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INTRODUCTION 
In this research activity an electromagnetic characterization and a non-destructive 

evaluation of new advanced composite materials, Carbon Fiber Reinforced Polymers 

(CFRP) and Fiber-Glass Aluminium (FGA) laminates, using an eddy-current technique 

based on HTS dc-SQUID (Superconductive QUantum Interference Device) 

magnetometer is proposed.  

The thesis has been performed in the CNR-INFM laboratory of Coherentia research 

center of Naples (Italy), where the NDE SQUID based prototype was realized. The 

work has been developed in the framework of the Italian MURST project “Analisi non 

distruttive su materiali compositi strutturali per l’industria aeronautica”, in 

collaboration with the Department of Materials and Production Engineering (DIMP), 

where the impacts loading was performed, and Alenia s.p.a that provides the test 

samples. 

The main goal of this thesis is to propose a prototype based on a superconducting 

sensor, such as SQUID, to guarantee a more accuracy in the quality control at research 

level of the composite materials employed in the aeronautical applications. Today, the 

aerospace and aeronautical industry pays much attention to improve flight safety of the 

airlines. In aircraft design it is important to couple low structural weight with high 

damage tolerance. For this reason, a new class of advanced composite materials, 

characterized by a combination of metallic alloys and polymeric matrix layers, or 

carbon fiber and epoxy resin, are increasingly used.  

Composite materials, specifically Carbon Fibre Reinforced Polymers (CFRPs), offer 

excellent mechanical behaviour, good damage tolerance, high strength and rigidity with 

low weight, good corrosion resistance and suitability for the production of complex-

shape components with reduced manufacture time. However, due to low inter-laminar 

strength fibre composites are susceptible to delamination during manufacturing or in 

service. CFRPs are capable of absorbing the energy of impact thanks to the presence of 

a polymeric matrix that distributes the energy in the material. In this way the impact at 

first stage doesn’t produce a perforation of the composite structure, but may cause 

internal damage such as delamination, that is not visible to naked eyes. The presence 

and the growth of delamination may produce severe stiffness reduction in the structure, 

leading to a catastrophic failure. Delamination may be produced, for example, by 

runway debris, hail, maintenance damage (i.e., dropped tools) and bird strikes. 

Frequently, delaminations between the layers  can develop in fibre fractures with no 
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visible surface manifestation. The degree of damage depends on various factors, for 

example, the energy of the impact, the thickness of structures and the fibre orientation 

of layers in the composite. 

The other material tested in this work is one of the most widely used FGA, 

commercially called GLARE (GLAss REinforced), which consists of alternating thin 

aluminium alloy layers and glass fibres pre-peg. The latter is a reinforced-plastics term 

for the reinforcing material that contains or is combined with the full complement of 

resin before the molding operation. The main advantages of FGAs are superior fatigue 

behavior with respect to conventional metallic alloys, better damage tolerance, inherent 

resistance to corrosion and good fire resistance to improve safety. In particular, FGA 

exhibit slower crack growth rate with respect to their monolithic constituents. This is 

mainly due to the fibres, which form a bridge at the crack tip, delaying crack growth. 

Consequently, longer inspection intervals can be adopted in service, and lowering 

maintenance costs. 

Since FGA are employed principally in aircraft fuselage structures, which are prone to 

accidental impacts, it is important to investigate their damage features due to such 

impacts. Thanks the plasticity of the aluminium layers, resulting in an evident 

indentation at the impact site, the deformation due to an impact event can be easily 

detected by visual inspection. However, this technique does not allow to detect internal 

defect of the aluminium layers. 

Because of the increasing utilization of the composite materials in structural 

applications, the non destructive evaluation (NDE) of the CFRPs and FGAs receive 

considerable research and development attention. 

 Due to the heterogeneous nature of composites, the form of defects is often very 

different from metal, and fracture mechanism is more complex. For this reason suitable 

inspection techniques are required to assess the damage extent in the CFRPs and FGA 

composites. Usually, the conventional non destructive evaluation show limits to detect 

the possible cracking of hidden aluminium sheets in the FGA and the delamination 

inside the CFRPs.  

However, to detect internal damage in FMLs, an ultrasonic (US) technique, eddy 

currents, and dye penetrants have been used. The latter method is only partially non-

destructive, requiring the drilling of a small hole through the aluminium sheet into the 

pre-peg layers. In regard to FMLs, US exhibits some limitations because of the large 

acoustic impedance mismatch between metal and fibre reinforced layers. On the other 
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hand, the conventional eddy currents inspection fails due to the large indentation of the 

FGA surface. The surface deformation of the sample increases the lift off between probe 

and sample. This effect arises from the loss of coupling between coil and sample that 

reduces the sensitivity of the induction coil. 

The low electrical conductivity and high anisotropy of CFRP composites generally 

doesn’t allow conventional techniques, such as traditional ultrasound, thermography and 

eddy current with induction coils, to detect early stage damage in composite samples. In 

fact, the thermography was found unreliable when it tests bonded joints with a narrow 

gap between the unbounded surface, and when the damage in the material is few 

millimetres in depth. On the other hand, the ultrasound technique is not very sensitive 

when the material has a rough surface and a layered structure without using any 

coupling medium. Moreover, the eddy current technique shows a reduction of the 

sensitivity of induction coil to evaluate deep flaws in structures characterized by a low 

electrical conductivity.  

The HTS SQUID probe can be considered as a suitable improvement to the 

conventional induction coil employed into electromagnetic technique. In fact, SQUIDs 

sensor can overcome the limitation related to the low frequency and the variation of lift 

off that obstruct the induction coil measurements. The success of the electromagnetic 

technique based on SQUID sensors to detect delaminations in CFRPs materials is 

principally due to the electromechanical effect presented in the carbon fibers. A range of 

experimental results over the last decade has shown that the mechanical deformation 

and the electrical resistance of CFRPs are coupled. Both the mechanical properties and 

the level of damage of CFRPs are correlated to the electrical conductivity of the 

reinforcing carbon fibres. It was demonstrated that the variation of fibres distance or 

fibres breakage changes the resistivity of the reinforced composite. In this way 

delaminations and fibre breakage alter the electrical conductivity of the material, 

producing a variation of the current distribution and consequently a change of the 

corresponding magnetic signal.  

At present, HTS SQUID as magnetometer and gradiometer have been applied 

successfully to detect internal cracks and delamination in composite materials and 

traditional laminates, and to study the ongoing corrosion of the aluminium alloy plates 

for aeronautical applications. Moreover, the HTS SQUID magnetometer is 

characterized by high field sensitivity in an unshielded environment (about 0.2 

pT/Hz1/2) and a wide dynamic range, about 130 dB. Thanks to these features, the HTS 
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SQUID analysis allows us to evaluate very small magnetic field variations produced by 

small cracks. 

The thesis is divided in five chapters. In the first one a complete description of the 

SQUID properties and its basic working principles, flux quantization and the Josephson 

Effect, has been reported. Moreover, the DC SQUIDs electronics, its possible 

configurations, magnetometer and gradiometer, and the noise characterization are 

described.  

The second chapter is dedicated to an overview of the most widely used non-destructive 

technique employed in several industrial and research fields. Particular attention is 

given to the eddy current testing, the technical improvement and the advantage obtained 

using SQUID in NDE. Moreover, the eddy current technique prototype system based on 

a HTS dc-SQUID magnetometer has been described, and the particular configurations 

between the excitation coil and the SQUID magnetometer are shown.  

The third chapter is dedicated to the description of the composite materials properties, in 

particular the structural characteristics and the industrial applications of CFRPs and 

FGAs are shown. 

The fourth and fifth chapters are dedicated to the experimental results of the 

electromagnetic characterization of the CFRPs and FGA composites. The 

electromagnetic characterization of the composite materials has been focused 

principally on the investigation of the damage due to impact loading, and the corrosion 

process of the metallic surface.  

The investigation on the CFRPs composites starts from the study of the electrical 

properties, in particular the evaluation of the electrical conductivity and its variation 

respect to mechanical stress has been carried out. The effect of the impact loading on 

the surface and inter-phase of this composite  has been analysed using the SQUID based 

prototype and other comparative technique, such as eddy currents using induction coil 

and ultrasounds. Moreover, the adhesion fiber-matrix has been analysed using an atomic 

force microscopy (AFM) too. This analysis aim to understand the relation between the 

damage process of the CFRPs and the dislocation of the fiber into the polymeric matrix. 

In the last chapter the results obtained with the SQUID based prototype concerning the 

characterization of the FGA materials have been reported. The prototype capability to 

distinguish the different defects due to impact loading at several impact energies has 

been tested. Moreover, in a first approach to study the effects of the corrosion activity, 

that can take place on the FGA damaged aluminum surface, a copper made mock-up 
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was fabricated. In this way it was possible to amplify the corrosion  activity and verify 

the magnetic field sensitivity to the ongoing corrosion process. The mock-up allows us 

to study two simple geometric configurations that can be modeled to calculate the 

current distribution during the corrosion process. The current distribution was obtained 

via electromagnetic inversion of the measured magnetic field. Finally, it is important to 

note that the copper made mock-up is useful to optimize the measurement set up and the 

magnetic field inversion algorithm for a future study of the FGAs corrosion activity.   
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Chapter 1 
 
SQUIDs (Superconductive Quantum 

Interference Device) 

 
 
 

Introduction 
 
Superconducting Quantum Interference Devices, are an extremely sensitive magnetic 

flux-to-voltage transducer and are used to measure extremely tiny magnetic fields. The 

extreme sensitivity of the SQUID has caused it to be incorporated into a great variety of 

systems for biomagnetic applications in magnetoencephalography, 

magnetocardiography and for geomagnetism, non destructive testing, radio frequency 

amplification and the measurement of fundamental constants. The focus of this chapter 

is on the description of working principle of the SQUIDs, concerning the applications 

on NDE system. Starting from a briefly introduction on the main superconductivity 

properties, the two main principles on which the SQUID is based: the flux quantization 

of a superconducting loop and the Josephson Effect, are described. In this chapter the 

attention is particularly focused on the description of DC SQUID which is reported in 

the third section follows by an overview of the noise sources that affect this device. The 

Flux Locked Loop (FLL), largely used to linearize the SQUID output, is introduced in 

the fifth section. The last two paragraph of this chapter are dedicated to overview the 

possible configuration of DC SQUID sensors: magnetometer and gradiometer. The 

basic characteristics, the advantages and drawbacks of these devices basically fabricated 

on HTS materials are reported. 

  

1. Superconductivity  

In 1908, the physicist Kammerlingh Onnes in Leiden successfully liquefied helium by 

cooling it to 4K, after that sufficiently low temperature was available. In 1911, Onnes 
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began to investigate the electrical properties of metals in extremely cold temperatures, 

measuring the electrical resistance of very pure mercury wire steadily lowered the 

temperature. The results of this investigation were unexpected: the resistance 

disappeared completely in a narrow temperature range across 4.2 K. 

 

Figure 1: Electric resistance versus temperature in normal metallic and superconducting material. 
 
 

Onnes asserted that the mercury had passed into a new discovered state, which on 

account of its extraordinary electrical properties, he called the superconductive state. 

Therefore, while in a normal metallic substance the resistivity reaches a residual value, 

in superconductors the resistivity is zero for temperature lower than its critical 

temperature, TC that represents the temperature at which a superconductor loses its 

resistance (Figure 1) [1-3].  

The loss of electrical resistance means for superconductors its ability to conduct 

electricity without the loss of energy. The microscopic interpretation of 

superconductivity was advanced in 1957 by three American physicists - John Bardeen, 

Leon Cooper, and John Schrieffer- through their Theories of Superconductivity, know 

as the BCS Theory [4-6]. This theory explains superconductivity at temperatures close 

to absolute zero. Cooper realized that atomic lattice vibrations were directly responsible 

for unifying the entire current. They forced the electrons to pair up into pairs that could 

pass all of the obstacles which caused resistance in the conductor. These pairs of 

electrons are known as Cooper pairs. Cooper and his co-workers knew that electrons 

normally repel one another but in superconductors there is an attractive force between 

the electrons of opposite spin and momentum that overcome the repulsion, due to the 

Coulomb’s law, enabling them to form pairs. The Cooper pairs are able to move 

through the material effectively without being scattered, and thus carry a supercurrent 

with no energy loss. Therefore, while in metallic materials the current is due to single 
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electrons in a superconductor it is a flow of electron pairs, characterized by wave 

function, Ψ, with an spatial extension of about 10-4 cm, called coherence length, and a 

phase θ. The remarkable property of the superconductors is that all electron pairs have 

the same wave function, thus forming a macroscopic quantum state with a phase 

coherence extending throughout the material. 

Another characteristic of the superconducting state is the Meissner effect [4,6]. When a 

superconductor is placed in a weak external magnetic field H, the field penetrates the 

superconductor for only a short distance λ (tipically of order of 10nm), called the 

penetration depth, after which it decays rapidly to zero. The Meissner effect is due to 

shielding currents arise in the superconductor surface. These currents create a field both 

inside and outside the superconductor such that on the inside the applied and the 

induced fields exactly cancel, while outside they are added. The observed result is the 

expulsion of H-field: zero fields inside and an increased field outside the sample. It is 

important to note that the Meissner effect is distinct from the kind of diamagnetism 

expected in a perfect electrical conductor, because a superconductor expels all magnetic 

fields, not just those that are changing. The Meissner effect breaks down when the 

applied magnetic field is too large. Superconductors can be divided into two classes 

according to how this breakdown occurs. 

In Type I superconductors, superconductivity is abruptly destroyed when the strength of 

the applied field rises above a critical value Hc. Depending on the geometry of the 

sample, one may obtain an intermediate state consisting of regions of normal material 

carrying a magnetic field mixed with regions of superconducting material containing no 

field. Examples of such materials are Hg, Al, Sn, Pb, Ga. Figure 2 (left) shows a sketch 

of this behaviour. 

Type II superconductors differ from Type I in that their transition from a normal to a 

superconducting state is gradual across a region of  "mixed state". Raising the applied 

field past a critical value Hc1 leads to a mixed state in which an increasing amount of 

magnetic flux penetrates the material, but there remains no resistance to the flow of 

electrical current as long as the current is not too large. At a second critical field 

strength Hc2, superconductivity is destroyed (Figure 2 (right)). The mixed state is 

actually caused by vortices, sometimes called fluxons because the flux carried by these 

vortices is quantized.  
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Figure 2: Variation of internal magnetic field with applied external magnetic field (H) for Type I and 
Type II superconductors. 
 

Type II category of superconductors achieve higher critical temperature than the Type I 

examples are almost all impure and compound such as Nb3Sn, NbTi and all the cuprates. 

For the Type II the highest temperature attained at ambient pressure has been 138 K 

related to the compound (Hg0.8Tl0.2) Ba2Ca2Cu3O8.33. 

Depending on the transition temperature the superconductors can be differentiate as 

low-Tc and high-Tc superconductors. The discovery of the materials, such as ceramic 

oxide YBa2Cu3O7-x with transition temperature above the boiling point of liquid 

nitrogen (77K) generated a worldwide furor to develop new superconducting 

technologies for both large and small scale applications. The interest for the new low 

temperature technology was driven by the perception that superconductors cooled in 

liquid nitrogen would quickly become much more widely applicable than 

superconductors cooled in liquid helium (4.2K), because liquid nitrogen is much 

cheaper and boils much more slowly than liquid helium. Today there are several 

example of large scale applications employed superconductivity, such as 

superconducting wires that are used in magnets for particle accelerators and magnetic 

resonance. Other prototype applications include cables for power transmission, large 

inductors for energy storage, power generators and electric motors, magnetically 

levitated trains [7]. On the other hand, one of the most important small scale application 

of the superconductivity regard the most sensitive magnetic field sensor so-called 

SQUID (Superconducting QUantum interference device). This device is successfully 

applied in biomagnetism, geophysics and non-destructive evaluation field, and it is the 

main object described in this chapter. 
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2. Flux quantization 

If a superconducting ring, cooled below its Tc, is placed in a magnetic field, because of 

the Meissner effect, the field is forced out of the surface while remains in the hole. In 

other words, the superconducting ring entrapped the magnetic field. Field variations are 

forbidden by the law of electromagnetic induction; in fact, a change of magnetic field 

through the ring produces an induced current, obstructing any change. Since the ring is 

superconducting, the current does not attenuate, and therefore the magnetic flux remains 

unchanged.  Moreover, the captured magnetic field appears to be able to take on only 

define values, in particular only an integer value of the unit flux Φ0=2.07x10-15 Wb. Φ0 

is called flux quantum and it is a fundamental physical constant which is related to other 

fundamental constants by the relation:  

e
c

20
h

=Φ  

where h the Plank constant, c is is the velocity of light and e the electron charge. A 

magnetic flux is necessarily equal to a multiple number of quanta. This is the unique 

property of the superconducting ring only. Quantization of the flux through a ring can 

be considered an expression of quantum properties on large scales [8,9].  

                            

3. Josephson junction  

When two superconductors are separated by a thin layer (on the scale of either the 

superconducting coherence length ξ or the penetration depth λ), which can be an 

insulator, a normal conductor, or a constriction the superconductivity is weakened. Such 

a “weak link” is known as Josephson junction (JJ) [6]. 

A typical realization of a weak link is a SIS tunnel junction, consisting of two 

superconducting films, separated by a very thin oxide layer, typically 1-2 nm thick. The 

most commonly used superconductors are Nb and Pb, the critical current density of 

these junctions may be in the range 103- 104 A/cm2, far below the typical critical current 

density of bulk superconductors, because the transport across the barrier is a tunnel 

process. Instead of  a thin oxide layer other materials may be used, for instance a normal 

metal, corresponding to a SNS junction, in which case the metal layer can be much 

thicker. Another well established method is to create the whole system from a single 

superconductor, by splitting for example a continuous film into two regions, leaving just 

narrow constriction between, of typical dimension like the coherence length ξ. This 
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latter construction is called Dayem bridge. In this case the critical current density is the 

same in the bridge and in the bulk, but the overall critical current of the device is much 

lower than in two parts. This is sufficient to make it a weak link [9]. 

A recently developed method, specially suited for the high Tc superconductors, takes 

advantage of their very short, nanometer size coherence length ξ. In these 

superconductors a very narrow interruption of superconducting properties can be 

achieved by depositing a high Tc film across a naturally occurring grain boundary in a 

substrate like SrTiO3.  

 

Figure 3: Sketch of thin-film bycristal principle using the example of symmetric [001]-tilt grain 
boundary with grain boundary tilt angle θ. 
 

The grain boundary forced the superconductor to develop a chain of defects along the 

length of the grain boundary. Above the grain boundary, therefore, there is a weak link 

between the two parts of the superconductor film. Such contacts are commonly referred 

to as grain boundary junctions or bicrystal junctions (Figure 3) [10]. The grain 

boundaries are also nucleated by growing a high-Tc film over a suitable step patterned 

into the substrate. Typically, two grain boundaries are nucleated at one substrate step, 

one at its bottom and one at its top. These grain boundaries are connected in series (see 

Figure 4). As the required substrate steps are easily defined by photolithography, for 

example by using an amorphous carbon mask and ion-beam etching or reactive ion-

etching, such step-edge junctions can be positioned anywhere on the substrate. The 

stepheight is chosen to be larger than the film thickness, a characteristic value being 

200-300 nm.  
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Figure 4: Sketch of step edge junction. 

 

The step angle has been found to be a crucial parameter, as it controls the microstructure 

and the grain boundary configuration of the high-Tc film [11,12]. Standard angles are in 

the range of 50-60°. The substrate materials is also of importance, because on some 

materials, e.g., MgO, the high-Tc superconductors tends to grow with the [001]-axis 

parallel to the local substrate normal, giving rise to [100]-tilt boundaries with 

misorientation-angles determined by the slope of the substrate step edge, whereas on the 

other materials, e.g., SrTiO3 and LaAlO3, the high-Tc superconductors grow throughout 

with their [100] or [011]-axes parallel to the substrate [001]-direction, creating grain 

boundaries. 

A technique was found to freely select the position of the grain boundary [13,14] so 

called biepitaxial process. This process utilizes changes of the orientation of high Tc 

films induced by epitaxial growth on structured template layers. Depending on the 

underlying layers, the high-Tc films are rotated in-plane, resulting in rotational grain 

boundaries at the edge of the template structures, as shown schematically in Figure 5. 

 
Figure 5: Sketch of biepitaxial principle as developed by Char et al. 
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Here it noted that Abacus grows with [001] parallel to [100] on SRTiO3, furthers 

various materials combinations can be employed to induce the variation of the in-plane 

orientation. In an alternative approach, a group at University of Naples uses (110)-

oriented SrTiO3 substrates and MgO seed layers (Figure 6) 

 

 
Figure 6: Sketch of  biepitaxial principle as developed by Di Chiara et al. 

 

With this, asymmetric 45° [100] tilt boundaries and symmetric [100] twist boundaries 

with promising properties can be fabricated [15-17]. 

 

3.1 Josephson effect 

In a junction if the order parameter Ψ of the two superconductors is sufficiently 

overlapped Cooper pairs can be tunnelling through the barrier without energy loss. 

Moreover, the pairs tunnelling produce a Cooper pairs phase variation that depends on 

the critical current of the junction Io. This effect is called d.c. Josephson effect that 

relates the applied current passing trough the junction with the phase and the critical 

current of the junction. This relation is expressed in the follow equation [6]: 

0 sinI I ϕ=                          (1) 

where ϕ=ϕ1-ϕ2 is the difference between the phase of the two connected 

superconductors. In other words using equation (1), Josephson demonstrated that a 

junction is able to sustain a supercurrent without application of a voltage. 

A very simple derivation of the DC Josephson equation has been proposed by Feynman, 

starting from the Schroedinger equation [11]:  

Ψ=
∂
Ψ∂ E
t

ih                         (2) 
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in a superconductor ϕϕ ρ i
S

i ee 2
1

=Ψ=Ψ , with ϕ being the macroscopic superconducting 

phase and ρS  the density of Cooper pairs. However, when a coupling with overlap 

exists between the wavefunction to the left, ψL, and to the right, ψR, a term must be 

added to account for the “leakage” of the wavefunction. Therefore, ψL changes with 

time at a rate which is proportional to the amount of  leakage from ψR into the left side. 

Similarly, a symmetric equation must exist for the rate of change of ψR. The equation 

(2) written for the two superconductors wavefunction are: 

LRR
R

RLL
L

KE
t

i

KE
t

i

Ψ+Ψ=
∂
Ψ∂

Ψ+Ψ=
∂
Ψ∂

h

h

          (3) 

 

where EL and ER are the ground state energies of the unperturbed system when K=0, i.e. 

with no transfer of charge. It is not important to know the values of  EL and ER but their 

difference EL-ER=-2eV, which is fixed by the potential difference V. For a thick barrier 

EL=ER when K=0, and sharing the potential energy difference between the two states 

symmetrically [11] by writing: 

 

LR
R

RL
L

KeV
t

i

KeV
t

i

Ψ+Ψ⋅=
∂
Ψ∂

Ψ+Ψ⋅=
∂
Ψ∂

h

h

            (4) 

The wave functions ΨL and ΨR may be written as 

R

L

i
RR

i
LL

e

e

ϕ

ϕ

ρ

ρ

2
1

2
1

=Ψ

=Ψ
 

assuming that each function has a well-defined macroscopic phase, constant in space 

and with a well defined Cooper-pair density. This first limitation will have to be lifted 

later, but for the moment the discussion is limited to a constant area that is very small, 

so that no spatial variation of phase is possible. Now substituting the wave function with 

time dependent ρ in the differential equations (4) and equate real and imaginary parts 

separately, with ϕ =ϕR-ϕL, the following four equations are obtained: 
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


−=

∂
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+



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∂
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It should be noted that variations of phase (ϕR and ϕL) are due to the combined effect of 

the phase difference ϕ across the contact, and the potential V, while variations in pair 

density are solely due to the phase difference ϕ. 

 The supercurrent across the contact is calculated by use of  

t
eI L

∂
∂

=
ϕ2  or 

t
eI R

∂
∂

−=
ϕ2  

The time derivative is already given above, so that the followed relation is due: 

( ) ϕρρ sin4
2
1

LR
KeI
h

=  

which it is possible to rewrite as 

0 sinI I ϕ=  

that represents the dc Josephson effect. It means that a supercurrent is driven across the 

thin barrier separating two superconductors simply by the superconducting phase 

difference across the barrier. 

 Moreover, another phenomenon would appear when the current is forced to exceed I0. 

A voltage V developed across the junction, and the phase ϕ became time dependent, 

giving an a.c. current with so-called Josephson frequency ωJ according to 

0

22
Φ

==
∂
∂

=
VVe

tJ
πϕω

h
. This effect is known as a.c. Josephson effect, it is in an 

observable range, since V=1µV leads to MHzwf J
J 6.483

2
=≡

π
. This effect means that 

there is an electromagnetic phenomenon related to the movement of charge at elevated 

frequency: the Josephson contact emits electromagnetic radiation at frequency ωJ. 

Therefore the current across the junction should now be written  

( )tIteVII Jωϕϕ −=













−= 0000 sin2sin
h
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where ϕ0 is the phase across the junction, without the presence of the voltage V. It is 

this oscillatory Cooper-pair current which generates the microwave electromagnetic 

radiation. In the opposite case, when microwave radiation is incident on the junction, 

steps appear at regular intervals Jn e
nV ω






=

2
h on the I-V curve. These steps, caused by 

absorption of n quanta of electromagnetic radiation at the Josephson frequency, are 

called Shapiro-steps after their discoverer. 

The relation between the current and the voltage for a Josephson junction is represented 

by the I-V characteristic reported in Figure 7 (left). 

 

 

 

 

 
 

 

 

 

 

Figure 7: I-V characteristic: (left)non-hysteretic junction, (right) hysteretic junction 

 

The I-V curve shows that if the junction is biased with a constant current source, lower 

than the critical current Ic, there will be no voltage drop across the junction, although the 

passage of the current through the device will introduce a phase difference across it. 

When the bias current exceeds the Ic a voltage will appear and the phase difference will 

become time-dependent.  

Typically, the voltage returns to zero only for current values much lower than the Ic. 

Therefore, the junction shows an hysteretic behaviour (Figure 7 (right)). 

Experience and theoretical analysis have solved the problem shunting the junction , i.e. 

by adding an external resistance in parallel. This modification is commonly referred to 

as the RSJ-model (Resistively Shunted Junction) as shown in Figure 8, which describes 

the Josephson junction with an equivalent circuit.  
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Figure 8: The RSJ model for a Josephson junction. 

 

In the schematic diagram one identifies the current source, the resistive shunt R, the 

Josephson junction, a capacitance C and finally the voltage V. The resistance represents 

the dissipations associated with the passage of quasi-particle, which shunts the 

Josephson element and varying very strongly with voltage. On the other hand, the 

insulating barrier, with thickness of order 1-2 nm,  between the two superconductors 

produces a significant capacitance between the two superconducting planes that is 

represented by the capacitance C in the equivalent circuit. To determine the DC current–

voltage characteristic of a junction using the equivalent circuit, at first it can be noted 

that the bias current is the sum of three terms: 

dt
dVC

R
VII ++⋅= ϕsin0       (5) 

Taking into account that the second Josephson relationship 
dt
d

e
V ϕ

2
h

= correlates the 

voltage drop across the device to the time rate of change of ϕ so that this equation 

becomes a second-order non-linear differential equation for ϕ.  

2

2

0 22
sin

dt
d

e
C

dt
d

eR
II ϕϕϕ 






+






=⋅−

hh         (6) 

upon defining the quantity  

( )ϕϕ
π

cos
2 0

0 IIU +⋅
Φ

−=  

the equation (3) may be written as 

2

2

22
2

dt
d

e
C

dt
d

eR
Ue ϕϕ
ϕ







+






=

∂
∂

−
hh

h
        (7) 

this is recognizes as the equation of motion for a mass point moving down a corrugated 

surface, often referred to as a “washboard potential”, where U is a function of ϕ. Two 

cases could be considered: I<I0 and I>I0, as shown in Figure 9. 
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Figure 9:The washboard potential with a sliding point mass.  I represents the tilt of the washboard. 

 

In the first case the point mass gets trapped in one of the potential minima, and 

oscillates locally there. In the other case it goes on sliding. The first corresponds to zero 

time average phase difference, i.e. 0=
∂
∂

t
ϕ . This corresponds to the average voltage 

across the junction being zero. The second type of the motion arises when the tilt is 

increased to make I>I0. in this case the time average is 2

2

t∂
∂ ϕ >0, in other words, the 

point mass keeps sliding down the washboard. It is helpful also to note that in the 

mechanical analogue the capacitance C represent the particle mass, and the 1/R is 

proportional to the friction coefficient , or damping of the motion. 

If C=0, which is a reasonable approximation for a point-contact junction, or even for a 

small tunnel junction, the equation (6) can be solved directly by integration to give: 

2
1

2

0
0 1

0












−








=

=

I
IRIV

V

 

plotting the time-average voltage as a function of the bias current it clearly has a 

parabolic dependence (non hysteretic) as shown in Figure 7(left). This behaviour is well 

followed in practice for the types of junction with a rather small values of shunt 

resistance (R< 1Ω). 

If the junction capacitance is not negligible, C≠0, the equation (6) can be solved 

numerically and it is then found that current-voltage characteristic may exhibit 

hysteretic: the path taken for increasing I is not the same as that for decreasing I. As a 

consequence the characteristic of the junction changes, as shown in Figure 7(right).  



 14

The numerical analysis shows that hysteresis is controlled by the parameter βc, called 

the Stewart-McCumber parameter  

0

22
Φ
⋅⋅

=
CRI

c
πβ  

It should be noted that the role of the capacitance, which analogous to inertia in the 

washboard model, when the junction is in the finite voltage regime (where the phase is 

evolving with time), is to maintain a time-evolving junction phase difference even when 

the current bias is reduced below the level which caused them to switch first into finite 

voltage state. This hysteretic behaviour has the unfortunate consequence of introducing 

high noise levels. The effect of the hysteresis is avoided if the condition βc ≤ 1 is 

satisfied. Moreover, for a tunnel junction the hysteresis problem can be minimised by 

making the barrier as thin as possible, even though this also maximises the capacitance. 

It is just that the supercurrent density increases faster with decreasing thickness than 

does C, in fact the tunnelling supercurrent density depends exponentially on the barrier 

thickness t whereas C varies as t-1. Thus the best junctions have the highest possible 

current density, provided that the barrier can be made continuous and uniform. 

Until now the fluctuating noise current In(t), associated with the components of the 

circuit, has been neglected. For a better understanding of the Josephson junction the In(t) 

term should be introduced and its consequences analysed. The full equation of the 

motion become: 

2

2

0 22
sin)(

dt
d

e
C

dt
d

eR
ItII n

ϕϕϕ 





+






+⋅=+

hh  

the effects of noise are usually discussed in terms of noise spectral density SI(f), which 

means the noise power per bandwidth due to current noise In(t). Theoretical analysis 

shows that the noise spectral density of In(t) is given by Nyquist result: 

R
Tk

fS B
I

4
)( =  

since the current I represents the tilt of the washboard potential, the physical effect of  

In(t) is to cause fluctuations in that tilt. If these fluctuations become large enough they 

will cause the particle to escape from is local trapping site. This creates a condition for 

t∂
∂ϕ  to differ from zero, which again means that a voltage will appear, in this case 

corresponding to the appearance of voltage noise with increasing temperature. This will 

cause a rounding of the I-V curve before the steeper onset of current driven by the 
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external voltage V. The noise corresponds to an additional voltage dVn and a total 

effective voltage V+dVn causing the precursor “noise-rounding” effect in the hysteretic 

I-V characteristic. This current noise has an additional effect of lowering the effective 

critical current value, a potentially harmful consequence of noise since the critical 

current I0 must be above a certain value for proper operation of the junction. A criterion 

for I0 to be large enough to maintain  coherent supercurrent or “coupling of the 

junction” is that the coupling energy exceeds the available thermal energy, expressed by 

the relation: 

π2
00ΦI

>>kT 

the quantity 
π2

00ΦI
is the coupling energy of the junction and represents a measure of the 

energy associated with the current pattern for each flux quantum in the junction. A 

typical value of I0 is the 0.17 µA at low temperature(4.2K) and 3.3µA at 77K. The 

condition to maintain a reasonable degree of Josephson coupling can be expressed also 

by means of the “noise parameter” defined as: 

00

2
Φ

=Γ
I

TK Bπ  

which must satisfied the relation Γ≤1. 

 

4. DC SQUID 

The most wide-spread application of Josephson junctions is probably superconducting 

quantum interference devices (SQUIDs). The SQUID is considered as the most 

sensitive detector of magnetic flux, with an energy sensitivity that approaches the 

quantum limit. There are two major categories of SQUIDs: the so-called DC SQUID, 

based on the interference effects in the two junction SQUID loop; RF SQUID which is 

based on the variation of the RF impedance or loss in a one junction SQUID loop as the 

flux bias is changed. Both kind of SQUIDs have been used to make measurements that 

are more sensitive than can be made with non-superconducting devices. In addition to 

measuring magnetic field, they can be configured to measure gradients of the field as 

well as current and voltage. In particular the attention will be focused on the description 

of the DC SQUID which consists of a loop of superconductor, interrupted by two 

Josephson junctions, preferably with at least similar properties. As mentioned above a 
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superconducting loop will contain flux only in multiples of the flux quantum, i.e. nΦ0, 

and a change in the flux applied to the loop, will cause currents to flow to oppose that 

change and cause a phase difference across the junctions giving rise to a voltage across 

the loop, which can be detect.  

High-Tc SQUID are still made with either bicrystal or step-edge grain boundary 

junctions, and typically they were fabricated in the geometry of a square washer, as 

shown in Figure 10. 

 

 

 
 

 

Figure 10: Five configurations of planar dc SQUID fabricated at Berkeley. Dashed lines indicate the 
bicrystal boundary along which the junctions are formed. Outer dimension is typically 500x500 mm2. 
 

