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[1] A sediment core from theWest Spitsbergen continental margin was studied to reconstruct
climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait (FS).
Our multiproxy evidence suggests that the establishment of the modern oceanographic
configuration in the eastern FS occurred stepwise, in response to the postglacial sea-level rise
and the related onset of modern sea-ice production on the shallow Siberian shelves. The late
Early and Mid-Holocene interval (9 to 5 ka) was generally characterized by relatively
unstable conditions. High abundance of the subpolar planktic foraminifer species
Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high
productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A
series of short-lived cooling events (8.2, 6.9, and 6.1 ka) occurred superimposed on the warm
late Early to Mid-Holocene conditions. Our proxy data imply that simultaneous to the
complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice
production, strong advance of polar waters initiated modern oceanographic conditions in the
eastern FS at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic
foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/
icebergs, and strong stratification of the water column. Although planktic foraminiferal
assemblages as well as sea subsurface temperatures suggest a return of slightly strengthened
advection of subsurface AW after 3 ka, a relatively stable cold-water layer prevailed at the sea
surface, and the study site was probably located within the seasonally fluctuating marginal ice
zone during the Neoglacial period.
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1. Introduction

[2] The Arctic Ocean is sensitive to global atmospheric and
oceanographic changes [Moritz et al., 2002; Serreze and
Francis, 2006]. Sea-ice loss and its consequences, such as
lowering the albedo and enhancing the heat transport from
the ocean to the atmosphere, amplify the effect of climate
change [Manabe and Stouffer, 1980; Serreze et al., 2007].
Climate variations during the Early and Mid-Holocene are
an adequate reference for recent climate excursions such as
the ongoing global warming and the Little Ice Age period.

The temperature rise within the last 100 to 150 years has been
noted in both terrestrial and marine high-resolution proxy re-
cords from the northern hemisphere [Overpeck et al, 1997;
Moberg et al., 2005; Kaufman et al., 2009; Mann et al.,
2009; Spielhagen et al., 2011].
[3] The eastern Fram Strait (FS) is the main gateway

where warm, saline Atlantic Water (AW) enters the Arctic
Ocean, and heat exchange through FS is crucial for Arctic
Ocean temperatures and sea-ice extent [Karcher et al.,
2003; Schauer et al., 2004]. An increasing number of studies
from the Barents Sea/Svalbard area [e.g., Sarnthein et al.,
2003; Hald et al., 2004, 2007; Ślubowska et al., 2005;
Rasmussen et al., 2007; Ślubowska-Woldengen et al., 2007,
2008; Jessen et al., 2010; Risebrobakken et al., 2010, 2011]
and the Nordic Seas [e.g., Koç et al., 1993; Bauch et al.,
2001a; Risebrobakken et al., 2003] report significant varia-
tions in temperature and current strength of surface and
deep water during the past 10,000 years. Studies of marine
sediment cores around Svalbard agree on thermal maxi-
mum conditions during the Early Holocene commencing
~10 cal ka BP [e.g., Hald et al., 2004, 2007; Ślubowska
et al., 2005; Ebbesen et al., 2007; Rasmussen et al., 2007;
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Ślubowska-Woldengen et al., 2007, 2008] but show some
inconsistencies for the development of the Mid- and Late
Holocene. There is a general agreement on a cooling trend
after ~8 cal ka BP [Hald et al., 2004; Ślubowska-Woldengen
et al., 2007], though some records indicate a relatively
warm Mid-Holocene in the Barents Sea/Svalbard area
with temperatures higher than for the remainder of the
Holocene [e.g., Sarnthein et al., 2003]. However, these
Mid-Holocene temperatures were still not as high as those
of the Early Holocene [e.g., Hald et al., 2007; Rasmussen
et al., 2007].
[4] The most pronounced climate excursion of the Holo-

cene period found in Greenland ice core data is the so-called
“8.2 ka cooling event” [Stuiver et al., 1995] which was likely
triggered by the final outburst drainage from the glacial lakes
Agassiz/Ojibway during the final collapse of the Laurentide
Ice Sheet (LIS) [Barber et al., 1999]. The corresponding
immense meltwater release into the North Atlantic [e.g.,
Stuiver et al., 1995; Rohling and Pälike, 2005] resulted in a
short-lived cool, dry, and possibly windy climate event [Alley
et al., 1997]. Strong short-term climate fluctuations between
~8.4 and 8.0 cal ka BP are well pronounced in many records
of the North Atlantic [Alley et al., 1997; Risebrobakken
et al., 2003; Hall et al., 2004; Moros et al., 2004; Hald
et al., 2007; Kleiven et al., 2008]. Other studies reveal
longer-lasting cool intervals between 8.8 and 8.0 cal ka BP
[e.g., Sarnthein et al., 2003; Keigwin et al., 2005; Ellison
et al., 2006] attributed to a more sustained LIS meltwater
drainage [Keigwin et al., 2005].
[5] High-frequency climate variability has also been inves-

tigated using modelling approaches. As a consequence of a
freshwater induced pulse such as during the 8.2 ka cooling
event, Renssen et al. [2002] detected a weakening of the
thermohaline circulation and an increase of freshwater input
due to extended sea-ice coverage and therefore a lowered
density of surface waters.
[6] An increasing number of studies points to several

cooling events during the Holocene [Bond et al., 1997,
2001; Bianchi and McCave, 1999; Chapman and Shackleton,
2000; McDermott et al., 1999; Schulz and Paul, 2002;
Wanner et al., 2011] that are not clearly reflected in Green-
land ice core records. Although millennial-scale cyclicity
possibly caused by solar output was proposed [e.g., Bond
et al., 2001], no consistent evidence for significant Holocene
climate cyclicity has been found so far in the northern North
Atlantic [e.g., Schulz et al., 2004; Wanner et al., 2011].
[7] The purpose of this study is to reconstruct the Holocene

variability of Atlantic-derived heat transfer to the Arctic
Ocean, by expanding the records from recently published
work on the climate and paleoceanographic development
during the past two millennia in the eastern FS [Spielhagen
et al., 2011; Werner et al., 2011] to the past ~8.8 ka. Several
studies have revealed that the multiyear warming events of
AW in the FS and Arctic in the last decades went along with
significant increases of AW advection by volume to the Arctic
[Dickson et al., 2000; Karcher et al., 2003; Schauer et al.,
2004]. We hypothesize that this modern analog can be trans-
ferred to conditions in the last 9000 years which overall had
quite similar interglacial conditions. Furthermore, we will
compare Early and Mid- with Late (pre-industrial) Holocene
variability of oceanic heat flux to the Arctic Ocean and the po-
sition of the sea-ice margin in the eastern FS. Compared to

earlier studies [e.g., Sarnthein et al., 2003] we provide new in-
sights to conditions of surface versus subsurface water masses
by presenting stable isotope records of the planktic foramin-
ifer species Neogloboquadrina pachyderma and
Turborotalita quinqueloba. Together with benthic proxy
data this allows us to reconstruct water mass properties
covering the entire water column and assess potential links
between surface and bottom waters.

