, 

2001). With use of the same segmentation method in 50 patients with RR MS, a 

significant reduction of fGM was found, whereas fWM was not significantly 

different between patients and control subjects (Quarantelli, 2003). The lack of 

significant WM atrophy may be due to the small sample of RR patients studied.  

A T1-weighted segmentation method was used to separate segmented GM into 

neocortical and non-neocortical in 90 RR and PP patients, and a significant 

reduction of neocortical GM was found in both groups of patients (De Stefano, 

2003).  

Compared with previous studies, we produced more comprehensive evidence that 

there is significant atrophy of both GM and WM in patients with MS, thus 

confirming the pathologic evidence (Cifelli, 2002; Kidd, 1999; Peterson, 2001; 

Trapp, 1998) of GM involvement in MS. 

Among the studies based on automated MR segmentation methods, only one (De 

Stefano, 2003) assessed differences between patients with different disease 

courses and found no significant differences in neocortical GM between RR and 

PP patients. In our work, we showed that SP patients, with respect to RR ones, 

have significantly more atrophy of both GM and WM, thus suggesting that brain 
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atrophy may be relevant in determining the course of the disease and eventually 

disease progression. No differences were found in the small group of PP patients. 

So far, the intercorrelations between lesion load and WM and GM have been only 

partially addressed. 

In 26 patients with MS, T1- and T2-weighted lesion volumes were inversely 

related to fGM but not to fWM (Chard, 2002). In 50 RR patients, faWM was 

inversely correlated to fGM but not to global fWM (Quarantelli, 2003). In patients 

with RR MS, a significant correlation between neocortical atrophy and T2 lesion 

volume was found, whereas no correlation was found in PP patients (De Stefano, 

2003). We showed that lesion load is significantly correlated with both GM and 

WM atrophy; however, a significantly stronger relationship was found with fGM 

than with fWM. These results support the hypothesis that GM atrophy is heavily 

dependent on lesion load, possibly owing to retrograde degeneration of GM 

neurons secondary to  fibers traversing WM lesions (Ge, 2001) (Bozzali, 2002), 

although we cannot ignore the possibility of both discrete and diffuse independent 

GM lesions that may be undetectable by conventional MRI (Peterson, 2001) 

(Kidd, 1999). Measurements of MRI-segmented volumes were significantly 

correlated to disability and age at disease onset and, to a lesser extent, drug 

treatment. So far, the studies addressing the relationship between MRI and 

disability have reported conflicting results, and this has been attributed to the poor 

sensitivity of the EDSS, although, more recently, functional MRI studies (Filippi 

and Rocca, 2003) suggested that the possible impact of plasticity may play a key 

role in determining the resulting disability. Significant correlations between 

disability and WM and GM atrophy were not found in 30 patients with RR MS 
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(Ge, 2001). A significant correlation between neocortical atrophy and EDSS was 

described in both RR and PP patients, whereas the correlation with disease 

duration was found only in RR patients (De Stefano, 2003). A significant 

correlation between GM atrophy and EDSS was reported, but there was no 

correlation between WM atrophy and disease duration (Chard, 2002). We 

produced very strong evidence that lesion load and both WM and GM atrophy are 

significantly correlated with disability. The existence of a close relationship 

between GM atrophy and disability is further supported by the significant 

association found in the analysis of predictors of disability. This correlation 

supports the role that GM involvement may play in the pathogenesis of MS and 

urges us to focus on neurodegeneration as a key feature of MS. 

The correlation with age at disease onset suggests that the younger the age at 

disease onset, the worse the lesion load and brain atrophy (especially of WM) will 

be. These data suggest that brain atrophy is related to what happens at the very 

beginning of the disease rather than during the disease course. This hypothesis is 

in accordance with previous reports. Global brain atrophy (as derived from the 

parenchymal fraction) and central atrophy (as derived from the ventricular 

fraction) were longitudinally measured in 83 patients with MS at an interval of 2 

to 4 years (Kalkers, 2002). The main observations were that clinical 

characteristics (such as duration of symptoms and ∆EDSS) did not predict the 

variance in the rate of global or central atrophy, whereas the rate of central 

atrophy was significantly higher in younger patients. Twenty-eight patients with 

MS were followed for up to 14 years after the first onset of symptoms (Chard, 

2003), and lesion load in the first 5 years was more closely correlated with 
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disease-related brain atrophy at 14 years than were later changes in lesion load. 

Furthermore, in a cohort of patients with RR MS, lesion load (as derived from the 

average number of total and new gadolinium-enhanced lesions) decreased 

significantly with increasing patient age, independently of disease duration and 

relapse rate (Filippi, 2001). In line with the use of IFNβ in clinical practice, in a 

cross-sectional survey, it was found that patients assigned to treatment with IFNβ 

had a higher lesion load (adjusted mean of 1.6%; 95% CI 1.4 to 1.7) than those 

who had never received this drug because a watchful-waiting approach had been 

preferred (1.2%; 95% CI 1.0 to 1.5). 