The basic mode of operation of the DC SQUID can be explained at least qualitatively 

by treating the device as possessing three distinct, but inseparably connected 

components: an oscillator, a parametric amplifier and a microwave detector. The 

oscillator consists of the two junctions biased at finite voltage so that an oscillating 

supercurrent at the Josephson frequency is driven round the loop. The second, 

parametric amplifier elements results from the fact that the amplitude, phase and 

frequency of the circulating current depend periodically on the flux applied to the ring. 

Finally, the amplitude of the circulating supercurrent is detected by the response of the 

junctions, so that the I-V characteristic of the paralleled junctions is affected in a 

measurable way as the applied flux is changed.  

 
Figure 11: Schematic circuit diagram of DC SQUID. 
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A sketch of DC SQUID is reported in Figure 11 where for each junction the shunt 

resistance R and the capacitance C are shown. The current-voltage characteristic of the 

DC SQUID is reported in Figure 12. 

 
Figure 12: I-V characteristics 

 

It looks at first sight just like that of a single junction with the total critical current a 

periodic function of the magnetic flux applied to the superconducting loop. The Figure 

shows two I-V curves corresponding to integer (nΦ0) and odd half-integer (n+1/2)Φ0 

values of the applied flux in units of Φ0. The point to notice is that if the SQUID is 

biased by a constant current into the finite voltage regime, the time-averaged voltage 

appearing across the junctions is also a periodic function of flux, with a period  Φ0 

(Figure 13). 

 
Figure 13: Voltage vs Φ/Φ0at constant bias current IB. 

 

The DC SQUID operational properties have been explained qualitatively by Clarke [12]. 

Looking the Figure 14(a), the SQUID is sketched with two junctions arranged 

symmetrically, one on each side of the loop, so that the bias current I is divided equally 
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between the two paths, with I/2 in each. As long as the current in a junction is below the 

critical current I0, a supercurrent tunnels through the junction at zero potential 

difference. 

 
 
Figure 14: Simplistic view of the DC SQUID: (a) a magnetic flux Φ generated a circulating current J that 
is periodic in Φ as shown in (b); as a result (c), the maximum supercurrent Im is also periodic in Φ. 
 

If an arbitrary amount of flux Φa  is applied to the ring, an additional supercurrent Icirc is 

set up, creating a self-generated flux LIcirc in the ring. Recalling that the total flux Φ in a 

superconducting ring is quantized as nΦ0 the following relation now applies: 

0Φ=+Φ=Φ nLIcirca            (8) 

Taking the starting value of the applied flux as Φa =0 or Φa =nΦ0 the circulating current 

according to equation (8) is initially zero. On increasing the applied flux, a finite 

circulating current 
( )

L
n

I a
circ

0Φ−Φ
=  develops in order to keep the total flux through 

the loop at its starting, quantized value. This internally generated, circulating current 

adds to the externally applied bias current I/2 in a junction (at left) and subtracts in the 

other (at right). The individual junction currents are related as I1=I2+2Icirc and I2=I1-

2Icirc. Since the circulating current flows in opposite sense relative to the bias current in 

the two junctions, the junctions respond differently to the same amount of externally 

applied flux. Junction at left switches to the voltage state, i.e. a voltage develops across 

it, when it carries a total current equal to the critical current I1=I/2+2Icirc=I0. At this 

point the device current is I=2I0-2Icirc which represents the device critical current at this 

applied flux. The maximum value clearly is 2I0. What is important for use of the device 

is how it further responds to applied flux. 

At the same time as Φa increases from zero to Φ0/2, Icirc increases from zero to Φ0/2L 

according to the equation (8), and the device critical current decreasing to 2I0-Φ0/L, by 

the amount Φ0/L (Figure 14(c)). Then, increasing the applied flux beyond Φ0/2 the 

(a)  (b)  (c)  
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SQUID makes a transition from the flux state n=0 to n=1, with reversal of the sign of 

Icirc. As Φa is increased to Φ0, the critical current again increases to its maximum value 

2I0. The sequence described is shown in Figure 14(b). 

 

 
 

 

 

 

 

 

 
 
Figure 15: I-V curve with the relative variation of δI and δV due to the variation of the applied magnetic 
field. 
 

This behaviour repeats periodically with increasing flux as thereby results for a the DC 

SQUID illustrated in Figures 12 and 13. These Figures also indicate that a practical 

device is biased at a constant current IB(>I0) that is above the critical current and 

therefore put the DC SQUID in the voltage state, which is necessary in order to make a 

flux to voltage transformer.  

Thus, the DC SQUID sensor can be considered as a flux to voltage transducer because it 

converts the variation of magnetic flux through the superconducting ring into a voltage 

value.  

To measure small changes in Φ (<<Φ0) one generally chooses the bias current to 

maximize the amplitude of the voltage modulation and sets the external flux at (2n+1) 

Φ0/4 (n=0,1,2, . . . ), so that the flux-to-voltage transfer coefficient 
I

V
Φ∂
∂ is a maximum, 

which is denoted as VΦ. Thus the SQUID produces a maximum output voltage signal 

Φ= Φδδ VV in response to a small flux signal Φδ . The maximum value VΦ can be 

obtained regarding that the maximum change in critical current which can be produced 

by external flux is 
L2
0Φ

 that require a change of applied flux of  
2

0Φ
. Thus 

L
I 1
≈

Φ∂
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the VΦ is 

L
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where R is the shunt resistance of the junctions and L is the inductance of the 

superconducting loop. Taking into account the value of  VΦ could be deduced the 

maximum output voltage Φ= δδ
L

RV
2

. 

Typically, in high-Tc SQUID operating at 77 K, VΦ has values ranging from 10 to 100 

µV/Φ0 [13]. 

 

5. Noise in DC SQUID 

The dominant source of noise at frequency well below the Josephson frequency 

0Φ
=

Vf J  are represented by the two independent Nyquist noise currents in the shunt 

resistors which produce voltage noise across the SQUID with a spectral density 

2
4)( KTRfSV =  [14] and a white current noise around the SQUID loop with a spectral 

density 
R
KTfS J

8)( = ; in fact, these two noise terms are partially correlated [15]. 

 The intrinsic white flux noise of the SQUID is given by 
R
TLk

V
fS

fS BV
2

2

4)(
)( ==

Φ
Φ ; it 

is often convenient to introduce a noise energy per unit bandwidth 
L

S
f f

2
)( )(Φ=ε . We 

note that noise imposes a second constraint on the parameters, namely that the magnetic 

energy per flux quantum 
L2

2
0Φ must be substantially greater than kBT: 

L2

2
0Φ >>2πKBT. We 

can express this requirement as
th

L L
L

=Γβ <<1, where we define
0

02
Φ

=
LI

Lβ , and 

TK
L

B
th π4

0Φ
≡ . This restriction corresponds to

TK
L

B2

2
0Φ

<<  which requires value of 

inductance L of the order of 5.6 nH at 4.2K and 0.33 nH at 77K. To optimize the 

reduction of the Nyquist noise, due to the shunt resistors, the conditions: 1=Lβ  and 

1≤Cβ , must be satisfied. For typical parameter L=200 pH, R=6Ω and T=4.2K: 

2
1

0
6

2
1

102.1)(
−−

Φ Φ⋅≈ HzfS (as reported in Figure 16) and 3210)( −=fε JHz-1 (≈100h ). 
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Moreover, it is interesting to note that TS ∝Φ and for given L and R high-TC SQUID at 

77K will have higher noise than low temperature SQUID at 4.2 K.  

 
Figure 16: spectral density of flux noise in DC SQUID vs frequency. 

 

In addition to the white noise, there is usually low-frequency 1/f noise generated by both 

1/f noise in the critical current and by the motion of flux vortices trapped in the body of 

the SQUID. 

For many applications, for example biomagnetism and magnetotellurics one requires the 

low level of noise to extend down to frequencies of 1 Hz or lower; if that were the case, 

high-Tc SQUIDs would be adequate for most purposes. Unfortunately, low-frequency 

1/f noise, which is observed in low-Tc SQUIDs but is generally not a serious issue, is a 

severe problem in high-Tc SQUIDs and a great deal of effort has been expended in 

attempting to understand its origins and reduce its magnitude. Early high-Tc dc SQUIDs 

made from polycrystalline YBCO films [16] exhibited large levels of 1/f noise, which 

increased the noise energy at 1 Hz to above 10-26 J Hz-1. Work on low-Tc dc SQUIDs 

[17] showed that there are generally two separate sources of 1/f noise. One arises from 

the motion of vortices in the body of the SQUID: even when the SQUID is cooled in 

zero field, some fraction of the vortices formed at Tc remain pinned at defects. The 

vortex hopping rate increases exponentially as the pinning energy is reduced, so that the 

microstructure of the film and the related pinning energies play an important role in 

determining the low-frequency noise [18]. The microstructural quality of films is 

particularly crucial. When the SQUID is cooled in a nonzero magnetic field, in general 

the additional vortices so formed create high noise levels. Unfortunately, one cannot 
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relate the magnitude of the 1/f noise to any other measurable physical quantity, so that a 

direct noise measurement is the only means of characterizing the quality of a given film. 

It should be noted that even in high quality YBCO thin film with critical current up to 

106A/cm2 there is a significant increase in 1/f noise when the SQUID is cooled in 

presence of a magnetic field. Typically, the increase in flux noise was approximately 

one order of magnitude for a SQUID cooled in a magnetic field strength comparable to 

the earth field (50µT). In this way the applications of SQUIDs to low noise 

measurements in an unshielded environment is significantly limited. Significant 

progress reducing vortex motion and the associated 1/f noise of SQUIDs can be 

obtained by restricting the linewidth of the SQUID to approximately 4-6µm, with this 

design criteria there was no significant increase of 1/f noise up to a magnetic field of 

80µT [19]. Moreover, the 1/f noise can be reduced also making the superconducting 

film with hole or slots of different design [19]. Four designs are shown in Figure 17, 

together with the configuration of a ‘‘solid’’ SQUID in Figure 17(a); all five devices 

have outer dimensions of 186x204 mm2. Figure 17(b) shows a configuration in which 

eight slots, each 8 mm wide, separate nine YBCO strips, each 4 mm wide. The 

innermost slit is 4 mm wide and 100 mm long. Figure 17(c) shows the second design in 

which 248 holes, each 838 mm, divide the square washer into a grid of 4 mm wide lines. 

In Figures17(d) and (e), we have reduced the number of slots to 5 and the number of 

holes to 125, respectively, leaving a superconducting band 40 mm wide around three 

sides of the devices. 

 
Figure 17: Photographs of the photomasks for (a) a solid, thin-film SQUID, and for a SQUID with (b) 
eight slots, (c) 248 holes, (d) five slots, and (e) 125 holes. The outer dimensions of each device are 
186x204 mm. 
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The second source of 1/f noise is fluctuations in the critical current of the junctions 

which, can attain high levels. These fluctuations contribute in two independent ways: an 

‘‘in-phase’’ mode, in which the critical currents of the two junctions fluctuate in phase 

to produce a voltage across the SQUID, and an ‘‘out-of-phase’’ mode in which the two 

fluctuating critical currents produce a current around the SQUID loop. Resistance 

fluctuations also contribute 1/f noise. However, at the low voltages where SQUIDs are 

operated critical current fluctuations dominated and it will not address resistance 

fluctuation further. This kind of 1/f noise can be reduced by means of an ac bias 

modulation scheme, which can be introduced in the next paragraph. 

Typical order of magnitude for commercial HTS DC SQUID are: noise energy ε=10-31 J 

Hz-1, magnetic flux noise 2
1

ΦS  ∼10-6 Φ0 Hz-1/2 and magnetic field noise BN=10 fT Hz-1/2 . 

 

6. Flux-Locked Loop (FLL)   

To linearize the V-Φ curve SQUIDs operate in a flux-locked loop configuration, in 

which the voltage change across the SQUID induced by an applied flux is amplified and 

fed back as an opposing flux. This feedback circuit linearizes the response of the 

SQUID, provides a straightforward means of measuring the intrinsic noise of the 

SQUID, and enables one to track inputs equivalent to many flux quanta. The input stage 

of the electronic circuitry is designed to add negligibly to the intrinsic noise of the 

SQUID. Drung [20] has given a detailed review of a variety of schemes, here only the 

two most commonly used are described.  

 

 
Figure 18: Flux Locked Loop for DC SQUID. 
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The widely used flux modulation scheme is shown in Figure 18 [21]. One applies a 

sinusoidal or square-wave flux modulation to the SQUID with a peak-to-peak amplitude 

of Φ0/2 and a frequency fm of typically 100 kHz. The resulting alternating voltage across 

the SQUID is coupled to a room-temperature preamplifier via either a cooled LC series-

resonant circuit [22] or a cooled transformer [23]. The voltage gain of either coupling 

circuit is usually chosen to transform the dynamic resistance of the SQUID at its 

operating point to the value required to optimize the noise temperature of the 

preamplifier. Since this noise temperature is typically a few Kelvin, the preamplifier 

contributes negligible noise to a device operating at 77 K. After amplification, the signal 

is lock-in detected at the frequency fm . If the quasistatic flux is nΦ0 (n is an integer), the 

V-Φ curve is symmetric about this local minimum and the voltage contains components 

only at the frequency 2 fm . Thus the output of the lock-in detector is zero. On the other 

hand, if the flux is shifted away slightly from the local minimum, the voltage across the 

SQUID contains a component at frequency fm and there will be an output from the lock-

in detector. After integration, this signal is fed back as a current through a feedback 

resistor Rf to a coil inductively coupled to the SQUID; usually the same coil is used for 

both flux modulation and feedback. The flux fed back opposes the applied flux to keep 

the flux in the SQUID constant; the voltage developed across Rf is proportional to the 

applied flux. One can measure the intrinsic flux noise of the SQUID by connecting the 

output voltage to a spectrum analyzer in the absence of any input signal. Ideally, the 

bandwidth for an optimized flux-locked loop extends to one half the modulation 

frequency.  

For unshielded applications in which the SQUID is exposed to the magnetic noise of the 

environment, a more important Figure of merit is often the slew rate, that is, the 

maximum rate of change of flux that the system is able to track without losing lock. For 

an ideal single-pole integrator, the slew rate is 2πf1Φ0/4, where f1 is the frequency at 

which the open-loop gain of the feedback loop falls to unity [24]. A considerable 

improvement in the slew rate at low frequencies can be achieved by means of a two-

pole integrator [25,26]. 

It has already mentioned that fluctuations in the critical current and resistance of the 

junctions are a major source of 1/f noise in dc SQUIDs. Fortunately, their contributions 

can be greatly reduced by a number of schemes [17, 27, 28], which have been 

successfully applied to high-Tc SQUIDs [29-31]. At the operating point of SQUIDs, the 

critical-current noise dominates the resistance noise and contributes 1/f noise in two 
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ways. Fluctuations at frequencies <<fm that are in phase at the two junctions give rise to 

a voltage noise across the SQUID that is eliminated by flux modulation at frequency fm. 

Fluctuations that are out-of-phase at the two junctions are equivalent to a flux noise that 

is not reduced by this scheme. Instead, one makes use of the fact that the apparent shift 

of the V-Φ characteristic along the flux axis changes polarity if one reverses the polarity 

of the bias current whereas the flux due to an input signal (or ‘‘flux noise’’) does not. 

As an example of one of the bias-reversal schemes, we briefly describe that developed 

by [17] Koch et al. (1983). The principle is illustrated in Figure 19 and its 

implementation in Figure 20.  

 

 
Figure 19: principle of bias-reversal scheme to reduce 1/f noise to out-of-phase critical-current 
fluctuation. 
 

The SQUID is flux-modulated with a 100-kHz square wave of peak-to-peak amplitude 

Φm=Φ0/2. Synchronously with the modulation, the bias current I through the SQUID is 

reversed, for example, at a frequency fr=3.125 kHz. The resistance bridge shown in 

Figure 20 minimizes the 3.125 kHz switching transients across the transformer. 

Simultaneously with the bias reversal, a flux Φ0/2 is applied to the SQUID. In Figures 

19(a) and (b) we see that the bias reversal changes the sign of the voltage across the 

SQUID while the flux shift ensures that the sign of the flux-to-voltage transfer function 

remains the same. The transformer coupling the SQUID to the preamplifier is often 

Vl

Vl 
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tuned at the modulation frequency with a Q of about 3, so that any 100-kHz signals at 

the secondary are approximately sinusoidal. 

 

 
Figure 20: schematic for flux-locked loop with bias current reversal. Cryogenic components are enclosed 
in the dashed box. 
 

One assumes that the SQUID is operated in the usual flux-locked loop, with the output 

from the lock-in detector integrated and fed back to the SQUID (Figure 20). Thus the 

100-kHz signal across the SQUID consists of just the error signal. Suppose now that we 

apply a small external flux δΦ to the SQUID at a frequency well below fr. The V-Φ 

curves are shifted as in Figures. 19(a), and the 100-kHz flux modulation switches the 

SQUID between the points 1 and 2 for positive bias and 3 and 4 for negative bias. As a 

function of time, the voltage V across the SQUID is as shown in Figure 19, and the 

signal across the tuned transformer Vt is at the fundamental frequency. When this signal 

is mixed with the reference voltage Vr, the output from the lock-in detector Vl will 

consist of a series of negative-going peaks for both polarities of the bias current. The 

average of this output produces a negative signal proportional to δΦ which is then used 

to cancel the flux applied to the SQUID. Thus, in the presence of bias reversal and flux 

shift, the SQUID responds to an applied flux in the usual way. We consider now the 

effects of 1/f noise on the  critical currents. The in-phase mode is eliminated by the 100-

kHz flux modulation. Suppose, instead, we have an out-of-phase critical-current 

fluctuation at a frequency below fr . Because the flux generated by this fluctuation 

changes sign when the bias current is reversed, the V-Φ curves are displaced in opposite 

directions. As a result, the voltage across the SQUID undergoes a phase change of π 

when the bias current is reversed, as shown in Figure19. Consequently, the voltage at 

the output of the lock-in due to the out-of-phase critical-current fluctuation changes sign 

each time the bias current is reversed, and the time average of the signal over periods 
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much longer than 1/fr is zero. Thus the 1/f noise due to both in-phase and out-of-phase 

critical-current fluctuations is eliminated by this scheme.  

 
Figure 21: spectral density of flux noise of representative high-Tc DC SQUID with flux modulation and 
bias current reversal. 
 

Figure 21 shows the spectral density of the flux noise of a representative SQUID 

operated with flux modulation and with and without bias reversal. Without bias 

reversal, 1/f noise is evident for frequencies below about 2 kHz. The application of bias 

reversal reduces the level of 1/f noise dramatically, by two orders of magnitude at 1 Hz, 

demonstrating that the 1/f noise indeed arose from critical-current fluctuations. 

The second scheme is so-called “direct readout” which eliminates the need for a 

coupling network between the SQUID and the amplifier, and enable one to use 

particularly simple electronics for the flux-locked loop [32]. In addition, it allows one to 

achieve bandwidths around 10 MHz relatively easily [21]. The output of the current 

biased SQUID is connected directly to one terminal of a low-noise, bipolar amplifier; an 

offset bias voltage is applied to the other terminal. After amplification, the signal is 

integrated and fed back via a resistor to a coil coupled to the SQUID. Since the 

preamplifier noise, typically 1 nV Hz-1/2, usually dominates the SQUID noise, typically 

0.1 nV Hz-1/2 for low-Tc SQUIDs, it must be reduced to a tolerable level by increasing 

the transfer function. In the additional positive feedback (APF) scheme [33] this 

increase is achieved by shunting the SQUID with an inductor La , with a mutual 

inductance Ma to the SQUID, in series with a resistor Ra .  

To remove 1/f noise due to critical-current fluctuations, as for the flux-modulation 

scheme, one has to reverse the bias current [34]; at the same time the bias voltage is 

reversed and a flux shift is applied to maintain the same polarity of the flux-to-voltage 

transfer function. Using this bias-reversal scheme, [35] Ludwig et al. (1997) recently 

reported a modified, directly coupled flux-locked loop for high-Tc SQUIDs. Using a 

B≈0 
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preamplifier with a voltage noise of 0.44 nV Hz-1/2, their high-Tc SQUIDs could be 

operated with a total rms white noise typically 20% higher than the intrinsic rms noise 

of the SQUID. For an optimum bias-reversal frequency of around 100 kHz, it was 

demonstrated that 1/f noise due to critical-current fluctuations can effectively be 

suppressed without increasing the white-noise level [24,35,36]. In addition, a maximum 

bandwidth of about 1 MHz and slew rates close to 106 Φ0/s were achieved. 

 

7. DC SQUID  magnetometer  

However, although SQUIDs are exquisitely sensitive to magnetic flux, their small area 

generally makes them relatively unsuitable to measure high magnetic field. To avoid 

this problem usually an additional superconducting structure is coupled to the SQUID to 

enhance its sensitivity to magnetic field. In particular the magnetic flux is coupled to the 

low inductance SQUID loop from a larger external pick up loop. The configuration of 

such a transformer is shown schematically in Figure 22. 

 
 

Figure 22: transformer used to enhance the SQUID sensitivity. 

 

The magnetic-field noise is  

eff
B A

fS
fS

)(
)(

2
1

2
1

Φ=  

where Aeff  is the effective area of the magnetometer. Clearly, one wants to make Aeff as 

large as possible without increasing SΦ(f ) so as to produce high sensitivity to magnetic 

fields. 

The directly coupled magnetometer [37,38] shown in Figures 23 (left) and (right) 

consists of a large pickup loop of inductance Lp and area Ap directly connected to the 

SQUID body of inductance L<<Lp. A magnetic field B applied the pickup loop induces 

a screening current I=BAp/Lp , which in turn links a flux (L+Lj)I to the SQUID. Here Lj 
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is the parasitic inductance of the striplines incorporating the junctions, to which the 

current does not couple. The effective area is  

( )
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eff A
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A ±
+

=                               (9) 

where As<<Aeff is the effective area of the bare SQUID. The sign of As depends on the 

relative senses of the SQUID and the pickup loop. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Directly coupled magnetometer: (left) Photograph of 20 pH DC SQUID connected to the pick 
up loop shown in (right). Dashed line indicates grain boundaries. 
 

 Koelle, Miklich, Ludwig al. [38] investigated devices grown on STO bicrystals. In their 

best device, a 20 pH SQUID with I0=45 µA and R=3.4Ω coupled to a 47 mm2 pickup 

loop, they achieved a flux noise of 93 fT Hz-1/2 at frequencies down to 1 Hz using bias 

reversal. Subsequently, improvements in performance were achieved by reducing the 

large mismatch between Lp and L [39,40]. One can increase the ratio Ap /Lp by using a 

pickup loop with a large linewidth, (d1-d2)/2, where d1 and d2 are the outer and inner 

dimensions. In the limit (d1-d2)>2d2 in which Ap=d1d2 and Lp=1.25 µ0d2 , from Eq. (9) 

we find Aeff = 4d1(L+Lj)/5µ0; we have neglected As . Given the dependence of SF(f ) on 

L, I0 , and R, one can then optimize SΦ(f ). 

The performance of directly coupled magnetometers with near optimum parameters can 

be appreciably better than that of the earlier devices. For d1= 9.3 mm, d2=3 mm, and 

L=50 pH, Lee et al. [40] and Cantor [41] achieved best results of about 40 fT Hz-1/2 at 

kHz and 60 fT Hz-1/2 at 1 Hz (with bias reversal). Using a 19x19 mm2 pickup loop on a 
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20x20 mm2 bicrystal, the same group achieved 14 fT Hz-1/2 at 1 kHz and 26 fT Hz-1/2at 1 

Hz [39]. In similar work, Glyantsev et al. [42] reported a noise level as low as 20 fT Hz-

1/2 at 1 kHz for a 150 pH SQUID coupled to a pickup loop with an outer diameter of 

mm. However, they did not use bias reversal, and the noise was well above 100 fT Hz-

1/2at 1 Hz. Recently, using an STO bicrystal with a 30° misorientation angle and a 

pickup loop with d1=9 mm and d2=3 mm, Beyer et al. [43] obtained 23 fT Hz-1/2at 1 

kHz and 67 fT Hz-1/2at 1 Hz. These values were achieved with bias reversal in the PTB 

magnetically shielded room; the noise at low frequencies was dominated by 

environmental noise. 

 

 

 

 

 
Figure 24-P: (left) typical configuration of inductive coupling magnetometer (ICM); (right) (ICM) in the 
“Ketchen scheme”. 
 

It could be noted that the effective area of the directly coupled magnetometer can be 

further increased by coupling it in a flip-chip arrangement to a single-layer flux 

transformer on a separate substrate [38]. The small loop of the transformer (which is 

inductively coupled to the magnetometer pickup loop Figure 24) has inductance Lti and 

area Ati and is in series with the large loop of inductance Ltp and area Atp . The effective 

area is 
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where αt is the coupling coefficient between Lti and Lp. For the devices shown in Figure 

23, the transformer yielded a gain of 3.4 and the magnetic-field noise improved to 31 fT 

Hz-1/2 at 1 kHz and 39 fT Hz-1/2 at 1 Hz. 
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Figure 25: schematic layout of multilayer flux transformer (not to scale). Multiturn input coil (only two 
turns are shown) is either coupled to the SQUID in a flip-chip arrangement or deposited directly on top of 
it.  
 

The effective area of a SQUID may be efficiently enhanced by coupling it to a 

superconducting flux transformer with a multiturn input coil (Figure 25). The 

transformer is a closed superconducting  circuit consisting of a large-area pickup loop 

and a much smaller, multiturn input coil to couple flux into the SQUID. A magnetic 

field applied to the pickup loop induces a supercurrent that conserves the total magnetic 

flux and induces flux into the SQUID. The total effective area of the  magnetometer is 

given by  
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where As is the effective area of the bare SQUID, Ap and Lp are the area and inductance 

of the pickup loop, Mi= α(LLi)1/2 is the mutual inductance between the SQUID 

inductance L and the input-coil inductance Li , and α is the coupling coefficient. The 

sign of As depends on the sense of the winding of the coil relative to the pickup loop. 

Assuming that α does not depend on Li and L and making certain approximations [44], 

one finds the effective area is maximum when Li=Lp : 
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neglecting As . In contrast to the directly coupled magnetometer, the flux transfer into 

the SQUID can be optimized for a given value of Lp by varying the number of turns n 

on the input coil until Li=Lp .  

The advantage of the flip-chip configuration over the integrated magnetometer is that 

problems related to the junction process can be separated from those related to the 

interconnect technology. One forms a flip-chip magnetometer by clamping the SQUID 

and the flux transformer chips together with either photoresist or a thin mylar sheet 

between them. The input coil and pickup loop of the transformer are usually patterned 

in one YBCO layer, and the crossover between the innermost turn of the coil and the 

pickup loop in the other. The first YBCO flux transformer with a multiturn input coil 

operating at 77 K was made by Wellstood et al. [45] using shadow masks. The first 

multilayer flip-chip magnetometers were reported almost simultaneously by groups at 

Berkeley [46,47] and IBM [48]. Since this early work, many groups have described the 

fabrication of multiturn flux transformers [49,50] and the operation of flip-chip 

magnetometers at 77 K [31,30,51-59]. 

In an attempt to improve the inductive coupling between the SQUID and the input coil, 

several groups have integrated them on the same chip, thus reducing the spacing to the 

thickness of the insulating layer. Early monolithic SQUID magnetometers involving 

three YBCO layers and operating at 77 K [60,61] exhibited large levels of low-

frequency flux noise. As a result, attention turned to a simplified design requiring only 

two superconducting layers [62-67]. In all cases, the insulator was SrTiO3. The SQUID 

washer is used as either a crossunder or crossover for the flux transformer, obviating the 

need for an extra superconducting layer. The input coil and SQUID of such a 

magnetometer are shown in Figure 26.  

The lowest magnetic-field noise was reported by Drung, Ludwig et al. [36] using a 

magnetometer with 36° SrTiO3 bicrystal junctions fabricated at NKT [67], namely 9.7 

fT Hz-1/2 at 1 kHz and 53 fT Hz-1/2  at 1 Hz. Whereas the effective area Aeff=1.72mm2 for 

the 8.3x8.6mm2 pickup loop is comparable to that measured by others for their 

integrated devices, the SQUID parameters R=9 V and I0 =5.7 mA for an inductance of 

about 130 pH are close to optimum. 
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Figure 26: Photograph of 12-turn input coil and SQUID of an integrated magnetometer with 500-µm 
SQUID washer located in lower YBCO layer. Bicrystal junctions are outside the washer. 
 

Despite this impressive performance, integrated magnetometers have some 

disadvantages. One problem is that the V-Φ curves are often distorted by microwave 

resonances [36,63,66]. Such resonances have not been reported for flip-chip 

magnetometers. 

These resonances in the input-coil-washer structure are well known from low-Tc 

devices to degrade the SQUID performance [68]. Enpuku et al. [69] and Minotani, 

Enpuku et al. [70] reported the calculation of distorted V-Φ characteristics in good 

agreement with the data measured on high-Tc devices under the assumption that there is 

a parasitic capacitance between the input coil and the SQUID washer. Hilgenkamp et al. 

[71] eliminated the resonances by means of a resistor between the SQUID and the input 

coil that shunted this parasitic capacitance. 

Another drawback is that the yield of high-performance integrated devices is well below 

that of flip-chip, multilayer devices. Finally, there is no compelling evidence that the 

coupling coefficient of integrated magnetometers is significantly higher than that for 

flip-chip devices [66]. 

An alternative multilayer approach to achieving large effective areas is the multiloop 

magnetometer or fractional-turn SQUID, originally proposed and demonstrated by 

Zimmerman [72] with a machined niobium device. The essential idea is to connect N 

loops in parallel, thus reducing the total inductance to a level acceptable for a SQUID, 

while keeping the effective area large. Drung et al. [33,73] developed sensitive 
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multiloop SQUID magnetometers, based on their niobium thin-film technology; with 

eight parallel loops and a diameter of 7.2 mm these devices have a typical noise of 1.5 

fT Hz-1/2 down to a few Hz at 4.2 K. These devices have been used successfully for 

multichannel biomagnetic studies 74,75]. 

In the thin-film multiloop magnetometer, shown schematically in Figure 27 (a), N loops 

(for clarity, only four are drawn) are connected in parallel with the connection made at 

the center via coplanar lines. 

 

 
Figure 27: Multiloop magnetometer: (a) Schematic layout of  ¼  turn SQUID magnetometer. Cross-
shaded regions indicate bias between upper and lower superconducting films. (b) Photograph of 1/16 turn 
YBCO SQUID with outer diameter of 7mm. Junctions are located close to the center (Ludwig, Dantsker, 
Kleiner et al., 1995). 
 

 The two junctions connect the upper and lower superconducting films of the central 

trilayer. Compared with a flux-transformer coupled magnetometer, the multiloop 

magnetometer has the advantage that the current induced in each of the N loops when it 

is rotated in the earth’s magnetic field is much smaller than that induced in a single loop 

of the same area. Furthermore, the device contains no closed superconducting loops, so 

that the maximum induced supercurrent is limited to the critical current of the junctions. 

A comprehensive theory for thin-film multiloop SQUIDs and their performance at 77 K 

has been given by [34]. The effective area Aeff and inductance Leff are given by 
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 Here, Ap and Lp are the area and inductance of the large, outer loop, As and Ls are the 

average area and inductance of one spoke of the cartwheel, and Lj is the 
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parasitic inductance of the connections from the pickup loops to the junctions. 

Calculation of the magnetic-field noise and transfer function as a function of N, based 

on the simulations of [76] for VΦ(L) and 2/1
ΦS  , shows that the optimum value of N for a 

minimum magnetic-field noise increases strongly with the overall size. For a diameter 

of 7 mm, the optimum number of loops is 15 to 20, considerably more than typically 

used in the low-Tc case.  

In the first practical realization of this magnetometer, Ludwig, Dantsker, Kleiner et al. 

[66] used their YBCO-SrTiO3-YBCO multilayer technology and bicrystal junctions to 

make the magnetometer shown in Figure 27(b). Most of the area of the pickup loops is 

patterned in the upper YBCO film, and each loop makes contact to the lower YBCO 

layer in the center (cross-shaded region). The two 24° bicrystal junctions are located in 

the lower YBCO film and also make contact to the upper and lower YBCO films in the 

central trilayer region. 

A voltage modulation as high as 20 mV was observed despite the relatively high 

inductance, and resulted from the nearly ideal junction parameters, I0=13 mA and 

R=10V. The effective area of 1.89 mm2  was close to the predicted value. Using a flux-

locked loop with 100 kHz flux modulation and bias reversal, the authors measured a 

magnetic-field noise of 18 fT Hz-1/2 at 1 kHz and 37 fT Hz-1/2 at 1 Hz . Similar multiloop 

magnetometers based on the same design were subsequently made, using step-edge 

junctions [24,77] or PBCO ramp junctions [78,79]. 

Two other high-Tc magnetometers involving multiloops differ from the design 

discussed above. Fife et al. [55] coupled eight multiloop pickup coils with an outer 

diameter of 8.5 mm directly to a low-inductance washer SQUID with bicrystal 

junctions. The noise at 60K with bias reversal was 100 fT Hz-1/2 above 3 Hz. 

Scharnweber and Schilling [80] recently reported an integrated magnetometer in which 

a flux transformer with a multiturn input coil and a multiloop pickup coil is inductively 

coupled to a low-inductance washer SQUID. For their best magnetometer, with four 

parallel loops 8.5 mm in diameter, at 77 K they measured a magnetic field noise of 44 

fT Hz-1/2 at 1 kHz with a static bias current and 100 fT Hz-1/2 at 1 Hz with bias reversal. 
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8. Gradiometers   

In many of these applications, good examples are magnetocardiology and non-

destructive evaluation, one needs to detect weak signals against a background of 

magnetic noise that is many orders of magnitude higher. In urban environments, the 

dominant source of noise is the 50 or 60 Hz signals, and a large number of harmonics, 

from power lines: peak-to-peak amplitudes can range from 20 nT to 1 mT. Additionally, 

traffic (trains, subways, cars) can cause even stronger disturbances. For this reason, 

most sensitive measurements with low-Tc magnetometers—particularly of biomagnetic 

signals— are currently made in a magnetically shielded room. 