2. Regional Hydrography

[8] Two major current systems characterize the hydro-
graphical configuration in the FS (Figure 1): (1) The West
Spitsbergen Current (WSC) and (2) the East Greenland
Current (EGC). TheWSC carries warm (summer temperatures
6 to 7�C) and saline (up to 35.2) AW derived from the North
Atlantic Drift to the Arctic Ocean through eastern FS [Schauer
et al., 2004]. The main heat transport occurs within the core of
AW, which is confined to the upper part of the continental
slope off Svalbard [Saloranta and Haugan, 2004]. Since the
WSC is topographically guided along the Barents Sea and
Spitsbergen continental slopes [Gammelsrød and Rudels,
1983], it also entrains polar water from the Barents Sea, which
is anticyclonically transported to the south and west around
southern Spitsbergen by the East Spitsbergen Current (ESC)
[Hopkins, 1991]. North of ca 78�N, close to our study site
(Figure 1), the WSC submerges below colder and low-saline
water of Arctic origin and continues as a subsurface current
into the Arctic Ocean [Johannessen, 1986]. The western FS
is perennially covered by sea ice. The EGC transports cold
and fresh polar waters (T< 0�C, S< 34.4) [Schlichtholz and
Houssais, 1999; Rabe et al., 2009] and sea ice southward
along the Greenland margin.
[9] Over the last ~150 years, the sea-ice extent in the FS

has varied significantly [Vinje, 2001] (Figure 1). The sea-
ice distribution in the FS is mainly controlled by the outflow
of Arctic waters and the intensity of AW which today
provides ice-free conditions during most of the year in the
eastern part of the strait [Vinje, 2001] (Figure 1). Where
the WSC and EGC pass each other in opposite directions,
meso-scale eddies are generated which carry AW westward
across the FS [Johannessen, 1987]. This part of the AW
submerges in the central and western FS beneath the cold,
ice-covered EGC waters and flows southward at intermedi-
ate depths as the Return Atlantic Current [e.g., Gascard
et al., 1988] (Figure 1).
[10] In deeper layers, Arctic Intermediate Water [Marnela

et al., 2008], Norwegian Sea Deep Water [Schlichtholz and
Houssais, 1999] and Greenland Sea Deep Water [Schauer,
1989; Hebbeln, 1991] are transported to the Arctic Ocean.

3. Material and Methods

[11] The 977 cm long kastenlot core MSM5/5-712-2 was
obtained from the western Svalbard continental margin
(78�54.94’N, 6�46.04’E, 1490.5 m water depth; Figure 1)
during cruise leg MSM5/5 with RV “Maria S. Merian” in
summer 2007. The uppermost 212 cm discussed here consist
of olive grayish fine-grained muds apparently representing
continuous sedimentation. Age control is based on ten
accelerator mass spectrometry (AMS) radiocarbon dates
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(for details see Müller et al. [2012]). All ages are given in
103 calender years (ka) before 1950 CE.
[12] The core was sampled every cm between 10.5 and

211.5 cm core depth. Samples used for analyses of coarse
fraction content (weight-% >63mm), stable isotope mea-
surements, and planktic foraminiferal assemblages were
freeze-dried and wet-sieved in deionized water through a 63

mm-sized mesh to remove clay and silt material. Dry bulk
density was determined from defined 10 cm3 samples (10 ml
syringes) at a 5 cm interval in the uppermost 50 cm and at
10 to 15 cm intervals in the remaining core section. Analyses
of coarse fraction content and sortable silt mean grain size, as
well as stable isotope measurements on the planktic foramini-
fer species N. pachyderma and the benthic foraminifer species
Cibicidoides wuellerstorfi were conducted in 1 cm steps.
Stable isotope measurements on the planktic foraminifer
species T. quinqueloba were carried out every 5 cm and
every 1 cm in selected intervals. Planktic foraminiferal
assemblages in size fraction 100–250 mm were studied in
1 and 2 cm intervals.
[13] Stable oxygen and carbon isotope analyses were

performed on ca 25 calcareous tests of N. pachyderma
(d18ONp, d13CNp) and T. quinqueloba (d18OTq, d13CTq),
and on ca 15 tests of C. wuellerstorfi (d18OCw, d

13CCw). In
order to prevent possible ecological biases of different
morphotypes [Healy-Williams, 1992] only four-chambered
(“square-shaped”) specimens of N. pachyderma were used.
The tests were crushed and mingled so that well-mixed
aliquots could be used for the measurements. Stable isotope
analysis was carried out using a Finnigan MAT 253 mass
spectrometer system and a Kiel IV Carbonate Preparation
Device at the GEOMAR Stable Isotope Lab. The carbonate
was treated with orthophosphoric acid at 70�C. The analyt-
ical accuracy was <0.06% for d18O and <0.03% for d13C.
All measurements were calibrated to Pee Dee Belemnite
using NBS 19. d18O data of C. wuellerstorfi were corrected
for their vital effect by +0.64% [Shackleton and Opdyke,
1973; Duplessy et al., 2002]. Ice-volume corrected d18O(ivc)

data were calculated with an ice-volume component
of 1.05% [Duplessy et al., 2002] and a sea level 120 m
lower than today during the Last Glacial Maximum
[Fairbanks, 1989].
[14] A representative split of at least 300 planktic forami-

