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The ocean’s nitrogen cycle is driven by complex microbial transformations,

including nitrogen fixation, assimilation, nitrification, anammox and denitri-

fication. Dinitrogen is the most abundant form of nitrogen in sea water but

only accessible by nitrogen-fixing microbes. Denitrification and nitrification

are both regulated by oxygen concentrations and potentially produce nitrous

oxide (N2O), a climate-relevant atmospheric trace gas. The world’s oceans,

including the coastal areas and upwelling areas, contribute about 30 per

cent to the atmospheric N2O budget and are, therefore, a major source of

this gas to the atmosphere. Human activities now add more nitrogen to

the environment than is naturally fixed. More than half of the nitrogen

reaches the coastal ocean via river input and atmospheric deposition, of

which the latter affects even remote oceanic regions. A nitrogen budget for

the coastal and open ocean, where inputs and outputs match rather well,

is presented. Furthermore, predicted climate change will impact the expan-

sion of the oceans’ oxygen minimum zones, the productivity of surface

waters and presumably other microbial processes, with unpredictable conse-

quences for the cycling of nitrogen. Nitrogen cycling is closely intertwined

with that of carbon, phosphorous and other biologically important elements

via biological stoichiometric requirements. This linkage implies that human

alterations of nitrogen cycling are likely to have major consequences for

other biogeochemical processes and ecosystem functions and services.

provided by O
1. Introduction
The nitrogen cycle on the Earth has evolved over three billion years through

biogeochemical and microbial processes coupled via natural feedbacks that

keep the nitrogen cycle of the oceans in approximate balance [1]. However,

recent findings strongly suggest a significant imbalance of the oceans’ nitrogen

budget towards higher losses than inputs [2,3]. Moreover, new processes have

been identified, such as the anaerobic ammonium oxidation (anammox) process

[4], the conversion of ammonia and nitrite to dinitrogen gas or the denitrifica-

tion by eukaryotic species such as foraminifera [5]. Previously, canonical

denitrification by prokaryotes was thought to be the only removal process of

reactive nitrogen. Likewise, the single major N source to the ocean was con-

sidered to be the nitrogen-fixing photoautotrophic bacteria of the genus

Trichodesmium, a species that occurs globally in tropical and subtropical waters

[6]. However, today, numerous other nitrogen-fixing bacteria have been described

which may raise the estimate of the global nitrogen input to the oceans signifi-

cantly [7]. Moreover, nitrogen fixation seems to be a significant process not

only in tropical surface waters and some benthic systems [8], but also in anoxic

waters, at the sea floor [9], in estuaries and in river plumes where diatom–

diazotroph associations prevail [10,11]. Nitrification, the microbially mediated,
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two-step oxidation of ammonium to nitrite and nitrate, was

traditionally attributed to bacteria, but ammonia-oxidizing

archaea now seem even more important [12–14].

On top of these recent findings and uncertainties are the

perturbation of the nitrogen cycle by fossil fuel combustion

and the production of artificial fertilizers, which together

exceed the amount produced by natural nitrogen fixation

[15,16]. The extra nitrogen disrupts the N balance in marine

systems, fuels eutrophication of coastal oceans and supports

extension of hypoxic zones [17]. These sites act as an additional,

poorly quantified, source of nitrous oxide (N2O). Climate

change imposes numerous threats to the functioning of the

Earth’s elemental cycles. This overview paper will give a brief

insight into the functioning of the marine nitrogen cycle, how

the major processes are interlinked, what is known and where

the critical limits of our understanding are.
 B
368:20130121
2. Surface water processes: assimilation of
dissolved inorganic nitrogen, dissolved
organic nitrogen and nitrogen fixation

(a) Global patterns in dissolved inorganic nitrogen
concentrations

Nitrogen is an essential element for all life forms but, in sea

water, nitrogen mostly occurs as inert dissolved N2 gas

(more than 95%) that is inaccessible to most species. The

rest is reactive nitrogen (Nr), such as nitrate, ammonia and

dissolved organic compounds. Nitrate concentrations in

surface waters vary from almost zero in the tropics and sub-

tropics up to several tens of micromoles per litre in the

temperate and Arctic and Antarctic oceans (figure 1a).

