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[1] Very few age controls exist for Quaternary deposits over
the vast territory of the East Russian Arctic, which hampers
dating of major environmental changes in this area and
prevents their correlation to climatic changes in the Arctic
and Pacific marine domains. We report a newly identified
~177 ka old Rauchua tephra, which has been dispersed over
an area of >1,500,000 km2 and directly links terrestrial
paleoenvironmental archives from Arctic Siberia with
marine cores in the northwest Pacific, thus permitting their
synchronization and dating. The Rauchua tephra can help
to identify deposits formed in terrestrial and marine
environments during the oxygen isotope stage 6.5 warming
event. Chemical composition of volcanic glass from the
Rauchua tephra points to its island-arc origin, while its
spatial distribution singles out the Kamchatka volcanic arc
as a source. The Rauchua tephra represents a previously
unknown, large (magnitude >6.5) explosive eruption from
the Kamchatka volcanic arc. Citation: Ponomareva, V.,
M. Portnyagin, A. Derkachev, O. Juschus, D. Garbe-Schönberg,
and D. Nürnberg (2013), Identification of a widespread
Kamchatkan tephra: A middle Pleistocene tie-point between
Arctic and Pacific paleoclimatic records, Geophys. Res. Lett., 40,
3538–3543, doi:10.1002/grl.50645.

1. Introduction

[2] Establishing precise correlations between distant
paleoenvironmental archives is important for resolving the
spatial and temporal complexities of past climatic changes.
Tephra layers from large explosive eruptions have proved
to work as excellent isochrones directly linking marine and
terrestrial depositional successions and allowing an evalua-
tion of the synchronicity of abrupt climate changes [e.g.,
Davies et al., 2008]. Once dated, a tephra layer provides

age control for all other sections where it has been geochem-
ically identified. Some tephras have been recently found at
distances of more than 8000 km from their source [Jensen
et al., 2012], which attests to the potential of tephra for
correlation of distant sites. In addition, tephra correlations
permit estimates of tephra volumes, which in turn may serve
as a basis for evaluating magma output and volcanic gas flux
through time as well as contribute to hazard assessment.
[3] Numerous distal tephra layers have been reported over

northeast Asia and surrounding seas (Figure 1) both in
terrestrial and marine environments [Kotov, 1998;
Nürnberg and Tiedemann, 2004; Juschus et al., 2007]. To
date, however, only one tephra associated with the Kurile
Lake caldera-forming eruption ~8.4 cal ka BP has been
reliably correlated between the source in South Kamchatka,
cores in the Okhotsk Sea, and distal sites on the Asian
mainland (Figure 1) [Ponomareva et al., 2004; Derkachev
et al., 2012]. Dispersal areas and sources for many other
distal tephras are not yet constrained which hampers
their usage for dating and correlation of distant paleocli-
matic archives. This paper reports new data on the
geochemical correlation of a middle Pleistocene tephra
from Kamchatka over an area of >1,500,000 km2 and
discusses its potential as a marker for the marine oxygen
isotope stage (MIS) 6.5 warming event in northeast Asia
and adjacent seas. Wide dispersal of this tephra suggests
an earlier unknown explosive eruption from the
Kamchatka volcanic arc, which may rank within the
Earth's largest eruptions.

2. Sample Localities for the Rauchua
Marker Tephra

[4] A volcanic ash of unique composition, which we label
the Rauchua tephra, was identified in two terrestrial sites in
the East Russian Arctic and two marine cores in the
northwest Pacific (Figure 1). The sites are: (1) the Rauchua
outcrop on the Eastern Siberian Sea coast, (2) core Lz1024
in the El'gygytgyn Lake (Chukotka); (3) core SO201-2-
81KL (Bering Sea), and (4) core SO201-2-40KL (northwest
Pacific) (Table S1 in the supporting information).
[5] 1. The Rauchua outcrop (Figure 2) was originally de-