niferal tests was counted in size fraction 100–250 mm and
identified to species level. Based on planktic foraminifer
counts in size fraction 150–250 mm, subsurface temperatures
(SST, July-September) at 50 m water depth were calculated
using the SIMMAX modern analogue technique [Pflaumann
et al., 1996, 2003]. To increase the precision of our SST
estimates the core-top reference data set was restricted to
the North Atlantic following the strategy of Kucera et al.
[2005]. This method has successfully met the average mod-
ern water temperature at 50 m depth by a temperature recon-
struction from planktic foraminifers in the sediment surface
sample (6�C) [Spielhagen et al., 2011]. Planktic foraminifer
fluxes were calculated based on dry bulk density values and
linear sedimentation rates.
[15] To calculate variations in summer sea subsurface

salinities (SSS) we followed the procedure by Werner et al.
[2011]. A modern salinity/d18O correlation of the water
column on the Western Svalbard margin (100–500 m water
depth) was obtained by data from Frank [1996] andMeredith
et al. [2001], retrieved from the Global Seawater Oxygen-18
Database [Schmidt et al., 1999; see also Figure 2 in Werner
et al., 2011]. Salinity calculations were corrected by a shift
of �0.2 % in foraminiferal d18O to account for advection of
tests from potentially warmer regions. This correction was
used for salinity calculation only [for details, see Werner
et al., 2011].
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Figure 1. The Fram Strait and northern Nordic Seas with
main surface/subsurface water currents. Black arrows indi-
cate inflow of warm and saline Atlantic Water to the Arctic
Ocean via eastern Fram Strait. White arrows mark cold and
low-saline waters of Arctic origin. Core site MSM5/5-712-2
is marked by a white star. Indicated with black dots are
core locations PS1230 and PS1234 [Bauch et al., 2001a],
PS2837 [Hass, 2002], and M23258 [Sarnthein et al.,
2003]. Also shown are selected extreme positions of the
sea-ice margin (dashed lines with year specification) within
the past 150 years after Vinje [2001]. EGC=East Greenland
Current, EIC=East Iceland Current, ESC=East Spitsbergen
Current, JMC= Jan Mayen Current, NAC=North Atlantic
Current, NCaC=North Cape Current, NwCC=Norwegian
Coastal Current, RAC=Return Atlantic Current, SB=Sval-
bard Branch, SF=Storfjorden, TPD=Transpolar Drift,
WSC=West Spitsbergen Current, YB=Yermak Branch,
YP=Yermak Plateau.
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[16] Calculated SSS are based on both SST and measured
planktic d18O values of N. pachyderma. We understand SST
and SSS values as a translation of planktic foraminifer fauna
and d18ONp data and refrain from interpreting absolute
values. Translated salinities display those of the ambient
planktic foraminifer habitat but not of the actual sea surface.
As the planktic foraminifer species N. pachyderma lives in
subsurface waters [50–200 m; Bauch et al., 1997], presented
salinities rather reflect subsurface water conditions (this
applies also to d18ONp). High amplitudes in salinity changes
are thus interpreted in terms of water mass changes. Also,
only salinity trends are interpreted since extrema could be
caused by additional glacial melt water that would change
any applied d18O/salinity correlation.
[17] Aliquots of freeze-dried bulk sediment samples were

used for the analysis of sortable silt mean grain size (SS
�

).
To remove carbonate and organic matter, samples were
treated with acetic acid and hydrogen peroxide, respectively.

After adding sodium polyphosphate for better dispersion, the
freeze-dried samples were put on a shaker for at least 24 h.
Measurements were performed with a CILAS 1180L laser-
diffraction particle analyser. The sortable silt size mean grain
size 10–63 mm [Robinson and McCave, 1994] was calculated
using the entire granulometric data sets based on vol.%.

4. Results

4.1. Planktic and Benthic Stable Isotopes

[18] Ice-volume corrected planktic and benthic d18O data
show high fluctuations throughout the record (Figure 2a).
Planktic d18O values of N. pachyderma vary between 2.7
and 3.5%. Particularly, heavy d18ONp values (~3.5%) are
noticed around 6.6, 5.4, and between 4.5 and 3.5 ka.
d18OTq values highly fluctuate between 1.0 and 3.6%
(Figure 2a). Highest variability in d18OCw data is seen between
5 and 4 ka ranging between 4.1 and 5.0%. After 2.8 ka,
heavier d18OCw values are noticed (Figures 2a and 3a).
[19] d13C values of N. pachyderma gradually increase

until ~4 ka to maximum values of ~1.0% and decrease
thereafter (Figure 2b). In contrast, d13CTq data reveal a trend
to heavier values throughout the record, albeit with strong
fluctuations between�1.9 and�0.6% (Figure 2b). Similarly,
benthic d13C data (between 0.6 and 1.3%) show a trend to
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heavier values during the entire studied period (Figures 2b and
3b). Short-term minima in all d13C data are noted at 8.2, 6.1,
5.0, and 2.9 ka (Figure 2b).

4.2. Planktic Foraminifer Assemblages and Fluxes

[20] In the notation, we follow Darling et al. [2006] who
showed that sinistral and dextral coiling N. pachyderma
are two different species. Accordingly, we use the suggested
new terms N. pachyderma and Neogloboquadrina incompta,
respectively. Records ofGlobigerinita uvula andGlobigerinita
glutinata are presented combined in one record asGlobigerinita
spp. (Figure 4c).
[21] Turborotalita quinqueloba dominates the planktic

foraminiferal assemblages from ~9 to 5.2 ka, in particular
before 8.2 ka (up to 75%; Figure 4b). Large proportions of
N. pachyderma, commonly regarded as the only species
reflecting polar surface water [Bauch et al., 2001a], are seen
between 8.2 and 8.0 (up to 68%), between 7 and 5.9 ka
(60 to 88%) with peaks at 6.9 and 6.1 ka, and after 5.2 ka
(>90%; Figure 4b). A local maximum of T. quinqueloba
up to 40% is observed at 6.5 ka. After 5.2 ka T. quinqueloba
dropped to values mostly <20%. Slight increases of T.
quinqueloba are noticed around 3 ka and at 1.9 ka (Figure 4b).
Proportions of Globigerinita sp. were larger between 8 and
5 ka (up to 6%) and increased up to 17% within the past
3 ka (Figure 4c).
[22] Before 7.3 ka, planktic foraminifer fluxes had maxi-

mum values (up to 32,000 ind./cm2*ka; Figure 4f). Between
5 and 3.5 ka fluxes were low but slightly increased again
after 3.5 ka.

