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Abstract 

The optimal interpolation techniques reviewed i n this report 
have been il l u s t r a t e d with examples of their application to 
the "Poseidon 86" data set i n order to give members of the 
"Warmwassersphäre"-Research Programme, who are l i k e l y to 
use the objective analysis program package, some insights into 
both pract i c a l and theoretical aspects of this estimation tech
nique i n connection with mesoscale dynamics. 

The presented examples include estimation of scalar- as well 
as vector-fields. Special emphasis has been given to present 
an approach for the estimation of the s t a t i s t i c s of the observed 
stochastic processes- i.e. spatial mean and covariance function-
i n the case where only one realisation i s available. 

Zusammenfassung 

Anhand der Analyse des "Poseidon 8 6 " Datensatzes werden Beispiele 
für die Anwendung der i n diesem Bericht beschriebenen optimalen 
Interpolâtionstechnik gegeben. Zie l dabei i s t es, den Mitgliedern 
des SFB 133 (Warmwassersphäre des Atlantiks), welche das zugehörige 
"Objektive Analyse"-Programmpaket benutzen wollen, einige Einblicke 
i n sowohl praktische als auch theoretische Aspekte dieser Interpo
lationstechnik zu geben - soweit sie mit der Analyse mesoskaliger 
Prozesse zusammenhängen. 

Es werden Beispiele der Schätzung sowohl von Skalar- als auch Vektor
feldern gegeben. Weiter werden die statistischen Verfahren beschrie
ben, welche dazu dienten, für den F a l l nur einer Realisierung die 
räumlichen Mittelwerte und die Kovarianzfunkt ion der beobachteten 
stochastischen Prozesse zu schätzen. 
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1 . INTRODUCTION 

In the framework of the "Warmwassersphäre"-research pro
gramme of the I n s t i t u t für Meereskunde hydrographie map
p i n g experiments are bei n g planned and c a r r i e d out, r e 
q u i r i n g sampling schemes which w i l l g i v e i n f o r m a t i o n w i t h 
the fewest p o s s i b l e s t a t i o n d e n s i t y . One i s g e n e r a l l y 
aiming at a proper balance between the cost s of an e x p e r i 
ment and the i n f o r m a t i o n gained by i t , t r y i n g t o a v o i d r e 
dundant measurements as w e l l as having a sparse s t a t i o n 
coverage which w i l l y i e l d an unresolved f i e l d . Since the 
use o f o p t i m a l e s t i m a t i o n techniques i s o f common i n t e r e s t 
f o r s e v e r a l r e s e a r c h groups, we present here a comprehen
s i v e d e s c r i p t i o n o f the o b j e c t i v e a n a l y s i s method w i t h em
ph a s i s on the e s t i m a t i o n o f s c a l a r f i e l d s . The method i s 
a p p l i e d t o a data set obtained d u r i n g a POSEIDON c r u i s e i n 
the northern Canary b a s i n (Käse & R a t h l e v , 1 9 8 2 ) . We w i l l 
a l s o g i v e a b r i e f summary o f optimal v e c t o r e s t i m a t i o n 
t e c h n i q u e , d i s c u s s the assumptions i n v o l v e d and give an 
example o f a n a l y s i n g a q u a s i - E u l e r i a n v e l o c i t y f i e l d de
r i v e d from s a t e l l i t e - t r a c k e d d r i f t buoy o b s e r v a t i o n s . 

One o f the primary o b j e c t i v e s o f the POSEIDON 8 6 - c r u i s e i n 
s p r i n g 1 9 8 2 was to map mesoscale d e n s i t y and geostr o p h i c 
c u r r e n t f i e l d s over an area o f 5 0 0 * 5 0 0 km i n the Canary 
b a s i n . As t h i s experiment was designed t o produce s y n o p t i c 
maps o f mesoscale f i e l d s as w e l l as to determine major 
terms i n the l o c a l heat balance e q u a t i o n , i . e . mean advec-
t i o n term and divergence of the eddy f l u x , an accurate 
mapping technique was r e q u i r e d . F o r the i n t e r p r e t a t i o n of 
q u a s i - s y n o p t i c data s e t s obtained from an i r r e g u l a r l y 
spaced o b s e r v a t i o n a l a r r a y , the technique o f " o b j e c t i v e 
a n a l y s i s " has been w i d e l y used i n recent years ( B r e t h e r t o n 
e t a l . , 1 9 7 6 ; B r e t h e r t o n et a l . , 1 9 8 0 ; Sarmiento, 1 9 8 2 , 

e t c . ). 
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Based on a fundamental r e s u l t i n e s t i m a t i o n t h e o r y , the 
Gauss-Markov theorem ( L i e b e l t , 1 9 6 7 ) , the o b j e c t i v e analy
s i s technique i s an op t i m a l i n t e r p o l a t i o n procedure i n 
that sense that among l i n e a r e s t i m a t o r s on the average 
t h i s one has the minimal l e a s t square e r r o r . I t a l s o 
y i e l d s an estimate of the r e s i d u a l u n c e r t a i n t i e s i n the 
i n t e r p o l a t e d values. 

As the e r r o r maps only depend on the s t a t i s t i c s o f the 
f i e l d , the noise l e v e l and the l o c a t i o n s o f the observa
t i o n a l p o i n t s , they can be c a l c u l a t e d a p r i o r i f o r d i f 
f e r e n t array designs without reference t o any p a r t i c u l a r 
data s e t . Thus, i t i s p o s s i b l e t o minimize the expected 
i n t e r p o l a t i o n e r r o r s p r o v i d e d the s t a t i s t i c s o f the f i e l d 
t o be mapped have already been determined. 

Due to the f a c t that our opti m a l e s t i m a t o r i s l i n e a r , i . e . 
a weighted sum of a l l o b s e r v a t i o n s , the o b j e c t i v e a n a l y s i s 
procedure w i l l produce a smoothed v e r s i o n o f the o r i g i n a l 
f i e l d w i t h a tendency to underestimate the t r u e f i e l d be
cause o f the s p e c i f i c assumptions i n v o l v e d i n our t r e a t 
ment o f measurement noise and s m a l l s c a l e s i g n a l s u n r e s o l 
ved by the ar r a y . 

The a p p l i c a t i o n o f the Gauss-Markov theorem i s s t r a i g h t 
forward, provided the f i r s t and second moments o f the s t o 
c h a s t i c process t o be estimated are known, and furthermore 
that the second moment m a t r i x o f a l l o b s e r v a t i o n s f u l f i l s 
the c o n d i t i o n o f bei n g p o s i t i v e d e f i n i t e . However, the de
t e r m i n a t i o n o f these moments from data can prove t o be a 
d i f f i c u l t problem, e s p e c i a l l y when the j o i n t p r o b a b i l i t y 
f u n c t i o n o f the process v a r i e s w i t h r e s p e c t t o space and 
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time, i . e . i n s t a t i o n a r i t y or inhomogeneity o f the observed 
f i e l d . Therefore the most fundamental assumption on which 
the o b j e c t i v e a n a l y s i s method u s u a l l y i s based, i s the 
s t a t i o n a r i t y o f the s t a t i s t i c s o f the f i e l d t o be mapped. 

The a s s e r t i o n that the s t a t i s t i c s are s t a t i o n a r y can never 
be deduced from o b s e r v a t i o n s , because t h i s would i n v o l v e 
the v e r i f i c a t i o n t h a t a l l s t a t i s t i c p r o p e r t i e s of the s t o 
c h a s t i c process are i n v a r i a n t w i t h respect t o time and 
space t r a n s l a t i o n s . I t can only be p o s t u l a t e d as a working 
h y p o t h e s i s . Tests should be made t o decide whether t h i s 
assumption i s s i g n i f i c a n t l y i n c o n s i s t e n t w i t h o b s e r v a t i o n s . 

F i e l d observations o f t e n show trends i n the mean without 
e x h i b i t i n g any form o f n o n - s t a t i o n a r i t y o f more complicated 
c h a r a c t e r . I f there i s only one r e a l i z a t i o n a v a i l a b l e , t h i s 
problem cannot be s o l v e d by t a k i n g the ensemble average. In 
t h i s case, no progress can be made without r e f e r e n c e t o 
some a p r i o r i p r e j u d i c e . In the present a n a l y s i s o f the me
sosc a l e f i e l d s measured d u r i n g "POSEIDON 8 6 " , the assump
t i o n was made that the h o r i z o n t a l t r e n d i n the mean can be 
approximated by a two-dimensional l i n e a r f u n c t i o n f i t t e d 
t o the data u s i n g a m u l t i p l e r e g r e s s i o n scheme. I n s p e c t i o n 
o f h i s t o r i c a l data proved t h a t a l i n e a r approximation of 
the mean f i e l d , which i s pa r t of the s u b t r o p i c a l gyre, 
would be a p p r o p r i a t e . The removal o f a l i n e a r t r e n d i s an 
important step i n the process o f e s t i m a t i o n o f the f i e l d 
s t a t i s t i c s . Otherwise, due to the f a c t t h a t the observa
t i o n a l array has f i n i t e l e n g t h , n e g l e c t i o n o f the t r e n d 
would i n consequence r e d i s t r i b u t e power from l a r g e s c a l e s 
through the whole wavenumber space. 