The increase in deep-water nutrient concentration from

the northern Atlantic towards the Indian and Pacific oceans

(figure 1b) is a result of a global circulation pattern, called

the oceanic ‘conveyor belt’ [19]. The circulation is driven

by the excess salt in the northern Atlantic Ocean where sur-

face waters sink to the bottom and travel southwards. This

southward current partly supplies water to the Antarctic

Circumpolar Current, and continues to the Indian and the

Pacific Oceans [19] from whence the flow returns to the surface

to travel back through the Indonesian Islands the Tasman

Sea [20], and further into the Indian and Atlantic Oceans.

The residence time of the Atlantic water is around 180 years,

whereas the complete overturning of ocean deep waters takes

approximately 1000 years [19].

Four major processes deliver nutrient-rich waters to the

surface: upwelling, winter mixing, eddies and diffusion

from below a permanent or seasonal thermocline (table 1).

Coastal upwelling is especially strongly developed in eastern

boundary currents along the west coasts off North and South

America and Africa, where nutrient-rich water from approxi-

mately 200 m is brought to the surface (figure 1a). The

upwelled water stimulates primary production and the

export of organic material, with the consequence of oxygen

deficiency in subsurface waters owing to remineralization.

The recycling of organic matter at depth leads to accumu-

lation of nutrients with nitrate concentrations between 20

and 50 mmol l21 (figure 1b). At high latitudes, deep winter-

time convection mixes the waters down to a depth of several

hundred metres so that seasonal interfaces are destroyed.
Thus, nutrients from greater depth are redistributed into the

surface layer to provide the nutrient reservoir for the spring

bloom in the following year. In the open ocean, eddy fields

are generated by baroclinic or barotropic instabilities and

large-scale gyres by the divergence of the horizontal wind

field. Within these, structure nutrients are supplied to the

surface by Ekman pumping, stimulating blooms of phyto-

plankton [21,22]. To what extent these sites contribute to

global primary production is difficult to estimate, because

the occurrence of eddies is transient and varies greatly in

time and location. For the Atlantic Ocean, roughly one-third

of the total N flux may be delivered by eddy transport [23].

Phytoplankton living in surface waters drives the N cycle

and often consumes all inorganic nutrients down to a depth

where ambient light level is 1–0.1% of the surface irradiation.

At these depths, turbulent diffusion is another important

source for primary production [24].

Our understanding of ocean productivity regulation was

significantly advanced when the concept of new and regener-

ated production was introduced by Dugdale & Goering [25].

They defined new production as that based on the input of

nitrate from outside the euphotic zone (including nitrogen fix-

ation), whereas regenerated production (based on ammonium)

fuels a ‘microbial loop’ first introduced by Azam et al. [26]

within a defined surface layer of the ocean. Based on Dugdale

and Goerings’s concept, only the amount of newly produced

biomass can be quantitatively exported to the deep ocean

without running down the primary production system [27].

However, this concept assumes that sources of new nitrogen

are small, and that the ocean is in steady state, which often

seems not to be the case [3,6,28]. Other potential problems

with the Dugdale and Goering concept are bacterial uptake

of dissolved inorganic nitrogen (DIN), assimilation of dis-

solved organic nitrogen (DON) and nitrification in the

euphotic zone [29,30]. Of the global net primary production

in the oceans of 1900 Tg C yr21 [31], 320 Tg yr21 should be

N, using a C : N ratio of 6. To these, about 140 Tg N yr21 are

added by nitrogen fixation [32], whereas global losses may

be around 400 Tg N yr21 [33]. A global nitrogen budget con-

sidering all natural and human sources and incorporating

recent discoveries has not yet been put together, but qualitative

attempts have been made [3,6,32,34].