4.3. Sea Subsurface Temperatures and Salinities

[23] Calculated SST and SSS fluctuate strongly between 8.8
and 5.2 ka but reveal generally relatively warm and saline
subsurface conditions (>5�C and >34.5psu; Figures 4d–4e).
Until 7 ka, temperatures/salinities strongly vary. At 6.9
and 6.1 ka, SST and SSS were lowest (<2�C and<33) but in-
creased thereafter (up to 5.6�C and >34.5). After 5.2 ka, SST
drastically decreased (1.2�C) and remained low until ~3.5 ka.
A gradual temperature increase is noticed at ~3 and 1.5 ka.

4.4. Sortable Silt Mean Grain Size

[24] The sortable silt mean grain size (SS
�
) varies between

14 and 27 mm in the studied core section (Figure 3c). SS
�

data have been checked for IRD contamination following
Hass [2002] and reveal an insignificant influence of ice-
transported silt. However, since the core location is close to
land, episodes of ice rafting during colder periods may have
caused deposition of ice-rafted silt that was not accompanied
by coarser material that is thus hard to detect. Higher amounts
of coastal sea ice carrying finer materials from shallow areas
might be responsible for altered IRD signals in short-term cold
episodes. Various effects of different bottom currents and their
entrained sediments complicate the interpretation of SS

�
data.

We therefore focus on the main trends shown in the five-
point moving average (Figure 3c). Higher SS

�
values are

observed from 7 to 6 ka, around 5 ka, and from 3 to 1.8 ka.
We note that opposite trends of d13CCw and SS

�
values occur

in particular during the late Early and Mid-Holocene intervals
(Figures 3b–3c).

5. Discussion

5.1. Climate Conditions During Late Early to
Mid-Holocene (8.9 to 5.2 ka)

[25] Large proportions of the planktic foraminifer species T.
quinqueloba and reconstructed similar-to-present SST (up
to 6�C) and SSS (>35.1) characterize the late Early and
Mid-Holocene intervals (8.9-5.2 ka) at site MSM5/5-712-2
(Figures 4b, 4d–4e). Turborotalita quinqueloba is the second
most abundant planktic foraminifer species in eastern FS sed-
iments and is abundant in AWmasses nearby the marginal ice
zone [Carstens et al., 1997; Volkmann, 2000]. According to
the modern analog of coeval changes in AW advection and
temperatures [Dickson et al., 2000; Karcher et al., 2003;
Schauer et al., 2004], large proportions of T. quinqueloba
can be attributed to intense and warm AW advection to the
eastern FS.We thus interpret the T. quinqueloba relative abun-
dance record in terms of AW temperatures and inflow strength
of this water mass. Increased heat flux to the Arctic Ocean dur-
ing the Early Holocene has been related to the insolation max-
imum in the northern hemisphere [e.g., Koç et al., 1993;
Bauch et al., 2001a; Hald et al., 2007; Risebrobakken et al.,
2010]. The insolation maximum in the northern hemisphere
concurred with warmest Holocene atmospheric temperatures,
as documented in Greenland ice cores [Stuiver et al., 1995;
Rasmussen et al., 2006; Vinther et al., 2006] (Figure 4a) and
terrestrial proxy records [e.g., Svendsen and Mangerud,
1997; Seppä and Birks, 2001;Humlum et al., 2005].We there-
fore conclude on generally warm Early Holocene conditions
from our T. quinqueloba abundance record.
[26] Parallel to the decrease in insolation (Figure 4a), we

find a gradual cooling trend indicated by slightly decreasing
T. quinqueloba proportions after 8 ka (Figure 4b). Carstens
et al. [1997] showed that highest particle fluxes are related to
maximum bioproductivity at the sea-ice margin in the FS.
Accordingly, we link high planktic foraminifer fluxes ~8
ka (Figure 4f) either to ice-free conditions or the sea-ice
margin seasonally fluctuating over the study site. Lower
reconstructed SST and heavier d18ONp after 7 ka are likely
related to cooler temperatures in subsurface water masses
(Figures 4e and 4h).
[27] Our results corroborate earlier evidence for strong AW

advection to the Svalbard area during the Early Holocene.
From planktic foraminiferal investigations on core M23258
(75�N, south of Svalbard), Sarnthein et al. [2003] concluded
on relatively warm conditions lasting until ~7 ka, similar
to our record (Figure 4b). This is also consistent with Holo-
cene foraminiferal studies in the Barents Sea [Duplessy
et al., 2001; Risebrobakken et al., 2010], around Svalbard
[Rasmussen et al., 2007, 2012; Ślubowska-Woldengen
et al., 2008], and in the Nordic Seas [Bauch et al., 2001a],
which indicate Mid-Holocene thermal maximum conditions
until ~7 ka and a pervasive surface cooling thereafter.
Risebrobakken et al. [2011] disentagled the influences of
oceanic heat advection and insolation for the Early Holo-
cene warming in the Nordic Seas. They found that oceanic
heat advection peaked around 10 ka while maximum
warming of the surface mixed layer occurred from 9 to 6
ka. Our results are not contradictory but reveal more details
of the decreasing trend in AW temperatures (and probably
strength). In particular, we note the rapid temperature
decrease by 3.5�C between 7.2 and 7.0 ka (Figure 4e), at
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Figure 4. (a) Greenland ice core data and solar irradiance. (b) Percentages of planktic foraminifer
species N. pachyderma (100–250 mm, black solid line) and T. quinqueloba (dark red line). Short-lived
coolings indicated by sudden temperature drops are marked with ice crystals. Also shown is the record
of N. pachyderma from the Western Barents Sea [Sarnthein et al., 2003] in size fraction >150 mm (black
stippled line). (c) Combined record ofG. uvula andG. glutinata as Globigerinita spp. (100–250 mm). (d–e)
Calculated summer sea subsurface salinities and temperatures (at 50 m water depth) (f) Planktic foraminifer
fluxes in size fraction 100–250 mm. (g) Ice-rafted debris and sea-ice indicative biomarker data from Müller
et al. [2012] (h) Ice-volume corrected d18O record of N. pachyderma.
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the very end of the Early Holocene. This reduction is hardly
compatible with a gradually decreasing strength of AW
advection and may be related to other environmental changes
in the Arctic, discussed further below.
[28] Our planktic foraminiferal and SST data reveal a Mid-

