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ABSTRACT

Quantile mapping is routinely applied to correct biases of regional climate model simulations compared to

observational data. If the observations are of similar resolution as the regional climate model, quantile

mapping is a feasible approach. However, if the observations are of much higher resolution, quantile mapping

also attempts to bridge this scale mismatch. Here, it is shown for daily precipitation that such quantile

mapping–based downscaling is not feasible but introduces similar problems as inflation of perfect prognosis

(‘‘prog’’) downscaling: the spatial and temporal structure of the corrected time series is misrepresented, the

drizzle effect for areameans is overcorrected, area-mean extremes are overestimated, and trends are affected.

To overcome these problems, stochastic bias correction is required.

1. Introduction

In the context of perfect prognosis (‘‘prog’’; PP) sta-

tistical downscaling, von Storch (1999) pointed out that

the use of variance inflation or related approaches is not

meaningful. PP approaches assume a relationship be-

tween large-scale predictors and local-scale predictands.

As not all small-scale variability is explained by the

large-scale predictors, the prediction of the local variable

in general has lower variance than the observed local

variable. Inflation aims to overcome this mismatch by

scaling the predicted time series to match the observed

variance. The fundamental misconception here is that in-

flation does not add any unexplained variability and

therefore wrongly assumes that all local variance is indeed

completely explained by the chosen large-scale predictors.

A direct consequence of inflation is an increase in the root-

mean-squared error. Instead of inflation, vonStorch (1999)

advocates randomization: that is, adding random small-

scale variability. Refer toMaraun et al. (2010) for a recent

review of such stochastic downscaling approaches.

Here, I show that inflation-related problems also occur

for model output statistics (MOS): namely, if variance

correction and quantile mapping are used to downscale

simulated gridbox area averages to point values. The

climate simulated by numerical models often shows

a distinct systematic deviation from the true observed

climate, limiting the usability of climate simulations for

impact models. Therefore, it is often desired to post-

process the climate model output to match the observed

climate (Christensen et al. 2008). Bias correction

methods are variants of MOS, a concept developed in

weather forecasting and now commonly used in climate

science (Maraun et al. 2010). The simplest methods

correct the long-term climatological mean bias between

simulations and observations; extensions also correct the

variance. Quantile mapping even attempts to remove

quantile-dependent biases.

Assume the meteorological variable of interest can,

at a set of locations and days, be described by a time-

stationary random process characterizing the spatial and

temporal dependencies. For every location, the time-

independent marginal density distribution describes the

variable regardless of the spatiotemporal dependence.1

Bias correction deterministically postprocesses the

marginal distribution of the raw climate model data:

a specific simulated value will always yield the same

corrected value, and the spatiotemporal dependence is

not explicitly altered. An implicit assumption of any

bias correction adjusting more than climatological

means is therefore that all local-scale spatiotemporal

variability is completely determined and—apart from an
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adjustment of the marginal distribution2—correctly

represented by the simulated gridbox variability. This

might in principle be a valid assumption for a pure bias

correction: that is, if the model simulation is corrected

against a gridded dataset of the same resolution as the

climate model. If, however, the bias correction also at-

tempts to downscale [i.e., if the correction is against

station (or very-high-resolution gridded) data], de-

terministic variance correction and quantile mapping

approaches are not feasible. In general, the spatiotem-

poral variability at the gridbox scale is much smoother

than at the local scale. Yet as only the marginals are

corrected and no additional local-scale variability is

generated, the temporal dependence and the spatial

dependence between locations across grid boxes are those

of the gridbox scale. Even more, since the correction is

a deterministic mapping, within a grid box the spatial

dependence between locations is fully deterministic.

Hence, in this downscaling setting also deterministic var-

iance correction and quantile mapping rescale the simu-

lated time series in an attempt to explain unexplained

small-scale variability.3 In other words, they inflate the

simulated time series.

This study analyses potential consequences of in-

flation by quantile mapping4 for a specific example.

Consider a distributed hydrological model (e.g., Xu

1999; Das et al. 2008) that uses, among other variables,

a high-resolution precipitation field (on the order of

1 km 3 1 km) interpolated from gauge data as input. If

such a model were to be used for climate change studies

based on regional climate model (RCM) simulations,

downscaling the RCM to the high-resolution pre-

cipitation field would be required. To assess the per-

formance of quantile mapping for such a situation, I map

RCM-simulated daily precipitation at one grid box to

a set of observational rain gauge records within this grid

box. I then consider the effect of quantile mapping on

the spatiotemporal structure, the gridbox-aggregated

daily precipitation series, and trends in seasonal total

and seasonal maximum daily precipitation of the cor-

rected RCM output.