However, except for enclosures, such as that at the PTB, Berlin, with very high levels of 

attenuation, most shielded rooms do not reduce the 50 or 60 Hz fields sufficiently, and 

one requires a gradiometer to discriminate against distant noise sources with small 

gradients in favour of nearby signal sources. The traditional low-Tc gradiometer is 

wound from niobium wire: two pickup loops wound in opposition and mounted on a 

common axis with a baseline (separation) of typically 0.1 m are connected in series with 

an input coil inductively coupled to a SQUID [72]. Such a device measures the first-

derivative axial gradient
z

Bz

∂
∂ . The addition of a third coil midway between the two 

loops results in a second-derivative gradiometer measuring 2

2

z
Bz

∂
∂ . In the case of axial 

gradiometers, the separation of one pickup loop and the signal source is generally made 

rather less than the baseline, so that the instrument effectively detects the magnetic field 

from the source. Some typical designs for wire-wound gradiometers are shown in 

Figure 28. 

Early wire-wound gradiometers were balanced (the “balance” is defined as the ratio of 

the output of the SQUID when a uniform magnetic field is applied to the gradiometer to 

the output when the same field is applied to one pickup loop) by adjusting the positions 

of small, superconducting pellets, sometimes to an accuracy of 1 part in 106. However, 

a myriad of interacting, mechanically adjusted components becomes impractical for 

more than a few channels. Current practice is to use magnetometers and first-derivative 

gradiometers for the software generation of second or third derivatives [81]. 
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Figure 28: a variety of  pick up coil designs and the physical quantity they measure: (a9 magnetometer; 
(b) first order axial gradiometer; (c) second order axial gradiometer; (d) first order planar gradiometer; (e) 
first order radial gradiometer. 
 

The lack of suitable wire eliminates the wire-wound, high-Tc gradiometer as an option, 

and two alternative approaches have been adopted. The first is an electronic 

gradiometer made by subtracting the signals from separate magnetometers: the 

gradiometer can be axial or planar, and the baseline can be chosen at will. The second is 

a planar gradiometer with thin-film pickup loops. 

A high-Tc , axial gradiometer was demonstrated by Tavrin et al. [82], who mounted two 

rf SQUIDs one above the other, each with a bulk flux focuser [83]. One sensor was 

mounted rigidly while the plane inclination of the second, placed 60 mm above, could 

be adjusted from outside the cryostat to achieve a balance of about 1 part in 103. This 

system was used to measure magnetocardiograms MCG) in an unshielded environment, 

against a 50 Hz background of 1 to 20 nT, although the quality of the cardiograms was 

limited by 1/f noise in the magnetometers, about 1 pT/Hz1/2. Subsequently, Tavrin et al. 

[84] added a third, vertically stacked sensor to form a second-derivative gradiometer. 

The lowest sensor was rigidly mounted, while the inclination of the other two, 60 and 

120 mm above it, could be adjusted. The three channels, A, B, and C could be added 

electronically to generate two first-derivatives, A-B and B-C, and the second derivative, 

A-2B+C. The system could be balanced to achieve a common mode rejection ratio of 1 

part in 3000 and a gradient rejection of 1 part in 100. The magnetic-field noise referred 

to SQUID A or C was below 300 fT Hz-1/2. A similar electronically formed axial 

gradiometer was recently reported by Borgmann et al. [85] who used a set of adjustable 

superconducting plates, similar to those in early low-Tc gradiometers, to achieve the 

final balance. The authors achieved a balance better than 104 for uniform background 
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fields and better than 200 for gradient fields. Electronic gradiometers have also been 

constructed with the magnetometers in the same plane [86,87]. 

The balance of an electronic gradiometer is limited by the linearity of the flux-locked 

magnetometers and by the common mode rejection ratio of the subtraction system. In 

the presence of high background noise, the dynamic range and slew rate of the 

magnetometers may be challenged. None of these difficulties arises with 

superconducting gradiometers, which thus have an inherent advantage over electronic 

cancellation. However, the three-SQUID gradiometer (TSG) of Koch et al. [88], shown 

in Figure 29, also circumvents these problems by using electronic cancellation and 

subtraction. The center, reference magnetometer operates in a flux-locked loop and 

applies its output also to a coil coupled to each of the outer magnetometers. Thus the 

environmental noise at each of the two sensing magnetometers is greatly attenuated, 

reducing their linearity and slew-rate requirements. The signals from the outer two 

sensors are then subtracted to form a first-derivative gradiometer. 

 

 
Figure 29: Configuration of three-SQUID gradiometer. 

 

Koch and co-workers demonstrated several versions of the TSG, with baselines of 0.1 to 

0.25 m and using both low-Tc and high-Tc SQUIDs. The balance can be adjusted to 

about 1 part in 4000 by adjusting the feedback currents with room-temperature resistors. 

A key advantage of this approach is that any noise generated by the central sensor is 

applied equally to the two outer magnetometers and eliminated in the subtraction. In 

their original publication, Koch et al. reported a white gradient noise of 6 pTm-2/ Hz-1/2 
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for SQUIDs with 3x3 mm2 flux-focusing washers. For a baseline of 0.1 m, this result 

corresponds to a magnetic-field noise of 600 fT Hz-1/2 referred to one sensor. 

Electronic subtraction enables one to choose an arbitrary baseline and to adjust the 

balance externally. Experience with low-Tc devices, however, shows that it is 

notoriously difficult to operate such systems in the harsh environment of a laboratory or 

a hospital and to achieve an adequate signal-to-noise ratio for clinical applications. 

Low-Tc systems intended for unshielded operation invariably have a gradiometric flux 

transformer to bear the brunt of the large level of background noise; even then, an 

adequate signal-to-noise ratio in unfavourable situations may not be possible [81]. Thus 

there are strong incentives to develop high-Tc equivalents, albeit in planar geometries. 

An early gradiometer fabricated from a YBCO-STO-YBCO multilayer [89] employed a 

multiturn input coil coupled to two pickup loops of opposite senses in the same plane. 

The baseline was about 5 mm. The multiturn coil was coupled to a square-washer 

SQUID in a flip-chip arrangement. At the time, multilayer technology was still in its 

infancy and the device exhibited substantial levels of 1/f noise. The best reported 

gradient noise at 10 Hz was 400 pTm-1 Hz-1/2. A similar flip-chip gradiometer with 

improved 1/f noise was reported later by Keene, Chew et al. [90]. However, both 

gradiometers exhibited poor balance because of the unbalanced SQUID. The balance 

was improved by two orders of magnitude to about 1 part in 1000 by means of 

gradiometrically configured SQUIDs [53,90]. 

An alternative gradiometer configuration [23] consists of two pickup loops in parallel 

with a SQUID measuring the current induced along the common line (Figure 30(a).  

 
Figure 30: Gradiometers: (a) Principle of single-layer, planar gradiometer with parallel inductances 1 and 
2. A gradient ∂BZ/∂x induces a current in the central strip 3 that links flux to the SQUID 4 (Daalmans, 
1995). (b) First-derivative planar gradiometer on a 10x10mm2 chip that is coupled to (c) the gradiometric 
structure on a two-inch substrate (Faley et al., 1997). 
 

This configuration has the disadvantage that large supercurrents are induced around the 

perimeter when the device is rotated in an ambient field. Knappe et al. , Zakosarenko et 

al., Daalmans et al., Schultze, Stolz et al., Schmidl, Wunderlich, Dorrer, Specht et al. 
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[91-95] have all made single-layer, first-derivative gradiometers of this kind, using dc 

SQUIDs with either step-edge or bicrystal junctions. The baselines are limited 

by the size of the substrate to about 5 mm, and the best gradient sensitivities are about 

50 pTm-1 Hz-1/2. All the dc SQUID-based gradiometers described above have the 

disadvantage that the SQUID itself has a nonzero response to magnetic field, producing 

an intrinsic imbalance. This problem is circumvented in the rf 

SQUID-based gradiometer by Zhang, Soltner, Krause et al. [96], resembling the 

configuration of Figure 30 (a), with a single, step-edge junction intersecting the central 

strip. This structure is a re-creation of the Nb ‘‘two hole’’ rf SQUID [97]. The device 

had a baseline of about 5 mm and was balanced to 1 part in 1000. The gradient field 

noise was about 100 pTm-1 Hz-1/2 above 10 Hz. One of these gradiometers was used to 

perform eddy-current measurements of cracks in aluminium in an unshielded 

environment. 

Several attempts have been made to extend the baseline using single-layer gradiometers 

in a flip-chip arrangement [93,98]. The concept is illustrated in Figs. 30 (b) and (c) [98], 

which shows a dc SQUID with quasi-planar PBCO junctions on a 10x10mm2 chip that 

is inductively coupled to a gradiometric flux transformer on a 50 mm substrate. The 

central strip in the transformer is intended to reduce the inductance and pickup area of 

the SQUID by screening. The baseline was 20 mm, the balance about 1 part in 1800 and 

the noise 5 pTm-1 Hz-1/2 at 1 kHz. A comparable sensitivity was reported by Daalmans 

[93]. It should be noted that all the single-layer, thin-film gradiometers lose substantial 

sensitivity because the inductances of the pickup loops are mismatched to the input coil 

coupling them to the SQUID. This drawback, together with the relatively short baseline 

of even the largest devices (20 mm) implies that none of them is practicable for 

applications such as magnetocardiology. 

However, they may be well suited to non-destructive evaluation (NDE). To achieve 

high enough sensitivity and a long enough baseline for magnetocardiology with this 

approach would require a multiturn input coil fabricated on a substrate at least 50 mm 

and preferably 100 mm in length. This somewhat daunting prospect has yet to be 

tackled. 

A new approach to single-layer, thin-film gradiometers was recently demonstrated by 

[99] Dantsker, Froehlich et al. (1997) who fabricated the asymmetric, planar 

gradiometer shown schematically in Figure 31(a). 
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Figure 31: Configuration of asymmetric, planar gradiometer coupled to a directly coupled magnetometer: 
(a) schematic, (b) experimental (shaded square represents magnetometer) (Dantsker, Froehlich et al., 
1997). 
 

 The gradiometer consists of a directly coupled SQUID magnetometer with a pickup 

loop of inductance Lm and area Am, and a superconducting flux transformer with an 

input loop of inductance Li and area Ai connected to a pickup loop of inductance Lp and 

area Ap. The mutual inductance between the magnetometer and input loop is 

Mi=α(LmLi)1/2. With a suitable choice of these parameters, one attains the balance 

condition 
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for which the directly coupled magnetometer produces zero response to a uniform 

magnetic field Bz . The physical configuration of the gradiometer is shown in Figure 

31(b). The single-layer directly coupled magnetometer was patterned in a 150-nm-thick 

YBCO film laser-deposited on a 10x10mm2 SrTiO3 bicrystal. The outer and inner 

dimensions of the magnetometer loop are 10 and 2 mm, respectively, yielding an 

estimated inductance Lm=4 nH and area Am=20 mm2. The flux transformer was 

fabricated from a 260-nm-thick YBCO film co-evaporated on a 100 mm r-plane 

sapphire wafer. For these dimensions, balance is predicted to occur for 04.043.0 ±=α . 

The baseline, the separation between the midpoints of the two loops, is 48 mm. 

The gradiometer was balanced by sliding the flux transformer over the magnetometer, 

immersed in liquid nitrogen, thereby varying the coupling coefficient α. A balance of 

about 1 part in 3000 was achieved with respect to magnetic fields perpendicular to the 

plane of the gradiometer, while the intrinsic balance with respect to in-plane fields was 
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about 1 part in 1400. Operated in an unshielded environment, the gradiometer reduced 

the 60 Hz peak by a factor of 1600 compared with the bare magnetometer. 

This approach to gradiometers has several advantages. The fact that the intrinsic 

magnetic-field sensitivity of the magnetometer is reduced by only a few percent by the 

presence of the transformer is particularly appealing for high-Tc devices, for which 

resolution is at a premium. It should not be necessary to use particularly 

high quality films, since vortex motion in a flux transformer with a relatively large area 

and inductance does not contribute significantly to the overall 1/f magnetic- field noise 

[38]. The general principle can be extended to other derivatives of the magnetic field: 

for example, the addition of a second, identical pickup loop on the opposite side of the 

input loop would produce a gradiometer sensitive to 2

2

z
Bz

∂
∂ . The high degree of balance 

and long baseline make this gradiometer eminently suitable for multichannel arrays for 

biomagnetic measurements. However, would be impracticable to balance these 

gradiometers mechanically, a more realistic approach might be to mount the transformer 

permanently on the magnetometer and to achieve the final balance by laser trimming. 

For NDE, one generally does not require particularly high sensitivity, and a relatively 

compact, single-layer gradiometer with a baseline of 5–10 mm is likely to be adequate. 

For biomagnetism, the situation is more complex. Good results have been achieved with 

electronic subtraction of magnetometers, but limitations of slew rate and linearity 

present difficulties for unshielded operation. Still, this approach is the only one that can 

measure an axial gradient.  For the immediate future, at least, gradiometric flux 

transformers are limited to planar configurations. Ideally, one would like to fabricate a 

long-baseline gradiometer with a multiturn, multilayer input coil, with an inductance to 

match that of the pick-up loops, inductively coupled to the SQUID. In practice, the cost 

of manufacturing such structures on large substrates, say, four inch, is likely to be 

prohibitive. The best alternative would seem to be the asymmetric, planar gradiometer, 

provided it can be balanced adequately without recourse to mechanical adjustment. 
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Chapter 2 
 
Advanced Non-Destructive Testing 
 
 
 

Introduction 
 
This chapter is focused on the introduction of the non destructive evaluation prototype 

used in this research activity. To better understand the capability and the advantages of 

the NDE prototype system based on the HTS dc-SQUID magnetometer is necessary to 

discuss the non destructive NDE evaluation based on the conventional technique and 

their applications. At first an overview of the mainly and widely used non destructive 

techniques is reported. A briefly description of the working basic principles and the 

most important application for each methods are mentioned.  

The second section is entirely dedicated to the eddy current technique based on the 

induction coil. The basic topics, the data representation and the most commonly used 

probe are described. Moreover, in this paragraph is described the conventional eddy 

current instrument, used in this work to validate the results of the NDE SQUID based 

prototype. In section 3, the attention has been focused on the application of SQUID 

concerned with the analysis of damage in complex and non-homogeneity structure such 

as composite materials, and to investigate the corrosion damage of metallic plate. These 

two applications of the SQUID sensor has been widely discussed because represent the 

two main topics of this activity research. Moreover, in the fourth section the eddy 

current system based on the HTS dc-SQUID magnetometer is introduced. It includes the 

description of the cryogenic system, the characteristics of the SQUID magnetometer, 

the eddy current source, the electronic used for the data acquisition and the x-y 

positioning system. Finally, the configuration of the SQUID respect to the excitation 

coil to realize a zero field detector is shown. The last section includes also the typical 

signal response due to a defect in metallic structure using two representations: the 

impedance plane and the spatial domain.  
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1. NDE 

Non Destructive Evaluation (NDE) is a technical method to examine materials or 

components, in ways that do not impair their future usefulness and serviceability, in 

order to detect, locate and measure discontinuities, defects and other imperfections 

(porosity, wall thinning from corrosion and many sorts of disbands) which arise during 

manufacturing process and in service life, and to evaluate integrity, properties, 

composition and geometrical characteristics [1].  NDE is used in process control, in 

post-production quality control, and in the testing of system that are already in use. It is 

concerned in a practical way with the performance of the test piece: how long may the 

piece be used and when does it need to be checked again? As an interdisciplinary field, 

NDE benefited from capabilities that develop in many other fields of material science 

and engineering to improve the NDE technique, leading to smarter instruments, which 

are computer controlled, smaller, lighter and more capable. The requirements for NDE 

are continuing to be driven by the need for lower cost methods and instruments with 

greater reliability, sensitivity, user friendliness and high operation speed as well as 

applicability to complex materials, such as composites, and structures with complex 

geometries such as aircraft, bridges, pipelines, and pressure vessel. Non-destructive 

testing in the industry has become an increasingly vital factor in the effective conduct of 

research, development, design and manufacturing programs. Only with appropriate use 

of non-destructive testing techniques can the benefits of advanced materials science be 

fully realized. Tables 1 and 2 summarize information about non-destructive testing 

methods arranged to show their purposes and similarities. The National Materials 

Advisory Board (NMAB) Ad Hoc Committee on Non-destructive Evaluation adopted a 

system that classified methods into six major categories: visual, penetrating radiation, 

magnetic-electrical, mechanical vibration, thermal and chemical-electrochemical [2,3]. 

A version of the classification system is presented in Table 1, with additional categories 

included to cover new methods. The first six categories involve basic physical processes 

that require transfer of matter or energy to the object being tested. 

Two auxiliary categories describe processes that provide for transfer and storage of 

information, and evaluation of the raw signals and images common to non-destructive 

testing methods. 
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TABLE 1. Non-destructive testing method categories 

Basic Categories Objectives 

Mechanical and optical 
colour, cracks, dimensions, film thickness, gaging, 
reflectivity, strain distribution and magnitude, 
surface finish, surface flaws, through-cracks 

Penetrating radiation 

cracks, density and chemistry variations, elemental 
distribution, foreign objects, inclusions, 
microporosity, misalignment, missing parts, 
segregation, service degradation, shrinkage, 
thickness, voids 

Electromagnetic and electronic 

alloy content, anisotropy, cavities, cold work, local 
strain, hardness, composition, contamination, 
corrosion, cracks, crack depth, crystal structure, 
electrical and thermal conductivities, flakes, heat 
treatment, hot tears, inclusions, ion concentrations, 
laps, lattice strain, layer thickness, moisture content, 
polarization, seams, segregation, shrinkage, state of 
cure, tensile strength, thickness, disbonds 

Sonic and ultrasonic 

crack initiation and propagation, cracks, voids, 
damping factor, degree of cure, degree of 
impregnation, degree of sintering, delaminations, 
density, dimensions, elastic module, grain size, 
inclusions, mechanical degradation, misalignment, 
porosity, radiation degradation, structure of 
composites, surface stress, tensile, shear and 
compressive strength, disbonds, wear 

Thermal and infrared 
bonding, composition, emissivity, heat contours, 
plating thickness, porosity, reflectivity, stress, 
thermal conductivity, thickness, voids 

Chemical and analytical 

alloy identification, composition, cracks, elemental 
analysis and distribution, grain size, inclusions, 
macrostructure, porosity, segregation, surface 
anomalies 

Auxiliary Categories Objectives 

Image generation 

dimensional variations, dynamic performance, 
anomaly characterization and definition, anomaly 
distribution, anomaly propagation, magnetic field 
configurations 

Signal image analysis 

data selection, processing and display, anomaly 
mapping, correlation and identification, image 
enhancement, separation of multiple variables, 
signature analysis 

 

Each method can be completely characterized in terms of five principal factors:  

 energy source or medium used to probe the test object (such as X-rays, ultrasonic 

waves or thermal radiation);  
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 nature of the signals, image or signature resulting from interaction with the test 

object (attenuation of X-rays or reflection of ultrasound, for example);  

 means of detecting or sensing resulting signals (photo emulsion, piezoelectric 

crystal or inductance coil);  

 method of indicating or recording signals (meter deflection, oscilloscope trace or 

radiograph);  

 basis for interpreting the results (direct or indirect indication, qualitative or 

quantitative, and pertinent dependencies).  

The objective of each test method is to provide information about the following material 

parameters: 

• discontinuities (such as cracks, voids, inclusions, delaminations);  

• structure (including crystalline structure, grain size, segregation, misalignment);  

• dimensions and metrology (thickness, diameter, gap size, discontinuity size);  

• physical and mechanical properties (reflectivity, conductivity, elastic modulus, sonic 

velocity); 

• composition and chemical analysis (alloy identification, impurities, elemental 

distributions);  

• stress and dynamic response (residual stress, crack growth, wear, vibration); and  

• signature analysis (image content, frequency spectrum, field configuration). 

The terms used above are defined in Table 2. The limitations of a method include 

conditions required by that method: conditions to be met for technique application 

(access, physical contact, preparation) and requirements to adapt the probe or probe 

medium to the test object. Other factors limit the detection or characterization of 

discontinuities, properties and other attributes and limit interpretation of signals or 

generated images.  
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TABLE 2. Objectives of non-destructive testing methods  
Objectives Attributes Measured or Detected 
Discontinuites  
Surface anomalies roughness, scratches, gouges, crazing, pitting, inclusions and imbedded foreign material 
Surface connected anomalies cracks, porosity, pinholes, laps, seams, folds, inclusions 
Internal anomalies cracks, separations, hot tears, cold shuts, shrinkage, voids, lack of fusion, pores, cavities, delaminations, 

disbonds, poor bonds, inclusions, segregations  
Structure 
Microstructure molecular structure, crystalline structure and/or strain, lattice structure, strain, dislocation, vacancy, deformation 
Matrix structure grain structure, size, orientation and phase, sinter and porosity, impregnation, filler and/or reinforcement 

distribution, anisotropy, heterogeneity, segregation 
Small structural anomalies leaks (lack of seal or through-holes), poor fit, poor contact, loose parts, loose particles, foreign objects  
Gross structural anomalies assembly errors, misalignment, poor spacing or ordering, deformation, malformation, missing parts  
Dimensions and metrology 
Displacement, position linear measurement, separation, gap size, discontinuity size, depth, location and orientation 
Dimensional variations unevenness, non-uniformity, eccentricity, shape and contour, size and mass variations  
Thickness, density film, coating, layer, plating, wall and sheet thickness, density or thickness variations  
Physical and mechanical properties 
Electrical properties resistivity, conductivity, dielectric constant and dissipation factor 
Magnetic properties polarization, permeability, ferromagnetism, cohesive force  
Thermal properties conductivity, thermal time constant and thermoelectric potential  
Mechanical properties compressive, shear and tensile strength (and module), Poisson's ratio, sonic velocity, hardness, temper and 

embrittlement 
Surface properties colour, reflectivity, refraction index, emissivity 
Chemical composition and analysis  
Elemental analysis detection, identification, distribution and/or profile 
Impurity concentrations contamination, depletion and doping  
Metallurgical content variation, alloy identification, verification and sorting 
Physiochemical state moisture content, degree of cure, ion concentrations and corrosion, reaction products 
Stress and dynamic response  
Stress, strain, fatigue heat-treatment, annealing and cold-work effects, residual stress and strain, fatigue damage and life (residual) 
Mechanical damage wear, spalling, erosion, friction effects 
Chemical damage corrosion, stress corrosion, phase transformation 
Other damage radiation damage and high frequency voltage breakdown 

Dynamic performance crack initiation and propagation, plastic deformation, creep, excessive motion, vibration, damping, timing of 
events, any anomalous behavior 
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Signature analysis  
Electromagnetic field potential, strength, field distribution and pattern 

Thermal field isotherms, heat contours, temperatures, heat flow, temperature distribution, heat leaks, hot spots 
Acoustic signature noise, vibration characteristics, frequency amplitude, harmonic spectrum and/or analysis, sonic and/or ultrasonic 

emissions 
Radioactive signature distribution and diffusion of isotopes and tracers  

Signal or image analysis 
image enhancement and quantization, pattern recognition, densitometry, signal classification, separation and 
correlation, discontinuity identification, definition (size and shape) and distribution analysis, discontinuity 
mapping and display 
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The number of inspection methods seems to grow daily, but a quick summary of the 

most commonly used methods is provided below.  

Visual and Optical Testing (VT): The most basic NDT method is visual examination. 

Visual examiners follow procedures that range from simply looking at a part to see if 

surface imperfections are visible, to using computer controlled camera systems to 

automatically recognize and measure features of a component. Visual inspection 

represents the highest percentage of the inspection procedures that are applied to aircraft 

in service. To enhance the inspection capability, new tools were developed including 

improved illumination techniques, miniature video and dexterous small-diameter 

boroscopes. In recent years, two visual inspection techniques have emerged that worth 

noting and they are the D-Sight and the Edge of Light (EOL). While D-Sight already 

found its way to practical use, the EOL technique is relatively new and it is still in 

development stages.  

Dual-Pass Light Reflection (D-Sight TM ): Surface and near-surface flaws, such as 

corrosion in metals and impact damage in composites, are causing a local surface 

deformation. The visual inspection technique called D-Sight (Diffracto Limited) [4] 

enhances the appearance of this deformation and increases its visibility [5]. A D-Sight 

inspection system consists of a CCD camera, a white light source mounted slightly 

above the camera lens, and a retro-reflective screen. In figure 1, a schematic view is 

showing the principle of D-sight operation and on the right an example of cold worked 

holes is shown. The system's screen is made of a reflective micro-bead layer and is the 

most important element of the D-Sight system. While the screen returns most of the 

light in the same direction of the incidence, a slight amount of light is dispersed.  

 

Figure 1: D-Sight principle of operation (left) and an example of the test result for cold worked holes 
(Diffracto). 
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When a surface is illuminated by a light source, local surface curvatures are focusing or 

dispersing the light onto the retro-reflective screen. A light pattern is formed on the 

screen and is reflected back to the source with a slight dispersion. This path of the light 

is backlighting the part surface and enhances the scattering effect of surface 

deformations. By viewing the surface slightly off-axis from the light source a unique 

pattern appears near local surface deformations. This pattern consists of bright and dark 

gray scale variations, where higher curvatures appear more intense due to the effect of 

focusing and diffusing the light. To obtain a sufficient level of diffused light the surface 

must be reflective, otherwise a thin layer of liquid needs to cover the surface to increase 

its reflectivity.  

Edge Of Light TM (EOL): Another method of enhancing the surface deformation that is 

caused by flaws is the Edge of LightTM (EOL), which was developed by the National 

Research Council Canada [5]. It employs elements commonly used in optical scanners 

and it uses the scattered light from surface deformation and variations in the surface 

slope to produce an image that consists of light intensity variations. The technique is 

relatively quick, with scanning speeds on the order of 2 to 20-linear cm/sec with line 

scan widths of 10-cm or more. EOL inspection results are easy to interpret since they 

closely resemble the actual subject. The technique has been demonstrated to be effective 

in detecting corrosion on surfaces and joints, as well as flaws in gas turbine components 

and turbine disks. For some applications, EOL was shown to have greater detection 

capability than liquid penetrants, magnetic particle, ultrasonic inspections, or optical 

microscopy. In figure 2, a comparison is shown between an unaided view and EOL 

image of corrosion pillowing in a lap-splice joint of a Boeing 727 aircraft.  

 

 

 

 

Figure 2: Top Lap splice joint from a Boeing 727, as seen by the unaided eye. Bottom - EOL image of 
the same joint clearly showing corrosion pillowing [5] 
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Radiography (RT): RT involves the use of penetrating gamma- or X-radiation to 

examine materials and product's defects and internal features. An X-ray machine or 

radioactive isotope is used as a source of radiation. Radiation is directed through a part 

and onto film or other media. The resulting shadowgraph shows the internal features 

and soundness of the part. Material thickness and density changes are indicated as 

lighter or darker areas on the film. The capability of radiography to provide an image 

that is relatively easy to interpret made it an attractive NDE method for both industrial 

and medical applications. The health hazard associated with the exposure to this 

ionizing radiation and the use of films to record the images constrained the application 

of radiography. The development of real time imaging techniques for radiographic 

visualization helped overcoming the time consuming process that was involved with 

film recording. Moreover, computer processing of digitized images enabled the 

enhancement of the images as well as the quantification of the inspection criteria. 

Several radiographic techniques that deserve attention include the CT scan, Reverse 

Geometry X-ray and Microfocus X-ray microscopy. 

Compute Tomography Scan: Computer processing of the distribution of the X-ray 

transmission coefficient in a structure using a series of viewing angles is used to 

produce computed tomography (CT) scans [6]. For over three decades, this radiographic 

technique has been widely in use as an important medical tool. At the early 80's the 

technique was transferred to industrial use as a result of a research effort at the Air 

Force Materials Laboratory. The method is highly effective in testing composite 

structures and it provides a quantitative information about the distribution of the 

material density. Images can be produced and manipulated in a real-time format and 

allow recognition, localization and classification of material defects (e.g. pores, 

blowholes, foreign bodies). The inspection can be done automatically in arbitrary test 

samples (e.g. in metal, ceramic, glass or synthetic material castings). Three-dimensional 

position and extension of flaws can be determined by evaluating pairs of stereoscopic 

transmission images [7]. Depending on the object geometry, the acquisition of 

stereoscopic images can be done alternatively by translation or rotation of the sample.  
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Figure 3: CT image of the density distribution in a reference graphite/epoxy sample 

The defect extension in the direction of transmission is calculated by using the 

absorption law adapted for polychromatic radiation. An example of a graphite/epoxy 

sample tested by CT scanning is shown in figure 3. 

Reverse Geometry X-Ray (RGX) Imaging: In contrast to conventional radiography, 

RGX reverses the relative sizes of source and detector as well as the location of the 

object [8]. The object is placed adjacent to the large, computer controlled raster-

scanning source at a distance from the point detector. This arrangement allows scattered 

radiation to bypass the detector, thereby increasing the contrast sensitivity (signal-to-

noise ratio). The method has been demonstrated to detect such flaws as corrosion, 

impact damage, and water entrapment in aluminium and composites. In the case of 

corrosion on aircraft, it was possible to detect the loss of material down to as little as 

1.0%, even when the material loss is disguised by the presence of corrosion products. 

Generally, the distance between object and detector can be easily increased to reduce 

parallax effects and increase throughput for large area honeycomb and/or thick 

honeycomb inspection. An example of a Reverse Geometry image of graphite/epoxy 

blades of the NASA tilt-rotor type aircraft, XV-15, is shown in figure 4. 

 

 

 

 

Figure 4: (left) Reverse Geometry test of an aluminium casting showing various slices (Digiray), (right) 
A view of a Reverse Geometry X-ray system inspecting a Boeing 707 wing area. 
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Microfocus X-ray Microscopy: Using a small source to provide a great magnification 

of the inspected object, Microfocus X-ray Microscopy operates similarly to 

conventional radiographic techniques [9]. Conventional radiographic techniques 

generate X-rays from a thick target, typically tungsten, oriented at 30o or 45o angles to 

the electron beam source. X-ray images are produced with limited magnification. 

Through the use of a thin film target oriented normal to the electron beam source, 

samples are positioned opposite to the beryllium window thereby minimizing working 

distance and maximizing magnification. The microfocused beam (~3µm) further 

enhances the resolution by increasing sharpness of the image as compared to the one 

obtained using larger focal spot sizes. Geometric magnification for typical fine-focus 

applications are ranging from 3X to 1000X with capabilities of extending beyond 

2000X. For conventional transmission microfocus X-ray, the tube voltage ranges from 

10-225kV with focal dimensions from 3 to 200µ m. By manipulating the sample and 

viewing a real-time image, defects normally obscured by background noise in 

conventional 2-D can be readily imaged. The technique is widely used for NDE of 

microelectronics and aerospace applications for parts with miniature internal 

components. An example of images obtained using Microfocus X-ray from two 

different viewing angles is shown in Figure 5, where a hydrophone with a microns size 

tunnelling tip was examined. 

 

Figure 5: Microfocus X-ray image of a hydrophone tunnelling tip as viewed from isometric (left) and 
profile (right) views. 

Magnetic Particle Testing (MT): This NDT method is accomplished by inducing a 

magnetic field in a ferromagnetic material and then dusting the surface with iron 

particles (either dry or suspended in liquid). Surface and near-surface flaws produce 

magnetic poles or distort the magnetic field in such a way that the iron particles are 

attracted and concentrated. This produces a visible indication of defect on the surface of 

the material.   
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Figure 6: The images above demonstrate a component before and after inspection using dry magnetic 
particles 

Ultrasonic Testing (UT): Ultrasonics is one of the most versatile and informative NDE 

methods and [10]. In ultrasonic testing, high-frequency sound waves are transmitted 

into a material to detect imperfections or to locate changes in material properties. The 

most commonly used ultrasonic testing technique is pulse echo, whereby sound is 

introduced into a test object and reflections (echoes) from internal imperfections or the 

part's geometrical surfaces are returned to a receiver. In figure 7 there is an example of 

shear wave weld inspection. Notice the indication extending to the upper limits of the 

screen. This indication is produced by sound reflected from a defect within the weld.  

 

 

 

 

Figure 7: Example of shear wave weld inspection 

The various modes that these waves can support allow the extractions of detailed 

information about flaws as well as determining various material properties. Techniques 

were developed employing the various wave modes as well as scattering and mode-

conversion that are associate with the wave interaction. Examples of such techniques 

include the Acousto-Ultrasonics, which is practically used for flaw screening, and the 

ultrasonic angular insonification to induce the polar backscattering and leaky Lamb 
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waves. Also, to perform rapid inspection portable scanners were developed with some 

that can crawl on the surface of the test structures and conduct scanning. To simplify the 

imaging process without the use of mechanical scanning array transducers and CCD 

(charge coupled device) technology can now be used to form the ultrasonic equivalence 

of the video cameras. The difficulties associated with the need for liquid couplant, 

which mostly affects field application, led to the development of various fixtures 

including water filled boots and wheels, bubblers and squirters. Alternative dry coupling 

methods were also developed including the use of air-coupled piezoelectric transducers, 

Electro-Magnetic Transducers (EMAT) and Laser Ultrasonics [11]. 

Dry Coupling Techniques: The inability to transmit and receive ultrasonic waves 

through air or gas was a limiting factor in developing rapid field inspection, testing 

porous or water sensitive materials, and others. Most ultrasonic NDE applications 

operate at frequencies in the range of 1- 10 MHz, where travelling through air is highly 

attenuative. The acoustic impedance of air differs significantly from the one for the 

piezoelectric transmitter and the test part causing reflection of most of the energy. 

Therefore, only a very small fraction of the energy is transmitted through the part and 

back to the transducer.  

 

Figure 8: A 400 KHz air-coupled through-transmission C-scan of solar honeycomb panel with a 5x5-cm 
stiffener insert [12]. 