Holocene warm interval between 6.1 and 5.2 ka in the
eastern FS (Figures 4b and 4e), similar to records from the
Western Barents Sea and the Lofoten Basin [Bauch and
Weinelt, 1997; Sarnthein et al.; 2003] (Figure 4b). However,
our data indicate this interval did not reach the high temper-
atures of the late Early Holocene. In accordance with Hald
et al. [2007], we relate this strong warming signal in our
record to the amplification of warm conditions in FS caused
by an insulating meltwater coverage and limited heat loss to
the atmosphere [Haugan, 1999].
[29] Benthic d18O values of C. wuellerstorfi (Figure 2a)

are relatively constant from 9 to 5 ka, probably indicating
stable deepwater conditions. Concurrent to increasing total
organic carbon contents at site MSM5/5-712-2 [Müller et al.,
2012], d13C values of all three investigated foraminifer species
reveal increasing trends (Figure 2b). This indicates a general
increase of surface productivity during this part of the
Holocene. In the Arctic realm, heavy planktic d13C values
have also been attributed to well-ventilated water masses
[e.g., Spielhagen and Erlenkeuser, 1994]. Gradually, better
ventilation of the entire water column might thus serve as
another reason for increasing d13C data during the late Early
and Mid-Holocene.
[30] In addition, we present an alternative explanation for the

trend to heavier planktic d13C values. It has been shown that
depth preferences of the foraminifer species N. pachyderma
and T. quinqueloba in the FS depend on surface water condi-
tions [Carstens et al., 1997; Kozdon et al., 2009]. Carstens
et al. [1997] found a gradual deepening of the main habitat of
planktic foraminifers from eastern (50–150 m) to western
(below 150 m) FS, related to a preference of the planktic
foraminifers for the warm AW that submerges in western FS
below low-saline and cold Arctic water masses and is found
in greater depths in the western FS within the Return Atlantic
Current. Accordingly, Kozdon et al. [2009] suggested that the
average depth ofN. pachyderma is controlled by water density.
Either dependent on the depth of AWor on the density distribu-
tion of the water column, planktic foraminifers calcify in
greater water depths under sea-ice coverage (150–200 m)
whereas under ice-free conditions and warmer sea surface
temperatures their habitat depth is shallower [Carstens et al.,
1997]. We therefore consider it possible that heavier planktic
d13C values reflect conditions at shallower habitat depth
due to the migration activity of planktic foraminifers. Reasons
for a potential depth change during the late Early to Mid-
Holocene may be related to surface water warming and
changes in the distribution of surface water masses.
[31] While we prefer the explanation provided above,

stepwise increasing planktic d13C values during the Early
and Mid-Holocene in the Barents and Kara Seas have
been explained by the deglacial/Holocene sea-level rise
and a progressive increase in shelf area [Lubinski et al.,
2001]. Continuous flooding of the exposed shelf areas in
the Kara and Laptev Seas may have resulted in an increas-
ing transport of well-ventilated shelf waters to the Arctic
Ocean until sea level stabilized at ~6 C14ka [Lubinski
et al., 2001].

5.2. Repeated 8.2 ka-Like Coldwater Events During
Late Early to Mid-Holocene (8.9 to 5.2 ka)

[32] Increases of N. pachyderma abundances at 8.2, 6.9,
and 6.1 indicate short-lived coolings that repeatedly
interrupted the relatively warm/saline conditions and strong
AW advection to site MSM5/5-712-2 during the late Early
and Mid-Holocene.
[33] The peak of N. pachyderma percentage at 8.2 ka is

most likely related to the “8.2 ka event” [e.g., Stuiver
et al., 1995; Barber et al., 1999; Rohling and Pälike,
2005]. In our record, this event is well pronounced and spans
a 400-year interval, with most distinctive conditions at
~8.2 ka (Figure 4). From ~8.4 to 8.2 ka relative abundances
of T. quinqueloba strongly decreased from >60 to 26% and
the polar planktic species N. pachyderma became dominant
(>68%; Figure 4b). Low SST and SSS, high planktic fora-
minifer fluxes and a strong increase in N. pachyderma
proportions, as well as a short-lived doubling of IRD
contents and sea-ice indicating biomarker data [Müller
et al., 2012] (Figure 4g) point to increased sea-ice/iceberg
rafting and an advance of the sea-ice margin over the study
site. d18O data of T. quinqueloba exhibit depleted values
(ca 1.0%) around 8.2 ka (Figure 2a), potentially linked to
an increased freshwater influence in the surface layer. After
8.1 ka, T. quinqueloba proportions rise again to values of
>60% (Figure 4b).
[34] A short strong decrease in benthic d13CCw suggests

that the deepwater was also affected during the 8.2 ka event
(Figure 3b). Short-lived decreases in benthic d13C in the
Nordic Seas around 8 ka have been assigned to decreased
bottom water ventilation possibly due to an entrainment of
relatively fresh water into the thermohaline system [Bauch
et al., 2001a]. Based on sedimentological data from the
western Yermak Plateau slope (core PS2837, 1042 m water
depth; Figure 1),Hass [2002] proposed more sluggish bottom
water circulation along the western Svalbard-Yermak Plateau
slope, linked to a slow-down of the MOC during the 8.2 ka
event (Figure 5).
[35] We would expect a correlation between light d13CCw