The d e t e r m i n a t i o n o f the covariance f u n c t i o n was a major 
task i n p r e p a r i n g the "POSEIDON 8 6 " data set f o r o b j e c t i v e 
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a n a l y s i s . The h i s t o r i c a l data a v a i l a b l e f o r the r e g i o n o f 
i n t e r e s t (25°W - 18°W / 31°N - 36°Nj are not s u f f i c i e n t t o 
y i e l d s i g n i f i c a n t estimates f o r the c o v a r i a n c e s . The e s t i 
mation of two-point s t a t i s t i c s from unequally spaced data 
i s a d i f f i c u l t problem (see B r e t h e r t o n , 1 9 7 6 ; B r e t h e r t o n , 
1 9 8 0 ) . The l o c a t i o n s of data p o i n t s were chosen more or 
l e s s i r r e g u l a r l y from a 3 0 x 3 0 nm g r i d (see f i g . 1 ). As 
a consequence the e f f e c t i v e a l i a s c l a s s o f unmeasurable 
s p e c t r a l f e a t u r e s has a more complicated s t r u c t u r e than i n 
the case of u n i f o r m l y spaced arrays where a f i x e d Nyquist 
wave number e x i s t s . However, i n p r a c t i c e other aspects 
such as l o g i s t i c s , s y n o p t i c decay of the f i e l d and the 
amount o f a v a i l a b l e s h i p time have to be taken i n t o account; 
and only i f the c h a r a c t e r i s t i c s o f the wave number spectrum 
are known w i t h s u f f i c i e n t p r e c i s i o n a p r i o r i , an o p t i m a l 
e f f i c i e n t a r ray can be planned which not only s a t i s f i e s the 
requirements f o r s y n o p t i c mapping, but a l s o gives s u f f i c i e n t 
i n f o r m a t i o n f o r the e s t i m a t i o n of the covariance f u n c t i o n or 
e q u i v a l e n t l y o f the wave number spectrum. As t h i s was not 
the case w i t h "POSEIDON 8 6 " , our main o b j e c t i v e was t o aim 
at an economic sampling scheme which permits q u a s i s y n o p t i c 
mapping. On-line data p r o c e s s i n g f a c i l i t i e s on board enabled 
the c o n c e n t r a t i o n of data p o i n t l o c a t i o n s i n d y n a m i c a l l y i n 
t e r e s t i n g regions and the use of a wider and t i m e - s a v i n g 
sampling scheme i n r e g i o n s o f l e s s a c t i v i t i e s . 

U l t i m a t e l y , a l l covariance e s t i m a t i o n procedures are based 
on raw estimates of p a i r - w i s e covariances averaged over a 
number of r e a l i z a t i o n s . Given a l a r g e ensemble of r e a l i z a 
t i o n s , the ensemble average of the raw covariances should 
converge to the t r u e covariance f u n c t i o n . However, i f only 



- 5 -

one r e a l i z a t i o n i s a v a i l a b l e , the raw estimates s u f f e r 
s t r o n g l y from a random s c a t t e r which l i m i t s the i n f e r e n c e s 
that can be drawn from them. In order t o reduce the no i s e 
o f the raw e s t i m a t e s , p a i r s w i t h s i m i l a r d i s t a n c e v e c t o r 
r or - r (assumption o f s t a t i o n a r i t y ) o r | r | (assumption o f 
i s o t r o p y ) were averaged. The two-dimensional s p a t i a l raw 
covariances d e r i v e d from the "POSEIDON 8 6 " data s e t seem 
to i n d i c a t e n o n i s o t r o p i c f e a t u r e s i n the data and an e a s t -
west o s c i l l a t i o n of 5 0 0 km wavelength. 

An i t e r a t i v e n o n l i n e a r parameter f i t t i n g procedure (Gauss-
Newton method) was then a p p l i e d t o adapt these raw c o v a r i 
ances to one o f a f a m i l y o f model covariance f u n c t i o n s 
(METZLER et a l . , 1 9 7 1 * ) . A s i m i l a r p r a c t i c a l approach i s 
wi d e l y used by me t e o r o l o g i s t s ('bin method', J u l i a n and 
C l i n e , 1 9 7 4 ) i n e s t i m a t i n g the s p e c t r a l d e n s i t y E(K) which 
under the assumption o f s p a t i a l s t a t i o n a r i t y i s e q u i v a l e n t 
t o the s p e c i f i c a t i o n o f the s p a t i a l covariance f u n c t i o n . 
(For a more d e t a i l e d d i s c u s s i o n see B r e t h e r t o n and Mc 
W i l l i a m s 1 9 8 0 , § 3 ) . 

As there was only one r e a l i z a t i o n a v a i l a b l e , the n o i s e i n 
herent i n the covariance raw estimates reminded us of the 
danger o f drawing s t a t i s t i c a l i n f e r e n c e s from too l i t t l e 
d a t a. Consequently the model c l a s s chosen f o r the f i n a l 
a n a l y s i s was a Gaussian f u n c t i o n which suppresses the os
c i l l a t i o n s but takes account o f the n o n i s o t r o p i c behaviour 
of the raw c o v a r i a n c e s , e s p e c i a l l y o f the r a p i d decrease of 
c o r r e l a t i o n i n the east-west d i r e c t i o n . 

Next to the task of s y n o p t i c mapping o f mesoscale f i e l d s 
one o f the main o b j e c t i v e s i n the g a t h e r i n g of the "POSEI
DON 86" data set was the e s t i m a t i o n o f terms i n the l o c a l 
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temperature conservation equation. This has been d e s c r i b e d 
elsewhere (Käse et a l . , 1 9 8 3 ) , so we w i l l only o u t l i n e the 
procedures adopted so f a r as the e s t i m a t i o n o f the s t a t i s 
t i c s o f the observed mesoscale eddy f i e l d i s concerned. 

The g e o p o t e n t i a l anomaly f i e l d shown i n f i g . 2a r e v e a l s 
t h a t three separate h o r i z o n t a l s c a l e s are present i n the 
o b s e r v a t i o n a l area. F i r s t there i s the box-wide s c a l e a l 
ready mentioned t h a t i s r e l a t e d to the mean or gyre c i r c u 
l a t i o n . Second there i s a s m a l l e r s c a l e a s s o c i a t e d w i t h a 
meandering flow. T h i r d there i s the mesoscale eddy f i e l d . 
In f i g . 2b the anomaly f i e l d a f t e r removal o f the l i n e a r 
t r e n d i s shown where a large c y c l o n i c anomaly i n the 
centre and an a n t i c y c l o n i c anomaly i n the east are found 
due t o the meandering flow. This e n e r g e t i c f e a t u r e domi
nates much o f the flow and property d i s t r i b u t i o n and must 
be removed t o r e v e a l the u n d e r l y i n g s m a l l e r s c a l e v a r i a b i 
l i t y , from which the eddy f l u x divergence i s d e r i v e d . Due 
to t h e o r e t i c a l reasons and the observation o f numerous 
d r i f t buoys ( f i g . 13) we hypothesized the e x i s t e n c e o f a 
Rossby wave c o n t r i b u t i o n (Käse et a l . , 1983). A f t e r sub
t r a c t i o n of the s p a t i a l l i n e a r t r e n d a simple f i r s t mode 
Rossby wave model 

ifi R ( x ) = P • s i n (ny - 4^) cos (KX - 4>2) 

was f i t t e d . The composite mean f i e l d i s d i s p l a y e d i n f i g . 
2c . Removal o f the wave f i e l d reduces the meander-scale 
s t r u c t u r e completely and r e v e a l s a mesoscale eddy f i e l d 
( f i g . 2d). From t h i s f i e l d raw covariances were d e r i v e d 
and w i t h the a i d o f the Gauss-Newton method adapted to one 
o f a f a m i l y o f model covariance f u n c t i o n s . I n t h i s case a 
Gaussian i s o t r o p i c f u n c t i o n proved t o be the most s u i t a b l e 
one. 



2 . OBJECTIVE ANALYSIS OF SCALAR FIELDS 

The o b j e c t i v e a n a l y s i s techniques presented here have been de
veloped f o r both m e t e o r o l o g i c a l (Gandin, 1 9 6 5 ) and océanogra
phi e a p p l i c a t i o n s ( B r e t h e r t o n et a l . , 1 9 7 6 ; B r e t h e r t o n , 1 9 8 0 ) 

i n the past. U l t i m a t e l y , they a l l date back t o the days o f 
Gauss i n bei n g a p p l i c a t i o n s o f the fundamental Gauss-Markov 
theorem ( L i e b e l t , 1 9 6 7 ) . We s h a l l give a b r i e f summary of 
t h i s technique here together w i t h a more d e t a i l e d account of 
the s t a t i s t i c a l and n o n - s t a t i s t i c a l assumptions i n v o l v e d . 