Air-Coupled transducers: One solution to overcoming this air-coupling problem 

without using additional transition media has been the induction of sufficiently high 

sound level and using high-gain, low-noise amplification [12]. To enhance the 

transmitted energy, the transducer is used with no backing layers and thus taking 

advantage of the high mechanical-quality factor Q of piezoelectric disks. To improve 

the generation and reception efficiencies of the transducer, its front protection layer is 

made of a thin porous material having low specific impedance. The transducer is driven 
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by tone-bursts with a center frequency that exactly matches its thickness- mode 

resonance and using focused transducers further increases the sound pressure. Such 

transducer and hardware modifications allowed the operation of air-coupled ultrasonic 

C-scans at frequencies in the low Megahertz range. While it is still limited to materials 

with relatively low acoustic impedance, such as composites, it is already being used 

extensively for applications where water can not be used as a couplant. In Figure 8, an 

example of a C-scan is shown where a solar honeycomb panel with a 5x5-cm stiffener 

insert was tested using a 400 KHz air-coupled through-transmission. The bonded 

honeycomb core, the area of the insert and the missing core can be easily seen.  

Electromagnetic acoustic transducer (EMAT): EMAT is a transducer that uses eddy 

current to generate and receive acoustic signals that operates without a coupling 

medium [13]. The transducer can induce specific ultrasonic modes including normal 

beam and angle-beam shear wave, Shear Horizontal (SH) plate wave, Rayleigh wave 

and Lamb wave. The ability to induce horizontally polarized shear waves has a great 

significance for the inspection of austenitic welds. Another advantage of EMAT is the 

ability to operate at high temperatures. The main disadvantage of EMAT arises from its 

relatively low transmitted ultrasonic energy causing electronic noise to constrain its 

dynamic range. Also, the induced energy is critically dependent of the probe proximity 

to the test object, which for practical applications it is commonly maintained below 1-

mm. Generally, EMAT transducers are used at frequencies below 2-4MHz.  

Laser induced ultrasound: Laser ultrasonics is one of the effective methods of inducing 

and receiving ultrasonic waves without the need for couplant. The received signals are 

evaluated very similar to the pulse-echo technique and parts can easily be scanned from 

a distance of about 3-4 meters. The method induces short pulses in the range of 10-µsec 

causing a rapid heating and expansion of the surface forming elastic pulses. The 

reflected signals are examined by interferometry and such systems were developed by 

several research organization including the Center for NDE at John Hopkins University, 

Hughes Research Lab and the Canadian National Research Council [14]. Also, a 

commercial system was developed by UltraOptec (Québec, Canada), who delivered one 

of its products to the Air Force maintenance facility at McClellan Air Force Base for 

inspection of composite and bonded structures [15]. The method is effective for 

inspection of structures with complex geometry allowing examination of surfaces with a 

slope of up to about ±45o . This allows mapping defects in parts that are contoured and 
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presenting the results in 3-D (see figure 9) with is no critical orientations requirement 

for the incident beam. 

 

Figure 9: A 3-D C-scan image of a curved part with flaws at various depth (identified in colours) using 
laser ultrasonic time-of-flight. [13] 

The limiting factor in the scanning speed is the inability to induce pulses at high rate, 

where an average of 100 pulses/sec is commonly used. Overall, the cost and the 

sensitivity of the laser ultrasonic technique are limiting the wide usage of laser-

ultrasonics. New techniques are continuously being introduced in an effort to reduce the 

cost of the hardware. However, the sensitivity is fundamentally limited to about 45dB 

because there is a lower bound on the sensitivity of detecting a single phonon, whereas 

the upper limit is set by thermal damage prevention. Commercially available systems 

are offering user friendly imaging software, which displays A-scans, B-scans and C-

scans, as well as 3-D ultrasonic images that can be easily manipulated for various angles 

of view.  

Penetrant Testing (PT): The test object is coated with a solution that contains a visible 

or fluorescent dye. Excess solution is then removed from the surface of the object but 

leaving it in surface breaking defects. A developer is then applied to draw the penetrant 

out of the defects. With fluorescent dyes, ultraviolet light is used to make the bleedout 

fluoresce brightly, thus allowing imperfections to be readily seen. With visible dyes, 

vivid colour contrasts between the penetrant and developer make "bleedout" easy to see.  

Shearography: The ability of holography to produce flaw indications superpositioned 

onto a 3-D image of parts has been a desirable feature, which was well documented 

since the 60's. The process involves double exposure of the structure at two different 

stressing levels. Unfortunately, the method has been very sensitive to vibrations or 

displacement of the setup and therefore was not practical for field use. The introduction 

of the shearography as a technique of forming double exposure without concern to the 

system mechanical stability made it highly attractive. A digital interferometry system is 

used to detect areas of stress concentration caused by anomalies in the material [16]. 
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The technique senses out-of-plane surface displacements in response to an applied load. 

Data is presented in the form of a fringe pattern produced by comparing two states of 

the test sample, one before and the other after a load is applied. Electronic shearography 

incorporates a CCD camera and frame grabber for image 20 acquisition at video frame 

rates. Fringe patterns are produced by real time digital subtraction of the deformed 

object image from the reference object image. Shearography also uses a `common-path' 

optical arrangement, which provides reasonable immunity to environmental 

disturbances such as room vibrations and thermal air currents. As a result, shearography 

can be implemented without the need for sophisticated vibration isolation that is 

required for conventional holography. The capability of Shearography to inspect a large 

area in real time has significant advantages for many industrial applications and is being 

practically used for inspection of composite structures and pressure vessels. Northrop 

Grumman Corp. has been using shearography on the B-2 program since 1988. The 

method is being applied for inspection of bonded composites and metallic assemblies 

for which experience has shown inspection time reduction of about 75% compared to 

other NDE methods. Further, there are many cases where this method was found to be 

the only one capable of detecting the specific flaws. To address the requirement to stress 

the test structure, various techniques are used, where the most effective are thermal and 

surface vacuum techniques. The thermal shearography is used to inspect near skin-to-

core bondline, ramp areas and solid graphite laminates, whereas, vacuum stress 

shearography is used to examine both near and far side bond lines in the honeycomb 

areas. Thermal stress shearography has been shown to be capable of inspecting large 

areas of composite and honeycomb materials at a rate of 60-ft /hour [17]. Example of 

testing an aircraft is shown in Figure 10 (left)  and a typical view of flaws are shown in 

Figure 10 (right). Generally, due to the method of forming the shearographic image the 

flaws tend to appear as bull's eyes.  

 

 

 

 

Figure 10: (left) Tripod mounted shearography camera/laser is shown inspecting an aircraft (Laser 
Technology, Inc.), (right) The bull's eyes shape of flaws' shearographic image. 
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Thermography: The effect of flaws on the thermal conductivity and emissivity of test 

materials is analyzed by the thermographic NDE method [18]. Its attractive features are 

the capability to cover large areas in a single frame and it does not require coupling. 

Unfortunately, this method was found unreliable when testing bonded joints with a 

narrow gap between the unbounded surfaces. In the early stages, liquid crystals were 

used to map the surface distribution of the 21 different temperature. The improvement 

of infrared systems made such tools highly sensitive and effective for mapping the 

cooling or heating profiles to rapidly indicate flaws. Examining the temporal gradient of 

the thermal maps, i.e., thermal flux, significantly improved the detectability of flaws.  

Thermal Wave Imaging: Thermal waves transmitted through test parts can be received 

and used to produce an image of the internal uniformity. In addition to imaging the 

pattern of subsurface flaws and corrosion, the technique can rapidly (a few seconds) 

make quantitative measurements of less than 1% material loss for various regions in the 

image [19]. It can use as a heat source pulses from photographic flash-lamps. The heat 

source box traps and funnels the light uniformly onto the test structure, and an infrared 

(IR) focal plane array camera, aimed and focused at the surface through an opening in 

the rear of the hand-held shroud, monitors the rapid cooling of the surface. The system 

operates by sending a heat pulse from the surface into the material, where it undergoes 

thermal wave reflection at either the rear surface or at any interior surface at which the 

thermal impedance changes, e.g., at disbonds, delaminations, etc. The effect of these 

thermal wave reflections is to modify the local cooling rate of the surface. The cooling 

rate, in turn, is monitored through its effect on the IR radiation from the surface, which 

is detected by the camera, and processed as a sequence of images by the control 

computer. The contrast in the processed images reveals the presence of defects in the 

interior or variations in the thickness of the material. In Figure 11, Thermal Wave Image 

an example is shown for corrosion and unbound near a tear strap/stringer of a Boeing 

737. 
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Figure 11: Thermal Wave Image of Corrosion and Disbonding near tear strap/stringer of a Boeing 737. 

Electromagnetic Testing (ET):  For over three decades, eddy current has been one of 

the leading in-service inspection methods for crack detection around and inside fastener 

holes. Significant improvement has been made to enhance the method capability, 

reliability and user friendliness. In this technique electrical currents (eddy currents) are 

generated in a conductive material by a changing magnetic field. The strength of these 

eddy currents can be measured. Material defects cause interruptions in the flow of the 

eddy currents which alert the inspector to the presence of a defect. Eddy currents are 

also affected by the electrical conductivity and magnetic permeability of a material, 

which makes it possible to sort some materials based on these properties. The modelling 

of the effect of flaws contributed significantly to the understanding of the key 

parameters as well as the reduction in the effect of noise and lift-off. Improved probes 

and instrumentation were developed and the effective use of low frequencies enabled 

inspection of metallic layered structures for detection of flaws in the second and third 

layer. The Magneto-Optics Imager (MOI) has been one of the eddy current technique 

spin-offs and it is being practically implemented by the aircraft industry. Another eddy 

current technique that has emerged in recent years is the pulse eddy current.  

 

 

 

 

Figure 11: A technician is inspecting an aircraft wing for defects. 
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Magneto-Optics Imager (MOI): In order to simplify the detection of flaws, the 

Magneto-Optics Imager (MOI) was developed as a means of visualizing the eddy 

current response [20]. The Magneto-Optic Imager (MOI) combines planar eddy current 

and magneto optic imaging and it is applicable to inspection of metallic structures for 

surface and subsurface flaws. MOI is able to image through paint and other surface 

coverings in real time and to project the results on a heads up display and/or a monitor. 

MOI is employed in a hand-held (see figure 12) portable instrument that requires 

minimal training and its capability greatly increases the speed and reliability of 

inspection. This method is currently being used extensively for aircraft inspection by 

airlines, maintenance facilities and the military.  

 

Figure 12: A photographic view of an MOI inspection (left) and an image of indication of cracks around 
fasteners (right) (PRI, Torrance, CA). 

Pulsed Eddy Current (PEC): Conventional eddy current techniques use single 

frequency sinusoidal excitation and measure flaw responses as impedance or voltage 

changes on an impedance plane display. To detect flaws, inspectors interpret the 

magnitude and phase changes, but the method is sensitive to variety of parameters that 

are hampering the characterisation of flaws. Multiple frequency measurements can be 

combined to more accurately assess the integrity of a structure by reducing signal 

anomalies that may otherwise mask the flaws. Initial development led to the use of dual 

frequency eddy-current where frequency-mixing functions allowed the quick 

application of the technique. This approach has been shown to be useful in reducing the 

effects of plate separation variations when inspecting for second layer corrosion in lap 

splices [21]. The dual frequency method offers advantageous when performing large 

area inspections by means of eddy current C-scans of specimens with corrosion under 

fasteners [22]. Unfortunately, conventional multiple frequency methods can provide 

limited quantitative data and are difficult to use for flaw visualisation in an intuitive 

manner. Swept frequency measurements using impedance analysers perform well in 

quantitative corrosion characterisation studies, especially when they are interpreted in 
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conjunction with theoretical models [23]. However, the application of these techniques 

is too laborious. In contrast to the conventional eddy current method, pulsed eddy 

current (PEC) excites the probe's driving coil with a repetitive broadband pulse, such as 

a square wave. The resulting transient current through the coil induces transient eddy 

currents in the test piece, associated with highly attenuated magnetic pulses propagating 

through the material. At each probe location, a series of voltage-time data pairs are 

produced as the induced field decays, analogous to ultrasonic inspection data. Since a 

broad frequency spectrum is produced in one pulse, the reflected signal contains flaw 

depth information. Physically, the pulse is broadened and delayed as it travels deeper 

into the highly dispersive material. Therefore, flaws or other anomalies close to the 

surface will affect the eddy current response earlier in time than deep flaws. Similar to 

ultrasonic methods, the modes of presentation of PEC data can include A-, B- and C-

scans [24]. Interpretation, therefore, may be considered more intuitive than conventional 

eddy current data. The excitation pulse, signal gain and sensor configurations can be 

modified to suit particular applications. 

Leak Testing (LT): Several techniques are used to detect and locate leaks in pressure 

containment parts, pressure vessels, and structures. Leaks can be detected by using 

electronic listening devices, pressure gauge measurements, liquid and gas penetrant 

techniques, and/or a simple soap-bubble test.   

Acoustic Emission Testing (AE): When a solid material is stressed, imperfections 

within the material emit short bursts of acoustic energy called "emissions." As in 

ultrasonic testing, acoustic emissions can be detected by special receivers. Emission 

sources can be evaluated through the study of their intensity and arrival time to collect 

information about the sources of the energy, such as their location.  

 

2. Eddy current technique 

Eddy current inspection is one of several NDT methods that use the principal of 

“electromagnetism” as the basis for conducting examinations. Eddy currents are created 

through a process called electromagnetic induction. When an alternating current is used 

to excite a coil, an alternating magnetic field is produced and the magnetic flux lines are 

concentrated at the center of the coil. Then, when this coil is brought near an electrically 
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conductive material, the alternating magnetic field penetrates the material and generates 

continuous, circular eddy currents. Larger eddy current are produced near the test 

surface; as the penetration of the induced field increases, the eddy current become 

weaker. The induced eddy current produce an opposing (secondary) magnetic field in 

the opposite direction to the generated (primary) magnetic field. This opposing 

magnetic field, coming from the material, has a weakening effect on the primary 

magnetic field and this change can be sensed by the test coil. In effect, the impedance of 

the coil is reduced proportionally as eddy current are increased in the test piece. A crack 

in the test material obstructs the eddy current flow, lengthens the eddy current path, 

reduces the secondary magnetic field, and increases the coil impedance. The inductive 

reactance of the coil continues to increase as the severity of the defect increases. Eddy 

currents get their name from “eddies” that are formed when a liquid or gas flows in a 

circular path around obstacles when conditions are right. Eddy current inspection is 

used in a variety of industries to find defects and make measurements. One of the 

primary uses of eddy current testing is for defect detection when the nature of the defect 

is well understood. In general the technique is used to inspect a relatively small area and 

the probe design and test parameters must be established with a good understanding of 

the flaw that is trying to be detected. Since eddy currents tend to concentrate at the 

surface of a material, they can only be used to detect surface and near surface defects. In 

thin materials such as tubing and sheet stock, eddy currents can be used to measure the 

thickness of the material. This makes eddy current a useful tool for detecting corrosion 

damage and other damage that causes a thinning of the material. The technique is used 

to make corrosion thinning measurements on aircraft skins and in the walls of tubing 

used in assemblies such as heat exchangers. Eddy current testing is also used to measure 

the thickness of paints and other coatings. Eddy currents are also affected by the 

electrical conductivity and magnetic permeability of materials. Therefore, eddy current 

measurements can be used to sort materials and to tell if a material has seen high 

temperatures or been heat treated, which changes the conductivity of some materials. 

Eddy currents are closed loops of induced current circulating in planes perpendicular to 

the magnetic flux. They normally travel parallel to the coil's winding and flow is limited 

to the area of the inducing magnetic field. Eddy currents concentrate near the surface 

adjacent to an excitation coil and their strength decreases with distance from the coil as 

shown in figure 13.  
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Figure 13: Image of the eddy current distribution produced by an solenoid coil. 

Eddy current density decreases exponentially with depth. This phenomenon is known as 

the skin effect. Skin effect arises when the eddy currents flowing in the test object at 

any depth produce magnetic fields which oppose the primary field, thus reducing net 

magnetic flux and causing a decrease in current flow as depth increases. Alternatively, 

eddy currents near the surface can be viewed as shielding the coil's magnetic field, 

thereby weakening the magnetic field at greater depths and reducing induced currents.   

The depth that eddy currents penetrate into a material is affected by the frequency of the 

excitation current and the electrical conductivity and magnetic permeability of the 

specimen. The depth of penetration decreases with increasing frequency and increasing 

conductivity and magnetic permeability. The depth at which eddy current density has 

decreased to 1/e, or about 37% of the surface density, is called the standard depth of 

penetration (δ) defined as [25]: 

fπσµ
δ 1
=  

δ=Standard Depth of Penetration (mm) 

f = Test Frequency (Hz) 

µ = Magnetic Permeability (H/mm) 

σ = Electrical Conductivity (% IACS or S/m) 

The word 'standard' denotes plane wave electromagnetic field excitation within the test 

sample (conditions which are rarely achieved in practice). Although eddy currents 

penetrate deeper than one standard depth of penetration they decrease rapidly with 

depth. At two standard depths of penetration (2δ), eddy current density has decreased to 

Excitation coil

Eddy current 
distribution 
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1/e squared or 13.5% of the surface density. At three depths (3δ) the eddy current 

density is down to only 5% of the surface density. 

 

Figure 14: (left) and (right) schematisation of the eddy current penetration depth for low and high 
conductivity materials, respectively.  

Electrical Impedance (Z), is the total opposition that a circuit presents to an alternating 

current. Impedance, measured in ohms, may include resistance (R), inductive reactance 

(XL), and capacitive reactance (XC). Eddy current circuits usually have only R and XL 

components. The resistance component and the reactance components are not in phase 

so vector addition must be used to relate them with impedance. For an eddy current 

circuit with resistance and inductive reactance components, the total impedance is 

calculated using the following equation. 22
LXRZ += . This can be graphically 

displayed using the impedance plane diagram as seen in Figure 15. 

 

 

 

  

 

Figure 15: Impedance plane. 
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Impedance also has an associated angle, called the phase angle of the circuit, which can 

be calculated by the following equation 
R

X L1tan −=Θ . The impedance plane diagram is 

a very useful way of displaying eddy current data. As shown in the figure 16, the 

strength of the eddy currents and the magnetic permeability of the test material cause 

the eddy current signal on the impedance plane to react in a variety of different ways. 

 

Figure 16: Eddy current impedance plane responses. 

If the eddy current circuit is balanced in air and then placed on a piece of aluminium, 

the resistance component will increase (eddy currents are being generated in the 

aluminium and this takes energy away from the coil and this energy loss shows up as 

resistance) and the inductive reactance of the coil decreases (the magnetic field created 

by the eddy currents opposes the coil's magnetic field and the net effect is a weaker 

magnetic field to produce inductance). If a crack is present in the material, fewer eddy 

currents will be able to form and the resistance will go back down and the inductive 

reactance will go back up. Changes in conductivity will cause the eddy current signal to 

change in a different way. When a probe is placed on a magnetic material such as steel, 

something different happens. Just like with aluminium (conductive but not magnetic) 

eddy currents form which takes energy away from the coil and this shows up as an 

increase in the coils resistance. And, just like with the aluminium, the eddy currents 

generate their own magnetic field that opposes the coils magnetic field. However, you 

will note for the diagram that the reactance increase. This is because the magnetic 
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permeability of the steel concentrates the coil's magnetic field this increase in the 

magnetic field strength completely overshadows the magnetic field of the eddy currents. 

The presence of a crack or a change in the conductive will produce a change in the eddy 

current signal similar to that seen with aluminium.  

Eddy current equipment and probes can be purchased in a wide variety of 

configurations. Eddyscopes and a conductivity tester come packaged in very small and 

battery operated units for easy portability. Computer based systems are also available 

that provide easy data manipulation features for the laboratory. Signal processing 

software has also been developed for trend removal, background subtraction, and noise 

reduction. Impedance analyzer is also sometimes used to allow improved quantitative 

eddy-current measurements. A few portable scanning systems also exist for special 

applications such as scanning regions of aircraft fuselage. 

Eddy current probes are available in a large variety shapes and sizes. In fact, one of the 

major advantages of eddy current inspection is that probes can be custom designed for a 

wide variety of applications. Eddy current probes are classified by the configuration and 

mode of operation of the test coils. The configuration of the probe generally refers to the 

way the coil or coils are packaged to best "couple" to the test area of interest. An 

example of different configurations of probes would be bobbin probes, which are 

inserted into a piece of pipe to inspect from the inside out, versus encircling probes, in 

which the coil or coils encircle the pipe to inspect from the outside in. The mode of 

operation refers to the way the coil or coils are wired and interface with the test 

equipment. The most widely used mode of operation of a probe is Absolute and 

differential.  

Absolute probes generally have a single test coil that is used to generate the eddy 

currents and sense changes in the eddy current field. When the probe is positioned next 

to a conductive material, the changing magnetic field generate eddy currents within the 

material. The generation of the eddy currents take energy from the coil and this appears 

as an increase in the electrical resistance of the coil. The eddy currents generate their 

own magnetic field that opposes the magnetic field of the coil and this changes the 

inductive reactance of the coil. By measuring the absolute change in impedance of the 

test coil, much information can be gained about the test material. Absolute coils can be 

used for flaw detection, conductivity measurements, lift-off measurements and 

thickness measurements. They are widely used due to their versatility. Since absolute 

probes are sensitivity to things such as conductivity, permeability lift-off and 
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temperature, steps must be taken to minimize these variables when they are not 

important to the inspection being performed. It is very common for commercially 

available absolute probes to have a fixed "air loaded" reference coil that compensates 

for ambient temperature variations. 

Differential probes have two active coils usually wound in opposition, although they 

could be wound in addition with similar results. When the two coils are over a flaw-free 

area of test sample, there is no differential signal developed between the coils since they 

are both inspecting identical material. However, when one coil is over a defect and the 

other is over good material, a differential signal is produced. They have the advantage 

of being very sensitive to defect yet relatively insensitive to slowly varying properties 

such as gradual dimensional or temperature variations. Probe wobble signals are also 

reduced with this probe type. There are also disadvantages to using differential probes. 

Most notably, the signals may be difficult to interpret. For example, if a flaw is longer 

than the spacing between the two coils, only the leading and trailing edges will be 

detected due to signal cancellation when both coils sense the flaw equally.  

 

 

 

 

 

 

Figure 17: Elotest B-300 by Rohmann GmbH and the absolute probe KAS 2-2. 

 

In this work an eddy current instrument Elotest B300 by Rohmann GmbH, with 

absolute probe has been used. The probe is characterized by a ferrite core, shielded, an 

effective area of 1.5 mm and an operation frequency range from 100kHz to 3 MHz. A 

picture of the instrument and the probe is reported in figure 17. 
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3. SQUID NDE applications 

SQUID magnetometry can be an alternative solution to conventional electromagnetic 

technique for NDE applications [26]. 

 
 Table 3. Comparison of several magnetic sensors properties 

Sensor Sensitivity (T/√Hz) Bandwidth Spatial resolution 
Coils 10-13 kHz-MHz mm-cm 

Flux gate >10-13 20 kHz mm-m 
Magnetoresistive 10-9 dc-MHz 0.3-3 mm 

SQUID 10-14 dc-MHz 2 µm-cm 
 

In comparison with the other magnetic sensors (see table 3), SQUID has unparalleled 

sensitivity to small changes in magnetic flux that makes them highly desirable when it 

is not possible to place a sensing coil or solenoid directly around the object. Therefore, 

the inspection methods accommodated by the SQUID sensor are advantageous because 

there is not a need for contact between the sensor and the sample being testing. The very 

high magnetic field sensitivity, which is nearly independent of frequency from dc to few 

MHz, offers an advantage for application where a low excitation frequency is necessary 

for detections at large depth penetration in multilayer structures, rivet plates and aircraft 

wheels [27,28]. Another very important feature of SQUID sensor is its good spatial 

resolution, with superior sensitivity respect to the induction coil where a compromise 

between the spatial resolution and the signal strength is requested. Additionally, the 

high bandwidth available with certain SQUID systems makes measurements over a 

wide frequency range possible without having to change the sensor. The high dynamic 

range (the ratio between the highest field change which can be measured before the 

system goes into saturation and the lowest detectable field) allows one to detect small 

field changes in the presence of large background fields, produced by edge effects or in-

homogeneities of the conductivity. The large dynamic range of SQUID allows shorter 

integration time and therefore faster scanning is possible. 

Apart from the physical properties of SQUIDs like sensitivity and slew rate, the general 

interest in, and acceptance of superconducting devices is tightly related to aspects of 

cooling. High-Tc SQUIDs are distinctly preferable to low-Tc SQUIDs because their 

associated dewars can be lighter and more compact. As an alternative to liquid coolants, 

cryocoolers have been proposed and demonstrated [29-31]. for SQUID cooling. 

Especially for field operation in remote areas, a cryocooler is a promising competitor to 
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liquid coolants. A cryocooler additionally offers the potential for a three dimensional 

moving or tilting of the SQUID, which is not possible when using conventional dewars. 

However, a significant obstacle in using cryocooler is not only magnetic noise from the 

cooler, but also periodic temperature fluctuations of its cold stage, which can give rise 

to an increased low frequency excess noise of the SQUID. An example of  SQUID 

system cooling by a closed cycle Joule-Thomson cryocooler perform wheels testing is 

realized by Holmann et al [32] (see figure 18). 

 

 
Figure 18: Example of cryocooler applied in aircraft wheels inspection. 

 

High-Tc SQUIDs are useful devices for a number of applications in geophysics, as 

radiomagnetic sounding for exploring soil properties from few hundred meters down to 

few kilometres ground depth; magnetocardiography (MCG and MEG) research, to map 

the sources of arrhythmias, ischemia, ventricular tachycardia, and Wolff-Parkinson-

White syndrome, and to study of the cardiac tissue slices [33];  biomagnetic research, 

and diagnostics as well as non-destructive evaluation (NDE) for inspection of cladded 

pipes, airplane wings, corrosion pits and stress fracture [34]. Eddy current based on 

SQUID sensor is a useful technique to test several materials such as conductive 

materials, ferromagnetic and non-ferromagnetic materials. 

In this work the attention is focused on two particular application of the SQUID 

magnetometer: detection of impact damage and study of the ongoing corrosion process 

in aircraft components. During the in service life the degradation of the aerospace and 

aircraft components can be produced by two major types of flaws: crack due to low 

velocity impact and corrosion damage with a resulting deterioration of the mechanical 

properties of the components. Corrosion in aluminium alloys and plated steel surfaces 

can often be recognized by dulling or pitting of the area, and sometimes by white or red 

powdery deposits. It may also be the origin of, or revealed by, delamination, cracking, 
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metal thinning, fretting, etc. Corrosion can appear in many forms, depending on the type 

of metal, how it is processed, its surrounding structure and service conditions. Corrosion 

results from exposure to humid or corrosive environments and involves primarily 

electrochemical action at chemical/ metallurgical/physical heterogeneity, with dissimilar 

potentials. In Table 4, a list of corrosion types that may appear in aircraft metallic 

components, their sources of formation and by-products, is given. 

Aircraft are designed and manufactured with built-in corrosion-prevention features. 

However, most metals used in aircraft structures are subjected to degradation due to 

exposure to adverse environments including humidity-induced stresses and wide 

temperature excursions. Corrosion-protection systems are widely in use and they consist 

of a combination of materials, sealants, paints, design details, drainage, assembly 

practice, and preventive maintenance. The corrosion-prevention system cannot be 

guaranteed to work so that corrosion does occur and effective NDE techniques are 

needed to detect them as early as possible. The SQUID based system has been used 

successfully to monitor the ongoing corrosion process in electrochemical application 

and in the aluminium aircraft components, because of its ability to image the temporal 

and spatial variation of the magnetic field (~10-12 T) associated with ongoing, hidden 

corrosion in aluminium lap joints or other complex structures. In terms of basic studies 

on corrosion, the SQUID sensor should be ideal because it can be used to map steady or 

time-varying currents deep within a sample without having to make contact with the 

sample or expose the metal that is undergoing corrosion for visualization or 

measurement. An example of an imaging performed by SQUID sensor in the detection 

of hidden corrosion has been referred to  Wikswo research group [27] and it is shown 

below. 

 

 

Figure 19: Image of magnetic activity on a KC 135 lap joint. 
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Moreover, concerning to the SQUID application in non destructive testing fatigue stress 

on steel, deep flaw in metallic alloy and impact damage detection, in literature  there are 

several examples. Weinstock and Nisenoff [35,36] were the first to demonstrate the 

applicability of SQUID magnetometry for the study of stress–strain behaviour in a 

ferromagnetic material. In their experiment, a second-order gradiometer was placed 20 

cm away from a steel bar undergoing stress. They showed that the magnetic flux 

measured outside the bar changes as the strain is increased. Gordon Donaldson and his 

group at the University of Strathclyde, Scotland, utilized SQUIDs for the detection of 

flaws in steel plates [37-40]. Experiments on steel plates showed that machined slots 

with cross sections as small as 2x1 mm2 could be detected at a lift-off distance of 4.2 

cm.  

Bruno et al [41], of the Catholic University in Rio de Janeiro, in collaboration with 

Wikswo’s group at Vanderbilt University demonstrated the detection of 0,1 mm3 surface 

breaking flaws in a steel plate by using a SQUID desensitized to work near the surface 

of ferromagnetic materials. They showed that, at close range, the depth of a shallow 

flaw could be estimated by the SQUID response. It was also reported that with extreme 

low pass filtering the SQUID could detect flaws 1 cm below the surface. The detection 

of cracks in the steel reinforcing rod (rebar) of concrete structures has been 

demonstrated by Braginski’s group at KFA in Jülich, Germany [42, 43]. 

A promising SQUID NDT application is testing of very thick aircraft lap-joint 

structures, where currently no standard testing method achieves satisfactory results. For 

example, ultrasonic technique fails due to reflection at the sealing mass and air gaps 

between the different layers. Therefore, the standard testing method for lap joints in part 

of fuselage and wings is eddy current testing. However, since very low frequencies are 

necessary to detect deep flaws, induction coils are limited so that other sensors such as 

SQUIDs  can be used. 

Kreutzbruck et al [44] applied SQUID magnetometer in the testing of aluminium 

multilayer plate with rivet to detect cracks inside the structure. In figure 20 the test 

sample with rivet and a crack is shown. In this case the eddy current excitation is a wire. 

Moreover, the comparison of the results obtained with SQUID sensor and conventional 

technique are reported. It is clear that eddy current technique using conventional 

induction coil is limited, because of their high noise level at low frequency. 
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Figure 20 : (up) Test sample with rivet and a crack Kreutzbruck et al [43]; (down) comparison of the 
results obtained in the NDE testing of the sample using SQUID sensor and eddy current conventional 
induction coil (left and right, respectively). 
 

In the last years the interest for SQUID system in the NDE of aircraft component is 

grown, because of the development of new advanced materials that require a more 

suitable non destructive technique. The increasing requirement for more efficient 

aircraft has led to the development of stronger and lighter materials such as new 

aluminium alloys, and composites. The use of composite materials for aerospace 

structures is rapidly increasing in part because of the fact that they offer a weight 

reduction and high stress resistance compared to conventional materials such as 

aluminium alloys. Composite materials now form a significant part of the total weight 

of an aircraft. Where they only accounted for about 1% of the total weight of B707, they 

now account for as much 10% of the structural weight of a B777 and as 15% of a A320. 

New composites materials such as honeycomb sandwich and hybrid structures have 

been introduced and these have lead to a requirement for more specialistic and diverse 

NDE technique during manufacture and in-service. Because of their anisotropic and 

heterogeneous nature the non-destructive inspection of such materials remains a 

challenging task. Ultrasonic C-scan is probably one of the most widely used non-
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destructive testing technique for inspection of composites. Still, there are no widely 

accepted standards or procedures for ultrasonic C-scan testing of composites. In 

addition, ultrasonic testing of composites requires the use of a water couplant, the 

inspection is often complex and defect sizing difficult. In order to overcome some of the 

limitations of ultrasonic testing of composites (e.g. need of a couplant), non-contact 

methods such as infrared thermography and shearography have been developed by 

industry. Still such methods remain costly and there is also a need for an efficient and 

low cost technique for composites testing. Interest is growing in the aerospace industry 

in using electromagnetic techniques such as eddy current to non-destructively assess the 

structural integrity of carbon fibre reinforced plastics (CFRPs). Eddy current based on 

SQUID sensors is a potential alternative to detect and quantify low energy impact in 

CFRPs [45-49]. For example, in the case of impact damage, infrared thermography may 

reveal impact location but provides very little details regarding the extent of the 

damage. In contrast, eddy current based on SQUID can also reveal sub-surface 

delaminations and broken fibres [50].  

 

4. NDE prototype based on HTS dc-SQUID magnetometer. 

The experimental set up is a prototype based on eddy current technique using a HTS dc-

SQUID magnetometer. It was realized in the CNR-INFM laboratory of Naples from the 

NDE research group. The main components of the set up system are: 

• Cryogenic dewar 

• HTS dc-SQUID magnetometer 

• Excitation coil 

• x-y positioning system 

• electronics for data acquisition 

 
A scheme of the experimental system based on the HTS dc-SQUID magnetometer is 

shown in figure 21.  
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Figure 21: HTS dc-SQUID NDE system realized at CNR-INFM laboratory of Naples 

 

Cryogenic dewar 

To guarantee the superconducting transition temperature of the HTS dc-SQUID sensor 

it is located into a head insulator fiber glass dewar at the temperature of the liquid 

nitrogen (77K). The thermal insulation is ensured by a vacuum inner shell that avoids 

ice condensation on the dewar surface and reduces the liquid nitrogen evaporation. The 

dewar is made of non-magnetic material (fiber glass) to avoid magnetic noise, it is 

characterized by a volume of 1.19 l, an evaporation rate of 0.26 l/hour. In the inner area 

of the dewar there are over-pressure valves, which reduce the turbulence of the liquid 

nitrogen bath creating working instability for the SQUID, a inlet valve that allows to 

introduce liquid nitrogen into the dewar also during the operation time. The HTS 

SQUID sensor is fixed at the bottom of a cryogenic insert, which is immersed into the 

dewar and allows to locate the sensor at the bottom of the dewar. It is necessary to 

minimize the distance between the sensor and the test sample (4 mm). The cryogenic 

insert is made of non-magnetic material, G10, to avoid thermal stress and assure the 

best thermal stability during the operation time of the SQUID magnetometer. The 

sensor is connected to an electro-optical converter by cables that pass thought the flange 

on the top of the dewar. The electro-optical converter is used to transmit the detected 

signals from the sensor to the external SQUID electronics by means of fiber optical 

LN2 

Excitation coil 

HTc SQUID 

X-Y 
Positioning 

Current  
Source 

ADC

Lock-in

V/O

O/V 

SQUID 
Electronics PAR 

PC



 82

cables, to reduce the rf noise of the sensor. A picture of the cryogenic dewar and insert 

is shown in figure 22. 