values and decreased sortable silt values for the 8.2 ka event.
However, the outstanding minimum in the d13CCw record
relates to peak �S�S values (Figures 3b–3c). The reason for this
anticorrelation may be related to the geographic setting of
our investigated site. Core MSM5/5-712-2 was obtained
downslope of Kongsfjorden and Kongsfjordrenna, one of
the major outlet systems of western Svalbard. Enhanced
sea-ice formation during the cold 8.2 ka event may have
led to strong formation of dense brine waters (“winter
water”) in the fjord/trough system which could carry some-
what coarser sediment material downslope. To explain the
origin of coarser-grained layers [>63 mm] in core M23258
from the western Barents Sea margin (75�N; Figures 1 and
3d), Sarnthein et al. [2003] proposed a similar process. They
concluded that heavy sea-ice conditions and cascades of
sediment-bearing dense brine waters resulted in a series of
increased lateral sediment injections to their site episodically
in the last 8.8 ka. In our core, we find largely coeval grain size
excursions [63–125 mm] for the 9–5 ka interval (Figure 3d).
These findings point to a similar process of formation and a
link between climate deteriorations and sediment events on
the Barents shelf and on the western Svalbard margin
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(Figure 3d). In our record benthic d18O values show no
response to the �S�S record. If the �S�S record reflects sediment
transport related to brine formation, benthic d18O values may
only respond if surface waters were depleted in d18O (Bauch
and Bauch, 2001).
[36] Other short-lived coolings occurred at 6.9 and 6.1 ka

and are most prominently seen in significant increases in
N. pachyderma percentages of up to >88% (Figure 4b).
Similar to the 8.2 ka event, the cooling in surface water
masses at 6.1 ka was accompanied by increased SS

�
values

and minimum d13CCw values (Figures 3b and 3c).
[37] Short-term cooling events in the North Atlantic region

have been reconstructed from various Holocene records
(Figure 5). From repeated ice-rafting events south of Iceland,
Bond et al. [1997, 2001] concluded on a near-1500-year
Holocene cyclicity in the North Atlantic influenced by solar-
induced atmospheric variations. Bond events 5 and 4 [Bond
et al., 1997] may correspond to the cooling events detected
at site MSM5/5-712-2 in the eastern FS at 8.2 and 6.1 ka
(Figure 5), but correlatives to other IRD events are not found.
Came et al. [2007] noticed abrupt events in the subpolar
North Atlantic but except for the 8.2 ka event, the timing
of events recorded by these authors differs significantly
from those at site MSM5/5-712-2 (Figure 5). Distinct simi-
larities exist between our coolings and the cold relapses at
8.2 ka and between 6.5 and 5.9 ka detected by means of
statistical analysis of proxy time series by Wanner et al.
[2011] (Figure 5). The authors showed that several cold
events, which interrupted periods of relatively stable and
warmer climate during the Holocene, did not follow a
strictly regular or cyclic appearance but suggested that the
complex pattern of these short-term coolings was caused
by a combination of decreasing solar insolation, possibly a
slow-down of the MOC, regional effects, and feedbacks.
For the eastern FS, we consider repeated advances and
retreats of the sea-ice margin to be most important for the
strong changes in surface and subsurface water conditions
during the late Early and Mid-Holocene. Advances of the
Arctic Front, i.e., the boundary between Atlantic and Arctic
water masses [Johannessen et al., 1994], serve as the best
explanation for the strong shifts in surface ocean conditions.
Correlating our surface water coolings to glacier advances
on Svalbard is difficult due to the lack of sufficient high-
resolution records from Svalbard. However, evidence for
possible glacier growth starting ~7 ka and a general increase
in glacier-related iceberg rafting between 9 and 4 ka has
been found in Isfjorden, West Svalbard [Forwick and
Vorren, 2007, 2009].

5.3. Cold Conditions After ~5.2 ka

[38] The climate shift at 5.2 ka is characterized by a pattern
similar to the short-lived cold events between 9 and 6 ka,
with pronounced increases in N. pachyderma, low SST and
SSS, high planktic foraminifer fluxes, and high IRD contents
(Figure 4). However, this transition represents a cooling which
differs from the otherwise observed 8.2 ka-like cooling events
as it marks the onset to permanent Neoglacial conditions last-
ing throughout the remainder of the studied core section.
[39] Our findings are in agreement with colder conditions

in the second half of the Holocene documented in various
proxy reconstructions in the Nordic Seas [e.g., Jennings
et al., 2002; Moros et al., 2004; Seidenkrantz et al., 2008;
Andrews et al., 2009, 2010] but also found in a global con-
text [Wanner et al., 2008 and references therein]. Svendsen
and Mangerud [1997] dated the first well-pronounced
Neoglacial glacier formation in West Spitsbergen between
5 and 4 ka. Accordingly, glacier re-advances in western
Norway [Nesje and Kvamme, 1991] and North America
[Denton and Karlén, 1973] were determined to about 5.3 ka.
[40] Wanner et al. [2008] attributed the Neoglacial cooling

in the northern hemisphere to the decreasing solar radiation,
the southward shift of the Intertropical Convergence Zone,
and hence, a summer cooling trend over the northern continen-
tal landmasses and the North Atlantic Ocean. Consistently, we
conclude on a summer cooling trend for the Neoglacial period,
which started rather abruptly in the eastern FS and was most
probably related to an advance of the sea-ice margin over the
study site at ~5.2 ka. The decrease of T. quinqueloba percent-
ages from >50% to <15% within ~150 years indicates a
strongly weakened AW inflow or a sudden drop of AW
temperatures as inferred by foraminifera temperature estimates
(Figure 4e). Decreases in T. quinqueloba percentages were
also detected between 6 and 5 ka in the Storfjorden Fan
[Rasmussen et al., 2007] and in the Lofoten and western
Norwegian Basins [Bauch and Weinelt, 1997]. We consider
the combination of the advance of the sea-ice margin and
low insolation as the most likely reason for the transition to
prolonged cold conditions since 5.2 ka. Our results from the
western Svalbard margin, close to the northernmost, partly
glaciated land area bordering the eastern North Atlantic, indi-
cate that the onset of Neoglacial cooling occurred rather
rapidly in the far north.
[41] Minimum proportions of T. quinqueloba, low planktic

foraminifer fluxes (Figures 4b and 4f), together with low
biomarker accumulation rates [Müller et al., 2012] point to
restricted bioproductivity and intense sea-ice coverage between
~5 and 3 ka. Accordingly, heavier d18ONp values since 5.2 ka