Given a set o f measurements <j>̂  o f a s c a l a r v a r i a b l e at data 
p o i n t s x^, 1 < i < N , we want t o estimate at the ge n e r a l 
p o i n t x i n our o b s e r v a t i o n a l area. We assume that the measured 
value <JK i s composed o f the t r u e value 'l'(x^) and the random 
noise 

(1) 4>± = 4>(x±) + e 1 

The random noise c o n s i s t s o f measurement e r r o r s and s m a l l -
s c a l e f l u c t u a t i o n s unresolved by the array (e.g. i n t e r n a l waves, small 
s c a l e t u r b u l e n c e ) , which we want to suppress i n our a n a l y s i s . 
We assume that the e r r o r s e i are not c o r r e l a t e d w i t h the f i e l d 
and w i t h each ot h e r and have a known variance 

( 2 ) E {e.} = 0 

E {e.E.} = oz-S.. f o r 1 s i , j < N 
1 J £ -'-J 

E {*e i) = 0 

This treatment of the noise f i e l d i s r i g o r o u s and i n essence 
c o r r e c t only f o r the t r u e measurement n o i s e . However, i f a s m a l l 
s c a l e s i g n a l i s present which i s unresolved by the o b s e r v a t i o n a l 
a r r a y , we assume t h a t the s c a l e of t h i s noise i s s m a l l compared 
to the s c a l e of the observed f i e l d . 
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As the s c a l e of the noise approaches zero, the noise covariance 
approaches a d e l t a f u n c t i o n of value . Thus, i n the l i m i t 
both i n s t r u m e n t a l noise and s m a l l s c a l e s i g n a l would become 
i n d i s t i n g u i s h a b l e . I n the present a n a l y s i s the estimated 
e r r o r v a r i a n c e came up t o 5-35 % of the t o t a l v a r i a n c e of the 
measurements depending on the depth and which p r o p e r t y f i e l d 
was to be mapped h o r i z o n t a l l y . 
The most general l i n e a r e s t i m a t o r f o r a s c a l a r v a r i a b l e w i t h 
s p a t i a l l y dependent mean values has the form 

N 

M i n i m i z a t i o n o f the mean square e r r o r 

( 4 ) e 2 (x) = E { ( • (x) - $ ( x ) ) 2 > 

w i t h respect to the c o e f f i c i e n t s <*xi , 6 x i n (3) y i e l d s 

(5) a 
N 

= r c y 1 < i < N 
X I 

N 
8 = M - I x x ~ ~ .1 

where 

( 6 ) M = E {* (x)} 

are the mean values of * 
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and 

( 7 ) ( A ) ~ l = (C + R ) - 1 

i s the i n v e r s e m a t r i x of the sum o f the p o s i t i v e d e f i n i t e 
N x N matrix o f covariances 

C±. = CCV (x.) , * (x )) , 1 < i , j < N 

o f ip at the p o i n t s x., x. and the e r r o r covariance m a t r i x 

R. . = COV (e.,e . ) , 1 < i , j < N 

at p o i n t s x^, • 

(8) C . = COV (• (x) , A . ) 

i s the covariance o f <p at the i n t e r p o l a t i o n p o i n t x and the 
o b s e r v a t i o n A- at p o i n t x. . 

j J 
Note that w i t h the assumption o f (2) the e r r o r covariance 
m a t r i x reduces to a d i a g o n a l m a t r i x w i t h d i a g o n a l elements o 2 

(9) R±i = E { E i £ j } = o|.6 i < f 
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Estimates o f the r e s i d u a l u n c e r t a i n t i e s i n the i n t e r p o l a t e d 
values are given by the e r r o r covariance f u n c t i o n 

(10) E { ( * (x) - $ (x ) ) (* ( Z) - * ( y ) ) } 
N N 

= C - E E C . (A" 1 ) • • C . 
x x i = i j = i x l

 ; I J yj 

which y i e l d s an expected rms e r r o r 

N N 1 7 

(11) e (x) = (C - I E C . ( A " 1 ) • • C .) 2 

^ i = l j = l X 1 1 J £ J 

where 

C = COV dp (x) , * (y_)) . 

In o r d e r t o account f o r the o v e r a l l h o r i z o n t a l t r e n d i n the 
mean we assumed t h a t the mean f i e l d can be approximated by 
a two-dimensional l i n e a r f u n c t i o n which was f i t t e d t o the 
data by u s i n g a m u l t i p l e r e g r e s s i o n scheme. D e t a i l s o f t h i s 
f i t t i n g procedure w i l l be disc u s s e d below. 

Since the computed e r r o r maps u s i n g e x p r e s s i o n (11) cannot 
r e f l e c t the u n c e r t a i n t i e s inherent i n the e s t i m a t i o n o f the 
mean o f ifr, we assumed f u r t h e r that t h i s e r r o r can be neglec
ted. I t should be p o i n t e d out here that - i f t h e mean 
E {<J» ( x ) } , the covariance f u n c t i o n C and the noise c o v a r i -
ance R^. are known - the computation o f e r r o r maps o f the f i e l d 
to be observed i s s t r a i g h t forward showing the a b i l i t y o f 
d i f f e r e n t sampling schemes without r e f e r e n c e t o any p a r t i c u 
l a r data s e t . 
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3. STATISTICAL PREPROCESSING OF SCALAR DATA SETS 

3.1. ESTIMATION OF THE MEAN FIELD 

Equations (3) and ( 5 ) , (6) show that our o p t i m a l e s t i m a t o r 
cannot be a p p l i e d without knowledge of the mean values o f • 
at the o b s e r v a t i o n a l p o i n t s and the p o i n t s where ^ i s t o be 
estimated. 

In the a n a l y s i s o f the "POSEIDON 86" data set the f i e l d ob
s e r v a t i o n s c l e a r l y show a s p a t i a l dependence i n the mean 
f i e l d s which i s b a s i c a l l y a general m e r i d i o n a l t r e n d . 

A p r a c t i c a l approach to minimize the e f f e c t of the unknown 
mean values i s t o approximate the s p a t i a l mean f i e l d by a 
two-dimensional l i n e a r f u n c t i o n M (x) which i s determined by 
a m u l t i p l e r e g r e s s i o n a n a l y s i s u s i n g the l e a s t squares c r i 
t e r i a 

N 
(12) Z (<j>. - M (x. ) ) 2 = Min 

i = l 

where 

(13) M (x.) = A • X i + B , A = U x , A y ) . 

In a d d i t i o n t o the usual a n a l y s i s o f v a r i a n c e , an o v e r a l l 
F - t e s t ( t e s t i n g the n u l l hypothesis that a l l r e g r e s s i o n para
meters are zero) and p a r t i a l F - t e s t s ( d e l e t i o n of one r e 
g r e s s i o n parameter from the model) were used to check our 
assumptions f o r co n s i s t e n c y w i t h the data. 
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For the d i f f e r e n t property f i e l d s the percentage of 
v a r i a t i o n e x p l a i n e d by m u l t i p l e r e g r e s s i o n was i n the 
range of 53% - Some examples of the r e s u l t i n g output 
i n f o r m a t i o n f o r the m u l t i p l e r e g r e s s i o n a n a l y s i s f o r each 
pro p e r t y f i e l d are shown i n f i g . 14. 
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3-2. SPATIAL COVARIANCE FUNCTION 

There are two main o b j e c t i v e s which have to be accomplished 
when e s t i m a t i n g the covariance f u n c t i o n s : the f i r s t and 
most e s s e n t i a l p o i n t i s that every moment ma t r i x 

A „ = E U $ } rs y r y s 

drawn from the estimated covariance f u n c t i o n o f must be a 
non-negative d e f i n i t e m a t r i x , i . e . none of i t s eigenvalues 
are negative. This i s a c h a r a c t e r i s t i c o f the t r u e moment 
ma t r i x 

A = E {<)><{> } rs r r Y s 

on which the method to minimize the mean square e r r o r (4) 
i n the proo f o f the Gauss-Markov theorem h i g h l y depends. 

The second p o i n t i s that the estimated covariance f u n c t i o n 
approximates the true covariance f u n c t i o n of <J> . 

The standard approach chosen here to meet these two r e q u i r e 
ments was to de r i v e raw covariances from the data and t o f i t 
a smooth curve which i s a member o f a c l a s s o f model c o v a r i 
ance f u n c t i o n s and approximates the raw e s t i m a t e s . 

Such a c l a s s of model covariances 

(14) £ = (F (r;P) , P = (P 1,...,P,)} 
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w i t h the l a g vector r = ( r , r ) and free parameters _ x y 
p i > - - ' » P i i s chosen a p r i o r i together w i t h a f i r s t guess 
P = ( P 1,...,P 1) f o r the undetermined parameters. A n o n - l i n e a r 
f i t t i n g procedure (METZLER et a l . , 1971*) was used t o compute 
an estimate P f o r the parameter v e c t o r P which minimizes the 
sum o f weighted squares of d e v i a t i o n s i n the values of the 
raw covariances and the model covariance f u n c t i o n 

(15) I (C ( r . ) - P ( r . , P ) ) 2 - w . = MIN 

where 

C ( r . ) i s the raw covariance f u n c t i o n (see d i s c u s s i o n below) 
and W. are appropriate weights d e r i v e d from the 95 % c o n f i 
dence l i m i t s of the raw covariance estimates. 