 

Figure 22: (left) cryogenic dewar, (right) cryogenic insert with the SQUID magnetometer at the bottom. 

HTS dc-SQUID magnetometer 

The eddy current probe used by the NDE prototype is a high-Tc dc-SQUID 

magnetometer, inductively coupled. The effective area of the SQUID is 0.3 mm2, it is 

oriented to measure the in plane component of the magnetic field, Bx or By. The 

SQUID magnetometer operates in a flux-locked loop (FLL) configuration with a 

modulation frequency of 100 kHz. The field-flux transfer is 1.14 nT/Φ0, the magnetic 

field sensitivity in unshielded environment is less than 0.3 pT/√Hz-rms for frequencies 

above 100 Hz. Moreover, the SQUID has a slew-rate of 103 Φ0/s and a dynamic range 

of about 130 dB.  

 

 

 

Figure 23: picture of the HTS dc- SQUID magnetometer used in this work. 

 

Excitation coil 

Eddy currents were induced by a wire-wound circular coil with a diameter of 5 mm and 

10 turns, realized winding a copper wire of diameter 10µm. The coil is fed by a current 

generator  HP 3245A, with typical operating current less than 20 mA in a frequency 

range of 1kHz-26kHz. The coil is mounted on a Plexiglas slide that allows to move the 

coil under the dewar. In figure 24 is shown a picture of the circular coil located into the 

slide. 
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Figure 24: Excitation coil used to generate eddy currents into test sample. 

 

x-y position system 

The test samples are moved under the dewar using an non-metallic and non-magnetic 

computer controlled x-y positioning system. The table, where the sample is located, is 

made of Teflon and Plexiglas and it is constituted by two slides of Teflon that can shift 

on a couple of guide block obtained one on the Plexiglas plane and the other on the 

Teflon plane. The upper slide is moved by means of a toothed belt, while the lower slide 

is moved using a resin endless crew. The table is connected by means of two bars of 

length 1.5m with carding hinges, with a stepper motor (CC of 30W), characterized by a 

minimum step of 0.1 mm and positioning accuracy better than 0.1 mm. The maximum 

excursion along the x and y axis is 200 mm and the maximum speed is 10 mm/s. The 

system is capable to move samples with a maximum dimension of 1m and a weight of 5 

Kg. The x-y- positioning system is completely automated and controlled by a personal 

computer using a serial connection. 

 

Data acquisition 

The NDE prototype is formed by the several read out electronics components. At first 

there is the electronic SQUID controller (iMAG) which provides for the tuning of the 

SQUID, SQUID reset, trapped flux removal (by heating the SQUIDs), dc offset, low 

and high pass filtering, and amplification. The output channels of the SQUID read-out 

electronics send the signal in a parametric amplifier to reduce the electrical noise in the 

range 1kHz-30kHz. Afterwards, the signal is synchronously demodulated using a dual 

channel lock-in amplifiers, locked at the frequency of the excitation current and set so 

that the module and phase of the magnetic field are acquired. The demodulated signals 

are converted in a digital signal using an analogic digital converter (DAC) at 16 bit that 



 84

assures a dynamic range of 96 dB with an amplitude of  +/- 5V, and it is acquired by 

software from the PC. The x-y positioning system is controlled through software by a 

PC connected to an interface RS232. The acquisition program is realized in Labview® 

language and it is capable of  control the x-y positioning system and acquires in 

continuous mode the data with an opportune sampling rate. 

 

5. Zero field detector 

In the eddy current based SQUID prototype the SQUID magnetometer is used as a zero 

field detector. A zero field detector measures the variation of magnetic field respect to a 

“reference” field that in a theoretical approximation, in absence of test samples and 

neglecting the environmental noise, is about zero. In practice the magnetic field signal 

detected by the sensor is never zero, but at least coincides with the sensor internal noise. 

When an excitation coil is used to generate eddy currents into the test sample the 

configuration between the SQUID sensor and the coil have to guarantee the maximum 

sensitivity in the detection of reflected magnetic field variations. Therefore, the SQUID 

sensor does not detect the magnetic field generated by the excitation coil but only the 

field produced by the test sample. To realize this best operational condition it is 

necessary to consider the magnetic field distribution of the circular excitation coil, 

reported below (Figure 25).  

 

 
 
 
 
 

 
 

 

Figure 25: (left) The 2-D imaging of the in plane component of magnetic field produced by the circular 
coil with 5mm in diameter, (right) the graph of the single line scan (dashed line at left) passing across the 
center of the coil. 

At left of Figure 22 the two dimensional distribution of the in plane magnetic field 

component of the excitation coil is shown. At right the single line scan across the center 

of the coil, represented by the dashed line of the map at left, is reported. Therefore, to 
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realize a zero field detector the SQUID pick-up coil of the magnetometer have to be 

located at the center of the circular coil, where the magnetic field induced by the 

excitation coil is theoretically zero (see Figure 26). 

 

 

 

 

Figure 26: Configuration to realize a zero field detector using a circular coil and to measure the in-plane 
component of the magnetic field. 

 To realize this configuration a particular procedure is followed.  

• At first, the alignment between the SQUID magnetometer and the excitation coil is 

carried out without any test sample. The coil is moved under the dewar using the 

slide until the amplitude of the signal displayed on the lock-in amplifier is 

minimum. 

• Then, the test sample is positioned under the system. If the area of the specimen is 

undamaged and the signal amplitude on the lock-in display is higher than previous 

stage (in the absence of sample), the coil have to be shifted to reach, in the presence 

of test sample, the minimum of the detected signal. It is important to note that the 

minimization of the magnetic field signal have to be performed every time a 

different material is tested. It depends on the different reflection capability of the 

materials respect to the induced magnetic field.  

• The last step of the optimisation procedure is represented by the acquisition of a line 

scan across a damaged and undamaged area. Usually, a standard test sample, made 

of the same material of the test specimens, is used to check the alignment condition. 

A comparison between two lines scan (related to damaged and undamaged area) will 

be executed in the impedance plane or in the spatial domain (signal vs. 

displacement). The first is the conventional Eddy Current-signal representation 

where the real and imaginary components of the detected signal are combined in the 

complex plane-like diagram. In this representation the best alignment condition is 

SQUID Pick-up 
coil ΦBx 

X

Y
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reached when the signal of the undamaged area appears as a dot point respect to the 

line scan of the damaged area (see Figure 27(left)). 

On the other hand, in the spatial domain the best condition for the zero field detector 

is represented by dipole-like shape signal for the damaged area and a straight line for 

the undamaged area (see Figure 27(right)). The magnetic field signals reported in 

Figure 27 are related to an aluminium sample where the defect is represented by a 

circular hole with a diameter of 6 mm and a depth of 1 mm. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 27: Comparison of magnetic signals related to virgin and damaged area, using the impedance 
plane representation (left) and the spatial (signal vs. displacement) representation (right).  
 

The SQUID prototype response of a defect is represented, in the spatial domain, as a 

dipole-like shape, while in the impedance plane the damage produces a close trajectory 

In the spatial domain the magnetic field signal looks like the in-plane component of 

magnetic signal generated by the excitation coil. It is due to the fact that the detected 

signal is the convolution between the eddy current distribution and the defect geometry. 

In other words, the presence of the damage diverted the eddy currents producing a 

signal like the field of the excitation source, so that a magnetic imaging of the defect 

appear such as the magnetic field distribution generated by the eddy current excitation 

source. 

It is interesting to note how the signal can change in both  representations when there is 

a variation of the  defects dimension. This is reported in figure 28 where the detected 

defects are circular holes with the same diameter 6mm and several depth: 1, 2 and 3 

mm.   
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Figure 28: Variation of the signal respect to the different defects dimensions, in the impedance plane and 
in the spatial domain. 
 
It could be noted that the signals related to the different defect dimensions are 

distinguishable in both representations. Moreover, the impedance plane allows to 

compare the signal response of the prototype with the conventional eddy current 

instruments, but information about the position of the defect are lost, while the spatial 

domain allows not only to distinguish the different defect but allows to localize the 

position of the defect spatially. 

The circular coil is one of the possible excitation source that could be used in the eddy 

current technique. Another typical excitation source widely used in the eddy current 

technique based on SQUID sensors is the gradiometric coil, characterized by a 2-D 

shape. It can be used to detect the in-plane and z-component of the magnetic field. To 

realize a zero field detector the SQUID pick-up coil must be located in the center of the 

coil, because only in this position the magnetic field distribution produced by the 2-D 

coil is minimum.  

 

 

 

 
 
 
 
 

Figure 29: picture of a 2-D coil, made of copper wire. 
 

The configurations of the zero field detector used to detect the in-plane and z-

component of magnetic field using the gradiometric coil are shown in Figure 30.  
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Figure 30: (up) Configuration of zero field detector to measure the in-plane component (left) and the 
vertical component (right). (Down) the in plane and vertical component (left and right, respectively) of 
the magnetic field distribution produced by the gradiometric coil. Both components have a minimum field 
in the center. 

 
 

Moreover, the configuration between the excitation coil and the SQUID sensor is 

chosen concerning the magnetic field component that one wants to measure. Generally,  

the circular coil is preferred to detect the in-plane component of magnetic field, while 

the gradiometric coil is used for the z-component, because in these two cases it is 

simpler the alignment between the excitation coil and the SQUID pick-up coil. 
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Chapter 3 
 
Composite Materials 
 
 
 
 

Introduction 
 
In this chapter the main characteristics of new advanced composite materials, such as 

carbon fiber reinforced polymers (CFRPs) and Fiber-glass aluminium (FGA) laminates 

are described. Their typical fabrication processes are reported and a particular attention 

is dedicated to the mechanical properties of these composites. A briefly description of 

the applications in which the composite materials are employed is reported in the fourth 

paragraph. Moreover, the NDE topics related to the quality control during the 

manufacturing and in service of CFRPs and FGAs are shown. Finally, the description of 

the tested sample analysed in this thesis is reported. 

 

1. Fiber-reinforced polymer composite 

A fiber–reinforced polymer (FRP) composite is a combination of fibers within a matrix 

of a plastic or resin material. The fibers are the principal constituent in a FRP, they 

occupy the largest volume fraction in a composite laminate and share the major portion 

of the load acting on a composite structure. Proper selection of the type, amount, and 

orientation of fibers is very important, since it influences the following characteristics of 

a composite laminate, such as tensile and compressive strength and modulus, fatigue 

strength as well as fatigue mechanism, electrical and thermal conductivity, and cost. 

The fibers usually used are: 

 
• Glass 

• Carbon 

• Aramid (often known through the trade names Kevlar or Twaron) 
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Glass fibers are used for the majority of composite applications because they are 

cheaper than the main alternatives. There are different forms known by names like E-

glass (the most frequently used), and S2- or R-glass. The main characteristic s of glass 

fibres are their high strengths, moderate Elastic (or Youg’s) modules and density, and 

their low thermal conductivity. Special corrosion resistant glass fibres are also available.  

Carbon fibers, manufactured by the controlled carbonisation of organic precursors (such 

as the textile fibre PAN and pitch), are produced in many grades. The main 

characteristics of carbon fibres are their high strengths and Young’s module, and their 

very low densities and thermal expansivity. The characteristics of these fibres are often 

indicated in their commercial names by codes such as HS (High Strength), HM (High 

Modulus), UHM (Ultra High Modulus) etc. the wide range of fibre and properties that 

are available, offer the maximum possibility for optimisation of the material to provide 

properties specifically matched to a particular application.  

The aramid fibers are polymeric fibres, the main characteristics of which are their high 

strengths, impact resistance due to their energy absorbing properties, moderate Young’s 

module and low densities. Laminates formed from aramid fibres are known for their 

low compressive and shear strengths. The fibres themselves are susceptible to 

degradation from UV light and moisture but exhibit resistance to acids and alkalis. They 

are more resistant than other fibres to chemical attack from hydrochloric acid. Kevlar is 

the trade name of the original aramid patented by Dupont, and Twaron is the name of a 

similar fibre produced by Hexcel. 

The fibers can be used in three significantly different ways, with the performance 

changing for each. 

1. the highest performance in terms of strength in one direction comes from 

unidirectional fibers. The fibers are parallel and give their maximum possible 

performance in this single direction. 

2. by arranging the fibers in a weave or mat, strength can be gained in more directions, 

although the limit strength is reduced. 

3. by chopping the fibers into short lengths and arranging them randomly, equal 

strength is achieved in all directions. This is generally the cheapest technique, used 

for the least structurally demanding cases. 

The role of the matrix in the fiber-reinforced composite is to transfer stress between the 

fibers, to provide a barrier against an adverse environment, and to protect the surface of 

the fibers from mechanical abrasion. The selection of the matrix has a major influence 
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on the interlaminar shear as well as in-plane shear properties of the composite material. 

The interlaminar shear strength is an important design consideration for structures under 

bending loads, whereas the in plane shear strength is important under torsional loads. 

The matrix provides lateral support against the possibility of fiber buckling under 

compression loading, thus influencing to some extent the compressive strength of the 

composite material. The interaction between the fibers and matrix is also important in 

designing damage-tolerant structures. Finally, the processability and defects in a 

composite material depend strongly on the physical and thermal characteristics, such as 

viscosity, melting point,  and curing temperature of the matrix.   

The polymeric matrices are divided into two major groups: thermoplastics and 

thermosets.  

 

 

 

 

 
 

 

 

Figure 1: Example of repeating units in polymer molecules in polypropylene. 

 

In a thermoplastic polymer, individual molecules are linear in structure with no 

chemical linking between them (fig.1). they are held in place by weak secondary bounds 

(intermolecular forces), such as van der Waals bonds and hydrogen bounds. With the 

application of heat and pressure, these intermolecular bonds in a solid thermoplastic 

polymer can be temporarily broken, and the molecules can be moved relative to each 

other to flow into new positions. Upon cooling, the molecules freeze in their new 

positions, restoring the secondary bonds between them and resulting in a new solid 

shape. Thus, a thermoplastic polymer can be heat softened, melted, and reshaped 

(postformed) as many times as desired. 

Examples of thermoplastics matrices are: 

• polyamides (nylon) 

• thermoplastic polyesters (e.g. PET) 

• polypropylene 

 

Repeating 
Unit 
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All this material can be used on their own, but can benefit from the reinforcing provided 

by fibers. 

 

 

 

 

 
 

 

 

Figure 2: Example of repeating units in polymer molecules in nylon 6-6 molecules. 

 

In a thermoset polymer, on the other hand, the molecules are chemically joined together 

by cross-link, forming a rigid, three-dimensional network structure (fig.2). Once  these 

cross-link are formed, during the polymerisation reaction (also the curing reaction), the 

thermoset polymer can not be melted and reshaped by the application of the heat and 

pressure. However, if the number (frequency) of cross-link is low, it may still be 

possible to soften them at elevated temperatures. 

The most commonly encountered thermoset polymers hat are used as matrices for fiber-

reinforced polymer (FRP) composites are: 

• polyesters 

• vynil-esters 

• epoxies 

• phenolics 
 

The advantages and the benefits offered by the FRP composites vary depending on the 

choice of resin, fibre and process of manufacture. There needs to be a process of 

optimisation of the design of the composite since not all of the best properties can be 

achieved at the same time. The main advantages of the FRP are summarized below. 

• weigh saving  

• time saving: its high strength-to-ratio means that components can be light and so  

construction time can be reduced in time-critical project, i.e. Bridge repairs. 

• Able to add to a structure: its high strength to weight ratio means that they can be 

add to a structures without further strengthening of existing structure 

Repeating 
Unit 
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• Low maintenance requirements: ideal where access is difficult or expensive, for 

example for high roofs, underwater. 

• Resistance to an harsh or corrosive environment 

• Impact resistance, can be designed to absorb blast or ballistic loads and other 

impacts. 

• Fire resistance, the FRP composites can be designed to meet the most stringent fire 

requirements. 

• Freedom of shape: moulding technique allow unique shape/complex geometry . 

 

2. Fabrication in fiber-reinforced polymers 

A wide range of processing methods is available for FRP composites, although 

generally the underlying principle is the same. There are differences between the 

technique available for thermoset and thermoplastic resins, due to their different 

properties. A thermosetting resin, which may be in either a liquid-solid state, is 

combined with an array of reinforcing fibres and, by the application of heat and/or 

pressure, combination is converted to a rigid mass as the resin polymerises. One of the 

most important features of the manufacture of polymer composites is that the structural 

material (i.e. the composite) and the product are formed simultaneously in a single 

process. Composite structures may be building in situ from the raw materials, as in hand 

lay-up methods, or they may be made by shaping semi-finished products, in which the 

components are already combined in the correct properties. In the case of reinforced 

thermoplastics the fibers are combined with a polymer, which is already polymerised so 

that the final fabrication is a forming process only. The manner of combining fibers and 

matrix into a composite material depend on the fiber/resin combination and on the scale 

and geometry of the structure to be manufactured. The microstructure and the properties 

of the end product will depend on the fabrication process that is chosen in order to meet 

specific design requirements. 

 

Poltrusion 

In the poltrusion process (fig.3), tightly packed tows of fibers, impregnated with 

catalysed resin, are pulled though a shaped die to form highly aligned, continuous 

sections of simple or complex geometry.  
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Figure 3: The poltrusion process (SO system Ltd) 

 

Curing of the resin may be achieved either by heating the die itself or by the use of 

dielectric heating. Solid and hollow sections may be produced by this process, and 

because of the high content /70% by volume is achieved) and the high degree of fibre 

alignment resulting from the tensile force used to pull the fibre bundle through the die, 

extremely good mechanical properties can be obtained(the highest achievable in any 

variety of composite). Off-axis fibres may also be introduced into the structure if 

required. Typical applications of pultruded shaped are concrete reinforcing bars and 

space frames, I beam etc. Some of the most common manufacture techniques are 

described as following. 

 

Filament winding 

Cylindrically symmetric structures such as pressure vessel, tanks and a variety of pipes, 

can be made by winding fibres. This technique involves the building up of layers of 

fibres impregnated with the resin by winding them on a rotating frame. Generally, 

continuous length of carbon fibers is used in this technique. Carbon fibres are passed 

through a bath containing the thermosetting resin and wound around a mandrel in the 

conventional manner according to a programmed lay-up pattern, and then cured to yield 

a plastic structure which is strengthened and stiffened in the desired direction. There are 

two types of patterns used in this technique: helical winding in which a fixed angle is 

chosen; and biaxial winding where two winding angles (0° and 90°) are selected. 

Helical winding is more common because of its simplicity, but biaxial winding enables 

the structure with special design and property. Filament winding has been used to 

aerospace hardware, sporting goods, and components for the automotive industry. 
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Hand lay-up technique 

This is a manual process, using simple inexpensive items of equipment, and suitable for 

crosslinkable plastic resins. The normal basis of the method is a unidirectional fabric 

where most of the yarns or bundles of fibers are in the warp direction, with just a few 

weft yarns to provide location (fig.4a).  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4: (a) unidirectional fabric; (b) the principle of hand lay up, (c) basic press (compression) 
moulding.  
 

It is a flimsy fabric which is easy to distort. The simplest mould surface is a flat 

polished sheet of glass, metal or wood. The waxed sheet is covered with a thin coat of 

unreinforces crosslinkable resin (called a gelcoat), then covered with the fabric, taking 

care to ensure that the fibres are as aligned as possible. Resin (with added catalyst and 

accelerator) is then poured on, and ribbed rollers are used to wet out the cloth, coating 

each fibre, removing air pockets (voids), and consolidating the lay up (fig. 4b). in such a 

basic process it is difficult to ensure uniformity of thickness and volume fraction of 

fibres, and to ensure that the fibres are parallel. An alternative is to transfer the mold to 

a press, and squeeze out excess air resin, to obtain a more uniform product with a 

defined thickness. (fig 4c). 
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Pre-preg technique 

A prepreg is a convenient thin sheet of fibres traditionally pre-impregnated with a 

slightly crosslinked resin to hold the fibres in place. If the fibres are lined in one 

direction the prepreg is rather flimsy in the transverse direction. But overall a prepreg is 

much easier and cleaner to handle than any wet lay-p process, and the proportion of 

fibres is already precisely fixed, and usually high, typically in the range 0.5 to 0.7. 

prepreg are usually destined for the manufacture of high-performance precision 

laminates. It is also possible to make prepreg based on one of a small number of 

speciality thermoplastics. One basic process is to pull fibres from many large capacity 

spools through a resin bath, remove excess resin, and then wind the fibres helically on 

to a large diameter drum at a very small angle to the circumference. In this way a very 

thin-walled tube is made with the fibres arranged in the circumferential direction. The 

tube is then cut along its length, removed with great care from the drum, and flatted 

between the platens of a heated press. The heat causes the resin to just begin to 

crosslink, so it loses much or all of its stickiness and can then be conveniently handled. 

 

3. Mechanical properties 

In common with all structural materials, the behaviour of composites under cyclic or 

repetitive loading must be considered. The fatigue behaviour of composites differs from 

that of, say, steel. With steel, failure tends to result from the intermittent propagation of 

single crack, and the material even quite close to the crack is virtually unchanged. The 

inhomogeneous, and isotropic nature of composites results in fatigue damage in a 

general, rather than localised manner, and failure does not always occur through the 

propagation of a single crack.  

Damage modes for composites include fibre breakage, matrix cracking, debonding, 

delamination and transverse ply cracking, and the predominance of one mode, or the 

interaction of several is dependent on the properties of the fibre and resin. It is not 

certain whether composites exhibit the familiar “fatigue limit” known to users of steel. 

Few experimental results have shown any clear indication of such a limit, although in 

modern aircraft design the any clear indication of such a limit, although in modern 

aircraft design the concept of a zero-growth threshold for pre-existing damage is now 

being used. it is not safe to assume that fatigue can be ignored if working stresses are 

kept low (perhaps to avoid creep deformations). Stresses in the direction normal to the 
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fibres could possibly be high as a result of load/fibre misalignment, which could lead to 

fatigue damage. In order to minimize the risk from fatigue problems it is appropriate to 

make use of design data where available and sensible use of generous safety factors. 

Composites differ from conventional materials in the way in which they respond to 

stress. Under load, many local microstructural damage events occur, including resin 

crack, fibre breakage, local fiber/resin debonding, and delaminations. Depending on the 

particular laminates lay-up, the damage processing may begin to occur even at low very 

strain level and the accumulation of the damage strain continues as long as loading as 

sustained. This damage is usually widely distributed throughout the stressed composite, 

and in the early stages of life it does not seriously impair the load-bearing ability of the 

material. Moreover, this gradual accumulation of damage gives rise to changes in the 

material physical properties that can be detected by means of suitable optical, dielectric 

or ultrasound technique. This complex mode of damage accumulation has important 

implications for the toughness of composites and for their fatigue response. Because of 

the interaction of the effects of these microstructural damage mechanisms and their 

energy-absorbing ability, many fibre composites exhibit excellent toughness and 

resistance to impact by comparison with conventional engineering materials. The 

structural use of reinforced plastics depends on primarily on their mechanical response 

to load and also to their ability to absorb energy, either as a means of inhibiting crack 

growth or as a means of controlling the effects of impact. On the other hand, low 

velocity impacts may cause local sub-surface delaminations, which can result in a 

reduction in the compression strength. Indeed, the compression strength after impact 

(CAI) is used as an indicator of severity of impact damage sustained by a composite. 

In order to improve procedure to designing with this class of composite materials that 

accumulate damage under load, and permit their use beyond the point where damage is 

first initiated, the concept of damage-tolerance design has gained considerable attention 

in recent years. The concepts is not new: in effect it adopts the principle that the 

microstructural damage events, which can occur in the neighbourhood of a stress 

concentrator ( i.e. a crack) can have a beneficial effect in reducing the rate of crack 

growth in a manner somewhat analogous to that in which the plastic zone ahead of a 

crack tip in a metal can also inhibit crack growth. 
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4. Applications 

The basic characteristics important to all applications of carbon fiber composites are 

high specific strength and stiffness together with lightweight. There is a greater degree 

of flexibility in carbon fiber-reinforced materials, in that the strength and stiffness can 

be varied significantly in different areas of a composite part by selecting the type, form, 

and suitable orientation of the fiber in the composite and by controlling the local 

concentration of the fiber. In addition several physical properties of carbon fiber 

composite, such as their thermal stability, electrical conductivity, and corrosion 

resistance, can be varied by suitable choice of the matrix material and by varying the 

processing conditions for preparation of the composite. 

Aerospace has been a primary influence in the progress of CFRP and still constitutes the 

largest market sector[1-3]. This expansion is likely to take place in using CFRP in 

helicopter and civilian aircraft. In addition, consumption in military aircraft and other 

space and defence applications is also likely to increase. carbon fibers are preferred in 

those stiffness-critical components where design specifications on deflection limits, 

buckling, and dynamic response cannot be met without them. Important advances 

include major use of CFRP for control surface (e.g. spoilers and ailerons) and tail plane 

assemblies for the Airbus 320 and Boeing 777 aircraft. These high successful passenger 

planes not only use CFRP extensively foe secondary structures such as fairings, brakes, 

spoilers, ailerons, landing gear, and doors  but also employ CFRP in the vertical and 

horizontal fins in the A310 and 320 Aseries, making them the first passenger planes to 

use a composite in their primary structure. The new generation of military combat 

aircraft fabricated by French company, Dassault Aviation, has also utilized composite in 

a large portion of structure design [4]. In this structure the composite materials represent 

approximately 24% of the airframe mass and 70% of the wet surface. The most 

significant area of the application of CFRP has been in the main and tail rotor blades of 

helicopter, where the prospects for improved fatigue resistance over all metal blades and 

the greater freedom in design and fabrication have been recognized and exploited 

rapidly. The use of composite unidirectional prepeg permits better optimisation of rotor 

blade mechanical and dynamic characteristics, and they have demonstrated better static 

and fatigue strength than those of metal blades. The largest pieces of CFRP structure in 

service to date are to be found on a space vehicle, the NASA Space Shuttle. The 

payload bay doors of the Shuttle (fig.5), which are 18.3 meter long and 139.4 a square 

meter in area, are fabricated of CFRP [5].  



 103

 
Figure 5: A schematic drawing of the space shuttle 

 

This has resulted in an estimated weight saving of 23% over used as components in 

aluminium alloy. Laminates CFRP now flying successfully on several aircraft include 

land gear doors on the F-14 fighter and wing spoilers on more than 100 Boeing 737s in 

the NASA fleet. The floor decking of the Boeing 747 is also made from laminated 

carbon fiber prepeg and Dupont’s Nomex® aramid. The CFRP has applied also in some 

marine applications where the demand of light-weight and corrosion-reduced structure 

is increased. There is an increased interest in the development of the application of 

composites in the structure components of ships and submarine. A significant technical 

limitation of the composites used on the ships or submarine is the combustible nature 

(fire, smoke, and toxicity) of the organic matrixes based composites. Because the safety 

requirement is more stringent, the composite materials used on the US Navy vessels is 

requested to be sufficiently fire resistant not to be a source of spontaneous combustion. 

Among the many possible thermoset resins, phenolic resins have the inherent 

characteristics of low flammability, produce little smoke on burning, and have good 

thermal stability. The Asean Lady motor cruiser, the world’s largest CFRP boat, has 48 

m long hull and deck made up to Torayaca CFRP to reduce weight and thus higher 

speeds. 

Also the racing car industrial world pays mach attention to the CFRP composites. In 

particular, the Formula 1 race cars in the last ten years increased the use of the new 

advanced materials, especially CFRP[6]. More and more components, such as wings, 

have been replaced by the carbon fiber reinforced composite materials.  
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Figure 6: Simplified modification of the structural components of 1991 McLaren MP4/6 racing car made 
from carbon fiber composites. 
 

Figure 6 shows a schematic drawing of the composite parts of the 1991 McLaren MP4/6 

racing car [7]. This formula 1 raging car consists of approximately 75% by weight of 

carbon fiber composites in the structure, resulting in a higher performance and safety for 

its occupant. Crash safety is a very important aspect pf racing car design. The enormous 

energy absorbing capability of fibre reinforced composite has largely reduced the 

instance of serious injury in the race. The structural component of racing cars are 

mainly composed of continuous fiber reinforcement, thus, the stiffness and strength of 

the composite is dominated by the fiber properties. The applications of composites in 

today’s rail vehicles are mainly adopted on the three-dimensional molded nose cap at 

the front part of trains and internals of passenger train [8]. The carbon fiber reinforced 

composite incorporated train structure saves about 30-40 % weight than a conventional 

steel cab, and exhibits a strong impact resistance to prevent penetration by a 0.9 Kg 

steel cube when travelling at 350 km/hour. A recent French TGV high speed train was 

fabricated with different types of composites for the nose section, to provide extra 

rigidity and resistance to impact when runs as high as 300 km/hour. 

 

5. NDE of composite materials 

The high stiffness to weight ratio, low electromagnetic reflectance and the ability to 

embed sensors and actuators has made fiber-reinforced composites an attractive 

construction material for primary aircraft structures. 

1. Monocoque and bulkheads 
2. Seat-back and seat 
3. Crash resistant nose box 
4. Aerodynamic top-body 
5. Nose cone 
6. Front wing and flaps 
7. Front wing end-plates 
8. Radiator ducts 
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Currently, there are several critical issues that are still challenging the NDE community 

with regards to inspection of composites.  

 
      Table 1: Effect of defects in composite materials 

Defect  Effect on the material performance  

Delamination 

Catastrophic failure due to loss of interlaminar 
shear carrying capability. Typical acceptance 
criteria require the detection of delaminations that 
are > or = 0.64-cm.  

Impact damage 
The effect on the compression static strength  
•  Easily visible damage can cause 80% loss  
•  Barely visible damage can cause 65% loss  

Ply gap 

Degradation depends on stacking order and 
location.  
For [0,45,90,-45] 2S laminate:  
•  9% strength reduction due to gap(s) in 0 o ply  
•  17% reduction due to gap(s) in 90o ply  

Ply waviness 

•  Strength loss can be predicted by assuming loss 
of load-carrying capability.  
•  For 0o ply waviness in [0,45,90, -45]2S laminate, 
static strength reduction is:  
•  10% for slight waviness  
•  25% for extreme waviness  
•  Fatigue life is reduced at least by a factor of 10  

Porosity 

•  Degrades matrix dominated properties  
•  1% porosity reduces strength by 5% and fatigue 
life by 50%  
•  Increases equilibrium moisture level  
•  Aggravates thermal-spike phenomena  

Surface notches 

•  Static strength reduction of up to 50%  
•  Local delamination at notch  
•  Strength reduction is small for notch sizes that 
are expected in service  

Thermal Over-exposure 
Matrix cracking, delamination, fiber debonding 
and permanent reduction in glass transition 
temperature  

 
These issues include:   

• Material Properties Characterization: Production and service conditions can lead to 

property degradation and sub-standard performance of primary structures. Causes for 

such degradation can be the use of wrong constituent (fiber or matrix), excessive 

content of one of the constituent (resin rich or starved), wrong stacking order, high 

porosity content, micro-cracking, poor fiber/resin interface aging, fire damage, and 

excessive environmental/ chemical/radiation exposure. Current destructive test 
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methods of determining the elastic properties are using representative coupons. 

These methods are costly and they are not providing direct information about the 

properties of represented structure.  

 Need for Rapid Large Area Inspection: Impact damage can have critical effect on the 

structure capability to operate in service (see Table 1). This critical type of flaw can 

be induced during service life anywhere on the structure and it requires detection as 

soon as possible rather than waiting for the next scheduled maintenance phase. 

Repeated application of conventional NDE for verification of the structural integrity 

can be very expensive and takes aircraft out of their main mission. Since impact 

damage can appear anywhere, there is a need for a low-cost system that can be used 

to rapidly inspect large areas in field condition.  

 Real-Time Health Monitoring: A system of health-monitoring is needed to reduce 

the periodic inspection, which requires the temporary removal of the aircraft from 

service. Fundamentally, such health monitoring systems emulate biological systems, 

where onboard sensors track the structural integrity throughout the life cycle. The 

life cycle starts from production and continues through service and it is essential to 

have an alarm to indicate that a critical parameter was exceeded.  

 Smart Structures: The availability of compact actuators, sensors and artificial 

intelligence has made it possible to develop structures that self-monitor their own 

integrity and use actuators to avoid or timely respond to threats. The changing 

environment or conditions can be counteracted by adequate combination of actuators 

and sensors that change the conditions and/or dampen the threat. Artificial 

intelligence can be used to assure the application of the most effective response at 

the shortest time. An example of the application of smart structures is the reduction 

of vibrations that lead to fatigue.  

 Residual Stresses: Current state of the art does not provide effective means of non-

destructive determination of residual stresses. Technology is needed to detect and 

relieve residual stresses in structures made of composite materials.  

 Weathering and Corrosion Damage: Composites that are bonded to metals are 

sensitive to exposure to service fluids, hygrothermal condition at elevated 

temperatures and to corrosion. Particular concern rises when aluminium or steel 

alloys are in a direct contact with graphite/epoxy or with graphite/polyimide 

laminates. The graphite is cathodic to aluminium and steel and therefore the metal, 

which is either fastened or bonded to it, is eroded. In the case of graphite/epoxy, the 
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metal deteriorates, whereas in the case of graphite/polyimide defects are induced in 

the composite in the form of microcracking, resin removal, fiber/matrix interface 

decoupling and blister (e.g. delaminations). When an aluminium panel is coupled to 

a Gr/Ep protective coating the aluminium is subjected to a significant loss of 

strength. To prevent26 such degradation, a barrier layer is needed between the metal 

and the graphite/epoxy, where many times glass/epoxy or Kevlar/epoxy layers are 

used. 

 

6. Test specimens 

In this thesis two kind of composite materials have been analysed: CFRPs and FGA (or 

GLARE®). The CFRP tested samples were multidirectional composites 70-mm x 70-

mm based on an epoxy-matrix (HMF 934) reinforced with prepeg layers made of T400 

carbon fibres fabricated by hand lay-up and autoclave curing. The fibre content in the 

composite was 55% by volume. Each sample is made of six blocks of layers stacked 

together, and each block has a number of overlapping layers with the same fibre 

orientation, as shown in Figure 7. The number of layers in each block depends on the 

total thickness of the sample, which ranges from 2-mm to 4-mm. 