Nitrogen in atmospheric deposition develops into a sig-

nificant N source in the open ocean, where usually very

little combined nitrogen occurs in surface waters [15]. To

what extent these atmospheric nutrients support oceanic pro-

ductivity, and decrease oxygen concentrations, remains

unclear, but Dentener et al. [35] estimate a total nitrogen

deposition of 46.2 Tg N yr21, whereas Duce et al. [15] derive

a global estimate of 67 Tg N yr21.
(b) Nitrogen fixation
Nitrogen-fixing organisms are independent of combined N

sources and able to use the dissolved N2 gas, which has concen-

trations of over 400 mmol l21 in sea water. In order to be used

as a source of nitrogen, dinitrogen has to be reduced to

ammonium for which specific enzymes are required [36]. More-

over, nitrogen-fixing species rely on phosphate and require iron

in much larger quantities than other phytoplankton [37]. There-

fore, co-limitation of Fe and P occurs [38] and may even regulate

the global occurrence of nitrogen-fixing species. Because the Fe

input from land is lower in the Pacific than the Atlantic Ocean

http://rstb.royalsocietypublishing.org/
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Figure 1. Nitrate concentrations in (a) surface waters of the ocean and (b) at 1000 m depth. Adapted from Boyer et al. [18].
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[39], the tropical Atlantic Ocean may experience higher overall

N fixation than the Pacific [40]. But recent evidence suggests

higher rates in the Pacific Ocean than previously assumed,

possibly higher than in the Atlantic Ocean [28,41].
Nitrogen fixation in the ocean has long been focused on the

large bloom-forming genus Trichodesmium [6], until smaller

unicellular species were discovered and their potential fixa-

tion activity demonstrated [7,42,43]. These are heterotrophic

http://rstb.royalsocietypublishing.org/


Table 1. Summary of major nitrogen nutrient sources to the ocean.

source of
nutrient

major sites of
occurrence

example of sites where process
is of significance

type of nutrient timing

convective

overturning

high latitudes North Atlantic, Greenland and

Norwegian Seas

NO�3 autumn, winter

wind induced and

Ekman

upwelling

eastern boundary

upwelling systems

off Oregon/California/Mexico, Peru/

Chile, Iberian Peninsula/

Mauretania, Namibia, NW Indian

Ocean (Arabian Sea)

NO�3 , DON during upwelling season

(depending on the

direction of the wind

fields)

eddy activity/gyres everywhere frontal systems; Gulf stream,

Kuroshio, Polar front

NO�3 sporadically/permanent

diffusion thermoclines oligotrophic ocean NO�3 , NHþ4 permanent, depending on

the gradient

rivers continental shelves Amazon, Mississippi, Yangtze,

Mekong

NO�3 , DON permanent

atmospheric

deposition

coastal, but globally

relevant

oligotrophic tropical ocean NHþ4 , NO�3 , DON sporadically

shelf processes on continental

shelves

European shelf, Patagonian shelf NO�3 , DON permanent

regeneration of

particles

everywhere in the

water column and

in sediments

high latitude surface waters in

summer, low latitude surface

waters, benthic boundary layers

NHþ4 , NO�3 , NO�2 , DON permanent
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nitrogen fixers, including the photoheterotroph group-A

(UCYN-A), which lacks the photosystem II [44], and Richelia
intracellularis, a symbiont that fixes nitrogen in diatoms cells

and has been found in tropical river plumes [45,46].