Reduced MOC intensity, PS2837,
Yermak Plateau, [Hass, 2002]
Northern hemisphere cold events
[Wanner et al., 2011]

Site MSM5/5-712-2 [this study]

Bond events 6-0,
[Bond et al., 1997, 2001]

Subpolar North Atlantic coolings,
Mg/Ca temperatures [Came et al., 2007]

Age [cal a BP]

02000400060008000

Figure 5. Coolings reconstructed from site MSM5/5-712-2 in comparison to those compiled from
the literature.
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likely reflect colder subsurface conditions (Figure 4h). The fact
that fluctuations in d18OTq (Figure 2a) are much stronger than
those in d18ONp is probably related to rapid shifts in the habitat
depths of T. quinqueloba, potentially caused by a variable
thickness of the surface water layer. Evidence for the formation
of a permanent ice cover and reduced iceberg and sea-ice drift
after 4 ka in Isfjorden, West Svalbard [Forwick and Vorren,
2009] corroborates our conclusion on colder surface conditions
since 5.2 ka.
[42] An increase of Globigerinita spp. (and of G. uvula,

data not shown) after 3.2 ka in our record (Figure 4c) is
consistent with findings of higher numbers of G. uvula in
coeval layers of two cores from the SW Svalbard margin
[Rasmussen et al., 2007]. High abundance of G. uvula in
core MSM5/5-712-2 points to increased contribution of cool
productive coastal surface waters [Husum and Hald, 2012]
during the Late Holocene. At the same time, rising planktic
foraminifer abundances, suggesting higher productivity, as
well as significantly increasing IRD contents and sea-ice
indicative biomarker data (Figures 4f–4g) implies that site
MSM5/5-712-2 was probably located in the area of the
seasonally fluctuating ice margin during the Late Holocene.
Increased IRD contents in Late Holocene sediments found at
many sites in the Nordic Seas [e.g., Jennings et al., 2002;
Sarnthein et al., 2003; Moros et al., 2006; Rasmussen et al.,
2007; Ślubowska-Woldengen et al., 2008] and off southeast
Greenland [Williams, 1993; Andrews et al., 1997; Jennings
et al., 2002, 2011] are generally interpreted as evidence of
regrowing ice sheets.
[43] d13C records from three different foraminifer species

hold interesting information about changes in the water mass
structure on the western Svalbard margin in the Late Holocene
Neoglacial phase. Values of d13CNp are gradually decreasing
after ~3.5 ka while d13CTq and d

13CCw data do not follow this
trend (Figure 2c). The latter steadily increase until ~0.4 ka,
suggesting either higher bioproductivity or better ventilation
in surface and bottom water masses. Reasons for the

decreasing trend of d13CNp data during the past ~3 ka may
be found in a density-driven downward migration of N.
pachyderma [Kozdon et al., 2009] to less-ventilated subsur-
face waters due to a gradual thickening of the sea-ice derived
surface layer and increased freshwater availability. This is in
contrast to T. quinqueloba, which as a symbiont-bearing
near-surface dweller is bound to seasonally open conditions
[Simstich et al., 2003; Kucera et al., 2005] and may have
stayed in the uppermost surface water masses. Decreases
in d13CNp since 4 to 3 ka have also been noted in records
from the northern North Atlantic [e.g., Bauch and Weinelt,
1997; Bauch et al., 2001a; Sarnthein et al., 2003; Jessen
et al., 2010; Risebrobakken et al., 2011] (Figure 6). We
therefore speculate that the drop in d13CNp indicates a wider
distribution of a thickening sea-ice derived freshwater layer
in the Nordic Seas and the FS during the Late Holocene
Neoglacial phase.
[44] The trend towards lighter d13CNp values after 3.5 ka

runs parallel to a trend to heavier benthic d18O (about 0.4%;
Figure 2) that may either be related to a cooling of ~1.4�C or
a ~0.8 salinity increase in bottom waters. Evidence for cooler
and fresher bottom waters during the Late Holocene was
concluded from benthic foraminiferal data on the western
and northern Svalbard shelves [Ślubowska-Woldengen et al.,
2007, 2008]. Heavier d18OCw could also indicate higher
salinity of bottomwaters that may be generated by dense water
formation during winter sea-ice formation in southern and
western Svalbard fjords [Quadfasel et al., 1988; Schauer,
1995; Rudels et al., 2005; Rasmussen and Thomsen, 2009].
However, more information is needed to further investigate
the feature of heavier d18OCw.

5.4. Underlying Causes for Stepwise Transition Between
Holocene Thermal Maximum and Neoglacial Conditions

[45] For the abrupt onset of cool conditions in eastern FS at
5.2 ka, we propose an Arctic Ocean-related increased export
of sea ice and freshwater from the north to be responsible
for the Neoglacial cooling in eastern FS (section 5.4.1.).
At the same time, increased proportions of T. quinqueloba
(24-28%), and higher SST and SSS from 3.1 to 2.8 and at
~1.9 ka (Figures 4b, 4d–4e) indicate a slight strengthening
of subsurface AW inflow and/or AW temperature increase.
However, except for the last ~150 years [Spielhagen et al.,
2011] T. quinqueloba never achieves the large proportions
of the Early and Mid-Holocene during the Late Holocene.
In support of our conclusions, Mg/Ca- based SST esti-
mates in N. pachyderma from the same site in eastern
FS show increasing SST since 3.2 ka with a maximum
of 5�C at ~1.1 ka [Aagaard-Sørensen, 2011]. Evidence
for increased AW inflow after 3 ka has also been found
in the Franz Victoria Trough [Lubinski et al., 2001], in
the Nordic Seas [Hald and Aspeli, 1997; Risebrobakken
et al., 2003] and on the western Barents Sea shelf
[Sarnthein et al., 2003]. Also, in agreement with increased
AW inflow, a slight strengthening of the MOC after 3 ka
was inferred based on an increase of T. quinqueloba percent-
ages [Sarnthein et al., 2003].
5.4.1. Increased Export of Arctic Sea Ice
[46] Postglacial flooding of the Laptev Sea shelves was