scribed and sampled by Kotov [1998]. The ~6 km long
coastal bluff exposes a carbon-rich permafrost sequence,
typical for the Arctic Siberia and composed of massive silts
interlayered with lake deposits and peats [Schirrmeister
et al., 2011]. The sequence records two cold climate phases
with the formation of silts, and three warmer phases with
the formation of thermokarst lakes due to permafrost thaw
[Kotov, 1998]. A 1–10 cm thick layer of white fine ash was
described in many subsections along the outcrop, either
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within the middle peat layer or within the lower silt, 30–50
cm below the peat (Figure 2, subsections 1 and 2, respec-
tively). The analyzed sample “Rauchua” comes from
below the peat.
[6] Radiocarbon dates on twigs and bulk peats from the

Rauchua sequence split into two populations: (1) three dates
from the upper lacustrine deposits are early Holocene [Kotov,
1998], and (2) 10 dates from all the other layers are infinite
(beyond the range of 14C method, ~50 ka) [Anderson and
Lozhkin, 2002]. Pollen data for the middle lacustrine package
(Figure 2) point to a warmer-than-present climate [Anderson
and Lozhkin, 2002]. The whole sequence, except for its

Holocene cover, has been related to the late Pleistocene
[Kotov, 1998], more precisely, to the first half of the
Karginsky interstadial [Anderson and Lozhkin, 2002]
traditionally assigned to MIS 3 [Astakhov, 2013].
[7] 2. El'gygytgyn Lake is located ~330 km southeast from

the Rauchua site (Figure 1). It has been cored several times
since 1998 with a major International Continental Scientific
Drilling Program core taken in 2009 [Melles et al., 2012].
The pilot cores were integrated into the ICDP Site 5011 record,
which spans the past 3.6 million years. The age-depth model
for the composite site was derived from the systematic tuning
of various proxies to the Northern hemisphere insolation and

Figure 1. Location of the Rauchua tephra sites and its minimum outline (solid line); with Old Crow (~124 ka) [Preece et al.,
2011] and Kurile Lake (KO, ~8.4 ka) [Ponomareva et al., 2004] tephras outlines (dashed) for comparison. Karymsky
volcanic center is shown with the star. Some other sites with the MIS 5e (Eemian) interglacial deposits according to
Brigham-Grette et al. [2001], Kaplina [2011], and Schirrmeister et al. [2011]. Long axis of the Rauchua tephra outline is
~1800 km.

Figure 2. Eastern part of the Rauchua outcrop (modified from Kotov [1998]). The outcrop exhibits two massive silt units
with ice wedge casts, three packages of lacustrine deposits interlayered or capped with peat, and modern soil. Tephra is shown
with black (in silt) or white (in peat) dashed line. Numbers 1 and 2 show position of typical subsections discussed in the text.
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the marine oxygen isotope stack [Nowaczyk et al., 2013]. Eight
visible tephra layers have been found in the composite core
[Nowaczyk et al., 2013]. Sample Lz1024-EL2, obtained from
a pilot core in 2003 (Table S1), comes from the second layer
from the top [Juschus et al., 2007]. The age of this tephra
(labeled T1) was estimated at ~177 ka [Nowaczyk et al., 2013],
and it falls into the MIS 6.5 warm phase [Frank et al., 2012].

[8] 3. In core SO201-2-81KL (Bering Sea) (Figure 1), a
layer of fine ash coded SR6 occurs at a depth of 861.5–
862.5 cm [Dullo et al., 2009]. Correlation of this core to
the nearby core SO201-2-85KL with the established age-
depth model [Dullo et al., 2009; Riethdorf et al., 2012]
allows us to infer that the SR6 tephra was deposited prior to
160 ka BP.

Figure 3. Composition of Rauchua tephra: (a) Backscattered electron image of Rauchua tephra (Rauchua outcrop); (b) K2O-
SiO2 plot showing composition of Rauchua and T0 tephra glass against that of Pleistocene Kamchatka ignimbrites and
tephras analyzed thus far; and (c) plot of trace element composition of Rauchua and T0 tephras normalized to Bulk Silicate
Earth [McDonough and Sun, 1995. Composition of rhyolites from Karymsky and Odnoboky calderas and field of all the
Kamchatkan tephras (gray shade) is provided for comparison.