Nitrogen fixation may also be an important source of

nitrogen to support biological production in deep-sea environ-

ments. Mehta et al. [47] described a diverse group of organisms

possessing nifH genes, and therefore potentially capable of

fixing N2, from hydrothermal vent sites of the Juan de Fuca

Ridge system. Other archaeal nifH sequences, many of uncer-

tain phylogeny, have been linked to subsurface circulation

through hydrothermal vent systems [48] and to methane cold

seeps [9,49–51] and a mud volcano [52]. Further work at a

cold seep field has revealed that methanotrophic archaea

form syntrophic associations with sulfur-reducing bacteria,

and that these consortia actively fix N2 [9,50,51]. The overall

contribution of these benthic diazotrophs to the oceanic nitro-

gen budget remains poorly known, but may be significant.

Nitrogen fixation rates based on direct measurements are

sparse, and the variability is extremely high [6]. Therefore,

global estimates of total marine nitrogen fixation are often

based on geochemical factors such as unbalanced N : P

ratios (N* method) which are assumed to support nitrogen

fixation. Recently, Groszkopf et al. [53] reported a global

marine N-fixation rate of 177 Tg N yr21 based on extrapol-

ation of direct measurement, and suggest that N2 fixers

other than Trichodesmium are quite important outside the tro-

pics. From global nutrient distributions and an ocean

circulation model, Deutsch et al. [32] calculated a nitrogen fix-

ation rate of 140 Tg N yr21, which agrees well with other

estimates in the range of 100–200 Tg N yr21 [6]. It seems

that lower estimates mainly result from model exercises
where additional factors limiting N fixation such as iron

have been implemented [54,55]. The global N-fixation rate

of 140 Tg N yr21 has been largely unquestioned and is

widely used [3].

(c) The role of dissolved organic nitrogen in
nitrogen cycling

Dissolved organic nitrogen is rather uniformly distributed in

the water column of the open ocean, with slightly higher

concentrations in the surface than at depth, but with DON

increasing considerably towards coastal areas and in estu-

aries [56]. With a mean concentration of 5.8+ 2 mmol l21,

DON may potentially be more important than inorganic

forms, because DON concentrations comprise between 18

per cent and 85 per cent of the total nitrogen pool in coastal

and open ocean surface water, respectively, with particulate

nitrogen being negligible [56]. The DON pool is not as inert

as suggested by the relatively high and constant concentrations

found in the oceans, but a small part of it is rather dynamic

and consumed by phytoplankton and bacteria [57]. Further-

more, DON is mainly of autochthonous origin because it

stems from direct release by phytoplankton and bacteria

[58,59], egestion and excretion from micro- and meso-zoo-

plankton [60], or viral lysis of bacterioplankton [61].

In coastal waters, rivers are a major source of allochthonous

DON, and its composition, bioavailability and quantities may

vary with land use [62]. Another allochthonous source relevant

also for the open ocean is the DON in atmospheric deposition

[63,64]. DON is actively channelled into cells via membrane

transport systems [65] and seems to be a quite active compo-

nent of coastal nitrogen cycling [66,67]. Better understanding

http://rstb.royalsocietypublishing.org/
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of the dynamic of DON is essential to quantify its role in the

nitrogen and carbon cycles and how these will respond to

anthropogenic perturbations and global change.

(d) Stoichiometry of C : N : P in the ocean
The close similarity between nitrogen and phosphorous ratios

in plankton and in deep-water nutrients was first noted by

Redfield [68], who suggested that life in the ocean adjusts

the nutrients according to its requirements. Today, the per-

ception is, rather, vice versa, that life has adjusted to the

oceanic ratios. The C : N : P ratio of 106 : 16 : 1 on a molar

basis is still a fundamental concept in marine sciences and

mirrors the metabolic demands of an average living cell

[69]. This ‘Redfield ratio’ allows linking elemental cycles

and has been widely used in ecosystem and element flux

models [32]. The cellular stoichiometry is important for the

regulation of organic C and N cycling and also for the linkage

between single-cell activity and ecosystem function. Hetero-

trophic organisms maintain low nitrate concentrations in

the water when organic C : N ratios match the stoichiometric

demands, but as soon as organic carbon becomes limiting,

denitrification decreases, and nitrification is enhanced [70].