2. Data and methods

As an RCM, I chose the Regional Model (REMO)

from the Max Planck Institute of Meteorology (Jacob

2001), operated on a 25-km rotated grid [available from

the Ensemble-Based Predictions of Climate Changes

and their Impacts (ENSEMBLES) project at http://

ensemblesrt3.dmi.dk; van der Linden and Mitchell

2009]. The effect to be demonstrated occurs already in

the calibration period; therefore, I deliberately do not

choose a separate validation period. To avoid problems

related to general circulation model (GCM) biases, the

RCM is driven by 40-yr European Centre for Medium-

RangeWeather Forecasts (ECMWF)Re-Analysis (ERA-

40) boundary conditions for the period 1961–2000. Such

a perfect boundary condition setting roughly synchro-

nizes simulated and observed precipitation but, as

the quantile mapping ‘‘sees’’ only the marginal distri-

butions, this temporal agreement is irrelevant for the

analysis. The conclusions would be the same for an

RCM driven by GCM boundary conditions. I selected

the grid box centered on 11.008N, 51.648E in the eastern

Harz Mountains in central northern Germany as a study

area, mainly because of the high number of more than

20 rain gauges within its area. From all available rain

gauges, a subset of 20 gauges with sufficiently long time

series has been selected (see Fig. 1 and Table 1). The first

three gauges (located in the southwest corner of the grid

box) belong to the catchment of the Helme, and the

other gauges belong to the Bode. Both rivers finally flow

into the Saale, a tributary of the Elbe.

A simple empirical quantile mapping has been used:

since observational and simulated time series were of

equal length and no separate validation period has

been considered, the simulated quantiles could be di-

rectly mapped onto the observed quantiles and no

FIG. 1. Map of the Harz Mountains with the selected gauges and

the RCM grid box. Elevation is given in meters above mean sea

level.

2 This includes a possible adjustment of wet day frequencies

(Hay and Clark 2003; Piani et al. 2010).
3 Recent covariate-dependent quantile mapping may be applied

with randomization (Kallache et al. 2011).
4 The variance correction can be seen as a special case.
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interpolation had to be carried out. In cases where the

observational data had missing values, the correspond-

ing simulated values were omitted to obtain time series

of equal length. The drizzle effect was corrected based

on a wet day threshold of 1 mm day21 for the observa-

tions (e.g., Hay and Clark 2003; Piani et al. 2010). The

mapping was carried out separately for winter and

summer. Figure 2 shows quantile–quantile (Q–Q) plots

of the raw and corrected RCMdata against the observed

precipitation for the rain gauge of Thale (Harz). In

winter, the uncorrected RCM heavily underestimates

observed precipitation, but produces too many drizzle

days. These effects are well known (e.g., Maraun et al.

2010) and are at least partly caused by the scale mis-

match between point observations and area-average

simulations. For summer, the effect is similar, although

the RCM produces some high rainfall events matching

observed heavy precipitation. In both cases, by con-

struction, the corrected RCM perfectly reproduces the

marginal distribution of observed precipitation.

TABLE 1. Chosen rain gauges. Elevation is provided in meters above mean sea level.