PONOMAREVA ET AL.: KAMCHATKA ASH LINKS PALEOCLIMATE RECORDS

3540



[9] 4. In core SO201-2-40KL (northwest Pacific), a ~10
cm thick tephra coded WP14 occurs at a depth of 704.5–
714.5 cm and is composed of fine to medium sand
(Figure 1; Table S1) [Dullo et al., 2009].

3. Rauchua Glass Composition

[10] All samples are dominated by colorless volcanic glass
with typical bubble-wall appearance and fluidal texture
(Figure 3a). Geochemical characterization of single-glass
shards was done with the help of high-precision electron
microprobe and laser-ablation inductively couple mass

spectrometry (LA-ICP-MS) under conditions described in
Text S1 and Table S2. The chemical compositions of
volcanic glass obtained at four localities are given in
Tables S3 and S4.
[11] Glasses from all the four sites are indistinguishable

or very similar in terms of major and trace element com-
position (Figures 3b and 3c) and likely originate from the
same volcanic eruption. The glasses have med-K rhyolite
near-homogeneous composition (SiO2 = 77.8 ± 0.2 wt %,
K2O = 2.78 ± 0.08 wt %, 1 SD, N = 103) with a very
narrow range of all other major elements, Cl (0.16 ± 0.01
wt %) and trace elements (Table 1; Figures 3b and 3c).
Coefficients of similarity [Borchardt et al., 1971] for
Rauchua glass and those from three other localities
calculated for 44 elements are 0.90–0.91, and those for
seven major elements are 0.94–0.96, which confirms the
likeness of all the glasses. Formal t-test for the case of
two-tail distribution and unequal variances (Microsoft
Excel) also confirms close similarity of the glasses (Tables
S3 and S4). The deviations from equality are rather random
and likely reflect occasional and unaccounted for analytical
uncertainties or specific conditions of deposition (e.g., high
Cu in SR6 sample resulting from contamination by sulfide
precipitates on glass surfaces). Composition of the
Rauchua tephra is distinctly different from that of the
younger T0 tephra in the El'gygytgyn Lake core
(Figures 3b and 3c; Table S5) [Juschus et al., 2007].
[12] Trace elements in the Rauchua glass normalized to the

composition of the Bulk Silicate Earth [McDonough and
Sun, 1995] exhibit a zigzag pattern (Figure 3c) with strong
relative enrichment of large ion lithophile elements (Cs, Rb,
and Ba), U, As, Sb, Li, and Pb relative to similarly incompat-
ible rare-earth and high-field strength elements (Ta, Nb, W,
Zr, and Hf) and low [Nb(Ta)/La]N< 1 and [Nb/Y]N ~ 1 that
suggest an island-arc origin of the Rauchua tephra [e.g.,
Pearce, 1982; Noll et al., 1996].

4. Rauchua Tephra: Age, Dispersal, Source, and
Eruption Magnitude

[13] Based on close resemblance of major and trace ele-
ment composition of glass from Rauchua, T1, SR6, and
WP14 tephras, we propose that they represent the same
tephra. The age of ~177 ka obtained for the Rauchua tephra
in the El'gygytgyn Lake core [Nowaczyk et al., 2013] can
thus be applied to all other sites where this tephra is present.
The Rauchua tephra has the greatest thickness (~10 cm)
and contains the coarsest material (medium sand) in core
SO201-2-40KL (Figure 1). Dispersal pattern for the Rauchua
tephra, thus, points at Kamchatka rather than the Aleutian
arc as a source (Figure 1).
[14] The Kamchatka volcanic arc represents the northwest

segment of the Pacific Ring of Fire and is highly explosive
with the largest number of calderas per unit of arc's length
in the world [Hughes and Mahood, 2008] and with the dense
cluster of nested calderas in the Karymsky volcanic center. A
few dated ignimbrites from this area cover a range between
~1300 and 8.7 ka BP [Braitseva et al., 1995; Bindeman
et al., 2010]. There is no exact match for the Rauchua tephra
within the age and geochemical data available for this area,
however, as yet many local ignimbrites have not been dated
or geochemically characterized [e.g., Leonov and Grib,
2004]. Geochemical characteristics for the Rauchua tephra