It may be quite important to focus nutrient management

scenarios to maintain balanced elemental ratios because

nitrogen supply in excess of the demand leads to significant

enrichment of Nr [71].

The ultimately limiting element for ocean productivity

had been debated over decades, and a consensus seems to

be that nitrogen is limiting on short time-scales, whereas on

geological time scales it seems to be phosphorus [72,73].

Both these views are based on input and loss rates and the

turnover of the elements, which all may vary over time

[74]. However, human perturbations affecting the input or

loss of substances ultimately impact the global elemental

cycles and the productivity.
3. Biogeochemistry of oxygen deficiency zones
Oxygen controls the distributions of N-cycle processes based

on the fact that some microbial reactions require oxygen and

others are inhibited by it. Both the microbial pathways that

lead to net loss of fixed nitrogen, denitrification and anammox,

occur only in the near or total absence of oxygen. These

conditions occur in coastal and shelf sediments around the

world and in a few locations in the water column where rela-

tively high oxygen utilization rates and low ventilation rates

lead to oxygen depleted zones of several hundred metres

thickness (e.g. Arabian Sea). Regions where the oxygen con-

centration is low enough to induce anaerobic metabolism are

known as oxygen minimum zones or more precisely oxygen-

deficient zones (ODZs) experiencing oxygen concentrations

less than 10 mmol l21, an expression we use throughout this

text. Nitrogen cycling in ODZs is fundamentally different

from the rest of the open ocean, because only in ODZs can

net loss of fixed N occur in the water column.

Denitrification and anammox both lead to the formation of

gaseous dinitrogen (and N2O in the case of the former) and

both consume DIN, but have potentially different effects on

the carbon cycle. Denitrifying bacteria are mostly heterotrophs,

and respire DIN at O2 concentrations below 60 mmol l21

while oxidizing organic matter. Some denitrifiers, however,

are autotrophs, and fix CO2 while oxidizing reduced sulfur
compounds with nitrate. Anammox bacteria are also auto-

trophic, fixing CO2 while oxidizing ammonium plus nitrite to

dinitrogen, and oxidizing nitrite to nitrate, all anaerobically.

In the open ocean ODZs, denitrification and anammox are

both constrained by the stoichiometry of the organic matter

supply, and anammox must depend on denitrification for the

continuous supply of DIN. The complete utilization of organic

matter of average composition (see stoichiometry above) under

anaerobic conditions should lead to the loss of fixed N from

both denitrification and anammox in the ratio of 71 : 29, i.e.

29 per cent of the fixed N loss is attributed to anammox.

In sediments and coastal systems, however, there are mul-

tiple sources of organic matter and DIN, such that the

average composition rule does not apply. With an allochtho-

nous supply of ammonium in a stratified basin or sediment,

the proportion of anammox can be much higher. It was sur-

prising, therefore, that the first reported direct measurements

of anammox and denitrification in the ODZs (where the aver-

age rule should apply) failed to detect denitrification. This

suggested that all of the fixed N loss was due to anammox.

This is apparently a robust result, although the number of

measurements is still rather small [75–77]. Only in the Ara-

bian Sea has denitrification been detected at appreciable

levels [77,78], whereas another study nearby failed to detect

either anammox or denitrification [79]. There are several

alternative explanations for the variation in the proportion

of anammox and denitrification in the ODZs, but this is an

active area of research with no current consensus.

From stoichiometric model studies, Koeve & Kähler [80]

conclude that the proportion of anammox and denitrification

does not vary widely in the ocean, and direct measurements

of excess N2 and DIN concentrations verify that organic

matter loss in the ODZs does indeed produce net Redfield

stoichiometry [81]. Thus, resolving the question of the relative

contribution of anammox and denitrification has small rami-

fications for the magnitude of the overall fixed N loss. One

fundamental difference between the two processes is that

denitrification involves N2O as an intermediate, whereas

anammox does not. This issue is explored in §3a.