Gauge Lat Lon Elevation Period covered

Missing values

DJF JJA

Neustadt (Talsp.) 51.588N 10.878E 454 m 1 Jan 1961–31 Dec 2000 0 0

Herrmannsacker 51.558N 10.888E 315 m 1 Jan 1961–31 Dec 2000 0 0

Stempeda 51.538N 10.908E 242 m 1 Jan 1969–31 Dec 2000 0 0

Hayn (Harz) 51.578N 11.088E 435 m 1 Jan 1961–31 Dec 2000 0 0

Strassberg 51.628N 11.058E 400 m 1 Jan 1969–31 Dec 2000 0 0

Harzgerode (Schee.) 51.678N 11.178E 250 m 1 Jun 1969–31 Dec 2000 0 0

Neudorf 51.628N 11.128E 425 m 1 Jan 1969–31 Dec 2000 0 0

Siptenfelde (Uhl) 51.678N 11.058E 412 m 1 Jun 1969–31 Dec 2000 0 0

Siptenfelde 51.658N 11.058E 395 m 1 Jun 1969–31 Dec 2000 0 0

Altenbrak (Talsp.) 51.738N 10.908E 430 m 1 Jan 1969–31 Dec 2000 0 0

Altenbrak 51.738N 10.938E 300 m 1 Jan 1969–31 Dec 2000 5 0

Altenbrak-Todt. 51.738N 10.978E 425 m 1 Jan 1969–31 Dec 2000 242 246

Hasselfelde 51.688N 10.878E 461 m 31 Dec 1968–31 Dec 2000 0 0

Thale (Harz) 51.758N 11.038E 157 m 1 Jan 1969–31 Dec 2000 31 31

Neinstedt 51.758N 11.088E 140 m 1 Jan 1969–31 Dec 2000 0 0

Stiege 51.678N 10.888E 494 m 1 Jan 1961–31 Dec 2000 181 184

Friedrichsbrunn 51.688N 11.038E 523 m 31 Dec 1968–31 Dec 2000 0 0

Stecklenberg 51.738N 11.088E 160 m 1 Jan 1969–31 Dec 1999 0 0

Gernrode 51.738N 11.138E 210 m 1 Jan 1961–31 Dec 2000 182 184

Breitenstein 51.628N 10.958E 466 m 1 Jan 1969–31 Dec 2000 0 0

FIG. 2. Q–Q plot for Thale (Harz). Uncorrected (gray triangles) and corrected (black circles) simulated daily

precipitation against observed daily precipitation: (a) December–February (DJF) and (b) June–August (JJA).
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3. Results

Figure 3 shows the observed, simulated, and corrected

time series for the 20 selected rain gauges during three

example winters and summers. The synchronicity be-

tween the observed and modeled sequence of events

(relatively high in winter and low in summer) will not be

discussed here. An obvious difference between observa-

tions and corrected simulations becomes apparent: the

spatial variability is quite high in the observations: even

when it rains at some gauges, it might be dry at others;

even when it rains heavily at some gauges, rainfall might

be modest at others. In general, extreme events are spa-

tially quite localized (more strongly in summer than in

winter). This is different in the corrected RCM simula-

tion: because quantile mapping is deterministic, a high

(modest) RCM gridbox precipitation value is always

transformed into a high (modest) local value. If the RCM

simulates drizzle, the correction of the drizzle effect in

most cases leads to complete dryness across all gauges. In

other words, on one hand, extreme events always cover

the whole gridbox area, and their spatial extent should

thus be heavily exaggerated. On the other hand, the

drizzle effect is overcorrected and too many days with

complete dryness in the grid box should thus occur. Fi-

nally, the ranking of precipitation across gauges can never

change for a given quantile, and inmost cases this ranking

should be the same for all quantiles (only, if the quantile

transfer function for one gauge intersects the transfer

function from another gauge, the ranking for high and low

quantilesmight change). For instance, the gauge of Stiege

is located on a hill and has on average higher precipitation

than the rain gauge at Thale (Harz), which is located in

a valley. However, whereas in reality on some days pre-

cipitation in the valley is higher than on the hill, this will

never occur in the deterministic quantile mapping case.

The effect of these problems on the representation

of area-mean precipitation is demonstrated in Fig. 4.

FIG. 3. Time series for selected seasons: (top) DJF and (bottom) JJA.
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Shown are the Q–Q plots between the average of all 20

corrections of the simulated RCM time series against

the average of all 20 observed time series. For both

winter and summer the overcorrection of the drizzle

effect as well as the exaggeration of extreme events

becomes evident: whereas the corrected model simu-

lates too many area-mean dry days, it strongly over-

estimates area-mean extreme events by roughly 30%.

Finally, I analyze the effect of quantile mapping on

trends in seasonal total and maximum precipitation. I

consider both absolute trends (millimeters per decade)

and trends relative to typical values (percent per decade

relative to the expected value for the year 1985; for

details, see appendix). Figure 5 shows an example, again

for the gauge of Thale (Harz). The top panels depict

seasonal total precipitation and its trends for winter

(left) and summer (right); the bottom panels show the

respective results for seasonal maximum precipitation.

Observations are merely plotted to illustrate how the

quantile mapping influences the amplitudes.5 In this

example, quantile mapping slightly deflates low values

of winter total precipitation and inflates high values.

However, as the trend is weak, inflation and deflation

are evenly distributed in time. Hence, the trend is only

marginally increased (absolute negative trend of

0.8 mm decade21; the increase of the relative trend by

27.7% is not relevant). For summer totals, the strong

negative trend causes inflation mainly in the beginning

of the series. As a result, the absolute negative trend

increases by 3.9 mm decade21 and the relative trend

increases by 11.7%. The panel for winter maxima illus-

trates the effect of quantile mapping on heavy pre-

cipitation trends: the highest simulated values, occurring

in the beginning, are strongly amplified by the quantile

mapping (about 80%), whereas the amplification of the

lower values toward the end of the series is weaker

(about 30%). This asymmetric amplification increases

the negative winter trend by 0.9 mm decade21 (85.6%

increase in the relative trend). The negative trend in

summer maxima is weak and does not cause a time-

dependent inflation. Thus, the effect on the resulting trend

is negligible (0.28 mm decade21; the relative change of

30.1% is not relevant). The same analysis has been car-

ried out for all rain gauges with similar results, suggesting

that already strong trends (relative to the interannual
variability) tend to get amplified by quantilemapping, for

both precipitation totals and heavy precipitation.