3.2.1. ESTIMATION OF RAW COVARIANCES 

T h e o r e t i c a l l y , the e s t i m a t i o n o f raw covariances would i n 
volve the c a l c u l a t i o n o f the products 

(16) Pij. = (*i - E {*. - E {$.}) 

f o r each p a i r o f o b s e r v a t i o n a l p o i n t s , x. and a v e r a g i n g 
over a l a r g e number m of r e a l i z a t i o n s . 
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i n o rder t o estimate the true covariance 

( 1 8 ) C. . = E { ( * . - E {*.}) - E {*.})} 

between these p o i n t s . 

However, a d i f f e r e n t approach had to be chosen i n view o f 
the f a c t t h a t only one r e a l i z a t i o n was a v a i l a b l e . A f t e r 
s u b t r a c t i o n o f the estimated mean f i e l d (see 3 . 1 . ) from the 
o b s e r v a t i o n s , a data set w i t h s p a t i a l l y q u a s i - s t a t i o n a r y 
s t a t i s t i c s was obtained where the covariance f u n c t i o n was 
only a f u n c t i o n of the l a g v e c t o r r . 

Let 

(19) *± -- ̂  ~ M. 

where 

( 2 0 ) M\ = A • x± + B 

are estimates of the mean f i e l d given by the f u n c t i o n a l r e 
p r e s e n t a t i o n o f the mean. 

For each p a i r of o b s e r v a t i o n a l p o i n t s the products 

( 2 1 ) P ( r ) = (*± - M) (%• - M) , = x 1 + r 
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were computed where 

- 1 N ~ 
( 2 2 ) M = i I <j>. 

1 = 1 1 

the sample r e s i d u a l mean caused by f l u c t u a t i o n s i n the 
anomaly f i e l d i s approximately zero. 

These products were averaged over a l l p a i r s of o b s e r v a t i o n a l 
p o i n t s i n the array w i t h an i d e n t i c a l l a g v e c t o r r or - r 

1 m ~H1 
( 2 3 ) C ( r ) = - i Z P U ; ( r ) N i = 1 

t o reduce the noise i n the raw estimates ( 2 1 ) . 

A l t e r n a t i v e l y - but e q u i v a l e n t l y - these raw estimates can 
be computed by a g e n e r a l i z a t i o n t o two-dimensional space 
of the f o l l o w i n g estimators f o r the auto-covariance f u n c t i o n 
o f time s e r i e s of a s t a t i o n a r y s t o c h a s t i c process i(( ( t ) 
w i t h o b s e r v a t i o n s <f> ( t ) 

* 1 T " l r l 
(24) C ( r ) = i / U ( t ) - ?) (• (t+|r|) - •) dt 

^ o 
or 

/ - T-|r| 
( 2 5 ) ( r ) = rpzjjj I (• ( t ) - •) U (t+|r|) - *) dt 

where <j> i s the sample mean of •. Note that our estimator (23) which 
i s equivalent to (24) i s a biased estimator, whereas (25) i s unbiased but 
has a greater mean square error than (24 ). 
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A p p a r e n t l y , a l l these estimators have i n t u i t i v e appeal, i . e . 
they are not opti m a l estimators i n any known sense. For ex
ample: no maximum l i k e l i h o o d e s t i m a t o r i s known to e x i s t f o r 
the a u t o c o r r e l a t i o n f u n c t i o n of an observed time s e r i e s . 
Assuming that the p r o b a b i l i t y d e n s i t y f u n c t i o n i s normal, the 
l i k e l i h o o d f u n c t i o n can be de r i v e d . But the set of equations 
o b t a i n e d by d i f f e r e n t i a t i o n i s i n t r a c t a b l e (Jenkins & Watts, 
1968). 

Hence, we are l e f t w i t h these admittedly i n t u i t i v e e s t i m a t o r s 
which, o f course, may be compared according t o c r i t e r i a such 
as minimum mean square e r r o r or b i a s o f the e s t i m a t e s . 

In f i g . 3a the two-dimensional raw covariances f o r geopotential 
anomaly (25/1500 dbar) are shown, whereas the corresponding 
confidence l i m i t s and l e v e l s o f zero s i g n i f i c a n c e are d i s 
p l a y e d i n f i g . 3b,c. 

As can be seen, the computed raw covariances show a c o n s i d e r 
able amount of random s c a t t e r . I n s p e c t i o n of the 95 % confidence 
l i m i t s and l e v e l s o f zero s i g n i f i c a n c e (fig.3b,c) shows that 
w i t h the present amount o f data the question i s l e f t unanswer
ed whether the east-west o s c i l l a t i o n i s p r i m a r i l y due t o r e a l 
p h y s i c s or r a t h e r a r e s u l t o f a random sampling e r r o r inherent 
i n the data. Even the covariances computed under the assump
t i o n of i s o t r o p y ( f i g . 4 ), with increased degrees o f freedom, 
are not s i g n i f i c a n t enough to give c l e a r evidence concerning 
t h i s p o i n t . A d d i t i o n a l l y i t might be p o i n t e d out that the raw 
covariances are i n f l u e n c e d by the u n c e r t a i n t i e s inherent i n 
the approximation of the true mean f i e l d . E s p e c i a l l y the zero 
c r o s s i n g p o i n t s are s e n s i t i v e t o changes i n the mean f i e l d . 
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3-2.2. NONLINEAR FITTING OF MODEL COVARIANCES 

Since only l i t t l e p r i o r i n f o r m a t i o n on the s t a t i s t i c s o f the 
mesoscale v a r i a b i l i t y i n the Canary b a s i n was a v a i l a b l e , 
s e v e r a l model cl a s s e s had to be t e s t e d f o r t h e i r a b i l i t y o f 
r e p r e s e n t i n g the raw covariances. The m o t i v a t i o n f o r the de
s i g n o f the d i f f e r e n t model c l a s s e s p a r t l y came from theore
t i c a l c o n s i d e r a t i o n s , (case 4 i n t a b l e 1 for ins t a n c e r e p r e 
sents a t h e o r e t i c a l covariance f u n c t i o n f o r propagating 
Rossby waves generated at an eastern boundary), o r was im
p l i e d simply because o f a n a l y t i c reasons ( i . e . best f i t t o 
the raw covariances without systematic d e v i a t i o n s ) . 

R e s u l t s o f the n o n l i n e a r f i t t i n g procedure f o r the d i f f e r e n t 
model c l a s s e s are shown i n t a b l e 1, which l i s t s the values 
of the weighted sum of squared d e v i a t i o n s (WSS), c o r r e l a t i o n 
between the raw covariances and p r e d i c t e d values (COR), and 
parameters w i t h 95 % confidence l i m i t s f o r each model func
t i o n c l a s s . 

In f i g . 5 p l o t s o f the corresponding f i t t e d f u n c t i o n s are 
shown. Although i n some cases a good f i t t o the data was ob
t a i n e d by u s i n g WSS o r COR as a measure o f the goodness o f 
f i t , the p l o t s showed systematic d e v i a t i o n s i n d i c a t i n g a 
wrong model c l a s s ; e.g. i n case 6 f o r i n s t a n c e the c o v a r i 
ance f u n c t i o n does not decay f a s t enough l e a d i n g to s y s t e 
matic negative c o r r e l a t i o n s f o r large east-west s e p a r a t i o n s . 
On the other hand, sometimes a l a r g e v a r i a b i l i t y i n the es
timates of the parameters occured, i n d i c a t i n g t h a t the 
weighted sum o f squares was not very s e n s i t i v e t o changes i n 
the parameters. I n these cases the model c l a s s was r e j e c t e d 
from f u r t h e r a n a l y s i s . 
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For the syn o p t i c mapping of the data a n o n i s o t r o p i c Gaussian 
f u n c t i o n was chosen: 

which suppresses negative c o r r e l a t i o n s . 

This was motivated by the f a c t that even under the assump
t i o n o f i s o t r o p y there was no s i g n i f i c a n t negative c o r r e l a 
t i o n (see d i s c u s s i o n above). As can be seen from t a b l e 1, 
the covariance f u n c t i o n (26) s t i l l i s a good f i t to the raw 
covariances ( t a b l e 1, case 7) and takes account o f the non
i s o t r o p i c features i n the data , e s p e c i a l l y the r a p i d de
crease of c o r r e l a t i o n i n the east-west d i r e c t i o n . 

Some examples of the influences on the calculation of the maps using covari
ance f u n c t i o n s o f the remaining model c l a s s e s (which r e p r e 
sent a good f i t and were not r e j e c t e d ) may be seen by com
p a r i n g f i g . 6 a) - c ) . The v i s u a l d i f f e r e n c e s between 
these maps are q u i t e n o t i c e a b l e but remain w i t h i n the range 
o f the p r e d i c t e d rms e r r o r f i e l d s . ( f i g . 7a) 

The c o r r e l a t i o n s c a l e i n the east-west d i r e c t i o n \^ = 32.0 nm 
i s comparable to the average s e p a r a t i o n between the s t a t i o n s 
o f our array ( f i g . 1 ). 
However, as we have not c o n s t r a i n e d our general e s t i m a t o r 
(3) t o have zero b i a s by r e q u i r i n g 

(26) = 48.0 nm 

N 
(27) 2 o s 7 . X I 1 = 1 " 

= 1 

i t w i l l g i v e a str o n g e r weight t o the l i n e a r r e p r e s e n t a t i o n 
o f the mean f i e l d i n the regions o f lower s t a t i o n d e n s i t y . 
As the general s t a t i o n coverage was good, t h i s o n l y happened 
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on the boundaries o f our o b s e r v a t i o n a l area where the pre
d i c t e d e r r o r variance comes up t o around 50 % o f the v a r i 
ance o f the anomaly f i e l d , as can be seen from f i g . ja. 