(a) Nitrous oxide production, consumption and release
from the ocean

The marine pathways of N2O and the quantification of its

oceanic emissions have received increased attention during

recent decades [82,83]. N2O acts as a strong greenhouse gas

and in the stratosphere it is the precursor of ozone-depleting

nitric oxide (NO) radicals [84,85]. Because of the ongoing

decline of chlorofluorocarbons and the continuous increase

of N2O in the atmosphere, the contributions of N2O to both

the greenhouse effect and ozone depletion will be even

more pronounced in the twenty-first century [84,86]. The

oceans, including coastal areas such as continental shelves,

estuaries and upwelling areas are a major source of N2O

and contribute about 30 per cent (5.5 Tg N yr21) to the

atmospheric N2O budget [84]. Oceanic N2O is produced as

a by-product during bacterial as well as archaeal nitrification;

however, nitrifying archaea dominate N2O production

[87,88]. N2O occurs also as an intermediate during denitrifi-

cation. It is produced by the reduction of NO�3 and, in turn,

can be further reduced to N2. Nitrification is the dominating

N2O production process, whereas denitrification contributes

only 7–35% to the overall N2O water column budget in the

http://rstb.royalsocietypublishing.org/
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ocean [89,90]. The importance of other microbial processes,

such as dissimilatory nitrate reduction to ammonia and ana-

mmox, for oceanic, N2O production is largely unknown [83].

The amount of N2O produced during both nitrification

and denitrification strongly depends on the prevailing dissol-

ved oxygen (O2) concentrations and is significantly enhanced

under low (i.e. suboxic) O2 conditions [2,91]. N2O is usually

not detectable in anoxic waters because of its reduction to

N2 during denitrification. Thus, significantly enhanced N2O

concentrations are generally found at oxic/suboxic bound-

aries in the oceans [2,83]. The strong O2 sensitivity of N2O

production is also observed in coastal systems that are charac-

terized by seasonal shifts in the O2 regime [92]. A biological

source of N2O in the well-oxygenated, mixed layer/euphotic

zone seems to be unlikely (see discussion in Freing et al. [90]).

A recent study of both the N2O air/sea fluxes and N2O dia-

pycnal fluxes into the mixed layer in the coastal upwelling

off Mauritania, northwest Africa indicated that surfactants

may have a dampening effect on air–sea exchanges of N2O

[93]. However, for a reassessment of the global coastal N2O

emissions, further laboratory and field studies of the effect

of surfactants on the air/sea flux of N2O are needed.

Global maps of N2O in the surface ocean [94,95] show

supersaturation of N2O in coastal and equatorial upwelling

regions as well as N2O anomalies close to zero (i.e. near equi-

librium) in large parts of the open ocean. Since the studies of

Nevison et al. [94] and Suntharalingam & Sarmiento [95], the

amount of available N2O data has been steadily increasing.

Therefore, the project ‘Marine Methane and Nitrous Oxide’

database has been launched with the aim to collect and

archive N2O datasets and to provide actual fields of surface

N2O for emission estimates [96].

The observed ongoing deoxygenation of the open ocean

[97] can be translated into an additional N2O accumulation

of less than 6 per cent [83]. In contrast to the open ocean,

Naqvi et al. [92] cautioned that global N2O emissions from

shallow hypoxic/anoxic coastal systems might increase signifi-

cantly in the future. It seems realistic to expect that the N2O

emissions from shallow hypoxic/anoxic coastal systems will

increase in the near future due to increasing nutrient inputs

(caused by the ongoing industrialization and intensification

of agricultural activities), whereas future N2O emissions from

the open ocean owing to decreasing oxygen in mid water

depths seem to be of minor significance.
4. Shelf processes
The coastal ocean is conveniently partitioned into a proximal,

i.e. spatially heterogeneous part, including estuaries, lagoons,

etc., and a distal compartment, i.e. the continental shelf. The

coastal ocean is the eventual sink of most anthropogenic DIN

delivered by rivers, groundwater and atmospheric deposition.