The multidirectional specimens were loaded at the centre by a hemispherical steel 

indenter, having a diameter of 12.7-mm, and falling from different heights using a drop 

weight tower machine. Specimens with a thickness of 2-mm, 3-mm and 4-mm thick 

samples were damaged with impact energies ranging from 1.8J up to 36J.  
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Figure 7. (a) Stacking sequence of a multi-layer sample [(0/90),±45]S; (b) fibre orientations. 

 

Moreover, the FGAs tested in this work were made of 2024 T3 aluminium 0.3-mm 

thick sheets and FM94 S2-glass/epoxy pre-peg 0.125-mm thick layers. The resin 

content in the pre-peg was 27% by weight. The stacking sequence of the specimens is 

shown in Figure 8. 

Square specimens, 150 mm x 150 mm x 1.32 mm, were adopted for the impact tests. 

The latter were performed in a CEAST modular falling weight machine type MK3, 

equipped with a DAS 4000 data acquisition system, using a hemispherical steel 

impactor 15 mm in diameter and 2.1 kg in mass, which struck the sample at the centre. 

Different damage depths were produced in the material by varying the impact energy U, 

setting suitably the impact height. In particular, three energy levels U = 12 J, 20 J and 

36 J were adopted. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 8:  (a) Stacking sequence, and (b) cross section of the FML specimens examined. 
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Chapter 4 
 
Electromagnetic characterization of Carbon 
Fiber Reinforced Polymers (CFRPs) 
 
 
 

Introduction 
 

Carbon fiber reinforced polymers (CFRPs) are new advanced composite recently used 

in the aerospace structures. The well know properties that contribute to the success of 

composite within the industry application are weight reduction, corrosion resistance, 

high thermal stability, freedom of design, cost reduction and increased performance. 

Because these structures are exposed to impact loading (dropping of tool, stone, bird 

strike, etc.) non-destructive testing (NDT) to detect defects occurring in the structures is 

very important for safety reasons. Impacts are the main cause of delamination in 

composite reducing their residual strength by up 50%. Moreover, the low energy 

impacts often leave the top surface of the component unchanged but produce internal 

deformation and matrix breaking of the back surface of the component. The 

heterogeneous and anisotropic composition makes such materials complex structures to 

inspect using conventional non-destructive testing method.  A reasonable alternative to 

the conventional NDT technique is represented by the superconducting quantum 

interference device (SQUID), that thanks its high magnetic field sensitivity even in a 

low frequency range, can be considered as suitable sensor for detection of defects in 

CFRPs materials.   

In this chapter a characterization of electromagnetic and electromechanical properties of 

CFRPs material by using eddy current based HTS dc-SQUID magnetometer is 

performed.  Unidirectional and cross-ply [(0/90), ±45]3s CFRPs with thickness ranging 

from 2mm to 4mm have been analysed. The electromagnetic non destructive and 

contact less technique based on SQUID sensor has been mainly applied. The results 

obtained using the SQUID prototype have been compared and joined with results of 

traditional diagnostic methods such as Eddy Current with induction coil and 

Ultrasounds.    
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In the first section a preliminary evaluation of the electrical conductivity has been 

carried out using the traditional four probe method. The electrical resistance variation 

respect to thickness and the conductivity values for the unidirectional and cross ply 

material has been compared.  

In the second section electromagnetic properties such as the shielding capability of the 

CFRPs respect to electromagnetic wave has been investigated. The SQUID 

magnetometer has been located behind the test sample, and the transmitted 

electromagnetic dipole signal through the samples has been revealed.  

In the third section the electromechanical properties has been studied using the four 

probe technique and the SQUID based prototype. A bending stress has been applied to 

the test sample and the variation of magnetic field has been measured during a loading 

cycle. The results of the SQUID system have been compared with the electrical 

resistance variation measured using the traditional four probe technique.  

In the fourth section the characterization of damage produced by impact loading using 

the eddy current technique based on SQUID magnetometer is presented. The damage 

process in the CFRPs plays an important role especially for the aeronautical and 

aerospace applications. Therefore, it is very useful to understand the mechanical 

response of these materials after impact loading produced during service and 

manufacture time. For this reason defects similar to the real damage, caused by the hail 

or bird strikes, have been made artificially. To characterize damage from the early stage 

(not visible to naked eyes) to the sample perforation a range of impact energy from 1.8 J 

to 16 J have been considered.  

The fifth section has been dedicated to the magnetic field imaging representation used 

to localize defects in the composite structures. It has been demonstrated that the maps of 

the magnetic field data don’t give directly information about the extension and the local 

position of the structural deformations. Therefore, some techniques, such as the 

Artificial Neural Network, have been presented to overcome this limitation. The 

advantages and the drawbacks of this method will discuss. Moreover, the damage 

localization using the magnetic field flux representation is reported. The results obtained 

applying the magnetic flux imaging has been compared with the results achieved using 

traditional non destructive techniques such as Eddy Current with induction coil and 

Ultrasound.  
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The last section deals with the analysis of the interphase fiber-matrix using an Atomic 

Force Microscopy (AFM). This analysis aim to understand the relation between the 

damage process of the CFRPs and the deformation of the fibers into the epoxy matrix. 

 

1. Electrical Conductivity 

An estimation of CFRPs electrical conductivity using the conventional four-probe 

technique has been carried out. This is a very simple and assessed method to measure 

the electrical conductivity. The four probes consisted of two outer current probes that 

fed d.c current inside the sample and two inner voltage probes for the voltage 

measurement. The connection between the current probes and the test samples is 

realized by two copper electrodes located at the ends of the sample as shown in figure 1.  

 

 

 

 

 

 

 

Figure 1: Configuration of the four probes. 

 

It is necessary to remove the insulating coating layer from the sample surface to obtain 

good connections between the electrodes and the fibers. Increasing the d.c. current using 

a current supply HP 3245, the I-V characteristic has been obtained measuring the 

voltage by means of HP 34401. Then, thanks the linear trend between the I and V, 

applying the Ohm law, the electrical resistance R has been calculated. Let L and S the 

length between the two inner voltage probes and the cross-section of the test sample 

respectively, the resistivity can be written as: 

RS
L

ρ =  

where the electrical conductivity is: 

RS
L

==
ρ

σ 1  

Inner voltage probes

Outer current probes
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in the above equation the unit are ρ = [Ω•m] and σ = [1/(Ω•m)] = [S/m]. 

The unidirectional test samples with dimensions of 29mm x 12.5mm x 2.1mm has been 

used to measure the longitudinal (0° direction) and transverse (90° direction) fiber 

electrical resistance. In the first case the current is injected in the fiber direction, while 

to measure the  resistance at 90° the current flow perpendicularly to fibers orientation. 

In figure 2(a) the I-V characteristic related to the longitudinal resistance of the 

unidirectional sample is reported. 

 

 

 

 

 

 

 

Figure 2: V-I characteristic of unidirectional sample along the fiber direction (a) and transverse to the 
fiber direction. 
 

The linear fit of the voltage versus current curve gives the resistance value. The 

electrical resistance value in the 0° direction is 0.050Ω with a conductivity of 22095± 

5% S/m. 

In the same way, the transverse resistance and conductivity of the unidirectional CFRPs 

have been estimated. In this case the V-I characteristic, obtained injecting the current 

perpendicularly to the fibers, is shown in figure 2(b). The resistance is R=51Ω, and the 

conductivity is σ =21.4±5% S/m. 

The difficulty of the current to flow through the insulating matrix is reflected by the 

lower transverse conductivity value respect to the longitudinal value, due to the current 

path along the fiber direction. The results demonstrate the low electrical conductivity of 

the CFRPs respect to the metallic material and especially their electrical anisotropy due 

to the carbon fiber orientations. 

The measurement of the cross-ply resistance has been performed with the same 

technique applied above.  

 

 



 114

 

 

 

 

 

 

 

Figure 3: V-I characteristic for cross-ply sample. 

 
In figure 3 the I-V of the cross-ply is shown and the corresponding linear fit gives a 

resistance of R=0,16Ω and a conductivity σ = 7633±5% S/m. It is important to note that 

in this case is not possible to distinguish transverse and longitudinal resistance because 

of different fiber layers orientations. In each layer the injected current goes through 

different resistance value, so that the measured conductivity could be considered as an 

average value, produced by the current that can flow between the electrodes.  The 

experimental results related to the resistance and the conductivity of the unidirectional 

and cross-ply samples are summarized in Table1. 
 

Table1: Summary of the electrical properties of unidirectional and cross-ply composites. 

Specimen Resistance (Ω) Conductivity (S/m) 

Unidirectional Rlongitudinal= 0.050 σ=22095 

Unidirectional Rtransverse= 51 σ = 21.4 

Cross-ply Rmean= 0.158 σ =7633 

 

The results shown in the Table 1 reveal the CFRPs anisotropic electrical conductivity 

that depends on the different fibres orientations respect to the current direction. The 

resistance and conductivity values of the cross ply samples are included in the 

transverse and longitudinal unidirectional because of their anisotropy fiber 

configuration. It is interesting to note that the electrical resistance of cross ply depends 

on samples thickness. The measured test specimens have a length of 60mm and a width 
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of 5mm and 12mm. For each width the thickness is 2mm, 3mm and 4mm. In figure 4 

the V-I characteristics for these samples are reported. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: I-V curve for cross-ply samples with width of 5mm (left) and 12mm (right). The resistance 
values for each thickness are reported.  
 
In Tables 2 and 3 the electrical properties for the tested specimens are summarized. It 

could be noted that increasing the thickness the electrical resistance decreases for both 

the samples with width of 5mm and 12mm. 

 
Table 2: The electrical resistance and conductivity of cross-ply composites 5mm width 
 
 
 
 
 
 
 
Table 3: The electrical resistance and conductivity of cross-ply composites 12mm width 
 

 

 
 

Moreover, the broader sample the higher the conductivity for each thickness. These 

results demonstrate that the electrical properties of the CFRPs could depend on the 

specimens’ thickness.    

It is important to note that the results obtained applying the four-probe method are an 

approximation of the CFRPs electrical resistivity produced by only the composites 

conducting components. Taking into account that the matrix is characterized by a very 

low conductivity value σ = 10-8 S/m [1], the estimated resistance value depends mainly 

on the presence of the carbon fibers. It means that the fibers length and both the volume 

Thickness (mm) Resistance (Ω) Conductivity (S/m) 
2 0.76 7882 
3 0.55 7310 
4 0.48 6306 

Thickness (mm) Resistance (Ω) Conductivity (S/m) 
2 0.25 10163 
3 0.16 10097 
4 0.14 8509 
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content of fibers and their orientation respect to the direction in which the current is 

injected are very important to characterize electrically these materials [2,3,4]. Even if 

the results obtained using the four probe method depends on the sample fiber orientation 

respect to the injected current direction, they are confirmed by results reported in 

literature obtained using different measurement techniques [5]. 

 

2. Electromagnetic properties 

The value of the electrical conductivity is useful to estimate the CFRPs penetration 

depth δ that is very important when an electromagnetic field invests the material. 

According to the Maxwell equations the penetration depth of  e.m. plane wave inside a 

material is described as [6]: 

f⋅⋅⋅
=

σπµ
δ 1  

where f is the frequency of the e.m. source, σ is the electrical conductivity of the 

material and µ the magnetic permeability . In Table 4 the penetration depth in a 

frequency range from 25 kHz to 3MHz for the unidirectional (considering the 

longitudinal conductivity) and cross-ply samples are reported.      

                                                                                                                                                                
Table 4: Penetration depth of unidirectional and cross-ply composites. 
 

 

 

 

For each frequency the unidirectional CFRPs have a penetration depth value lower than 

the cross-ply samples, because of their higher electrical conductivity. The decreasing of 

the penetration depth increasing the frequency means that the CFRPs could be 

considered an electromagnetic interference (EMI) shielding material, in appropriated 

frequency range. 

When an e.m. wave goes through a  material three events are possible: transmission,  

reflection and absorption. Reflection is due to the impedance mismatch between the air 

and the sample at the frequency of interest; absorption happens because of the energy 

dissipation during the interaction of the e.m wave with the material. Because of the 

Frequency δ(mm) Unidirectional δ (mm) Cross-Ply 
25 kHz 21.3 36 
600 kHz 4.4 7.4 
1 MHz 3.4 5.7 
3 MHz 1.9 3.3 
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inhomogeneities within the material multiple reflections are possible too. Typically, to 

evaluate the shielding capability of a material the EMI shielding effectiveness (SE) is 

defined as: SE(dB)=10 log10(Ii/It) where Ii and  It are the intensity of the incident and 

transmitted beam, respectively. Concerning the SE definition, it follows that the higher 

the SE value in decibel, the less energy passes through the sample. In particular, it has 

already demonstrated [7] that the higher the resistivity, the lower the shielding 

effectiveness and the higher the attenuation upon reflection. Taking into account the 

values of the resistivity reported in Table 4, it is possible to note that the unidirectional 

CFRPs can be considered more conducting, more reflecting and more shielding than the 

cross-ply samples. 

Using the Eddy Current technique based on SQUID magnetometer some experiments 

about the propagation of the electromagnetic wave through CFRPs materials have been 

carried out. The magnetic. signal is produced by a dipole source represented by a wire-

wound circular coil with a diameter of 5mm, positioned behind the test sample (see 

figure 5) and fed with a.c. current of 5mA at 15 kHz. At this frequency the e.m. wave 

skin depth is higher than the samples thickness. Using the SQUID magnetometer 

located few millimetres far from the sample surface, the in plane component, Bx, of the 

magnetic field, generated by the dipole source, has been detected along a 40 mm length 

scanning. 

 

 

 

 

 

Figure 5: Schematization of the experimental set up used to measure the electromagnetic shielding 
properties of CFRPs. 
 
The dipole source signal in air and its propagation through unidirectional and cross-ply 

samples, with different thickness, have been measured and the reflected percentage of 

the magnetic source signal is deduced.  
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Figure 6: Magnetic signals of the dipole source and its propagation through cross-ply samples with 
thickness of 2,3 and 4mm. 
 

In figure 6 the comparison of the dipole source signal in air and through cross-ply 

CFRPs with thickness of 2mm, 3mm and 4mm, have shown. 

The black line represents the in-plane component of the magnetic field due to the dipole 

source measured in air. This signal is consistent with the magnetic field signal obtained 

using the analytical equation: 
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It could be noted that increasing the thickness of the specimens the attenuation 

increases. In other words the signal transmitted through the sample prevails on the 

reflected signal so the lower the amplitude the higher the reflection. In particular, the 

peak-to-peak difference between the maximum amplitude of the dipole source signal in 

air respect to the maximum amplitude of the propagated signal, gives the amplitude of 

the reflected signal of each thickness. 

In figure 7 the reflected and propagated magnetic filed percentage versus the cross-ply 

sample thickness is reported. Increasing the thickness the reflected signal decreases as a 

consequence the transmitted wave increases, so the higher the thickness the less 

reflection. 
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Figure 7: Reflected and transmitted magnetic field percentage for cross-ply samples with thickness of 2,3 
and 4mm.  
 

In the previous paragraph, it has been demonstrated (Table 2 and 3) that the 4mm cross-

ply sample has a conductivity lower than the 2mm and 3mm thick samples, therefore its 

reflection capability is lower. Moreover, it can be interested to evaluate the shielding 

capability of the unidirectional composites which have an anisotropic conductivity. 

Changing the orientation of the SQUID magnetometer respect to the fiber orientation, 

two configurations have been realized. In the first one, the SQUID sensitive area is 

parallel to the fibers, and the propagation due to the longitudinal conductivity is 

measured, In the second one, the SQUID sensitive area is normal to the fibers. These 

two configurations are called longitudinal and transverse, respectively, and they are 

shown in figure 8. 

 

 

 

 

Figure 8: Unidirectional CFRPs in the longitudinal (left) and transverse(right) configuration. 

 

In figure 9 the comparison of the magnetic source signal in air and attenuated by the 

unidirectional CFRPs in longitudinal and transverse configurations are shown.  
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Figure 9: magnetic signals of the dipole source and its transmitted intensity through unidirectional 
CFRPs for the longitudinal and transverse configurations. 
 

The amplitude of the transmitted wave due to the transverse conductivity is higher than 

the amplitude due to the longitudinal fibers orientation. In other words, the transverse 

configuration reflects less than the longitudinal configuration, because of its lower 

conductivity due to the high resistance between the fibres. As a result the in plane 

components of the electromagnetic field are reflected with different intensity, because 

of the electrical anisotropy of the unidirectional samples. It is also interesting to 

compare the magnetic signal propagation for the two unidirectional configurations and 

the cross-ply samples.  

 

 

 

 

 

 

 

 

 
Figure 10: Comparison of magnetic dipole source in air, its transmitted intensity through unidirectional 
longitudinal and transverse CFRPs configurations, and in presence of a cross-ply sample. 
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As expected the cross-ply signal is included between the two unidirectional 

configurations, so it can be concluded that the unidirectional composite reflect much 

more than the cross-ply when the in plane component of the magnetic field orthogonal 

to the fiber orientation is considered. These results are shown in figure 10.  

In Table 5 are summarized the value of the reflection and transmission for the three 

different fiber orientation: longitudinal, transverse and cross-ply. 

 
Table 5 : percentage of the reflected and transmitted magnetic field 
 

 

 

 

 

 

 

Moreover, the results related to the shielding capability of the CFRPs demonstrate the 

high sensitivity of the SQUID sensor to distinguish the anisotropic very low 

conductivity of the unidirectional composites.    

It could be noted that thanks the shielding capability of the CFRPs, these materials can 

be considered useful for lightning protection, electrostatic dissipation and as a 

microwave waveguides.  

 

3. Atomic force microscopy (AFM) analysis 

The Atomic Force Microscope (AFM ) is being used to solve processing and materials 

problems in a wide range of technologies affecting the electronics, telecommunications, 

biological, chemical, automotive, aerospace, and energy industries. The materials being 

investigating include thin and thick film coatings, ceramics, composites, glasses, 

synthetic and biological membranes, metals, polymers, and semiconductors. The AFM 

is being applied to studies of phenomena such as abrasion, adhesion, cleaning, 

corrosion, etching, friction, lubrication, plating, and polishing. By using AFM one can 

not only image the surface in atomic resolution but also measure the force at nano-

Newton scale. The principles on how the AFM works are very simple. An atomically 

sharp tip is scanned over a surface with feedback mechanisms that enable the piezo-

electric scanners to maintain the tip at a constant force (to obtain height information), or 

Fiber orientation Transmission Reflection 

Unidirectional longitudinal 87% 13% 

Cross-ply 86% 14% 

Unidirectional transverse 84% 16% 
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height (to obtain force information) above the sample surface. Tips are typically made 

from Si3N4 or Si, and extended down from the end of a cantilever. The nanoscope AFM 

head employs an optical detection system in which the tip is attached to the underside of 

a reflective cantilever. A diode laser is focused onto the back of a reflective cantilever. 

As the tip scans the surface of the sample, moving up and down with the contour of the 

surface, the laser beam is deflected off the attached cantilever into a dual element 

photodiode. The photodetector measures the difference in light intensities between the 

upper and lower photodetectors, and then converts to voltage. Feedback from the 

photodiode difference signal, through software control from the computer, enables the 

tip to maintain either a constant force or constant height above the sample. In the 

constant force mode the piezo-electric transducer monitors real time height deviation. In 

the constant height mode the deflection force on the sample is recorded. The latter mode 

of operation requires calibration parameters of the scanning tip to be inserted in the 

sensitivity of the AFM head during force calibration of the microscope. The primary 

purpose of these instruments is to quantitatively measure surface roughness with a 

nominal 5 nm lateral and 0.01nm vertical resolution on all types of samples. Depending 

on the AFM design, scanners are used to translate either the sample under the cantilever 

or the cantilever over the sample. By scanning in either way, the local height of the 

sample is measured. Three dimensional topographical maps of the surface are then 

constructed by plotting the local sample height versus horizontal probe tip position [8]. 

In this thesis a Multi Mode AFM  (Atomic Force Microscopy) Digital Instruments 

Nanoscope IIIa® has been used to investigate the tomography  of carbon fiber surfaces 

and to analyse interphase between the fibre and the matrix of the CFRPs test samples. 

The application of this technique aim to understand what happen in composites between 

the matrix and the fiber from a microscopic point of view. The AFM microscopy has 

been used in the configuration of  Contact Mode (CM) and  Tapping Mode (TP) [8-10]. 

In the first case the cantilever is in contact with the surface sample so the display of the 

surface roughness of fibers as a function of the position is obtained. In the TP Mode the 

amplitude of the deflection of an oscillating cantilever tip is used to obtain the sample 

surface image. In both configurations the vertical resolution is few Angstrom and the 

spatial resolution in x-y plane is about few nanometres. The test samples analysed using 

the AFM technique was cut from the specimens investigated by using the 

electromagnetic technique. In particular unidirectional and cross-ply samples of 

dimensions 10 mm x 10 mm and 2 mm thickness were positioned under the cantilever.  
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In figure 11(left) the scanning surface 10 x 10 µm of a virgin cross-ply (0/90) is shown. 

The fibers texture due to the fiber orientation which characterized the composite layer is 

evident.   

 

 
Figure 11:  (left) 10 x 10 µm surface map of virgin sample, (right) 3-D 40 x 40 µm map of an internal 
layer measure in contact mode. 
 
To investigate the internal characteristic of the matrix-fiber interphase the sample 

analysed in figure 11 (right) was severed using a milling machine and the surface of an 

internal layer with the fiber orientation of  45° was obtained . In figure 11 (right) the 

AFM-CM 3-D image of cross-ply internal layer is reported. In this case it is very 

difficult to distinguish the fiber orientation respect to the surface roughness. The latter 

play an important role in the AFM analysis, in fact, they cause high bending of the 

cantilever in z direction so that a lost of its sensitivity. For this reason it is not possible 

to obtain an image that reflects the surface characteristics such as the fiber orientation 

and fiber-matrix adhesion. To overcome this problem a metallographic polishing of the 

samples surface has been performed. The samples have been fixed on the honing 

machine support (Buehler, Minimet 1000™)  using a thermoplastic resin, that could be 

removed from the sample after the polishing process without any structure alterations. 

The first stage of the polishing process was performed by means of  grinding discs with 

grain of 200, 400 and 800 mesh applied with a weight of about 6 lbs and a speed of 10 

mm/s. To rough the sample surface 5 cycles of 3 minutes  with the grinding discs of 200 

meshes was applied, after 3 cycles of 3 minutes using the other grinding mesh were 

carried out. The last step of the polishing was represented by the surface clining, using 

oily solutions made of alumina micrograins with dimensions of 3 µm, 0.1 µm e 50 nm, 

dissolved on velvet discs, and applied for each solution with a weight of 3 lbs and 

during 2 cycles of 3 minutes. 
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Figure 12: (left) unidirectional 100 x 100 µm, (right) 3-D imaging 50 x 50 µm, in contact mode, of a 
sample surface after a metallographic polishing. 
 
In figure 12 the 2-D and 3-D AFM CM analysis of a polishing unidirectional composite 

are shown. The orientation of the fiber is distinguishable and the estimated fiber 

diameter is from 4.5 to 6 µm. The holes between the fibers probably are due to the 

polishing process that could notches the epoxy matrix, more brittle than the carbon 

fibers. The latter appear levelled in the plane x-y because of the milling process, 

therefore is not possible to evaluate accurately their diameter.  These results 

demonstrate that even if the AFM analysis is capable to reveal the fiber orientations and 

matrix-fiber interface integrity,  the necessary polishing process, to delete the high 

roughness of the surface, can change the fiber surface properties. To overcome this 

limitation some tests have been performed with high accuracy to establish the best 

polishing process. It was necessary to minimize the drawbacks of the polishing process 

on the fiber–matrix interphase, when the damage due to loading stress on the CFRPs 

will be studied. The AFM imaging of samples  perforated by a quasi static loading has 

been carried out.  

 

 

 

 

 
 
Figure 13: Picture of the damage sample analysed using AFM technique. The white squares are the inner 
layers cut from the punched sample with fibers oriented at 45°. They are at 2mm and 5mm far from the 
center of the defect  in the 45° and 90° direction. 
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In figure 13 the picture of the damaged specimen is shown. The test specimens used in 

the AFM analysis are represented by the white squares, cut in the 90° and 45° direction 

at 2 cm and 5 cm from the edge of central defect. The analysed layers were internal 

layers with the fiber orientation of 45°. 

The aim of this analysis is to understand the damage propagation in an internal layer 

with fiber orientation of  45°, respect to the direction of 90° and 45°. In figure 14 the 

comparison between the 50x50 µm AFM imaging of the internal layer positioned at 

5mm far from the defect in the two directions, are reported. It could be noted that in 

both cases the fibers don’t present fractures and the interphase matrix-fiber integrity is 

preserved. It means that at 5 cm far from the defect, even when there is a perforation of 

the sample, there are not alteration and degradation of the fiber and the matrix-fiber 

adhesion.   

In fact, the fiber structure is distinguishable and any breaking or distortion are present 

especially in the 45° direction (figure 14(right)).  

 

 

 

 

 

 

 

Figure 14: AFM imaging of samples cut at 5mm from the defect in the direction 90° (left) and 45° 
(right). 
 

Figure 43 shows the comparison between the two directions (45° and 90°) of the 

specimens cut at 2 cm far from the defect. In this case the sample at 90° doesn’t show 

fiber rapture or fiber dislocation respect to the matrix. 

On the other hand, at 45° there is a changing of the fibers position of about few degrees. 

It means that in the direction parallel to the fiber orientation (45°) the defect 

propagation degrades the fiber-matrix adhesion. In particular, the matrix that is more 

brittle than the carbon fiber is removed and as a result the fiber can change its position.  
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Figure 15: AFM imaging of samples cut at 2mm far from the defect in the direction 90° (left) and 45° 
(right). 
 
In figure 15 (right) the evident displacement of the fiber is about 8.7 degree. This result 

demonstrates that the perforation of the sample produces a modification of the 

interphase fiber/matrix even far from the impacted point. The AFM imaging in Figure 

15 (b) shows that the damage produces a fiber displacement that generates, in the same 

time, an overlapping and separation of fibres. This alteration of the interphase 

fiber/matrix is the basic principle of the electromechanical effect presents in the CFRPs 

composite [11]. The electromechanical effect asserts that the fibers can reduce or 

increase their distances, consequently a change of resistivity arises. It is very interesting 

to note that the results obtained with the AFM technique demonstrate that an applied 

loading on a CFRP sample does not produce necessarily fiber rapture, but in the early 

stage it can degrade the matrix and change the fiber positions without their breaking.  

Further important information arises from the AFM analysis concerning the damage 

propagation respect to the fiber orientation. The results highlight that in the cross ply 

composite the damage moves forward the fiber orientation, for example, in a layer 

characterized by a fiber orientation at 45° the major damage of this layer is detected 

along the fiber direction (45°).  

The AFM analysis demonstrates an evident propagation of the damage inside the 

composite structure. Moreover the severity of the damage depends on the position and 

the fiber orientations. In particular the alteration of the composite mechanical and 

electrical properties is due not only by fiber breaking, but also by fiber displacements, 

that produce a variation of the electrical resistivity and a decreasing of the stiffness. 
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4. Electromechanical effect 

The CFRPs material are widely used in aerospace and aeronautical industry thanks the 

advantages that their offer such as excellent mechanical behaviour, good damage 

tolerance, high strength and rigidity with low weight, good corrosion resistance and 

suitability for the production of complex-shape components with reduced manufacture 

time. The composite structures are often subjected to cyclic loading that causes damage 

and material property degradation in a cumulative manner. Many researchers [12,13] 

have investigated the relation between the mechanical damage and the change of 

electrical conductivity under the tensile and fatigue stress. The four-probe technique and 

the SQUID based prototype have been applied to monitor the electrical resistivity 

changing respect to the fatigue loading of CFRPs cross-ply [0/90]. The bending stress 

has been applied to the sample by turning two screws located at the opposite side of the 

specimen (figure 16). The mechanical test system is made of a wood basement and 

brass gauge. Those materials have been preferred to the traditional steel to reduce as 

possible as the residual magnetic field due to the tensile stress in the system metallic 

components. 

 

 

 

 

 

 

Figure 16: Mechanical test system. 

 

The quasi-static loading was applied to the perpendicular direction of the sample 

surface, increasing the sample’s bending, as shown in figure 17 (left). The bending 

stress produces in the specimen a tensile and compressive stress, σt and σc, respectively. 

Therefore, in each layer the distance between adjacent carbon fibres changes. In 

particular, tensile stress causes this distance to increase, as a result the electrical 

resistivity increases, while compressive stress causes this distance to decrease, thereby 

decreasing the electrical resistivity. The effect  described is called electro-mechanical 

effect in which the strain and the electrical resistance of CFRPs are coupled [2]. 

screws 
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Figure 17: Bending stress applied to the sample 

 

The sample’s bending depends on the mechanical properties of the composite material, 

in this work its variation ranging from 1mm to 12mm. 

In figure 18 the current-voltage (I-V) characteristics of a loaded and a virgin composite 

sample measured using the four-probe method are shown. The linear fit of these curves 

represent the electrical resistance before and after the loading. The electrical resistance 

of the virgin sample is 0.158 Ohm with an electrical conductivity of 7633 S/m +/- 5%, 

while after the loading the electrical resistance is 0.174 Ohm and the conductivity 

decrease to 7108 S/m +/-5%.  

 

 

Figure 18: (left) Voltage vs  Current characteristic of virgin (red points) and loaded (black points) 
multidirectional composites. (right) Line scans of the magnetic field signal measured during a loading 
cycle. 
 
 

The magnetic field signals detected, using the SQUID magnetometer are shown in the 

Figure 18 (right). The signal represents a line scan with a length of 25 mm of virgin, 

loaded and unloaded sample, after one fatigue cycle. During the SQUID measurement 

the lift-off, between sample and sensor, at the borders of the specimen increased 
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symmetrically, while it remained constant in the middle of the sample. For this reason 

no tilting effect has been detected during SQUID measurements. The experimental 

results indicate that, changing the applied mechanical loading, the magnetic dipole 

signals show a variation both in the amplitude and in the slope of the inflection. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19: (left) Electrical normalized resistance of a multidirectional CFRP composite during a fatigue 
cycle measured with a four-probe technique. (right) Normalized magnetic field slope measured during a 
fatigue cycle on a CFRP composite.  
 
 

The inflection that characterizes the virgin line scan is magnified  to the presence of the 

brass punch behind the sample. The magnetic field produced by the induction coil 

passes through the whole sample thickness, so that the magnetic signal measured by the 

SQUID is the superposition of the field reflected by the sample and the brass punch. It 

is not possible to increase the frequency of the induction coil to penetrate only the 

sample because of the SQUID electronics limited frequency range. On the other hand, 

work in progress focuses on the realization of a punch made of non-magnetic material. 

In this work to delete the effect of the punch included in the magnetic field 

measurements a normalization has been used. In figure 19 (left) the normalized 

electrical resistance ratio ∆R/R0, where R0 is the electrical resistance of the virgin 

sample, has been measured during a loading cycle using the four-probe method. The 

reported electrical resistance ratio increases with the load and after a fatigue cycle it 

shows a hysteretic behaviour. The magnetic dipole slope ∆B/∆x measured during a 

loading has been normalized to the slope value of the virgin sample ∆B0/∆x. The 

normalized SQUID measurements ∆B/∆B0 are shown in figure 19 (right) and confirm 

the hysteretic behaviour, after a loading cycle. It is interesting to note that both the 

parameter ∆R/R0 and ∆B/∆B0 after a loading cycle are higher than their values at the 
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beginning of the fatigue cycle. Therefore the applied bending stress produces an 

irreversible changing of the fiber electrical resistance.  

In particular, the electrical resistivity of a carbon fibre epoxy-matrix composite 

increases reversibly upon tension due to increase of the distance between adjacent fibres 

and decreases reversibly upon compression due to decrease of the distance between 

adjacent fibres [14].  

In figure 20 ( left and right) the variation of  electrical resistance, measured with the 

four-probe technique, and the ∆B/∆B0, evaluated using the SQUID prototype, versus the 

displacement up to 13mm, are reported, respectively. It is interesting to note that at 

11mm an abrupt increasing of resistance and a corresponding decreasing of magnetic 

field variation, indicated with red arrows, happened .  

It means that magnetic field measurements give the same results of the four probe 

technique, and the same trend of the ∆B/∆B0 respect to the ∆R/R0 reflect the 

proportionality between the magnetic field responses and the changing of the electrical 

properties due to the displacement of the fibres. This effect is due to a macroscopic fiber 

fracture that produces an irreversible damage of the material. 

 

 

 

 

 

 

 

 

Figure 20: (left) Electrical resistance measurements increasing the loading. (right) Normalized magnetic 
field slope measured increasing the loading. 
 

The  comparison of the results obtained with the two techniques demonstrate that there 

is an inverse proportionality between the electrical resistance and the magnetic field 

signals produced by the eddy current inside the specimen. Since the conductivity is 

proportional to R-1 (with R the electrical resistance of the specimen), the fiber fracture 

produce a decreasing of the conductivity. As a result, the detected magnetic field 

reported in figure 20 (right), because of its direct proportionality with the current that 
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flow into the sample, decreases. The lower the magnetic field the higher the resistance. 

The SQUID based prototype measurements demonstrate that non invasive and contact 

less technique using SQUID sensors is capable to monitore the electro-mechanical 

effect also in very low conducting materials such as CFRPs. 

The variation of the electrical resistance is very useful when loading produces in CFRPs 

damage not visible to naked eyes, such as delamination. The latter occur when the 

distance between the layers change, producing a variation of the fiber distance with no 

visible surface manifestation. As already mentioned, when an overlapping or a contact 

between the fibers occurs, the electrical resistance increases and the conductivity 

changes. The variation of the fiber positions and their residual stress causes a variation 

of the current inside the structure, both for injected or induced current, producing a 

variation of magnetic field detectable using non invasive contact less magnetic sensors 

like SQUID. 