4. Conclusions

These findings clearly demonstrate the problems of

inflation by quantile mapping (variance correction is

a special case), when used to downscale from gridbox to

local scales. Similar to the case of perfect prog statistical

downscaling, the problems arise from the attempt to

FIG. 4. Q–Q plot of area-mean precipitation for the chosen grid

box. Corrected simulated daily precipitation against observed daily

precipitation: (top) DJF and (bottom) JJA.

5 The fact that the perfect boundary-driven RCMs do not cap-

ture the observed trends is likely because of the driving reanalysis

data (Bengtsson et al. 2004; Thorne and Voss 2010). Repeating

the analysis with the Royal Netherlands Meteorological Office

(Koninklijk Nederlands Meteorologisch Instituut; KNMI) Re-

gional Atmospheric Climate Model, version 2 (RACMO2), yields

similar results.
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explain local variability by gridbox variability. For local

climate scenarios and impact modeling, the inflation

effect may have severe consequences: as the quantile

mapping does not introduce any small-scale variability,

the temporal structure is still that of the gridbox and not

the local scale (Fig. 3). If, in a particular application, the

temporal structure is important, the results will most

likely be misspecified. When used to provide local-scale

input data for distributed hydrological models, flood risk

(in particular for small rapidly responding catchments)

might be heavily overestimated (Fig. 4). Finally, as

trends are affected, changes in future mean and extreme

precipitation, as well as any related impacts, are likely to

be misrepresented. Equivalent analyses for other re-

gions showed that these problems also occur in flat ter-

rain. They join other problems of model output statistics

such as bias nonstationarities (Christensen et al. 2008;

Maraun 2012). To increase the signal-to-noise ratio, one

often averages neighboring grid boxes. If the target

resolution is of subgrid scale, this strategy increases the

scale gap and thus exacerbates the inflation problem.

Eden et al. (2012) argue that model errors caused by

parameterization and orography can reasonably be

corrected by bias correction. If quantile mapping is used

to downscale to local scales, an additional discrepancy—

not error—between model and observations occurs be-

cause of unresolved small-scale variability. This study

shows for precipitation that quantile mapping cannot

be used to bridge this scale mismatch. The effect might

be less important for temperature, as this variable has

a much higher spatial coherence and small-scale var-

iations mostly stem from—correctable—orographic

effects.

To avoid inflation, different strategies might be pur-

sued: if one is not interested in the day-to-day variabil-

ity, one should simply correct the mean to avoid effects

on trends. If a single time series representing total

catchment precipitation is required as input for a lum-

ped hydrological model (e.g., Xu 1999; Das et al. 2008)

with a large catchment size relative to a grid box, one

should directly correct the required total precipitation

and avoid downscaling to point sizes and averaging

back to the catchment total. If, however, one is in-

terested in the day-to-day variability at local scales,

a solution is similar as in perfect prog downscaling (von

Storch 1999). In a perfect boundary setting, a regression

between modeled and observed precipitation with

a suitable noise model describing the local spatiotem-

poral dependence should be carried out. The de-

terministic part of this regression would correct for

systematic errors and realizations of the noise model

would add the necessary small-scale variability. Hence,

this study clearly demonstrates the need for stochastic

bias correction.

FIG. 5. Precipitation time series and trends for Thale (Harz): (top) seasonal total and (bottom) seasonalmaxima for

(left) DJF and (right) JJA. Dashed gray lines are observations, solid gray lines are uncorrected precipitation sim-

ulations, and black lines are corrected precipitation simulations.
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APPENDIX

Trend Models

Trends in seasonal total precipitation yi are modeled

by linear regression: that is, for a year ti, i 5 1 . . . N,

yi ;N (mi,s) with mi 5 a1 bti , (A1)

whereN (mi, s) denotes a normal distribution with time-

dependent mean mi and constant width s. Seasonal

maxima are modeled by the generalized extreme value

(GEV) distribution (Coles 2001),

yi ;GEV(mi,si, j) , (A2)

with time-dependent location and scale parameters mi

and si and constant shape parameter j. The linear time

dependence is modeled as

mi 5 am 1 bm � ti and si 5 as 1 bs � ti . (A3)

The expected seasonal maximum Ei, linearly depending

on time, is then given by

Ei 5mi 2
si

j
1

si

j
� G(12 j) , (A4)

where G(�) denotes the gamma function.
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