Table 1. Average Composition of the Rauchua Glassa

Element Units N Points Concentration 1 SD

SiO2 wt % 103 77.78 0.24
TiO2 wt % 103 0.23 0.07
Al2O3 wt % 103 12.41 0.11
FeO wt % 103 1.15 0.12
MnO wt % 103 0.06 0.05
MgO wt % 103 0.20 0.02
CaO wt % 103 1.19 0.03
Na2O wt % 103 4.02 0.16
K2O wt % 103 2.78 0.08
P2O5 wt % 103 0.02 0.02
F wt % 49 0.02 0.04
SO3 wt % 103 0.01 0.01
Cl wt % 103 0.16 0.01
Total wt % 100.00
Li ppm 31 24.2 3.0
Sc ppm 31 6.4 0.5
Ti ppm 31 1375 59
V ppm 31 8.3 3.7
Cu ppm 31 12.3 9.7
Zn ppm 31 32.1 6.3
Ga ppm 31 12.6 0.9
As ppm 20 7.5 2.1
Rb ppm 31 48.8 4.2
Sr ppm 31 105 6
Y ppm 31 23.6 2.3
Zr ppm 31 166 16
Nb ppm 31 3.23 0.23
Mo ppm 20 2.59 0.34
Sb ppm 20 0.54 0.08
Cs ppm 20 2.19 0.26
Ba ppm 31 618 52
La ppm 31 12.1 1.0
Ce ppm 31 24.9 2.2
Pr ppm 31 3.21 0.20
Nd ppm 31 13.3 0.8
Sm ppm 31 3.06 0.25
Eu ppm 31 0.63 0.05
Gd ppm 31 3.04 0.34
Tb ppm 31 0.52 0.05
Dy ppm 31 3.56 0.38
Ho ppm 31 0.79 0.07
Er ppm 31 2.51 0.25
Tm ppm 31 0.38 0.05
Yb ppm 31 2.89 0.31
Lu ppm 31 0.46 0.05
Hf ppm 31 4.45 0.51
Ta ppm 31 0.28 0.03
W ppm 20 0.44 0.17
Pb ppm 31 9.66 0.91
Th ppm 31 3.08 0.31
U ppm 31 1.55 0.15

aThe composition represents an average from all analyses of single-glass
shards obtained at four localities. Major elements were analyzed by electron
microprobe, trace elements by LA-ICP-MS. The analytical procedure is
described in Text S1 and Table S2.
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are similar to rhyolites from the Karymsky volcanic center
which is its most probable source (Figure 3c).
[15] A rough estimate of a minimum volume (Vmin) for

the Rauchua tephra is based on a single 1 cm isopach
[Legros, 2000] enclosing all of the studied sites (Figure 1)
and gives Vmin of 49.82 km3. The magnitude (M) of the
Rauchua eruption can be estimated at >6.5 [method by
Pyle, 2000; assuming pumice density of 0.641 g/cm3]. The
Rauchua tephra thus records a previously unknown M >6.5
eruption from a source likely hidden under nested calderas
in the Karymsky volcanic center in eastern Kamchatka. An
average tephra thickness of 5 cm observed along the Arctic
coast suggests that volume and magnitude estimates for this
eruption may increase dramatically when the outermost
limits of the Rauchua tephra dispersal are defined.
[16] The Rauchua tephra is one of only eight tephras that

covered the Far East Russian Arctic with a visible layer
during the last 3.6 Ma [Nowaczyk et al., 2013]. This indicates
that the Rauchua eruption was a relatively rare and significant
volcanic event likely comparable in size to the Earth's largest
eruptions, e.g., the Millennium eruption of Changbaishan
volcano [Horn and Schmincke, 2000] or the Kurile Lake
caldera-forming eruption (Figure 1) [Ponomareva et al.,
2004], and might have had a substantial climatic impact.
Remarkably, the Rauchua tephra, as well as some other large
tephras (Figure 1), was dispersed across the westerly polar jet
stream, which indicates that its pattern could have been
different from the present jet stream.