F u r t h e r examples of o b j e c t i v e mapping of d i f f e r e n t p r o p e r t y 
f i e l d s based on the p r i n c i p l e s o u t l i n e d so f a r , are d i s p l a y e d 
i n f i g . 15a) - d ) . The n o n - i s o t r o p i c covariance f u n c t i o n 
(26) was used a g a i n , w i t h the parameters X x, X y determined 
from the f i t of t h i s model c l a s s to the raw covariances of 
the d i f f e r e n t f i e l d s . The summary of the corresponding 
m u l t i p l e r e g r e s s i o n a n a l y s i s f o r the mean f i e l d s i s giv e n 
i n f i g . 14. 



TABLE 1 

case model c l a s s wss COR parameters 
nm or (nm) resp 

lower and upper 
confidence l i m i t s 

1. \X2 X2/ 
F (r) = e x y /.cos (k|r |+l|r |) 

x y 
1 . 8 8 0 . 8 0 7 

A x = 3 1 ' 7 

X y = 4 7 . 9 

k * 0 

L a 0 

2 7 . « - 3 5 . 6 

4 3 . 1 " 5 2 . 7 

- 0 . 5 2 - 0 . 5 2 

- 2 6 0 . 0 ~ 2 6 0 . 0 

2« J u l ) * 
P (r) * e V X y • (l-k|r v|) 0 . 6 6 7 0 . 9 1 

X x = 7 7 . 3 

Ay = 4 4 . 0 

k = 0 . 1 5 1 ' 1 0 " * 

no estimate 
o f e r r o r 

3 . 
. f e l l ) 
VX2 X2/ 

P (r) = e X x y / . ( l - k | r x | ) 1.07 0.884 

X x = 9 9 . 9 

x y = 4 9 . 0 

k = 0 . 1 6 « 1 0 " 1 

92 .8 - 106.9 

4 5 . 6 - 5 2 . 3 

0 . 1 5 - 1 0 " 1 - 0 . 1 7 » 1 0 _ 1 

4. "U 2 +X 2/ sin (k|r 1) 
P ( * ) = e k | r / 1.87 0 . 8 0 7 

x x = 31 .7 

X y = 4 7 . 9 

k = 0 . 5 - 1 0 " 3 

27.8 - 3 5 . 6 

4 3 . 1 - 5 2 . 7 

- 2 5 2 . 0 - 2 5 2 . 0 

5. 
/IrJ M 

1 .73 0 . 8 3 5 

x x = 6 9 . 4 

Ay = 4 4 . 8 

k = 0.42 - 1 0 - 1 

i 

39.4 - 9 9 . 3 

3 8 . 6 - 5 i.o 
0 . 3 5 * 1 0 * 1 - 0 . 5 0 « 1 0 " 1 



TABLE 1 (continued) 

case model c l a s s wss COR parameters 
— l 

nm or (nm) resp, 
lower and upper 
confidence l i m i t s 

6 . 

F (r) = e \ x y A (l-k|r x|) 0 . 9 2 6 0 . 8 8 5 

x x = 91-7 

X y = 4 9 . 4 

k = 0 . 1 5 - 1 0 " 1 

8 1 . 7 - 101 .6 

4 4 . 7 - 5 4 . 2 

0.14 - 1 0 - 1 - 0 . 1 6 - 1 0 - 1 

7. U 2 X2/ 
F (r) = e y 1 .87 0 . 8 0 7 

\ - 3 1 . 7 

xy = 4 7 . 9 

28.7 - 3 4 . 5 

4 3 . 1 - 5 2 . 7 

8. 
F (r) = e x x y ' 2 . 0 5 0 . 8 0 8 A = 4 5 . 6 y 

2 2 . 2 - 3 1 . 5 

3 8 . 3 - 5 2 . 9 

9 . 
(r^+r 2) x y' 

F(|r|)=e x 2 2 . 1 0 0 . 7 8 5 x = 3 7 . 6 3 5 . 2 - 3 9 . 9 

10. 
M 

P (|r|) » e"" 1" 2 . 2 0 0 . 7 9 5 X = 2 8 . 9 2 6 . 0 ~ 31 .9 
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3.2.3« Statistics of the mesoscale eddy field 

As mentioned already in the introduction, the process of estimating 
the eddy flux divergence term in the temperature conservation equat
ion implied the problem of mapping mesoscale perturbation fields 
where the corresponding mean field was defined through a linear 
spatial trend plus Rossby wave f i t . 

Let 

= • -(%>SSBY + W 

with the composite mean field <P^oSSBy+ 

Again, by means of the procedures described already, raw covariances 
of the <j>' f i e l d were derived based on different statistical assumptions, 
i.e. stationarity and/or without/ isotropy. 

A 
The two-dimensional raw correlations C(£) for the geopotential anomaly f i e l d 
25/1500 dBar are shown in fi g . 9 a with corresponding cross sections 
displayed in fig.9 b ,c. Correlations derived under the assumption of 
isotropy are shown in f i g . 1 0 . 

Our station displacement varied between 30 nm in the region of the 
frontal zone and /5*30 nm in the southern tranquil region where less 
eddy activity was observed. The raw correlations show that only under 
the assumption of isotropy the perturbation f i e l d i s marginally corre
lated at 30 nm. 

These raw correlations were adapted to different model correlation 
functions with the results as shorn in table 2 . In the case of a 
non-isotropic Gaussian function, the zonal and meridional correlation 
scales are identical within the 9 5 * confidence limits. Consequently, 
the correlation scale A in the two-dimensional isotropic model 
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function is equal to the arithmetic average of * x and Xy in the 
non-isotropic case; the analysis of the one-dimensional isotropic 
raw covariances yields an identical correlation scale (case 3 of 
Table 2). 

In case 4 and 5 of Table 2 model functions were fitted which consider 
the zero crossing of the isotropic raw covariances at 43 nm with 
subsequent negative correlations. The resulting correlation scales 
are larger than in case 3 (isotropic Gaussian function) where the 
positive form of the model function does not allow for negative 
correlations and - consequently - provides an underestimate of the 
correlation scale. 

These results show that the resolution of the perturbation field 
was too coarse to significantly distinguish the shape of the corre
lation model function. The estimated correlation scales vary within 
the range of 20 - 38 nm depending on the assumed model function 
(see Table 2). Therefore, - for the final analysis - we decided to 
use an "a prio r i " function which is Gaussian, isotropic and has 
a correlation scale of 30 nm. Besides the fact that this function 
is within the significance limits consistent with our raw corre
lations, i t enforces a separation of perturbations resolved by 
the box-grid and smaller sub-grid scale variability. 

Our approximation of the error correlation as a delta function is 
only correct i f the scale of the noise is infinitesimally small 
or at least clearly to be distinguished from the main scale of 
the f i e l d . Under the assumptions made with respect to the statistics 
of the f i e l d , this approximation is valid only i f the scale of 
the noise is less than 15 ran* 
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As a consequence of the removal of the mean f i e l d 
the signal to noise ratio was decreased at every stage of the 
f i t t i n g process. The composite mean f i e l d represents about 70% of 
the total v a r i a b i l i t y - depending on the depth level and the fact 
which scalar f i e l d was to be mapped -. Even under optimistic as
sumptions regarding the noise s t a t i s t i c s , one f i n a l l y comes up to 
25% - J>5% of the variance of the mesoscale perturbation f i e l d . 

Having i n mind future single ship experiments i n this area these 
results underline the importance of measurement methods which can 
be used complementary from a ship underway - such as GEK, XCP or 
geostrophic velocities derived from an XBT survey through an averaged 
T/S relationship, which would result i n a finer spatial resolution. 

Based on the analysis of satellite-tracked d r i f t i n g buoy observations 
the estimated synoptic deformation rate for the POSEIDON 86 survey 
was 50 km i n 20 days. That means that the entire survey must be 
finished within that period. Consequently, additionally nested 
fine-scale CTD stations which are quite time consuming, prove to 
be no solution with respect to the s t a t i s t i c a l estimation problems 
encountered . This i s enhanced by the fact that with the present 
sampling scheme every station i s s t a t i s t i c a l l y independent because 
of the short correlation scale of 30 nm or less. Thus, several 
nested fine-scale CTD-stations would have to be implemented 
i n the survey pattern at dynamically similar regions so to have 
enough mesoscale events with sufficient degrees of freedom. This 
i s hard to achieve without prior information about the flow f i e l d . 