(a) Proximal coastal systems
Each year, rivers transport about 40–66 Tg N yr21 to coastal

ecosystems, 40 per cent in the form of DIN (mainly nitrate),

40 per cent in the form of particulate nitrogen and the remain-

ing 20 per cent as dissolved organic nitrogen [62]. The

variability in the export is impacted by anthropogenic nitrogen

input, whereas DON export varies between 10 and 25 per cent

of total N [62]. Submarine groundwater discharge delivers

about 4 Tg N yr21 to near-shore ecosystems. Further inputs
of nitrogen to the proximate coastal ocean include nitrogen

fixation in the water column, sediments and vegetated ecosys-

tems totalling about 15 Tg N yr21 and atmospheric deposition

(about 1 Tg N yr21). Losses of fixed nitrogen include export

to the continental shelf (38 Tg N yr21), emission of N2O

(0.5 Tg N yr21), denitrification (4–8 Tg N yr21), fish landings

(3.7 Tg N yr21) and burial (22 Tg N yr21; figure 2). This

burial occurs mainly in vegetated systems such as seagrass

meadows and mangroves [98], because of trapping of particu-

late nitrogen and assimilation of dissolved inorganic and

organic nitrogen [67]. The present-day and future nitrogen

cycling in proximal coastal systems differs substantially from

that before the Anthropocene. Eutrophication has resulted in

community shifts such as a loss of submerged vegetation and

proliferation of macroalgae and phytoplankton. This will even-

tually lead to lower rates of nitrogen burial. Denitrification may

be higher or lower depending on conditions [99], whereas N2O

emission is higher because of extensive oxic–anoxic interfaces

with high rates of nitrification and denitrification.

(b) Distal coastal systems
The fixed nitrogen budget of continental shelf systems is primar-

ily governed by exchanges with the open ocean (figure 2).

Globally, continental shelves receive about 38 Tg N yr21

exported from the proximal coastal zone, 7.5 Tg N yr21 from

atmospheric deposition (almost all anthropogenic) and a small

contribution by nitrogen-fixing organisms (about 2 Tg N yr21).

Continental shelf systems lose nitrogen via denitrification

(100–250 Tg N yr21); the uncertainty, however, is high [100].

Because the global estimate of 400 Tg N yr21 removal per year

exists, about 200–300 Tg N yr21 remain for the open ocean

(figure 2). Recent estimates suggested five times higher denitri-

fication rates in permeable sediments [101], so the number

may need an upward revision in the future. Most nitrogen enter-

ing the continental shelf comes from nitrate exchanges with the

open ocean (450–600 Tg N yr21). The majority of the nitrogen

imported from subsurface oceanic waters is returned in the

form of DON and particulate organic nitrogen (PON) to open

ocean surface waters (about 390 Tg N yr21). This organic nitro-

gen exported from coastal systems supports the reported

heterotrophy of oceanic gyre ecosystems and constitutes a

source of fixed nitrogen for micro-organisms. A budget of

these numbers for the three systems (figure 2) reveals a relatively

low uncertainty in the numbers around 10 per cent that supports

the reliability of the estimates.
5. Model achievements and global budgets
considering nitrogen

Ocean biogeochemical and ecosystem models often have Nr as

model currency, i.e. nitrogen is modelled as a state variable.

The models in use differ in many aspects, in particular regard-

ing complexity in model formulation and spatial coverage.

Detailed process models such as nitrogen-fixing models, e.g.

Fennel et al. [102] and Hood et al. [103], and denitrification

models, for example [104,105], are designed to investigate

single processes (see review by Hood [106]).