Until today the strain sensing in a CFRPs structure is commonly achieved by attaching 

to or embedding between the fibre layers one or more strain sensors, which can be 

piezoresistive, piezoelectric or other types of sensors. The embedded sensors are 

intrusive and degrade the mechanical properties of the composite, while attached 

sensors are less intrusive but they are not durable. For this reason the possibility to 

applied a contact less diagnostic method is very advantaged above all in the case of very 

complex composites structures. Moreover, the SQUID based prototype allows to 

monitor the components in real time, during the loading and the fatigue stress without 

any perturbation of the composites structure. The experimental results demonstrated that 

the electro-mechanical effect of CFRPs plays an important role because it allows to 

detect very little variation of the fiber resistance due to dynamic or static loading using 

electromagnetic technique based on high sensitive magnetic sensors.  

 

5. Impact loading 

During the in service time the composite materials employed to made the aerospace 

component can be damage, for example, by runway debris, hail, maintenance damage 

(i.e., dropped tools) and bird strikes. The CFRPs are capable of absorbing the energy of 

impact thanks to the presence of a polymeric matrix that distributes the energy in the 

material. In this way the impact doesn’t produce a direct perforation of the composite 

structure but may cause internal damage such as delamination (Fig.21). The presence 
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and the growth of delamination may produce severe stiffness reduction in the structure, 

leading to a catastrophic failure. The degree of damage depends on various factors, for 

example, the energy of the impact, the thickness of structures and the fibre orientation 

of layers. 

 

 

 

 

 

Figure 21: Schematization of the impacted cross-ply CFRP at energy less than 1J (up). the delamination 
arises inside the sample and is confirmed by a microscopic inspection (down) [15].  
 
It has already demonstrated in the previous section that thanks the electro-mechanical 

effect the variation of fibre distance or fibre breakage changes the resistivity of the 

reinforced composite. Therefore, delaminations and fibre breakage alter the electrical 

conductivity of the material because of the variation of the current distribution in the 

composite. As a result a change of the corresponding magnetic signal happens. The low 

electrical conductivity and high anisotropy of CFRP composites generally doesn’t allow 

conventional techniques, such as traditional ultrasound, thermography and Eddy Current 

with induction coils, to detect early stage damage in composite samples [16]. 

In this thesis some experiments have been carried out to detect early stage damage using 

a non invasive and contact less technique using  on the Eddy Current SQUID based 

prototype. The multidirectional CFRP test specimens were loaded at the centre by a 

hemispherical steel indenter, having a diameter of 12.7mm, and falling from different 

heights using a drop weight tower machine. Specimen with thickness of 2mm was 

impacted with an energy level up to 12J, while 3mm and 4mm thick samples were 

damaged with impact energies up to 25J. In particular, we focus our attention on 2mm 

thick sample impacted at 2.4 J, 7.8 J, 12J, and on 4mm thick sample at 1.8 J. The 

variable depth of the damage, i.e. indentation, located at the centre of the sample was 

measured using a micrometer. 

In figure 22 the phase of the magnetic field for the virgin (α lines) and the damaged (β 

and γ line) 2mm-thick samples are presented. The β and γ line scans were obtained 

moving the sensor across the center of the defects due to an impact energy level of 2.4J 

and 12J, respectively. Each line represents a 60mm scan over the sample. The phase of 
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the magnetic field related to the damaged samples presents a variation along the line 

scan. The difference between the signal of virgin and damaged specimen could be 

predicted by the slope of the phase signal among the x=0 coordinate. An inflexion that 

corresponds to a presence of damage characterizes the lines of impacted samples. 

 

 

 

 

 

 

 

Figure 22: The phase of the magnetic field for 2mm thick specimens. (α) is the line-scan related to the 
virgin sample, (β) and (γ) are the line-scans of the damaged samples impacted at 2.4 J and 12 J 
respectively. 
 
Moreover, for specimens with a visible damage the variation of the magnetic phase is 

correlated with the damage location. In particular, it has checked that the defect center 

coincides with the center of the inflexion (x=0). It should be noted that the decreasing 

and increasing phase value, at the beginning and the end of the scan is purely edge 

effects. This is due to the comparable dimension of the specimen and the line-scan 

length. Experimental results demonstrate that the slope of the magnetic phase (dθ/dx) is 

correlated with the damage severity. In other words, it is possible to discriminate the 

different damage using the slope value, in fact the greater the slope value of the 

magnetic phase the more visible the damage and the greater the defect depth [17]. This 

result confirms the electromechanical effect presented by the carbon fibers. The slope 

dθ/dx represents the variation of magnetic field due to the alteration of the electrical 

properties of the sample, due to the displacement of the fibers after an impact. 

In Figure 23 (a) the trend of the slope value against the impact energy levels is shown. 

For each thickness (2,3 and 4mm) increasing the impact energy the slope value 

increases. In the case of 2mm thick samples there aren’t slope values for energy higher 

than 12J because the specimens are already perforated, as is evident from an inspection 

of the sample. 
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Figure 23: (a) slope of the phase of the magnetic field versus the impact energy level for 2mm, 3mm and 
4mm thick specimens. In correspondence of each slope value the defect depth or indentation (in mm) is 
reported; (b) slope of the phase of the magnetic field versus frequency of the excitation coil for the 2mm 
thick samples impacted at different energy levels. The error bars related to the slope value are about 2%. 
 

Comparing the slopes for each energy level, the values for the 2mm thick samples are 

always higher than those for the 3mm and 4mm thick samples. It is reasonable that 

specimens with small thickness are more brittle than samples with a bigger thickness, 

for this reason also comparable impact energies produce higher indentations in the 2mm 

thick specimen. The slope is similar at different value of indentations in the case of the 

3mm and 4mm thick samples. In other words, composites with smaller thickness have a 

lower mechanical tolerance than specimens with bigger thickness. Probably a threshold 

value of the thickness exists between 2mm and 3mm that discriminates the mechanical 

response of the loaded CFRPs, and for this reason in specimens with a thickness above 

this threshold the magnetic response became similar. It should be noted that the 

experimental results shown in figure 23(a) don’t depend on the particular frequency 

chosen for the excitation coil. As shown in figure 23(b) the slope of the magnetic phase 

measured by the NDE SQUID based system follows a linear trend versus the frequency 

of the excitation coil in the range 5kHz-25kHz.  

It has already demonstrated using the SQUID based prototype that different steps 

characterize the damage in CFRP samples with a thickness of 4mm [18].  
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Figure 24: Non-dimensional slope, s/s0, against imparted energy, U [18]. 

 
In figure 24 the variation of the normalized slope of the magnetic field signal versus the 

impact energy is reported. At the beginning, the CFRP materials offer an elastic 

behaviour up to an impact energy level of about 1.6 J; above that matrix failure and 

delaminations take place. For impact energy higher than 12 J fibres failure occurs in the 

layer opposite to the impact point. Increasing the energy, perforations and penetrations 

are clearly visible on the sample surface. 

 
 
 
 
 
 
 
 
 
 
Figure 25: Micrographs of specimens’ cross section impacted at different energies: (a) 1.8 J, (b) 11.5 J 
and (c) 13.5 J [18]. The arrows represent the delamination that occurs at 1.8 J. 
 
A micrograph analysis of the cross section of the impacted sample area can demonstrate 

the degradation of the composites increasing the loading. In figure 25 the three images 

represented the cross-section of the 4mm thick samples impacted with the energy of 

1.8J, 11.5 J and 13.5J, are reported. It is clearly visible that for the 1.8J damage sample 

only internal delaminations are present ( red arrows), while increasing the energy, fiber 

failure and visible damage appear (figure 25(b) and 25(c)).  Generally, the focus of 

attention is on the detection of the initial delaminations, because when they occur a 

reduction in the stiffness and the strength of the composite components happens. 
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Figure 26: Image of the magnetic field phase (rad.) for cross-ply composite: (a) 4mm thick virgin sample; 
(b) 4mm thick sample impacted with an energy level of 1.8J.    
 

In figure 26(left) and (right) the image of magnetic phase for a 4mm thick virgin and 

impacted sample with an energy level of 1.8J, are shown, respectively. The image of the 

damaged sample (figure 26 (right)) is obtained without any data processing technique. 

The dipole-like image is related to the non-homogeneous eddy current distribution 

around the center of the impact located at the position (0,0). It must be noted that in the 

picture of the damaged sample figure 26 (right) the edge effect, which characterizes the 

virgin map in figure 26 (left), is negligible compared with variations of the phase of 

magnetic field due to the damage inside the specimen. Though the impact energy is very 

weak, the magnetic signal reveals the presence of the defect even when it isn’t visible to 

naked eye.  

 

 

 

 

 

 

 

 

Figure 27: Line-scan taken from the map in the fig.4 (b). (a) is the line of virgin sample 4mm thick, (b) 
and (c) are the line-scans located at ±20mm from the center of impact point, (d) is the line-scan at 
impacted point. 
 

It appears more evident in figure 27, where the line-scan (taken from the maps of figure 

26) at the center of impact point (line (d)), at ±20 mm from it (lines (b) and (c)), and the 
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line scan of the virgin sample with the same thickness (line (a)), are compared. The 

slope variation between the lines (a) and (d) means that, although the sample surface 

appears to be intact, the sample has internal damage such as delaminations. 

Moreover, focusing the attention on the comparison among the virgin line scan and the 

line scans collected at ±20mm from the centre of the impacted area. Even through the 

4mm thick sample is damaged with a very low energy level, U=1.8 J, the damage 

propagates 20mm away the centre, as shown from the non negligible slope variation of 

the magnetic phase with respect to the virgin one. It means that the variation of the 

magnetic phase along the line-scan expressed by the slope dθ/dx is a suitable parameter 

to investigate at an early stage not only the severity of the damage but also its extension 

inside the laminates. This effect is also confirmed by Table 5, where the slope of the 

magnetic field phase (dθ/dx)0 along a line scan 20mm far away the center is shown. 

Laminates with a thickness of 4, 3 and 2mm, damaged with the same level of energy 

U=12 J exhibit an increasing slope of the magnetic field far away the center. This 

confirms that laminates with smaller thickness have a lower mechanical tolerance, in 

fact they are characterized by deeper indentation, and smaller extension of the damage 

in the nearby impacted area. Indeed, thinner the material is, more localized and severe 

the damage is, since the sample is less able to distribute the transverse load on the whole 

structure. The relation between the magnetic field slope and the damage allow to 

distinguish the different defects in specimens impacted with the same energy and with 

different thickness.  

 
Table 6: Slope of the magnetic field for the line-scan measured at 20 mm from the center of impact in 2 
mm, 3 mm and 4 mm thick samples damaged with U=12 J. 
 

 

 

 

The correlation of the phase and the structural integrity of the sample (i.e., 

delaminations and fibre ruptures) demonstrated by the experimental results can be 

confirmed by an electrical model generally used to describe the sensor and the test 

sample, in electromagnetic non-destructive inspections based on an Eddy Current 

technique [19]. Since this model establish that the real part is linked to sample 

conductivity and the imaginary part represents the leakage inductance of the specimen 

Sample thickness [mm] (dθ/dx)0 [rad/m] 
2 0.004 
3 0.015 
4 0.022 
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(i.e. structural variation of the sample) it is possible to correlate the phase and the 

amplitude of the magnetic field to the structural integrity of the sample and the variation 

of the electrical conductivity, respectively.  

 

6. Magnetic Imaging 

In the last section the damage due to the quasi-static loading has been analysed using 

the information offered by single line scans collected across the impacted area. As it has 

already demonstrated the slope inflection can be considered as a useful parameter to 

evaluate damage inside the composites. Moreover, a more accurate diagnosis of damage 

specimens can be performed using the 2-D magnetic field imaging.    

 

 

 

 

 

 

 
 
Figure 28: Magnetic field imaging of 4mm thick specimens impacted at different energies: (a) 1.8 J, (b) 
11.5J and (c) 13.5 J. 
 

The figure 28 (a, b, c) shown the magnetic field phase imaging of 4mm thick plates 

damaged by impacts having a level of energy U= 1.8, 12J and 55J, respectively. The 

magnetic imaging offers the possibility to evaluate the relation between the extensions 

of the magnetic field distortion to the severity of the damage. 

In these pictures a notable distortion of the magnetic field above the sample is already 

present in the magnetic map of the laminate damaged at energy level of U=1.8 J (figure 

28 (a)), which does not show any visible damage on its surface. The extension of the 

two regions around the points of the magnetic field maximum variation slightly 

increases in figure 28 (b) where the laminate is damaged with an energy U=12J, and 

increase in a more dramatic way, in the picture of figure 28 (c) where the energy level 

of damage is U= 55 J. The images in  figure 28 (b) and (c) show that it is not possible 

any discrimination, due to their size or shape, between the two failure mechanism by the 

size of the two areas. It means that the fibre failure, particularly at the energy level of 12 
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J, is prevalently localized around the impact point of the sample and only slightly 

affects its neighbourhood. Instead, for U=55 J (figure 28 (c)) the much larger size of the 

perturbed magnetic field shows the more severe damage even far away the impact point 

due to the fully perforated sample. As can be observed from the images of figure 28 

they are not able to give the dimensions and the shape of the defect inside the test 

sample. 

 

 

 

 

 

 

 

Figure 29: Two dimensional magnetic maps related to the 2mm (a) and 3mm (b) thick samples impacted 
at 12J. 
 

This limitation is present even when test samples with different thickness and the same 

impact energy are compared, as shown in figure 29 where the maps of the imaginary 

component of magnetic field for 2mm and 3mm thick samples impacted at 12 J are 

reported. A part from the different distribution of the magnetic field dipole that 

represents the different damage severity, it is not easy to deduce the shape and the 

extension of the damage. In this thesis it has been tried to overcome this limitation at 

first utilizing an Artificial Neural Network that should recognize the different defect 

dimensions with a post processing algorithm. 

 

6.1 The Artificial Neural Network (ANN) system 

Today, the ANN computing represents one of the most powerful tools to solve complex 

non-linear problems like pattern classification and forecasting predictions, with a short 

time computation respect to the conventional numerical simulation programs such as the 

Finite Element Method  (FEM). Thanks the capability of the ANN systems to resolve 

different prediction and computational problems it constitutes a good candidate to 

process the analysis of composite-material (and more generally multi-layer) structures. 
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The ANN systems have been successfully used to process signals related to the analysis 

of composite materials using different NDE techniques such as ultrasound, infrared 

thermography and acoustic emission [20-22]. 

An Artificial Neural Network (ANN) is a system composed by some elements called 

neurons which simulate the functionality of the human brain. As in biological system 

the neurons are connected through synaptic paths, in the neural computing the different 

neurons (nodes) are linked by means of weighted interconnections. The latter are 

initialised to random values and iteratively adapted to achieve the desired response. 

 

 

 

 

 

 

 

 

 
 
 
Figure 30: Architecture of a feed forward neural network system with XN input nodes, two hidden nodes 
and two output nodes (Y1 and Y2). 
 

In this thesis a multi layer supervised artificial neural network trained with the back 

propagation algorithm is presented (figure 30). This system was realized during 

collaboration with the research group of prof. G. Donaldson at the University of 

Straightclyde (Scotland) in the framework of SCENET exchange project.  It is 

characterized by different layers of neurons: input layer, hidden layer and output layer. 

The nodes of each layer aren’t connected each other but only with the nodes of the 

following layer. By a theoretical point of view was demonstrated by the Kolmogorov’s 

theorem [23] that two intermediate layers are sufficient to model any problem, but most 

of the practical problems are successfully solved used one hidden layer. The most 

important stage in the realization of an ANN is the training or learning of the system 

because it defines the number of nodes for each layer, the connection and their weights. 

During the training each hidden neuron performs a weighted sum of its inputs that after 
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are processed by an activation function, typically a sigmoid or a iperbolic tangent (tanh) 

function, determining the final output neurons [24]. The realized ANN makes use of a 

supervised learning, it means that the training set formed by an input pattern and an 

output target is processed by the network that adapts the weights minimizing the error 

between the desired outputs and the produced outputs. The condition to stopping the 

learning is that the root mean square error of the network for all the input signals is less 

than a predefined threshold. Once the training is performed the network is tested using a 

test set composed with data not contained in the training set. In this way is possible to 

check that the network can generalize which has learnt during the training set. The flow 

chart of the stages that constitute the network system is shown in figure 31. 

 

 

 

 

 

 

 

 

 

Figure 31: Flow chart used to the data analysis process. 
 

The ANN examined here is characterized by 400 input nodes, a single hidden layer with 

70 nodes and 5 output nodes. The training was performed by a tanh activation function 

with an error threshold of 0.2%. The 400 input nodes are represented by the points of 

the line scan acquired by the SQUID magnetometer. Since the magnetic field parameter 

that can distinguish the different damage is represented by the magnetic phase slope, the 

system was been trained to associate each impact energy level to the corresponding 

value of the magnetic phase slope. The network was realized to distinguish the magnetic 

signals associated to the damaged samples, the virgin (undamaged) sample and the edge 

effect. For this reason the experimental line scans of magnetic phase signals, related to 

the virgin sample, edge effect and different impact energies, have been used as output 

nodes of the network. In particular, for the 2mm thick samples the impact energies are 
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2J, 7.7J and 12J, while for the specimens with a thickness of 3mm impact energies of 

9J, 12J and 16J are considered. The training set for each thickness containing 40 

patterns represented by the experimental data that was normalized into 0 to 1 range, 

before the pattern recognition process. The latter is performed using a classification 

subsystem that selects the output nodes and gives the flaw position.  

 

 

 

 

 

 

 

 

At first, the system has been tested with the magnetic maps related to the samples of 

2mm and 3mm thickness impacted at the same energy of 12J. Figure 32 shows the maps 

produced by the ANN for the 2mm and 3mm thick specimens. The damaged and 

undamaged areas correspond to the white and the black colour, respectively. It should 

be noted that the imaging obtained using the ANN system can localize the defect into a 

delimited area that corresponds to the damage, thanks a previously introduction in the 

system of the right dimensions of the damaged area. The ANN realized recognize the 

right impact energy level for each thickness and the centre of the damaged area. 

The second test has been performed using the 2mm and 3mm thick samples impacted at 

energy of 2J, 7.7J and 9J, 16J, respectively. 

The results obtained processing the magnetic field imaging with the ANN system, for 

the 2mm and 3mm thick samples are shown in figure 33 and 34, respectively. In this 

test the recognition of the impact energies is not correct. In fact, the system does not 

distinguish the 2J from 7.7J for the 2mm thick samples, and the 9J respect to the 16J for 

the 3mm thick samples. In other words, the NN system classifies, in the case of 3mm 

thickness the sample impacted at 16J as the 9J, and for the 2 mm thick samples the 7.7J 

impacted samples as the 2J. Since the incorrect classification, the maps in white and 

black colours do not reflect the dimensions (held previously in the NN system) of the 

damaged area present on the samples 
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Figure 32: Imaging obtained using the ANN realized for the specimens of  thickness 2mm 
(left) and 3mm(right) impacted at 12J. 
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Figure 34: : Comparison between the SQUID imaging and the ANN maps for the 3mm thick 
samples damaged at 9J (a) and 16J (b).  
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Figure 33:  Comparison between the SQUID imaging and the ANN maps for the 2mm thick samples 
damaged at  2J (a), 7.7J (b), respectively.  
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. 

The results obtained from the second test demonstrate that the ANN system is not 

capable to recognize correctly the right damage at different energy for each thickness. In 

figure 35 the comparison of the lines scan related to the 2J and 7.7J (left), the 9J and the 

16 J (right), is shown. In both cases the slopes of the magnetic phase are different and 

distinguishable, so that each energy level is characterized by a different slope value. 

This difference is lost after the normalization from 0 to 1 range, as shown in figure 36. 

It could be noted that the normalization of the curve in the range from 0 to 1 change the 

slope of the signals.  

 

 

 

 

 

 

Figure 35: Line scans related to the magnetic phase extracted from the magnetic maps of the figure 1 and 
2; scans related to the 2mm and 3 mm thick samples on the right and left hand, respectively . 
 
In figure 36 (left) the 2mm thick sample damaged at 7J and 12J appear with the same 

slope as if they are damage both at comparable energy. This effect  is present also for 

the 3mm thick samples impacted at 9J and 16J, as reported in figure 36 (right). In the 

latter the two curves related to the two different energies are overlapped and they look 

like as two curves extracted from a unique test sample. In other words, the 

normalization modifies  the information included in the magnetic filed signals slope, 

which distinguish the different energy impact. 
 

  

 
 
 
 
 
 
 
 
 
 

 
0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

ph
as

e 
(ra

d)

mm

 9J
 16J

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

ph
as

e 
(ra

d)

mm

 2J
 7.7J

0 10 20 30 40 50 60
-1.5

-1.0

-0.5

0.0

0.5

1.0

ph
as

e 
(ra

d)

mm

 9J
 16J

0 10 20 30 40 50 60

-1.2

-0.8

-0.4

0.0

0.4

0.8

ph
as

e 
(ra

d)

mm

 2J
 7.7J



 145

Figure 36: Comparison between the lines scans obtained from the latter experimental data for the 2 and 3 
mm thick samples, normalized in the range 0-1. 
Therefore, the ANN system during the training does not learn correctly the 

correspondence between the energy and the signal slope. The ANN results demonstrate 

that that the present version of the algorithm does not recognize correctly the impact 

energy of the processed test sample and can not be used to classify the impacted sample 

with the appropriated impact energy because it needs an optimization of the training 

stage. 

The application of the ANN system to the pattern recognition have some disadvantage, 

represented by the long time necessary to train the system and the high performance 

personal computer required to process the high quantity of data.  

Moreover, the ANN system realized in this work needs to know previously the 

dimensions of the defect to be able to produce an imaging of the damaged sample. It is a 

limitation because the SQUID prototype system will be used to detect in CFRPs the 

damage even if they are not visible and their dimensions are unknown. 

For these reasons at the present the ANN approach doesn’t appear as the more 

advantageous technique to process the magnetic field signals to obtain a more simple 

data interpretation.   

 

6.2 Magnetic flux imaging 

 

 

 

 

 

 

 

Figure 37: Imaging of magnetic field variation for sample impacted at 5J; 

 

In figure 37 the magnetic field imaging related to the damaged sample, impacted at 5J, 

is shown. The distribution of the magnetic field induced in the sample is characterized 

by a dipole like image, which represents the damaged area after the impact.  
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As mentioned before (chapter I), the SQUID magnetometer measures the magnetic field 

variation produced by the test sample thanks the variation of the magnetic flux inside 

the pick up coil. Therefore, there is proportionality between the magnetic field and the 

variation of the magnetic flux in the SQUID pick up coil, as show in equation (1): 

( ) ( )
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tx
∂

∂
∝

∂
Φ∂ ,,  

thanks the constant speed v of the line scan, it is possible to write the ∂t as: 

v
xt ∂

=∂  

substituting in equation (1) the relation between the variation of the magnetic flux and 

the magnetic field can be obtained: 
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with A is the pick up coil area. 

The latter equation demonstrates that the magnetic flux variation along a line scan 

(during the time ∂t)  is proportional to the magnetic field derivative time the scan speed 

v.  

In figure 38 the comparison of the magnetic filed signal respect to the corresponding 

derivative, which represents the magnetic flux variation ∂Φ/∂t, are reported. 

 

 

 

 

 

 

 
 
 
 
Figure 38: Comparison between the lines scan of the magnetic field and the magnetic flux variation 
normalized to the flux quantum Φ0 across the center of the defect. 
 
The center of the magnetic field inflexion that represents the center of the defect, using 

the magnetic field derivative it becomes the minimum of the magnetic flux signal. It 

could be noted that in the magnetic field imaging the inflection can give information 

about the presence of the defect, but it is not easy to localize it. Instead, the amplitude of 
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the magnetic field flux variation is directly linked with the impact energy, because it 

represents the slope value of the magnetic filed inflexion, while the spatial coordinate (x 

axis) give information about the localization and dimension of the damage. The 

advantage of this representation is evident into the 2-D imaging as show in figure 39. 

 
 
 
 
  
 

 

 

 

Figure 39: Imaging of magnetic flux variation of sample impacted at 5J. 

The dipole-like image of figure 37 is replaced by a single spot (shown in fig.39) that 

represents the position and the  correct dimension of the defect.  

This result shows that to localize defect in CFRPs the magnetic field imaging due to the 

NDE SQUID based prototype could be replaced by the magnetic flux imaging, which 

represents the variation of the magnetic flux measured by the SQUID magnetometer. In 

this representation the defect appears as a white spot and the shape and the dimension of 

the latter are comparable with the damage detectable on the back side of the sample. It 

is important to note that the picture of the test sample defect can be obtained without 

any post processing technique, but only by measuring the magnetic flux variation using 

a dc SQUID sensor. It means that the NDE prototype based on SQUID sensor allows to 

obtain a magnetic flux imaging of the damage specimens in order to localize the damage 

and detect the correct dimension of the defect even if they are unknown and not visible. 

The flux magnetic field imaging offers the possibility to compare the results obtained by 

SQUID prototype with the conventional NDE techniques as Eddy Current using 

induction coils and ultrasound. In figure 40 the maps, obtained with Eddy Current based 

on induction coil, related to CFRP samples of  4mm thickness and impacted with three 

different energies (0.14J, 2.5J and 5J) are shown.  

14 mm

9 mm
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Figure 40: Eddy current imaging of specimens impacted at 0.14J (a), 2.5J(b) and 5J(c). 

 

The results of Eddy Current based on induction coil have been performed using an 

Elotest B300 instrument supplied by Rohmann GmbH with an absolute ferrite core 

probe working at frequency of 2.5 MHz. The induction coil measurements reveal that for 

the lowest energy (figure 40(a)) there is not detectable any damage, while increasing the 

impact energy the images show a spots in the centre of the sample, across the impacted 

area (figure 40(b) and 40(c)). 

In all three images the effect due to the no planarity of surface, especially for the lowest 

energy impact sample, are observable on the borders of the maps. One of the limitations 

of Eddy Current induction coil applied on CFRPs is represented by the surface planarity 

and roughness, due to the layers woof and the interface between the fibre and the 

matrix. In other words, the roughness of the surface can introduce a variation of lift off 

between the sample surface and the probe, modifying the results of the induction coils 

diagnosis. Since the EC technique is very sensitive to the lift off variation their imaging 

could present edge effect as shown in figure 40. 

 

 

 

 

 

 

Figure 41: Ultrasound inspection of specimens impacted at 0.14J (a), 2.5J(b) and 5J(c), realized at the 
Department of Materials and Production Engineering, University of Naples “Federico II”, supported by a  
MURST project. 
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The same results can be achieved using the Ultrasound technique as shown in figure 41. 

The maps have been realized with a post processing method using Ecus Inspection 

Software, Krautkramer Branson USD 15 S with NAMICON SONIC 136 ULTRA, 

transducer 5MHz 0.25” A311S parametric with water coupling.  The Ultrasound and the 

Eddy Current (EC) methods obtain the same results that could be compared with the 

magnetic flux imaging of the SQUID magnetometer. In figure 42 the magnetic flux 

distribution related to the tested samples analysed with the EC and Ultrasound, are 

reported.  

 
 
Figure 42: SQUD magnetic flux distribution  of specimens impacted at 0.14J (a), 2.5J(b) and 5J(c). The 
scales are in mm, the defects dimensions are 10 x 7 mm and 14 x 9 mm for  the 2.5J and 5J, respectively. 
 
It is interesting to note that the prototype response gives results comparable to the 

convectional technique: Ultrasounds and Eddy Current with induction coils. The white 

spots in the pictures of figure 42 represent the defects on the samples. 

The flux magnetic images reported in figure 42 give information about the dimension 

and the shape of the defects. The latter can be characterized by longitudinal and 

orthogonal axis lengths because of damage oval shape. The SQUID measurements show 

that increasing the impact energy the axis dimensions increase, in particular, for a 2.5J 

and 5J damage the dimensions are 10 x 7mm and 14 x 9mm, respectively. These results 

have been confirmed by measurements, performed using Ultrasound technique shown in 

figure 41.   

 It could be noted that the magnetic flux imaging is able to detect and localize defects 

even if they are not visible to the naked eyes, this is the case of the specimen impacted 

at 2.5J (figure 42(b)). To demonstrate the sensitivity of the SQUID measurements 

respect to the not visible defect, an imaging of a 4mm thick sample impacted at very 

low energy (0.18J) has been carried out. In figure 43 the magnetic field and the 

magnetic flux variation are shown. It is very interesting to analyse this test sample 

(a) (b) (c) 
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because its impact represents an example of delamination damage, so that the defect is 

not visible to the naked eyes and there is not fiber rapture in the layers. Therefore, the 

variation of the detected magnetic field signals has been due only to the resistivity 

variation produced by the tensile and compressive stress applied by the impact. It 

should be noted that the delamination does not produce in the magnetic flux imaging a 

well delimited white spot, because delamination produces only an intralayer and 

interlayer delamination. Therefore, the fiber rapture allows to localize the damage even 

if it is not visible (sample impacted at 2.5J in figure 42(b)) thanks the localization of the 

fiber breaking, while the delamination does not have a well delimited shape.   

 

 

 

 

 

 

 
Figure 43. (left) and (right) SQUD magnetic and  flux distribution of specimens impacted at 0.18J, 
respectively. 
 

In figure 44 the maximum variation of the magnetic flux normalized to the quantum 

flux Φ0 versus the impact energy is shown. The experimental results qualitatively 

confirm that in the energy range, which produces delaminations and matrix failures, the 

magnetic flux linearly increases against the impact energy as it has already 

demonstrated estimating the slope of the magnetic field signal [18]. 

In figure 44 the normalized flux behaviour reflects the severity of the damage inside the 

sample due to the impact energy. Increasing the impact energy the integrity of the 

specimen near the impacted area decrease, as a result a high magnetic flux variation 

could be detected. It means that the amplitude of the magnetic flux signal depends on 

the severity of the damage as reflected by the magnetic filed slope.  
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Figure 44: Magnetic flux variation versus impact energy related to the tested samples impacted at 0.18J, 
5J, 9J and 16J. 
 

Finally, the magnetic flux imaging can be considered as a useful tool for better 

representation of the magnetic field data. This representation gives results comparable 

with the conventional method EC and Ultrasound. Moreover it is interesting to note that 

the advantage of the non-destructive testing SQUID based technique respect to the 

induction coil and ultrasound is represented by the possibility to perform a contact less 

measurement, because of the low sensitivity of the SQUID sensor to the lift-off 

variation respect to the induction coil [25]. 

 

7. Conclusions 

Measurements of the electrical resistance have been carried out using a four probe 

technique.  longitudinal and transverse electrical resistance of unidirectional composites 

reveal the anisotropy of CFRPs material from an electrical point of view. The four 

probe technique obtains values of about 22000 S/m, 20 S/m and 7000 S/m for the 

longitudinal, transverse and cross-ply electrical resistance. It is interesting to note that 

the results obtained using the four probe technique show that even if the CFRPs is an 

inhomogeneous material thanks to the present of the conductive carbon fibers it is 

possible to calculate the electrical resistance.  Moreover, the measurements show that 

orientations and thickness of the fibers, that represent the only conductive component 

respect to the insulated matrix, playing an important role in the evaluation of the 

electrical resistance. It has been demonstrated that increasing the thickness the 

conductivity decreases respect to a constant fiber volume fraction.  
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the penetration depth of magnetic field  through the composite test samples and the 

CFRPs capability to shield electromagnetic field has been demonstrated applying the 

SQUID prototype. The measurements of the magnetic field signals show that the 

capability of CFRPs to shield e.m. waves depends on the samples thickness and the 

fiber orientations. Moreover, it has been demonstrated that the reflection in the cross-ply 

samples decreases with the thickness. It depends on the directly proportionality between 

the eddy current induced in the sample and its electrical conductivity, therefore samples 

with higher conductivity can reflect much more. Moreover, thanks to the sensitivity of 

the SQUID magnetometer, that allows to distinguish the longitudinal and the transverse 

electrical conductivity in unidirectional CFRPs, it has been demonstrated that the 

anisotropy of the carbon fiber could polarize the electromagnetic field.  

The electromagnetic response of the CFRPs under the bending stress demonstrates that 

an electromechanical effect is present. The fibers displacement, due to the increasing or 

decreasing of fibers distance, produce a variation of the electrical resistance that has 

been detected by the SQUID measurements and confirmed by the four probe technique. 

It means that the SQUID prototype is capable to measure the effect on the electrical 

conductivity due to the fiber displacement. It is very important because until now the 

technique used for the stress sensing are invasive and need to be in contact with the 

fibers, instead the SQUID measurement, in a non invasive and contact less way, gives 

information about the electrical properties of this material. 

 Moreover, the detection of the electromechanical effect by means of the SQUID 

magnetometer is confirmed by the detection of early stage damage. The results related 

to the loading impact show that the magnetic field slope is a suitable parameter to 

distinguish the severity of the damage due to different impact energy. Since the 

localization of the impact defect in the composite materials is more difficult respect to 

the metallic material different techniques have been used. The ANN described it is not 

able to recognize the proper impact energy and does not represent correctly the shape 

and dimension of the damage. On the other hand, the magnetic flux variation imaging, 

measured by using the SQUID magnetometer, represents an appropriate method to 

obtain a damaged sample map, in which the position and the dimensions of the defect 

are detected. The results obtained using the SQUID magnetic flux representation has 

been compared with other techniques, such as Eddy Current with induction coil and 

Ultrasound. Even if the latter diagnostics methods obtain the same results of the SQUID 

magnetic flux variation, it must be considered some limitations that these conventional 
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technique present. The main drawback of the Eddy Current with induction coil 

technique is its sensitivity to the lift off variations that can alter the measurements, 

while the Ultrasound method needs of a coupling medium, like the water, to be in 

contact with the sample. For this reason the SQUID magnetometer measurements 

represent, respect to the eddy current with induction coil and Ultrasounds, an advanced 

method to detect damage and stress in the CFRPs in non invasive and contact less 

mode.  