finalized ~5 ka when the modern sea level was reached
[Bauch et al., 2001b]. By means of ostracod assemblages,
Cronin et al. [2010] determined the onset of modern-like
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conditions with perennial sea ice in the Arctic Ocean to ~6 to
5 ka consistent with high-latitude Neoglacial cooling and
glacier advances. Thus, at ~5 ka, Arctic sea-ice production,
which predominantly takes place on the shallow Arctic shelf
areas, reached its modern dimension. Apparently, the dra-
matic shift in our planktic foraminiferal data at ~5.2 ka and
the associated sea-ice advance over the study site coincide
with the timing of the establishment of the modern sea level
and Arctic sea-ice production. From driftwood analyses and
modelling experiments, it was suggested that during the
Mid-Holocene, enhanced riverine discharge of freshwater
caused an eastward shift of the Transpolar Drift and strength-
ened sea-ice export through FS [Dyke et al., 1997; Prange
and Lohmann, 2003]. Funder et al. [2011] used the presence
of driftwood as a proxy for multiyear sea-ice on the East
Greenland coast. After 6 ka, the authors found increased
export of multiyear sea ice through FS arriving from North
America. This increasing sea-ice export indicates more fre-
quent occurrences of the negative Arctic Oscillation (AO)
mode with a stronger Beaufort Gyre and weaker TPD.
[47] In the FS, which acts as a bottleneck for sea-ice

export, the ice cover is bounded to the west by Greenland
and can thus react to stronger ice production only by faster
ice flow or by an expansion in (south-)easterly direction or
both. While past ice-drift speeds or modes of AO are diffi-
cult to determine, our data point to a significant and
persistent (south-)eastward movement of the sea-ice margin
since the Mid-Holocene, eventually reaching the Svalbard
continental margin at 79�N. The expansion of the ice cover
in the FS resulted in a strong shift to cooler conditions at
our study site after 5.2 ka, a time when low insolation and
atmospheric temperatures amplified both Arctic sea-ice
production and higher albedo effects. Prior to this Mid-
Holocene shift, Arctic sea-ice production may have been
somewhat limited by higher atmospheric temperatures
caused by (1) high insolation (possibly amplified in the
Arctic basin due to lowered albedo), (2) the reduced area
for sea-ice production on the shallow Arctic shelves because
of the lower sea level, and (3) a stronger influx of warmer
AW masses.
[48] In a low-resolution record from site PS1230 in the

western FS (Figure 1), relative abundances of T. quinqueloba
in the 63–125 mm size fraction dropped from 9% to <1% at
~8 ka, followed by a strong dominance of N. pachyderma
indicating cool conditions [Bauch et al., 2001a]. Higher-
resolution records are still lacking for this area, but a repeated
advance of EGC-derived sea ice and a cold-water front from
the northwest towards the southeast may explain our findings
of centennial-scale cold events in the eastern FS between 9 and
5 ka. While the western FS was already perennially sea-ice
covered after 8 ka, the cold-water front eventually arrived in
the eastern FS ~5.2 ka. Owing to the melting induced by
AW inflow, seasonally ice-free conditions likely prevailed
during the latter half of the Holocene with some restrictions,
e.g., during the colder phase between ~5 and 3 ka and the
Little Ice Age [Werner et al., 2011].
[49] Decreasing d13CNp values found in subsurface waters

the Nordic Seas and FS after 3 ka (Figure 6) might be related
to increased Arctic sea-ice and fresh water export and associ-
ated density-driven downward movement of N. pachyderma
and uptake of lower 13C/12C ratios in subsurface water masses.
Bauch et al. [2001a] point out the link between decreasing

d13CNp and the development of the modern steep east-to-
west temperature gradient, which results from the establish-
ment of the “modern-type-circulation” in the Nordic Seas.
Accordingly, we hypothesize that the modern east-west
temperature gradient in the Nordic Seas and FS evolved
only after the modern “Arctic sea-ice factory” was
established and a strong export of Arctic sea ice and cold-
water masses to the Nordic Seas could be initiated.
Modern-type surface water stratification in the eastern
FS, characterized by a relatively thick upper mixed layer
could thus probably only have been developed in the course
of the widespread Late Holocene freshening in the northern
North Atlantic [Bauch and Weinelt, 1997].

6. Conclusions

[50] Multiproxy data from the West Spitsbergen continen-
tal margin covering the past ~9 ka suggest that the transition
from late Early Holocene thermal maximum conditions to
the pre-industrial situation occurred stepwise, most likely
in response to the postglacial flooding of the shallow Sibe-
rian shelves and the onset of modern sea-ice production.
Planktic foraminifer assemblages, SST, and SSS data infer
generally strong AW inflow and/or increased surface water
temperatures concurrent to high insolation between 9 and 5
ka. A slight weakening of AW inflow is noted after 8 ka,
but continuously high percentages of subpolar planktic
foraminifer species indicate generally strong AW advection
lasting until ~5 ka. Repeated short-lived events characterized
by cold surface water interrupted the warm AW inflow in the
eastern FS at 8.2, 6.9, and 6.1 ka.
[51] Neoglacial conditions were more stable but signifi-

cantly cooler than during the Early and Mid-Holocene
and established only after an abrupt transition to perma-
nently cold conditions at 5.2 ka. Strong discharge of
Arctic sea ice and polar waters transported south-
eastward by the ice-covered EGC caused heavy winter
sea-ice conditions and relatively short ice-free summer
seasons in the eastern FS, most likely in combination with
a cooler and weaker subsurface AW inflow during the
Late Holocene. A slight re-strengthening of AW inflow
after 3 ka is seen from planktic foraminifer assemblages
and calculated SST/SSS. During the past ~3 ka, increasing
abundance of sea-ice transported material and decreasing
planktic d13C values, also known from other records in the
northern North Atlantic, indicate a freshening of the
uppermost surface water layer. We hypothesize that the
modern steep east-west temperature gradient in the FS and
possibly the Nordic Seas only evolved after the modern
“Arctic sea-ice factory” was established and a strong export
of Arctic sea ice and cold and fresh surface water masses
through FS could be initiated.
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