 

Regional findings: GM 

Comparing our results to the only other work assessing cross-sectionally regional 

cortical GM loss in MS (Sailer, 2003), we are confirming a preferential fronto-

temporal cortical atrophy, although in that paper the involvement of precentral 

cortex was appreciated only for patient subgroups with longer disease duration, 

more severe disability and larger LL, and did not appear to be lateralized. 

Furthermore, in our data there is a lack of correlation between cortical GM loss 

and EDSS, disease duration or LL. 

 

Comparison of these results is however quite difficult for several reasons, 

including the use of different segmentation techniques (mono- vs. 

multiparametric), different measured entities (cortical thinning vs. local GM 

volume) and statistical analysis (ROI-based vs. voxel-based analysis when 

assessing correlations with clinical data), as well as different patient populations, 
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(mixed disease courses vs. pure RR MS), and further studies will be necessary to 

assess these differences. 

In particular, monoparametric and multiparametric segmentation techniques may  

have different accuracies, especially in presence of MS lesions (whose effect was 

however specifically ruled out in our case), while the assessment of the cortical 

thinning and of changes in local GM volume has different localization capabilities 

(in principle in favor of the cortical thickness assessment, which includes a 

smoothing limited to the cortical surface, while VBM implies a full 3D 

smoothing). 

Finally, the presence of progressive forms of MS in Sailer’s patient population, as 

well as differences in the clinical severity of the patient groups in the two studies 

(in our case only RR MS patients with EDSS ≤ 4.5 were selected, compared to 

patients with mixed disease course and EDSS ≤ 7 in the paper by Sailer et al., may 

have played a major role. 

Also a more recent study (Chen, 2004) assessing longitudinally the GM thickness 

in a mixed MS patient population (including both RR and secondary progressive 

disease course), has demonstrated a preferential correlation between the cortical 

thinning, especially in the precentral and parietal cortex, and the progression of 

disability over one year. 

Again, the differences in patient population (in our case only RR MS patients 

were included) and methodology may well explain the different findings as 

compared to our study, where a consequential cross-sectional finding of 

correlation between disability and atrophy was not present. 
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Among the deep GM structures, caudate nuclei also presented a highly significant 

bilateral volume loss, correlating with LL. 

Caudate nuclei border the lateral ventricles and may thus be prone to an indirect 

effect of ventricular enlargement due to spatial normalization inaccuracies, which 

may partly explain this finding. However, although the possibility that both 

mechanisms (true GM loss and normalization inaccuracies) are simultaneously 

present cannot be fully excluded, it should be reminded that caudate atrophy has 

been already detected in MS using manual parcellation (Bermel, 2003), although 

in that study no significant correlation with LL emerged. 

 

The lateralization of the GM loss, especially at the level of the motor area and 

transverse temporal cortex, does not seem related to the location of the plaques 

that presented a symmetric distribution (Fig. 18). 

To the best of our knowledge this is the first report of an asymmetric pattern of 

GM loss, with a preferential involvement of the left hemisphere in MS. 

Previously, lateralized functional changes have been described in MS, in 

relationship to cognitive disturbances, including left fronto-temporal metabolic 

and CBF reductions (Pozzilli, 1991; Pozzilli 1992) with a preferential correlation 

to deficits in verbal fluency and verbal memory, and alterations of the P600 

component of event related potentials in the left frontal and temporoparietal areas, 

in patients with memory disturbances (Sfagos, 2003). 

Although studies of MRI correlates of cognitive impairment in MS have reported 

in most cases a correlation with LL (Blinkenberg, 2000; Camp, 1999; Hohol, 

1997; Rao, 1989), this correlation appeared weak when were studied only RR-MS 
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patients (Fulton, 1999; Rovaris, 2002), a subgroup for which GM loss is emerging 

as a potential imaging correlate of cognitive impairment (Amato, 2004) . 

From this perspective regional GM loss may contribute to clarify the pathogenesis 

of specific deficits such as those reported in MS for the paced auditory serial 

addition test, which activates preferentially left fronto-parieto-temporal areas 

(Audoin, 2005) or for tests of verbal fluency, more frequently altered in RR MS 

compared to progressive forms of the disease (Huijbregts, 2004). Preferential left 

atrophy may also partly contribute to previously described correlations between 

NAA loss in the left hemisphere and  cognitive dysfunction in MS (Pan, 2001), a 

finding however not replicated in patients with more compromised verbal memory 

abilities with mixed disease course (Christodoulou, 2003). 

 

These information on the spatial distributions of aWM and GM loss have 

implications in the assessment of the mechanisms potentially underlying cortical 

atrophy in multiple sclerosis. 

Putative mechanisms for GM loss in MS include both Wallerian and retrograde 

neuroaxonal degeneration, which could partly contribute to the observed GM loss 

(Narayanan, 1997). 

However, it should be considered that if neuroaxonal degeneration was the main 

driving force of GM loss, visual cortex atrophy would also be expected due to the 

extensive involvement of optic pathways which occurs frequently in MS, while 

our data document a relative sparing of occipital GM, in agreement with previous 

results using different segmentation and analysis technique (Sailer, 2003). 
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Another mechanism for GM damage is the possible direct inflammatory damage 

(Kidd, 1999), which is expected due to the frequency of juxtacortical MS lesions 

and to the presence of MS lesions within GM. 