5. Implications for Geochronology
and Paleoclimate

[17] A few continuous records of late to middle Pleistocene
climate change are available from northeast Asia and
adjacent seas [e.g., Nürnberg and Tiedemann, 2004; Max
et al., 2012; Riethdorf et al., 2012]. These records exhibit
alternating warm and cool phases consistent with other
paleoclimatic records from the Northern hemisphere
[Melles et al., 2012]. It is still not clear, however, which of
these phases have caused the most prominent changes in
the landscape over the vast territory of the northeast
Siberia, inducing permafrost melting or accumulation of
massive silts. In the absence of reliable dating tools, the age
of terrestrial deposits beyond the limits of radiocarbon dating
remains very uncertain [Astakhov, 2013].
[18] We propose the Rauchua tephra as a robust marker,

which permits the identification of the middle Pleistocene
deposits in northeast Asia and adjacent seas, and more specif-
ically, pinpoints the deposits accumulated during theMIS 6.5
warming event. This event was characterized by abrupt
changes from glacial to interglacial-type conditions and
caused prominent effects over a large area from the
Mediterranean to China (strong Mediterranean rainfalls, a
sapropel event (S6) in the eastern Mediterranean Sea,
changes in monsoon patterns, etc.) [e.g., Margari et al.,
2010; Penaud et al. 2009, and references herein]. It is plausi-
ble that this event has left significant, but not yet recognized
traces in northeast Asia as well. The Rauchua tephra, thus,
will allow an assessment of the regional development of the
6.5 warming event.
[19] The whole Rauchua sequence was earlier assigned to

late Pleistocene [Kotov, 1998; Lozhkin and Anderson,
2002] as well as many similar permafrost deposits along the

Siberian Arctic coastline [Schirrmeister et al., 2011]. Our
findings show that these typical carbon-rich permafrost
deposits started to form in the middle Pleistocene, well prior
to MIS 6.5. No glacial till or marine deposits are present in
the Rauchua outcrop indicating that this area has not been
glaciated or submerged during the last >177 ka. The middle
lacustrine-peat package (Figure 2) is likely to record the latest
pre-Holocene permafrost thaw at this site with the formation
of thermokarst lakes and accumulation of the lacustrine-peat
deposits. The analyzed Rauchua tephra lies only 30–50 cm
below the peat, which suggests that these “warm”
Karginsky [Anderson and Lozhkin, 2002] sediments formed
during MIS 5e (Eemian) interglacial (116–130 ka BP
[Melles et al., 2012]) rather than during MIS 3 (55–24 cal
ka BP). This conclusion is consistent with the results of a
recent redating of the Karginsky interstadial in western
Siberia [Astakhov, 2013]. The tephra described by Kotov
[1998] within the middle peat layer should be significantly
younger and likely represents another tephra, which still
needs to be analyzed.
[20] The Rauchua tephra ensures direct comparison of the

marine paleoenvironmental archives in the Bering Sea and
northwest Pacific with the well-studied record of the
El'gygytgyn lake [Melles et al., 2012], which may help to test
the synchronicity of the MIS 6.5 warming event in marine
and terrestrial environments. The presence of the Rauchua
tephra as a visible layer along the Arctic coast and in the
northwest Pacific indicates that it may be found as
cryptotephra (scattered volcanic glass) yet farther north and
east, and thus help to recognize MIS 6.5 sediments in the
Arctic and Pacific marine cores and, possibly, even in the
North Atlantic, thus permitting a large scale interregional
correlations of paleoclimatic records. This study highlights
a significant potential of using this and other tephra layers
in the western Beringia for precise correlations of
distant records.
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