The above remarks are valid for the case that only one realization 
i s available. I f there are several realizations for the same ob
servational area with similar dynamics involved, the covariance 
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f i t t i n g approach used here can be replaced by the more refined 
spectral model fitting approach as described by Bretherton et a l . 
(1980). Their estimator is optimally efficient i n the sense that 
no other unbiased linear estimator operating on the same subspace 
of spectral features, can have less uncertainties. The more precise 
estimation of the underlying statistics which - in consequence -
improves the accuracy of reproducing the true flow or property f i e l d , 
must be complemented by an array design considering the expected 
or known spectal features. One of the fundamental properties of an 
irregular array is the intrinsic alias class,which is the set of 
spectral features for which - regardless of the number of realizations -
no information can be obtained or power between adjacent wave numbers 
discriminated through observations. Several examples of optimal 
array design for isotropic or non-isotropic stochastic processes 
are given by Bretherton & McWilliams (1979) based on the maximization 
of information gained according to standard theory (Middleton, I960). 
If the array i s intended to serve synoptic mapping purposes as well, 
a more uniform distribution in space is desirable. For example, a 
rhombic two-dimensional array as described by Petersen & Middleton 
(1962) is optimal for a band-limited isotropic process. 



Table 2 

Case model class wss COR parameters 
(ran) 

lower and upper 
95% confidence l i m i t s 

1. 

r * x r 2 

~(T~T + T T ) x y 
F(r) = e 0 .93 0.77 

X x = 20.3 
X y = 23.1 

17.5 - 23.0 
20.5 - 25.6 

2. P C = e ~ 0.94 0.77 X = 21.7 19.9 - 23.4 

1-dimensional isotropic raw correlations: 

3 . 

- I d ' 
P ( | r | ) = e ^ 0.54 .981 X = 21.7 19.9 - 23.5 

4. F(|r|) = (l-k»«H*>e 
r 

i 

.037 .985 X = 35.7 
k = .25-10'1 

33.8 - 37.7 
.245- l o ' - ^ e s - i o " 1 

5. F(|r|) = ( l - k - l r l ) e .031 .987 X = 28.6 
k = .22 10' 1 

25.8 - 31.4 
.200« lO" 1— .242 lO" 1 
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4. Objective Analysis of vector fields 

In this section we shall give a brief sumnary of the adaption of 
the basic algorithm to vector fields (Bretherton et a l . , 1 9 7 6 ) . 

Some preliminary remarks w i l l serve as an introduction to the 
problems which w i l l arise. 

Given a set of observations of a horizontal velocity f i e l d at N 
points 

we can straightforward adapt the basic algorithm by introducing the 
observation vector 

(29) % - ( • ! » • • - . • a j ) = < u i ^ i ^ - - - ' ^ ( % ) } 

For brevity we assume that the velocity f i e l d has zero mean. With 
the aid of the general linear estimator (3), we obtain optimal e s t i 
mates of the velocity components at a general point x i n the obser
vational area 

(28) u U±) = (u a (x i) , U2 (x.)) 1 < i < N 

(30) < 
Sl <*> - L °: 
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where 

~ J l < a < 2 

(3D and C ^ = E {u £ (x) ̂  (x )} for N+l < j < 2N 

are the covariances of the £ velocity component to be estimated and the 
j observation and 

(32) A.. = E {*.*.} 1 < i , j < 2N 

i s the covariance between a l l pairs of observations. The error i n the 
velocity estimates i s given by the general GauB-Markov theorem i n 
the following way. F i r s t , we introduce the 2x2 error matrix C e 

T /E {e e } , E {e e }\ 
C = E {e x. e} =/ 1 1 1 M 

E ~ " \E {e2e1} , E {e^}] 

where 

e = (e a,e 2) = u - u = (u 1 - u± , 0, - a,) 

where u i s the true velocity and u the estimate. 

According to the GauS-Markov theorem, the trace of C£ i s nanimal for 
our optimal estimate (30): 

E {|e|2} = E {ea
2} + E {e 2

2} = t r (C £) = M3N 

Thus, we can specify the root-mean-square error e of the estimate u(x): 
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e = E {|e|2}2 = E {|u-u|2}2 

(33) 
I c £ - J f C ^ ( A - l ) . . C ^ H 
t=i h i=i i,j=i «• u $ j / 

where 

is the variance of the fcth velocity component. 

If we consider the velocity components as stochastic functions and 
assume that their joint probability function is independent of arbi
trary spatial translations, i.e. homogeneity, and i f we assume further 
that the standard assumption (2) holds, i.e. the errors inherent in 
the velocity measurements are not correlated with the velocity f i e l d 
and with each other and have a known variance E, we can rewrite 
(32) i n terms of the velocity correlation tensor RJr)& {u.(x)u0(x+r)}: 

(34) A.^. = R 1 1 ( r i j ) + E 5 i J 

Ai,j+N = R 1 2 ( r i j }  

A i + N , j = V f t j * 

with 

Thus, we are left with the problem of specifying the velocity correlation 
tensor. 

In order to give a simple mathematical description of R^Cr), we wi l l 
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adopt the standard approach used elsewhere (Bretherton et a l . , 1976; 
McWilliams, 1976), and assume that the velocity f i e l d i s isotropic. 
Modified for a 2-dim.velocity field, this means that the probability 
distribution is invariant under arbitrary rotations about a vertical 
axis and reflections in any direction. The velocity correlation 

(r) i s then an isotropic second-order two point tensor and, 
therefore, has the form (Bachelor, 1959) 

(35) R^Cr) = A(r) r k r £ + B(r) « k £ > ^ e r e r = |r| 

where A, B are even scalar functions of r. (It should be noted that 
since the beginning of this chapter, we are ignoring time-dependence.) 

As our main interest concentrates on the interpretation of mesoscale 
velocity measurements, this - we admit - is a poor assumption which 
w i l l scarcely be f u l f i l l e d in real physics. However, i t should be 
borne in mind that under the least restrictive symmetry condition 
symmetry about a plane, Rj^r) is the sum of 35 terms including vector 
arguments (Batchelor, 1959). 

The condition of homogeneity has ensured that 

\iW * \*{'£> 

the condition of isotropy makes R l d l(£) fully symmetrical in the two 
suffixes: 

\zW -~ Rik (£ } 

The continuity condition 

V • u = 0 
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has further consequences for R ^ r ) (summation convention for the 
tensor suffixes is used from now on until the end of this chapter): 

a?" u* ( x + r> = 0 

l 

which yields for fixed k: 

E { u k ( x ) 3r7 u* = 3F- <E < V x ) u* ( x + £ ) } ) 

= W¡ V r ) - 0 

With the form of ̂ ¿(r) established by (35), i t follows 

(36) 3A(r) + P l g s l + I ¿ B ( p ) =0 

Introduction of the convenient longitudinal and transversal velocity 
correlation functions 

E {u„(x) u„(x+r)} 

E {u„2} 

E íu^íx) ujx+r)} 

E {u A
2í 

for two points x, x + r at distance r apart, gives the following 
relations to the scalar functions A(r), B(r) of (35) 

f(r) = 

g(r) = 
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P(r) = u 2 f ( r ) = E { U | l(x) u,,(x+r)} = r 2 A(r) + B(r) 
(37) 

G(r) = u 2g(r) = E {u,(x) u,(x+r)} = B(r) 

where F ( r ) , G(r) are the longitudinal and transversal covariance 
functions respectively, and 

(38) u 2 = E {u,,2} = E Ur 2} = E {i^ 2} 

i s the t o t a l variance of the velocity f i e l d which equals the compo
nent variance E {u^2 } because of the isotropy assumption. 

In the derivation of (36), we made use of the transformation 

u, = cos a • u^ + sin a -

u± = - sin a • u^ + cos a • 

where a i s the angle between r and the x^-axis. Without limitations 
to the general case, r may be assumed to be positioned i n the (x^Xg) 
plane as a consequence of the isotropy assumption. 

Prom (37) i t follows that 

A(r) = — (P(r) - Q(r)) 
r 2 

(39) 
B(r) = G(r) 

Thus, we can rewrite R ^ i r ) i n terms of P(r) and G(r) 

(40) \ t M = (P(D - G(r)) • • 0(r) - « k £ 



Fran (36) and (39) i t follows that, in fact, we have to determine only 
F(r)and its f i r s t derivative: 

(41) G(r) = F(r) + r - 4~ F(r) 

Thus, for our original problem of mapping a two-dimensional horizontal 
velocity f i e l d , we can specify the correlation tensor used in (39) in 
terms of F(r) and F'(r): 

r 2 

K.Ar) = F(r) + -§- • F'(r) xx " r 

(42) R^Cr) =R 2 1(r) • > ( r ) 

If the velocity field is known to be non-divergent, or i f non-divergence 
i s raised to be an axiom of the analysis, (i.e. i f a geostrophic view 
of a measured velocity field i s desired or i f low frequency currents 
are analysed which are in approximate geostrophic balance,) i t i s con
venient to introduce a stream function <Kx) with 

R ^ r ) = F(r) + F'(r) 

where F ' ( r ) = ^ F ( r ) 

a»C3S) 

3 X2 
u^x) = 

and covariance function 

C(r) = E (*(x) <Kx+r)} 



From non-divergence and with the aid of (4l), we obtain the following 
relations between C(r), F(r) and G(r) 

(43) 
F ( r ) s _ I JL c(r) 

G(r) =-|-(r.F(r)) = - i S f c l 

As pointed out by Bretherton et a l . , 1976, a direct consequence of the 
use of s t a t i s t i c s consistent with horizontal non-divergence, i s the fact 
that the divergence of the estimated f i e l d w i l l vanish - regardless of 
the nature of the measurements. This can be seen by taking the divergence 
of the velocity estimates ( 3 0 ) . With weights 

N 
(44) oj = I ( A - i ) ^ * i 

i = l 

and 
2N 

= 1 i=N+l 

we obtain 

(45) 
3^(2) au^x) 
3x„ 3x, 
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N 

2N 

Thus, once the a priori constraint of non-divergence has been applied 
by selecting statistics consistent with a non-divergent f i e l d , the 
estimated f i e l d will be non-divergent even i f the data base shows 
marked inconsistencies with that assumption. 