Ocean biogeochemical circulation models are often based

on the nitrogen–phytoplankton–zooplankton–detritus model

of Fasham et al. [107], which was the first model to consider

DON and bacteria as state variables. This model was coupled

http://rstb.royalsocietypublishing.org/
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to a circulation model and estimated basin-wide nitrate and

chlorophyll-a and the relative magnitude of different new N

sources [108]. Since then, the complexity of the models has

increased by including multiple nutrients, or plankton func-

tional groups. The development of the concept of excess

nitrogen N* [109] or excess phosphorous P* [32] was a milestone

because it allows coupling of the nitrogen to phosphorous and

carbon cycles [3,32]. The imbalance between input and losses

and the findings of higher estimates of both terms would

result in higher turnover rates of the nitrogen cycle and the

question of how other cycles are still linked.

A major uncertainty in global modelling remains meteor-

ological forcing, especially in the tropics. Large differences

exist between monthly mean climatologic datasets and reana-

lysis data of NCEP/NCAR or ECMWF in wind stress forcing

[110], as well as in atmospheric temperature of up to 0.8 K in

the late 1980s and early 1990s [111]. A further uncertainty is

the lack of consensus concerning the question of whether or

not it is necessary to include explicit formulations of microbes

as state variables [106].

effects in Arctic and tropical latitudes except for the different effects on pri-
mary production (PP); nutrient supply (1) from below the thermocline is
restricted due to stronger stratification in low latitudes, but PP is enhanced
(2) at high latitudes because of higher light availability. Plus and minus sym-
bols emphasize the positive or negative feedback of a process. OA, ocean
acidification; SST, sea surface temperature; PP, primary production; ODZ,
oxygen deficiency zone; O2, oxygen concentrations, N2O, nitrous oxide.
6. Impact of climate change
A recent summary explored climate change effects on the

future ocean [112] caused by the increase of CO2 in the atmos-

phere [84,113]. There are direct (warming and acidification)

and indirect (oxygen depletion) effects. These factors produce

further changes that contribute more or less clearly to the

many possible changes in ocean biogeochemistry (figure 3).

Warming of the sea water, a direct consequence of the increas-

ing air temperature, enhances stratification of the ocean and

microbial activity. This may not develop equally everywhere

in the ocean. In the Arctic and in low latitudes (from 208 N to
208 S) stronger stratification of the water column is expected

than in the rest of the ocean, which would, in turn, affect nutri-

ent supply and light availability. Another important impact is

the declining solubility of gases, especially of O2 itself, poten-

tially increasing the size of ODZ [97,114]. Ocean acidification

http://rstb.royalsocietypublishing.org/
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may stimulate N2-fixing cyanobacteria [115]. In areas where

primary production increases, more oxygen is consumed at

depth during remineralization and potentially more N2O can

escape to the atmosphere when the water masses reach the sur-

face (see section §3a). However, increasing temperatures may

change the balance between production and respiration so

that less export of organic matter may occur counteracting

oxygen losses in the deep ocean.

Ocean acidification may directly result in significantly

reduced nitrification rates accompanied reduced N2O pro-

duction [116]. However, this scenario might be globally

counteracted by the generation of more N2O when the nitrifica-

tion process itself shows an overall positive response to lower

pH values such as some studies suggest [87,117]. Therefore, it

seems reasonable to assume only a minor effect of decreasing
pH on N2O production during nitrification, but mesocosm

and field experiments to verify the effect of ocean acidification

on N2O production in the ocean are missing. Recently pub-

lished model results by Suntharalingam et al. [118] show that

atmospheric deposition of anthropogenic N to the ocean

might lead to an enhanced global oceanic N2O production

(0.06–0.34 Tg N y–1) especially in regions which are sensitive

to changes in dissolved oxygen such as coastal zones. At this

point, it is difficult to predict which process may dominate,

because the interaction of processes is too complex to evaluate

the net effect on ocean carbon and nitrogen cycles.

The paper is a contribution to the HYPER Project funded by the
BONUSþ programme. J.W.D. has been supported by the BONUSþ
Project AMBER. Suggestions to the final text by Mirko Lunau are
greatly acknowledged.
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