In particular, purely intracortical lesions represent up to 24% of the total LL 

(Kidd, 1999), and are particularly prominent in the frontal and the superior 

temporal lobe (Lumsden, 1970) and in the cingulate gyrus (Bo, 2003), with 

demyelination, axonal transection, dendritic transection, and apoptotic loss of 

neurons being detected at neuropathological studies (Peterson, 2001), although the 

mechanisms of tissue damage are still unclear, as cortical lesions show a different 

pattern of inflammation (fewer CD3-positive lymphocytes and CD68-positive 

microglia/macrophages than WM lesions) (Peterson, 2001). 

However, to confirm the correlation between intracortical lesions and GM loss, 

the lateralization of GM loss that we found should be coupled to a lateralization of 

intracortical lesions, a finding, although not specifically assessed, not reported by 

previous studies. 

Although visual assessment of the VBM results in subgroups of MS patients 

delineated an increased extent of the atrophic cortical areas with increasing LL, 

DD and EDSS, direct search for a correlation between these parameters and local 

GM volume did not show significant correlations for EDSS and DD while only 

limited cortical and subcortical clusters (caudates, motor cortex and hippocampus 

mainly) showed a correlation of atrophy with LL. 

This is not surprising as it is expected an increase in the extension of the affected 

GM regions with advancing pathology, rather than an increase in the degree of 

atrophy in the same regions. 
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The selective correlation with LL of caudate, motor cortex and hippocampal 

atrophy may suggest a different mechanism of involvement of these regions 

compared to other cortical GM, possibly related to the accumulation of damage 

with disease progression. In particular for basal ganglia, which are interconnected 

to a larger number of areas of the brain through basal ganglia-thalamo-cortical 

circuits (Alexander and Crutcher, 1990), an increased sensitivity to damage 

deriving from remote axonal transection through anterograde and retrograde 

neuronal degeneration can be hypothesized, as opposed to other areas of the brain 

where GM loss may result from other mechanisms. From this perspective is 

somewhat more surprising that the same relationship (between atrophy and LL) 

was not found also for thalami, a structure whose structural damage, correlated to 

distant normal-appearing WM axonal loss, as demonstrated in RR-MS using 

diffusion tensor and MR spectroscopy (Wylezinska, 2003) (see discussion on WM 

results). 

Finally, direct selective targeting and/or selective sensitivity of the affected 

regions to (as now unidentified) neurotoxic factors remains a viable hypothesis. 

 

Regional findings: WM 

Regional WM loss in MS has not been assessed at our knowledge. In previous 

studies assessing loss over pre-defined brain regions, decreases in both area and 

axonal density in corpus callosum (Evangelou, 2000) and in thalamic GM (Cifelli, 

2002) have been reported. 

Our VBM results on WM loss confirmed these findings showing a preferential 

location at the level of supratentorial periventricular regions, the involvement 
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being almost symmetrically distributed with a preferential involvement of the 

splenium of the corpus callosum. 

Involvement of thalami deserves a specific attention as this finding was to be 

expected as a results of GM loss. Conventional MRI segmentation is probably not 

sufficiently accurate in assessing the thalami, which are composed by GM nuclei 

interspersed in WM tracts and consequently difficult to segment appropriately, 

even when taking advantage of multiple MR information simultaneously by the 

use of a multiparametric approach as in this case. 
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CONCLUSIONS 

Our findings on quantification of GM and WM volumes in a large population of 

MS patients, confirmed both GM and global WM loss in patients as compared to 

normal subjects.  Moreover MRI data showed significant differences between 

patients with relapsing–remitting and secondary progressive forms of MS: 

secondary progressive patients have significantly more atrophy of both WM and 

GM than do relapsing–remitting patients and a significantly higher lesion load. 

Significant correlations among MRI parameters and between MRI and clinical 

data were found. Lesion load correlates to both WM and even more to GM 

atrophy; lesion load and WM and GM atrophy are significantly related to 

Expanded Disability Status Scale score and age at onset (suggesting that the 

younger the age at disease onset, the worse the lesion load and brain atrophy); and 

GM atrophy is the most significant MRI variable in determining the final 

disability. 

The two findings together confirm that a neurodegenerative phenomena should be 

considered. 

Moreover in RR MS the loss of GM appears preferentially located in the left 

fronto-temporal cortex and precuneus, in the anterior cingulate gyrus, and 

bilaterally in caudate nuclei, while WM analysis showed preferential loss at the 

level of supratentorial periventricular regions and thalami. 

The asymmetrical distribution of cortical atrophy is not explained by the volume 

of aWM or its symmetrical spatial distribution, and thus other mechanisms are 

probably involved in determining cortical GM loss, beside neuronal degeneration 
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from axonal transection in areas of the brain remote from GM, which probably 

plays a more direct role in deep GM atrophy. 

Future work needed to assess whether the differences in MS subtypes are 

correlated  to differences in regional brain tissue volumes. 
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