Consequently, i f theoretical reasons imply - for example - that in 
the observational area the importance of the non-linear and frictional 
terms i n the equation of motion i s small compared to the influence 
of the Coriolis term , a geostrophic approximation may significantly 
improve the estimated velocity fie l d , especially when associated with 
mesoscale motion. On the other hand, the example of vector analysis given 
below, i.e. estimation of a quasi-Eulerian velocity field from averaged 
and low-pass filtered drifting buoy observations, in some cases dis
played marked differences between the estimated non-divergent velocity 
f i e l d and the observational f i e l d i n space, showing that the assumption 
of non-divergence was clearly not applicable. 
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F i n a l l y , as an alternative possibility of mapping a non-divergent 
velocity f i e l d , we w i l l present the modification of the basic a l 
gorithm for estimating the stream function i t s e l f . 

According to Bretheitonet a l . , 1976, the basic estimation algorithm 
for operationally derived f i e l d s , obtained by application of a linear 
d i f f e r e n t i a l or integral operator 

to the f i e l d which i s measured, i s affected by the operator ^ i n the 
following way: First,the weights o. derived from the observations 

J 
by (44) used to estimate i ^ , are the same as those used to estimate 
: Y(<J>). Second, the covariance 

C . = E {*x*-} used to estimate ^ x changes to 

An important direct consequence from this fact i s 
N 

(46) / - x ( * ) = /
x

( l E { * x * j } o j ) 

/V j=l * 
N ^ 

= 1 E tfv(*)*,> a. =X (*) 
j=l £ J J £ 

i . e . the linear operation / on the optimal estimate * x i s equal to 
the optimal estimate of £x(<l>) i t s e l f . 

mi 



For the stream function *(x) this means 

2N 2 
(47) * ( x ) = I L, I (A-i) • 

j=l $ i=l J 1 1 

with the observational vector $ defined by (29) and covariances 
«« 

L„i = E (*(x) a.(x.)) for 1 < j < N 
and 

L x j = E {* (3 J "2%*^ f o r N + 1 - J - 2N . 

The root mean-square error in the estimate %(x) is defined by 

2N 1 
(48) .(x) - ( L x x - I _ (A-i)., L x f ) 2 

where 

L = E (<Kx) *(x)} is the variance of 
XX «> /w 

Under the assumption of isotropy and non-divergence, the covariances 
can be derived from the covariance of the stream function C(r) 

( 4 9 ) 3rJ C ( r ) = E = ' ̂  ^ C ( r ) 

^ - C(r) = E (*(x) ̂ (x+r)} = -£ JL C(r> 
1 
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With the aid of (43), i t follows that 

(50) L . = r 2 • P(r) for 1 < j < N 

and 

L v i = " r i ' F< r) f o r N + 1 S J < 2N 

At the beginning of this section, we made the asumption that the 
velocity f i e l d has zero mean. In case of spatial stationarity and non
zero mean, the component mean values can be evaluated and removed at 
the outset of the analysis. After estimation of the velocity fie l d , 
the mean values are added at every grid point. 

When we want to estimate the stream function field ijKx) with non-zero 
mean EDJ/(x)}, the input velocity vector mean Su>(u,v) is f i r s t removed. 
Within the extent of accuracy to which the observed velocity field 
obeys the non-divergence requirements, -u and v represent the meridonal 
or zonal gradients of Efy(x)} respectively. The total estimated stream 
function f i e l d can thus be approximated in the following way: 

(51) £(x) = $'(x) + (v • x - u - y) + * D 

where % - i> (0,0) is an unknown additive constant. 
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4 . 1 . Analysis of quasi-Eulerian velocity fields 

As an example of vector analysis, we will describe the estimation 
of quasi-Eulerian velocity fields derived from drifting buoy tra
jectories . 

Prior to the 1982 density survey by R.V. "Poseidon" a set of four 
satellite-tracked drifting buoys was launched in the observational 
area of the Canary Basin (Pig. 1 ) by R.V. "Meteor". Together with 
two previously launched drifting buoys entering the box area from 
the north, a total of six drifters was observed during 1982 yeardays 
70 - 100 i n the region of Madeira and the Azore Islands. They are a sub
set of 68 drifting buoys released during 1981 / 1982 by the Institut 
für Meereskunde in Kiel within a long-term experiment. Object of this 
experiment i s to investigate mean currents and eddy activity in the 
north-east Atlantic (Krauss & Käse, 1 9 8 3 ) . 

Using a finite difference scheme, the trajectories were transformed 
to quasi-Eulerian velocity time series. The latter were low-pass filtered 
so to remove a l l oscillations shorter or equal to the inertial period. 
Daily averages were computed to serve as data base for the objective 
analysis. Prom these averages the input vector field was chosen by 
selecting velocity values every five days for each drifter, assuming 
that - due to the mean displacement of about 30 km within five days -
the input velocity field is dominantly correlated only as a function of 
spatial separation. 

As the covariance function for the stream function we use the same 
model function as derived from the analysis of the surface geopotential 
anomaly f i e l d (see chapter 3 . 2 ) because information obtained from only 
six drifting buoys did not allow a statistically significant estimation 
of both the longitudinal and the transversal covariance function. 



With the longitudinal integral scale defined by 

<*> 
L = / f ( r ) dr (Batchelor, 1959) 
' o 

and the isotropic correlation scale X estimated to be 75 km 
(see Table 1, case 7), we obtain 

L|| = \ ̂  A s 6* to 

which i s consistent with the estimate of the longitudinal integral 
scale as derived from the analysis made of the original data set of 
a l l d r i f t e r s i n that region (Krauss & Käse, 1983). 

We use the following system of functions 

r 2 

C(r) = B'« e V 

r 2 

F(r) = (2*B'/X2)' e" I a" 
r 2 

G(r) = (2'BVXy)* [ l - 2r* A2*J« e" V 

where B = YAR (u) = 2B'A 2 

and B' = VAROfi). 
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The estimated velocity field is shown in fig. 13a together with 
the input vector field. The error variance within the dotted area 
exceeds 5056 of the variance of the total field. 

Due to the sparse spatial coverage of the input vector field - as 
derived from the Lagrangian float trajectories - the region where 
the expected error variance is less than 50 % of the total variance 
i s small and patchy. North of 36°N there is no reliable velocity 
estimate except the small error island at 36.5 N, 23.5 W at the 
location of one data point. 

In Fig. 13b) we have analysed the same input velocity field under 
the assumption that the isotropic correlation scale is 200 km. The 
error variance is assumed to be 30 % of the variance of the total 
f i e l d . This is about the same value as was deduced from the Rossby 
wave f i t to the geostrophic velocity field, where the composite 
mean field was analysed to represent 70 % of the total variability. 
This means that we have treated mesoscale variability on scales smaller 
than 200 km essentially as noise. The smoothed estimated velocity 
f i e l d thus represents only scales of the composite mean field, with 
the Rossby wave clearly apparent as an alternating sequence of 
cyclonic and anticyclonic eddies. 

Due to the sparsity of data points these results should be interpreted 
qualitatively only, as the amount of "a priori" constraints imposed on 
the data i n the form of the isotropic nondivergent statistics, assumed 
correlation scale and noise level is considerable. 
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5. DISCUSSION 

The optimal interpolation techniques reviewed i n this report 
have been illus t r a t e d with examples of their application to 
the "Poseidon 86" data set i n order to give members of the 
"WarmwassersphSre"-Research Prograirme who are l i k e l y to use 
the objective analysis program package, some insights into 
both practical and theoretical aspects of this estimation 
technique. 

As has been demonstrated by several other investigators and 
research groups i n recent years (see reference l i s t ) , this 
theory i s powerful and practical as well and provides an 
optimal linear minimum mean square error estimate of the observed 
variable f i e l d s . 