The fiber displacement due to impact and mechanical stress has been confirmed using 

an AFM analysis. The fiber-matrix interphase integrity has been investigated using the 

microscopic analysis. The results of this diagnosis show that damage, such as 

delaminations, produce in the CFRPs a fiber displacement because of the matrix 

weakening. Moreover, the detection of the fiber displacement, by using the AFM 

analysis, can explain the sensitivity of the Eddy Current method to detect little structural 

alteration, such as delaminations, in the composites. In fact, the changing of the fiber 

position changes the carbon fiber electrical resistance, producing a variation of the 

magnetic field signal detected by the SQUID magnetometer. Both the magnetic field 

and AFM measurements demonstrate that the damage inside the CFRPs doesn’t extend 

uniformly in all directions, but the damage propagation depends on the fiber orientation.   

Finally, the results described in this chapter demonstrate the capability of the prototype 

based on the SQUID magnetometer to analyse the electromagnetic properties of very 

low conductive materials such as CFRPs in more advantageous mode respect to the 

other traditional non destructive methods.   
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Chapter 5 
 
Fiber-glass aluminium (FGA) laminates 
electromagnetic characterization 
 
 
 

Introduction 
 

FGA material is a new advantageous composite used in the aeronautical and aerospace 

industry. To increase the use of this material its properties respect to the loading damage 

and the corrosion ageing must be study. The aim of this chapter is to demonstrate the 

capability of the electromagnetic technique using SQUID magnetometer to study the 

damage process in the FGA due to loading impact and corrosion activity. At first the 

eddy current technique based on the HTS dc-SQUID magnetometer has been used to 

distinguish the different damage. The two in plane component of the magnetic field Bx 

and By have been measured and the magnetic field responses produced by the samples 

impacted with energies ranging from 5J to 36J have been monitored.  

The corrosion damage can occurs into the aluminium layers subjected to an impact that 

had degraded their mechanical properties. To study the corrosion activity it has been 

fabricated an experimental copper made mock up to assess the corrosion effect and to 

verify the magnetic field sensitivity to the ongoing corrosion process. The mock up 

enable us to study two simple geometric configurations that can be modelled to 

calculate the current distribution during the corrosion process.  The current distribution 

was obtained via electromagnetic inversion of the measured magnetic field. It is 

important to note that the copper made mock up is useful to optimise the measurement 

set up and the magnetic field inversion algorithm. 

Static and dynamic measurements of the magnetic field response have been carried out 

obtaining information about the corrosion rate and the dissolved copper on the anodic 

surface. Moreover, an electromagnetic inversion of the magnetic field distribution, by 

using the Fast Fourier Transform (FFT) has been implemented to obtain the 

corresponding current distribution involved into the analysed processes. To test the FFT 
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algorithm two simple cell geometries with rectangular and shaped electrodes, have been 

used. The cell with a shaped anode has been realized to approximate the geometry of the 

deformation presents on impacted point that characterizes the surface of the fiber glass 

laminates after a loading impact. 

 

1. Impact loading detection 
One of the main characteristic of the fiber glass aluminium (FGA) composite after a 

loading impact is its surface deformation. As a consequence of an impact this material, 

thanks to the plasticity of the aluminium layers, before an irreversible structure 

degradation (cracking) is characterized by a permanent deformation. To resort to a 

quantitative evaluation of the permanent deformation, the residual displacement dr of 

the specimens was measured. It is preferable to use the label ‘residual displacement’, 

instead of the more common term ‘indentation depth’, because the permanent 

deformation was not limited to a little zone surrounding the impact location. At the end 

of the impact event only the portion of the specimen boundaries clamped within the test 

frame was unaltered, whereas the rest of the plate exhibited a pronounced concavity 

(Figure 1). Of course, this impaired the possibility to easily separate the indentation 

depth (usually correlated with the local damage) from the overall residual displacement. 

 

 
Figure 1: Permanent deformation of an FGA specimen after impact. 

 

Figure 2 clarifies the meaning of the residual displacement, as conventionally defined in 

this work, i.e. the maximum depth of the profile with respect to the undeformed surface 

plate.  

 
 

 
Figure 2: Conventional definition of the residual displacement, dr: 

dr 
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The measurement of dr was carried out after the impact test, using a profilometer with 

1% sensitivity, putting its hemispherical tip, 2 mm in diameter, in contact with the 

indented panel (see Figure 3) and its vertical displacement across the indentation, with a 

length of 100mm, was measured. 

 

 
Figure 3: Measurement of the residual displacement using a profilometer 

 

The results of the surface profiles for the specimens damaged at 12 J, 20 J and 36 J, as 

measured are shown in Figure 4. As expected, the specimen indentation increases with 

increasing impact energy. Notably, the maximum indentation is larger than 6 mm, 

resulting in a corresponding variation of the lift-off between the probe and the sample 

during the SQUID inspection. 

 

 

 

 

 

 

 

Figure 4: specimens surface profile obtained with a profilometer for samples damaged at 12 J, 20 J and 
36 J. 
 
In Figure 5, the magnitude of the magnetic field, measured by using the SQUID 

magnetometer on the same specimens, is shown. Even though, these signals were 
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obtained with a non-contact technique, the distance between the sample and the sensor 

is at least 8 mm, it is possible to distinguish three different defects due to the various 

impact energies. Considering Figure 5, it should be noted that the eddy-current 

technique utilizing an HTS dc-SQUID magnetometer is able to reproduce the surface 

profile of the specimens even for large stand-off between the probe and the sample. This 

result emphasizes the high sensitivity of the SQUID magnetometer in measurements 

where there is a large variation in lift-off. 

 

 

 

 

 

 

 
 
 
 
Figure 5: The magnitude of the magnetic field measured using an HTS SQUID for samples damaged at 
12 J, 20 J and 36 J. 
 

The failure analyses carried out on the specimens impacted at U = 12 J revealed that, 

apart from the plastic deformation of metal sheets, damage consists essentially of 

delamination between the fibreglass layers, matrix microcracking in the fibreglass, and 

debonding at the fibreglass-aluminium interfaces. In figure 6 a fiber glass aluminium 

layer of a damage sample, after the removal of the aluminium layer is reported. The 

black arrow shows the fiber glass failure. 

 

 

Figure 6: Fibre failures in the composite layers far from the impact point. 
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At U = 20 J, the bottom aluminium sheet is cracked (Figure 7(a)), and damage was 

generated in the reinforcing fibres. Increasing the impact energy up to 36 J, crack is 

produced in the aluminium sheet located in the middle of the laminate (Figure 7(b)). 

 

 

 

 

 

Figure 7: Cracks (a) in the bottom aluminium sheet at 20J, and, (b) in the central aluminium sheet at 36 J. 
 

Of course, the detection of cracks in the metal sheet located in the middle of the 

laminate requires a suitable inspection method. The same holds for the crack in the 

bottom sheet, when it is inaccessible from the surface structure. For this reason a visual 

inspection is insufficient to distinguish simple deformation from the cracking of the 

hidden metallic sheets.  

As it can see in figure 7(a) the indentation due to the impact appears in plane with an 

elliptical shape. Thus, for each damage impact the indented area could be characterized 

by a major and minor axis, which identifies the damage dimension. Moreover the crack 

in the aluminium surface usually has longitudinal to the major axis of the indented area, 

as shown in figure 7(a). Therefore, it is interesting to analyse the specimens following 

two different directions, longitudinal and transverse to the major axis, measuring the By 

and Bx magnetic field component, respectively.  In figure 8 a schematization of the 

defect and the direction in which they has been scanned is reported. 

 

 

 

 

 

 

Figure 8: the two configurations used in the electromagnetic SQUID based technique. 
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At first the longitudinal configuration has been considered, to scan the damaged 

samples in the electromagnetic investigation based on HTS dc-SQUID magnetometer. 

 

 

 

 

 

 

 

 

Figure 9: Phase of the magnetic field related to the virgin and damaged samples. 

In Figure 9 the magnetic field phase (by means 1−= tgθ that can be written as
)Re(
)Im(

B
B ), 

ranging between 0 and 2π, and measured by the SQUID system is shown. The phase 

shape presented in Figure 9 demonstrates that the phase signal is directly linked to the 

structural integrity of the specimens. It should be noted that the samples impacted at 12 

J, 20 J and 36 J have a significant phase variation respect to the phase of the virgin 

sample. 

To correlate the impact energies with the magnetic signals the phase derivative is 

calculated. The phase derivatives of the virgin and damaged samples are shown in 

figure 10(a). An enlargement related to its peak is shown in figure 10(b). The latter 

shows that the minimum value of the phase derivative increases with the impact energy.  

 

 

 

 

 

 

 
Figure 10: (left) The magnetic field phase derivative where the rectangular dot area represents the peak 
enlargement shown at right. 
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The relation between the magnetic phase and the damage features can be estimated 

considering the minimum of the magnetic phase derivative calculated in the range (0, 

2π). The minimum value as a function of the impacted energies is reported in Table 1.  

 
 Table 1: Correlation between the energy impact and the minimum of the dθ/dx. 
 

 

 
  

The characterization of the damage produced into the FGA specimens has been carried 

out considering measurements on a large range of the energy impact, from 5J to 36J. 

The relation between the increasing energy impact value and the magnetic field signal 

has been obtained. It has already seen in table 1 that the magnetic field derivative can be 

considered as a suitable parameter to distinguish three degree of damage due to the 

energy of 12J, 20J and 36J.  

 

 

 

 

 

 

 

 
Figure 11: (left) and (right) Behaviour of the dθ/dt and the minimum of the amplitude of the magnetic 
field versus the energy impact value, respectively.  
 

In figure 11 the trend of the magnetic field phase derivative (Figure 11 (a)) and the 

minimum of the magnetic field amplitude (Figure 11(b)) versus the value of the impact 

energy, are reported. It is interesting to note that both the parameter follow the same 

behaviour. The magnetic field components, phase and amplitude, decrease when the 

energy impact increases. Since increasing the energy impact the residual deformation 

increases, a variation of the lift off that means a higher deformation of the specimen is 

produced. As a consequence the distance between the current source and the SQUID 

magnetometer increases, so that the minimum of the magnetic field amplitude goes 
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down. This effect is reflected in to a minor variation of the phase signal as shown by the 

dθ/dx. Moreover, another effect a part from the lift off variation contributes to 

decreasing the magnetic field, it is the crack of the aluminium layers. When a crack 

appears in the sample, the conductivity of the material decrease in that area and it means 

a decreasing of the magnetic field signal. Obviously, in the SQUID detection this two 

effects are overlapped but at the same time they contribute to a variation of the signal.    

 
 

 

 

 

 

Figure 12: The impedance plane of the SQUID magnetometer response changing the impact energy. 
 
The impedance plane representation of line scans related to the samples damaged at 

5J,9J, 20J and 36J  are presented in figure 12. It could be noted that the signals of the 5J 

and 9J samples are parallel, it is due probably to the fact that both are only deformed, 

without any cracked layer. Instead the line scan of the 20J and 36 J are different one  

another and differ also from the previous two line scans. These two last samples, in fact, 

present a cracking layer, the 20J damage sample has the inner aluminium layer damage, 

whereas the 36J specimen has the inner and the rear aluminium layer cracked. A 

suitable parameter that allows to distinguish the effect of the structural deformation 

from the irreversible damage could be the slope of the signal of the impedance plane. 

Therefore an estimation of the ratio Im(B)/Re(B) of the line scan represented in the 

impedance plane has been evaluated. The results versus the energy impact are shown in 

figure 13. 

 
 

 

 

 

  

Figure 13: Behaviour of the Im/Re ratio versus the energy impact. 
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Also the slope of the curves reported in the impedance plane shows a decreasing of the 

response when the energy impact increases. Therefore, it is possible to assert that the 

response of the SQUID based prototype goes down while the energy impact increasing, 

so that a more damaged samples produce a lower magnetic field signal than the only 

deformed samples.   

These results are confirmed also by the transverse configuration as reported in figure 14. 

In the latter, the trend of the minimum of the magnetic field amplitude decreases respect 

to the energy impact. Moreover, this configuration gives further information represented 

by the three different slopes that characterize the curve.  

 

 

 

 

 

 

 

 

 
Figure 14: Minimum of the magnetic field amplitude versus the energy impact. 

 
The slope a represents the range of the energy that produce only deformation, the range 

b includes the samples that undergoes a fracture of the inner layer and finally the c slope 

coincides with the energy impact that damage also the rear surface of the specimens. 

The energy range highlighted by the SQUID inspection is in agreement with the 

estimation of the mechanical analysis, based on the relation load-displacement [1]. 

The magnetic imaging of the damaged samples has been carried out. Figure 15 shows 

the magnetic imaging of an 80 mm x 100 mm scan over samples damaged at 5J and 36 

J. The map represents the derivative dBx/dx of the magnetic field measured by the HTS 

SQUID magnetometer. The dark area corresponds to the plastic deformation of the 

sample surface. In particular, the shape of the dark area can be correlated with the crack 

at the back surface.  
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Figure 15: (left) and (right) dBx/dx of the magnetic field imaging of specimens damaged at 5J and 36J, 
respectively. 
 

It could be noted that the dark area in the map related to the 5J impacted sample has 

amplitude lower than the corresponding dark area of the 36J damaged sample. It means 

that at 36J the indentation is deeper than the 5J, and observing the white area down the 

dark spot, a permanent deformation that involves also the borders of the sample can be 

detected. Finally, from the imaging representation is not possible to distinguish the only 

deformed sample (5J) from the cracked one (36J), but an interpretation of the magnetic 

field maps can give qualitative information about the degree of the damage. 

 

    2. Modelization of corrosion activity in fiber-glass laminates  

The fiber-glass laminates during the in service life could be affected by corrosion, 

localized in the impact area of the sample that can increase the material degradation 

process. The corrosion process converts the metal into its oxide or hydroxide forms, 

resulting in deterioration of its mechanical properties. Corrosion in aluminium alloys 

surfaces can often be recognized by dulling or pitting of the area, and sometimes by 

white or red powdery deposits. As a consequence of corrosion activity the corroded 

surface can be deteriorated or a concentration of corrosion products could appear on it.  

 

 

 

 

Figure 16: Schematisation of the rectangular cell used to study the effect of the electropolishing activity 
on the copper surface. 
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Therefore, to study the corrosion process on the FGA, from an electromagnetic point of 

view, a rectangular cell, with rectangular copper electrodes and a solution of 55% 

Phosphoric acid and 45% n-buthanol has been used. 

The copper electrodes allow to activate a corrosion process in a short time and applying 

a low voltage values. Using the flux gate sensor the in-plane component of the magnetic 

field produced by the ions current between the two electrodes has been detected. 

Moreover, to distinguish the three different stages present in the process: pitting, 

polishing and gas evaporation, which corresponded to three different corrosion rates, the 

voltage of 1.5V, 4.5V and 6.5V have been considered [2]. In particular, the pitting and 

evaporation gas stages (1.5V and 6.5V respectively) correspond to a non-uniform 

corrosion process, while at 4.5V the polishing regime guarantees a uniform corrosion. 

A static measurement of the magnetic field in correspondence of the anode can give 

information about the rate of the corrosion activity. By using the value of the detected 

magnetic field an estimation of the corrosion rate and the copper dissolved at the anode, 

has been carried out. 

The dissolved copper at the anode has been obtained using Faraday law: 

nF
jStMw =

 

where w is the dissolved copper at the anode, S  is the cross section of the cell, t is the 

time during the measurement, M (63.456 g/mole) is the copper atomic mass and F 

(96500 As/mole) is the Faraday constant. 

Taking into account that the current density is j = Nqv, where N is the number of 

carriers per volume, q and v are the carrier charge and its speed, the corresponding 

magnetic field is:  
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By using the above equation it is possible to write the number of carriers as a function 

of the magnetic field B: 
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Considering the above relation the Faraday law became: 

 

 

 

Then, dividing the w to the time t the corrosion rate is calculated. 

In the table 1 and 2 are summarized the results obtained changing the width of the 

electrodes in correspondence of two potential values 4.5V and 6.5V. The value obtained 

using the magnetic field has been compared with the weight of the anode measured by 

means of a balance before and after the magnetic detection. 
 
Table 1: Corrosion rate and dissolved copper at 4.5V 

Cell width(mm) w[g] at 4V by balance w[g] at 4V by Bx w/t [g/s] at  4 V 

8 0,012 0,011 4,00E-05 
16 0,023 0,020 7,60E-05 

 
 
Table 2: Corrosion rate and dissolved copper at 6.5V 
 

 

 

The data of the tables 1 and 2 show at 4.5V a good agreement between the balance and 

the magnetic field estimation of the corroded copper (the difference is less than 2%), 

while at 6.5V there is a relevant discrepancy between the data.  It could be considered as 

a demonstration of the different regime of corrosion process that happens at 4.5V 

(uniform corrosion of the surface), and at 6.5 (prevalently pitting of the surface). It 

could be noted that a larger surface has a higher corrosion rate in both potential regimes. 

Moreover, it has been demonstrated that the magnetic field measurements can give 

information about the rate of corrosion and is able to monitor the effect of the corrosion 

activity that degrade the metallic surface, with the main advantage of contact-less and 

non invasive method. Moreover the proportionality between the magnetic field and the 

corrosion activity in terms of current between the electrodes has already been 

demonstrated [2,3]  

 Dynamic measurement of the magnetic field has been carried out to obtain an imaging 

of the corrosion process between the electrodes. The magnetic field imaging has been 

measured for each voltage moving the sensor along the length of the cell (50mm).  

 

Cell width (mm) w[g] at 7Vby balance w[g] at 7V by Bx w/t [g/s] at 7 V 

8 0,025 0,048 8,20E-05 
16 0,035 0,020 1,17E-04 
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.  

 
 
 
 

 
 
Figure 17: Magnetic field distribution of the rectangular cell in the three potential regime 1.5V, 4.5V and 
6.5V. 
 
In figure 17 the magnetic imaging of the rectangular cell, at the three different potential 

drops are reported. The magnetic field imaging changes respect to the voltage, and 

reflecting a more chaotic process at 1.5V, represented by the discontinuities of the 

magnetic field, instead a more uniform activity at 4.5V. At 6.5V the magnetic field on 

the cathode is higher than the other two voltages that mean a more accumulation of the 

corroded products. These three regimes are confirmed in the literature by the study of 

the current to voltage characteristic related to the electropolishing process [2]. 

It is not very simple to extrapolate information about the corrosion process from the 

magnetic field distribution. For this reason it is necessary to invert the magnetic field 

distribution to represent the corresponding current distribution, which reflects the 

electrochemical activity in the cell.  

In general, the inverse magnetic problem does not have a unique solution but in the case 

of two dimensions geometry it can be solved uniquely. To obtain the current density 

distribution during the copper electropolishing of the rectangular cells, the mathematical 

technique based on the Fast Fourier Transform (FFT) has been applied. The magnetic 

inverse technique applied in this work to the electropolishing process of rectangular 

cells has been used successfully in other applications and it is described in detail by B. 

J. Roth et al [4]. 

To calculate the current density from the magnetic field data the rectangular cell has 

been approximated to a finite short dipole, which generates a magnetic field expressed 

by Biot-Savart law: 
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where J is the current density that produces the field and r the distance where the 

magnetic field is measured. The configuration of the Flux-Gate sensors allow to 

measure only the in plane components of the magnetic field, in this case the By, so the 

previous expression becomes:  
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(8) 

 

In the formula above l and z are the length of the cell and the distance between the probe 

and current source, respectively. It could be noted that measuring the y component of 

the magnetic field, By, it is possible to obtain only the corresponding x component of 

the current density, Jx. Moreover, the By(x,y,z) equation represents the convolution 

between the current density J and Green function G, the latter expressed by: 
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By using the convolution theorem it is possible to rewrite the equation (8) in the Fourier 

space as: 

),(),,(),,( yxxyxyxy kkjzkkgzkkb ⋅=  

where the bx(kx,ky,z), jx(kx,ky) and g(kx,ky,z) are the two-dimensional Fourier transforms 

of the magnetic field, the current density and the Green’s function, respectively. The 

variables kx and ky are the components of the spatial frequency K. Then the current 

density in the Fourier space is given dividing the magnetic field by the Green’s 

function: 
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Finally, the current density distribution Jx can be obtained by the inverse Fourier 

transformer of the jx. 

 

 

 

 

 

 
Figure 18: (a) and (b) Magnetic field component By, and its corresponding current distribution Jx 
generated from a wire with length l and parallel to the X-axis are reported, respectively. 
 

This model has been tested at first for a magnetic field produced by a finite wire. In 

figure 18 (a) and (b) the magnetic field and its corresponding current distribution are 

shown, respectively. 
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The distribution and value of the current obtained applying the FFT algorithm is in 

agreement with the expected data. 

The current distribution due to the corrosion process of the rectangular cell in 

correspondence of the three voltage values is reported in figure 19. These maps 

represent the current distribution of the magnetic field shown in figure 16. 

 

 

 

 

 

Figure 19: Current distribution obtained applying the FFT algorithm to the magnetic field measurements 
reported in figure 2.  
 

It could be noted that the current distribution at 4.5V (Fig.4 (b)) is uniform along the 

total length of the cell, because of the uniform corrosion activity that characterize this 

potential value. Moreover, the other two current distributions reflect the non-uniformity 

of the activity at 1.5V and the higher density of corroded products at 6.5V.  

Starting from these results about very simple cell geometry another electrode 

configuration has been used to approximate the shape of the FGA impacted surface, 

where the corrosion process could take place.  

A picture of the cell is reported in figure 20. it is characterized by shaped and flat 

electrode, the anode and the cathode, respectively. This geometry is used to 

approximate the elliptical shape of the deformation produced by the impact loading on 

the aluminium layers.  

 

 

 

 

Figure 20: Picture of the cell  geometry that approximate the deformation due to the impact loading on 
the aluminium surface. a, b and c arrows indicate the concavity of the electrode surface. 
 

Applying a potential drop of 5V, between the electrodes, the electropolishing process 

has been monitored moving the flux gate sensors across the cell. The magnetic field 
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imaging is shown in figure 6. the geometry of the shaped electrode is very clear, in 

particular the two different magnetic field values (red and blue) are due to the current 

direction on the copper surface.  

 

 

 

 

 
 
Figure 21: Magnetic field imaging of the cell with shaped and flat electrodes. The dashes lines represent 
the position of the electrodes. 
 
Applying the FFT technique, considering a suitable Green’s function related to the cell 

geometry, the current distribution across the anodes has been calculated. In figure 22 the 

current distributions related to the map in Fig.21 is reported. 

 

 
 

Figure 22: Current distribution obtained using the FFT method. 
 
The three red spots represent the point in which there is a major current accumulation 

that is the concavity of the electrode surface. It is interesting to note that the 

electromagnetic inversion algorithm can give the current distribution even when the 

geometry is quite complex. Although, these measurements have been carried out on a 

mock up, the results can be useful for the study of corrosion process on FGA 

composites. 

Finally, it can be noted that static and dynamic electromagnetic measurements are 

suitable methods to detect the two main effect of the corrosion activity: the removal of 

the material and the accumulation of the corrosion products. At present the experimental 
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set up to study the ongoing corrosion on the impact area of FGA sample is realized and 

the magnetic measurements are in progress. 

 

 

3. Conclusions 

The electromagnetic characterization of the fiber-glass laminates has been focused on 

the impact damage detection and the study of the corrosion activity that can takes place 

into deformed area due to impact process of this material. Concerning with the study of 

the damage due to impact loading the magnetic field detection is a suitable method to 

estimate the different degree of damage, even when the surface sample presents a high 

deformation that interest none only the impacted point but it is extended until the 

borders of the sample. Even if the deformation produces a variation of lift-off up to 10 

mm, between the test sample and the HTS d.c. SQUID magnetometer, the SQUID high 

dynamic range produces high amplitude of magnetic field signal, and allows to 

distinguish the different deformation without loss its sensitivity. This represents a 

demonstration of the SQUID sensor superiority respect to the conventional induction 

coil in the eddy current applications, where high variation of lift off occur and low 

frequencies are request to detect deep defects.   

The magnetic field phase derivative and the minimum of the magnetic field amplitude 

can be considered suitable parameters to detect defects due to different energy impacts. 

The value of  these two parameters decreases when the energy impact increases, it 

means that when the deformation degenerates into a laminar cracking the magnetic field 

signals decreases. This effect is due to the overlapping of two effects: the variation of 

lift off and the presence of the defect. The latter produces a decreasing of electrical 

conductivity in correspondence of the cracking, as a consequence the magnetic field 

signal become lower.  

The behaviour of the magnetic field signal as function of the phase and amplitude is 

confirmed by the magnetic field impedance plane representation. Reporting the ratio 

Im(B)/Re(B) versus the energy impact it has been shown as this parameter decreasing 

respect to the energy. Therefore, the variation of the imaginary component of the 

magnetic field respect to the real component can give information about the severity of 

the damage. 

Moreover, detecting the magnetic field component orthogonal to the cracking of the 

aluminium layers it is possible to distinguish three different damage stages. The 
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component of the minimum of magnetic field amplitude is particularly sensitive to the 

different signal responses produced by the deformation and the cracking of the 

aluminium layers.  

It has been demonstrated that the electromagnetic inspection on samples, impacted with 

increasing energies, can distinguish the energy ranges that produce fracture of the 

furthest metallic sheet and the cracking of an intermediate one. This feature allows us to 

investigate the mechanical tolerance of fibreglass/aluminium laminates thanks to a non-

contact and non-destructive technique. 

The fiber-glass laminates are degraded not only by the impact loading, but corrosion 

damage can alter their mechanical properties too, mainly in the area damaged by the 

impact. Therefore, to test the capability of the electromagnetic methods to give 

information on the corrosion activity, a copper made mock up has been realized and 

measured. It has been demonstrated that the magnetic field response can give 

information about the dissolution rate of the copper surface. Moreover, it is possible an 

estimation of as much copper as is dissolved using the Faraday law and the static 

measurements of the magnetic field signal. In this way an estimation of the removed 

material on the metallic surface  can be obtained measuring the magnetic field 

amplitude. An electromagnetic inversion using the FFT method has been carried out at 

first to obtain the current distribution between the electrodes into a rectangular cell. 

After this test the current distribution corresponding to a magnetic field measured into a 

cell with a  shaped geometry has been obtained. The shaped geometry allows to 

approximate the shape of the impacted surface of the FGA, where the corrosion activity 

can take place more easily. The calculated current distribution reproduces successfully 

the current activity on the shaped electrode. These results demonstrate the  sensitivity of 

the electromagnetic monitoring of the ongoing corrosion using magnetic sensors. 

Moreover, further experimental measurements of the ongoing corrosion of FGA 

samples using the described methods are in progress. 
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CONCLUSIONS 
The electromagnetic characterization of the CFRPs composites and fibreglass 

aluminium (FGA) has been carried out. Since the damage process in these composites 

principally interest the interface between matrix and fiber and the adhesion of 

aluminium and fiber-glass layers, a particular attention has been dedicated to the study 

of the impact loading effect on composites inter-phase. An electrical, electromagnetic 

and microscopic characterization of the CFRPs has been carried out.     

Electromagnetic characterization demonstrates the electrical anisotropy of CFRPs 

material. By using the four probes technique the unidirectional CFRPs has been 

characterized respect to the longitudinal and transverse electrical resistance. The 

estimated values of the electrical resistance for longitudinal, transverse and cross-ply 

resistance are in agreement with the literature data. The measurements have 

demonstrated that the sample thickness and the orientations of the fibers, that represents 

the only conductive component respect to the insulated matrix, playing an important 

role in the estimation of the electrical resistance. Moreover, it has been shown that with 

a constant fiber volume fraction, increasing the specimen thickness the conductivity 

decreases. Thanks to the estimation of the electrical conductivity of the CFRPs others 

properties have been analysed, such as the CFRPs electromagnetic shielding capability, 

and the electromechanical effect which arises when a tensile or compressive stress is 

applied to the carbon fibers. Although, these properties partially have been already 

revealed in the CFRPs, the improvement of this work concerns the technique used to 

analyse them. Whereas to study the electromechanical effect or the shielding capability 

of the carbon reinforced composite, complex set up and invasive sensors, that need to be 

in contact with the fibers, are usually involved, the electromagnetic characterization, 

performed with the SQUID magnetometer prototype, represents a non-invasive and 

contact-less technique.  

The measurements of the eddy current SQUID based prototype, related to the bending 

stress applied to CFRPs samples, demonstrate that an electromechanical effect is 

present thanks the capability of the carbon fiber to change its electrical resistance in the 

presence of tensile and compressive stress. The fibers displacement, due to the 

increasing or decreasing of fibers distance, produce a variation of the electrical 

resistance, that has been detected by the SQUID measurements and confirmed by the 

four probe technique. 
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This result shows that the SQUID prototype is capable to measure the very low 

variation of the magnetic field, produced by the changing of fiber electrical resistance. 

Moreover, the detection of the electromechanical effect by means of the SQUIDs sensor 

demonstrates the capability of the SQUID magnetometer to detect also early stage 

damage in the CFRPs. 

In this work, concerning the detection of damage in CFRP material, it has been 

demonstrated that impact damage at very low energy, less than 2J, can be detected by 

SQUID based system with high spatial and magnetic field resolution.  

 In the realized zero field detector configuration, the SQUID magnetometer is able to 

reveal delamination at very low energy, such as 1.8 J, even if it is not visible to naked 

eyes. This result confirms the superiority of the SQUID sensitivity respect to the 

conventional induction coil that is not capable to detect this low energy impact damage. 

To check the validity of the SQUID magnetic flux representation a comparison with 

other techniques, such as Eddy Current with induction coil and Ultrasound, has been 

carried out. Even if the latter diagnostic methods obtain the same results of the SQUID 

based system, the induction coil shows some limitations. In fact, the main drawback of 

the Eddy Current with induction coil technique concerns its sensitivity to the lift-off 

variations that can alter the measurements, while the Ultrasound method needs of a 

coupling medium, generally the water, to be in contact with the sample. For this reason, 

the SQUID magnetometer measurements represent an advanced method to detect 

damage and mechanical stress in the CFRPs, in non-invasive and contact-less way and 

obtaining the same detection accuracy typical of ultrasound technique. 

The results of the microscopic diagnosis (AFM) show that damage, such as 

delaminations, produce in the composite material a fiber displacement due to the matrix 

weakening. Therefore, the matrix breaking produces, at early stage of damage, the 

modification of the fiber position, and successively increasing the stress, the 

displacement degenerates into the fiber fractures. 

This effect has been demonstrated by using the AFM analysis that confirms the 

presence of the electromechanical effect in CFRPs at microscopic level.   

The changing of the fiber position produces a variation of the carbon fiber electrical 

resistance that “modulate” the eddy current into the sample. Due to this effect the 

magnetic field can be detected by the SQUID magnetometer. Complementary 

techniques demonstrate that the damage inside the CFRPs doesn’t extend uniformly in 

all directions, but the damage propagation depends on the fiber orientation. The results 
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concerned with the CFRPs characterization demonstrate the capability of the prototype 

based on the SQUID magnetometer to analyse the electromagnetic properties of very 

low conductive materials, such as CFRPs, in more advantageous way respect to the 

other traditional non destructive methods.  

The second class of composite material analysed in this thesis is represented by the 

fiber-glass aluminium (FGA) laminates. The electromagnetic characterization of the 

fiber-glass laminates has been focused on the impact damage detection, and the study of 

the corrosion activity, that can takes place into deformed layers of this material. The 

results concerned with the damage, due to impact loading, demonstrate that the 

magnetic field phase derivative and the minimum of the magnetic field amplitude can 

be considered suitable parameters to detect defects due to different energy impacts.  

The amplitude of these magnetic field parameters decrease when the energy impact 

increases. It means that when the deformation degenerates into a laminar cracking the 

magnetic field signals decreases. This is due to the coexistence of two effects: the 

presence of the crack and the variation of lift-off. A cracking in the aluminium layer 

produces a decreasing of electrical conductivity, as a consequence the magnetic field 

signal becomes lower. Moreover, even if the impact produces a variation of lift-off up to 

10 mm, between the test sample and the HTS DC SQUID magnetometer, it has been 

demonstrated by using the SQUID based prototype that the amplitude of the magnetic 

field is able to distinguish the different sample deformation without lose sensitivity. 

This result represents a further demonstration of the SQUID sensor superiority respect 

to the ultrasound and induction coil in the NDE applications.  

The magnetic field measurements have been demonstrated that the damage process into 

FGA is characterized by three different stages: permanent deformation, fracture of 

internal aluminium layer and cracking of the prone surface. This information is revealed 

by the  minimum of magnetic field amplitude, which is particularly sensitive to the 

signal responses associated with the deformation and the cracking of the aluminium 

layers. The results regarded the characterization of the impact damage demonstrate the 

possibility to study the mechanical damage process using a non-invasive and contact-

less electromagnetic technique, such as the SQUID based prototype system.   

It has already mentioned that the fiber-glass laminates are degraded not only by the 

impact loading, but corrosion damage can alter their mechanical properties too.  

Therefore, to test the capability of the electromagnetic methods to give information on 

the corrosion activity, a copper made mock-up has been realized. It has been 
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demonstrated that the magnetic field response can give information about the 

dissolution rate of the copper surface and as much copper as is dissolved during a 

corrosion process. By using an electromagnetic technique an estimation of the removed 

material on a metallic surface  can be obtained measuring the magnetic field amplitude.  

An electromagnetic inversion using the FFT method has been carried out to obtain the 

current distribution corresponding to the measured magnetic field.  An electrode with a 

shaped geometry has been considered to approximate  the shape of the deformed surface 

of the FGA, where the corrosion activity can take place more easily.  

The calculated current distribution reproduces successfully the current activity on the 

shaped electrode. These results demonstrate the  sensitivity of the electromagnetic 

monitoring of the ongoing corrosion using magnetic sensors. Moreover, further 

experimental measurements of the ongoing corrosion of FGA samples using the 

described methods are in progress. 

Finally, in this research activity has been demonstrated that the eddy current SQUID 

based prototype can be employed successfully into the aeronautical and aerospace 

industry, to better understand the mechanical properties of these materials and to 

improve their performance. The results summarized in this work represent a 

demonstration of the potentiality of a new SQUID based eddy current prototype in the 

NDE applications. The prototype can become a complementary instrument for non 

destructive evaluation useful at research level and in the quality control of advanced 

material used in aerospace industry.  

 