One of the important features of this theory i s the fact that 
i t may be applied equally well to estimation problems i n time 
and space even i f the joint probability density function of 
the random variables observed i s unknown, i e . our estimate i s 
"distribution free". Based upon the f i r s t and second moments 
of the stochastic process under consideration, an optimal 
estimate i s derived provided the second moment matrix of the 
observations i s non-singular. Thus - at least i n principle -
i t should be possible to treat instationary phenomena as well. 
However, the determination of these moments from data might 
turn out to be a d i f f i c u l t problem having i n mind that the second 
moment matrix of a l l observations i s almost certainly singular. 
Therefore, the objective analysis method usually i s based upon 
the assumption of spatial stationarity of the f i e l d to be mapped. 
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The f i r s t and second moments are then derived from the known or 
assumed mean and covariance function which in case of a Gaussian 
process determines a l l statistical properties of the process. 

By this approach the question of the quality of the estimation 
or better of the reproduction of the true flow or property f i e l d 
i s reduced to the question of how accurately the underlying sta
t i s t i c s of the field can be estimated. 

The problems encountered in the statistical analysis of the 
"Poseidon 86" data set have been discussed in detail in this report. 
Reference is thus made to the reader to the different chapters 
and the introductory remarks so to be able to understand the limi
tations of this approach. The most cr i t i c a l point i n the present 
analysis was the fact that the result in adapting the model cor
relation functions to the raw correlations is - to a large extent -
determined by the shape of the model function it s e l f . This must 
be attributed to the fact that by the synoptic error and unresolved small 
scale signals the tuning of the model function is limited to only 
a small number of parameters. 

The authors had the feeling that with the present amount of data 
and error sources a more refined spectral fitt i n g approach -
as for example described by Bretherton t McWilliams,1980, - would 
not be appropriate. However, i f we have more than one realization 
of the same processes available, a more refined fitting of the 
spectral features encountered may significantly improve the ac-
cuarcy when reproducing the true field. 
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Fig. 2: a) Objective analysis of the gecpotential anomaly 
field 25/1500 dBar (n^s - 2) with the approximate 
centre of the frontal band marked by the 13.5 m2s~2 

isoline 
b^ Objective analysis of the gecpotential anomaly 

field 25/15OO dBar (n^s - 2) after subtraction of the 
linear spatial trend. 



- 48 -

Fig. 2: c) Superposition of the linear spatial trend and 
the Rossby wave f i t for the geopotential topo
graphy 25/1500 dBar (m*s-*) 

d) Objective analysis of the residual mesoscale per
turbation f i e l d 25/1500 dBar (rtfs-*) after removal 
of the composite mean f i e l d . 
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Fig. 3»' Two-dimensional raw correlations C(r) of the geopotential 
anomaly field 25/1500 dBar shown with 

a) lag vector r : rxe(-210. ,210. nm) , r ye ( - l 8 0 . ,180. nm) 
h * "!l * ̂ «"*tl«|«B<flndl corresponding error bars and 
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Fig. 5: Plots of the f i t t e d model correlation functions 
a) case 2 of table 1 
b) case 3 of table 1 

(Results of model classes case 1, 4, are not shown 
being equivalent to case 7 (see table 1)) 



Pig. 5: Plots of the f i t t e d model correlation functions 

c) case 5 of table 1 
d) case 6 of table 1 



o 

e) case 7 of table 1 
?) case 8 of table 1 



Plots of the f i t t e d model correlation functions 

g) case 9 of table 1 
h) case 10 of table 1 
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Pig. 6 ; Maps of geopotential anomaly 25/1500 dBar (lO^mV 2) 
computed with different covariance functions 

a) case 3 of table 1 
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Pig. 6: Maps of geopotential anomaly 25/1500 dBar ( l O ^ n f V 2 ) 
computed with different covariance functions 

c) case 9 of table 1 
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Fig. 7: a) rms error field - contoured every .5 (lO^nfs- 2) 

b) anomaly field (dyn cm) of the geopotential anomaly 
map 25/1500 dBar computed with the covariance 
function (case 7, table 1) chosen for the final 
analysis 

7a) 
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8: Geostrcphic velocity field 

a) for the total geopotential anomaly field 25/1500 
dBar computed with the covariance function (case 7, 
table 1) chosen for the final analysis 
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8.b) 

Pig. 8: Geostrophic velocity field 

a) for the total gsopotential anomaly fi e l d 25/1500 
dBar computed with the covariance function (case 7, 
table 1) chosen for the final analysis 

b) for the anomaly gsopotential topography field 25/1500 dBar 
respectively 
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Fig. 9: Two-diœiisional raw correlations C(r) of the mesoscale 
perturbations in the geopotential anomaly field 25/1500 dBar 
shown with 
a) lag vector r: rxe(-210.,210. na), 

r ye(-l80.,l80. nm) 
b) Zonal separations: rxe(-3OO.,300. nm) 

r =0 
y 

and corresponding «ror bars and levels of zero significance 
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Fig. 9: c) meridional separations rx=0 
rye(-270.,270. nm) 

and corresponding error bars and levels of zero significance. 
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Pig. 11; Plots of the fitted model correlation functions 
a) case 1 of table 2 
b) case 2 of table 2 



Pig. 12: Plots of the fitted isotropic model correlation functions 
a) case 3 of table 2 
b) case 4 of table 2 
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Fig. 12: Plots of the f i t t e d isotropic model correlation functions 
c) case 5 of table 2 
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Fig. 13a): Objective Analysis of a quasi-Eulerian velocity field as 
derived from driftbuoy trajectories. The correlation 
scale i s X = 75 km and the error variance i s assumed to be 
10 % of the total variance. 
In the dotted area the error variance exceeds 50 % of the 
total variance. Due to the sparsity of data and the choice, 
of the correlation scale, the region of reliable velocity 
estimates is small and patchy. 
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Fig. i3b): Objective Analysis of the same input velocity field as i n 
Fig. 13a) with correlation scale x = 200 km and assumed noise 
variance 30 % of the total variance of the field. By this 
approach mesoseale variability on scales smaller than 200 km 
is treated as noise and essentially smoothed out. In the 
dotted area the error variance exceeds 50 % of the total 
variance. 
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Fib. 13c): Input velocity field for the estimated velocity 
fields shown in Fig. 13a) and 13b) 
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SOURCE OF 
VARIATION 

REGRESSION 
RESIDUAL 
TOTAL 

DEGREES OF 
FREEDOM 

SUMS OF 
SQUARES 

2.00000 1487.67900 
70.00000 1164.84360 
72.00000 2652.52260 

MEAN 
SQUARES 

743.83950 
16.64062 

F-VALUE FOR NULL HYPOTHESIS TEST 
(ALL REGRESSION PARAMETER ZERO) 

44.70022 
PROBABILITY OF EXCEEDING F UNDER ASSUMPTION 
OF THE NULL HYPOTHESIS 

0.00000 

PERCENTAGE STAND. DEVIATION STD. DEV. AS 
OF VARIATION OF PERCENTAGE OF 
EXPLAINED RESIDUALS RESPONSE MEAN 

56.08544 4.07929 3.04220 

REGRESSION COEFFICIENT INTERFERENCES 

DIGITS OF ACCURACY 
FOR REGRESSION COEFF. 
ESTIMATES 

4.0 

VARIABLE 
NUMBER I MEAN 

REGRESSION 
COEFFICIENT 

LOUER CONFID. 
LIMIT 

1 123.70 
2 146.78 
3 134.09 

.10178E-01 
-.56197E-01 
141.08 

0.46070E-03 
•0.66238E-01 
139.04 

, UPPER CÖNFID. 
LIMIT 

0.19B95E-01 
-0.46156E-01 

143.12 

STANDARD ERROR 
OF COEFF.EST. 

0.58293E-02 
0.60235E-02 
1.2251 

ADJUSTED SUMS 
OF SQUARES 

50.726 
1448.4 

O.OOOOOE+OO 

PARTIAL F TEST 
VALUE 

3.0463 
87.041 
O.OOOOOE+OO 

PCEXCEEDING F 
UNDER HYP.I) 

0.85208E-01 
O.OOOOOE+OO 
O.OOOOOE+OO 

Pig. 14: Summary of multiple regression 
analysis for different parameters 
a) gpopot«*i^,fK^ 25/1500 dBar 



22p?StSE DEGREES OF SUMS OF MEAN " 7 1 ' 
VARIATION FREEDOM SQUARES SQUARES 

B F ^ n n f . 1 0 " 2.00000 826.61093 413.30547 
înSÏP 72.00000 560.75687 7.78829 
T 0 T A L 74.00000 1387.36780 

F-VALUE FOR NULL HYPOTHESIS TEST 
(ALL REGRESSION PARAMETER ZERO) 

53.06755 
PROBABILITY OF EXCEEDING F UNDER ASSUMPTION 
OF THE NULL HYPOTHESIS 

0.00000 

PERCENTAGE STAND. DEVIATION STD. DEV. AS 
OF VARIATION OF PERCENTAGE OF 
EXPLAINED RESIDUALS RESPONSE MEAN 

59.58124 2.79075 3.33331 

REGRESSION COEFFICIENT INTERFERENCES 

DIGITS OF ACCURACY 
FOR REGRESSION COEFF. 
ESTIMATES 

4.0 

VARIABLE 
NUMBER I MEAN 

REGRESSION 
COEFFICIENT 

LOWER CONFID. UPPER CONFID. 
LIMIT LIMIT 

1 124.00 -.64742E-03 -0.70556E-02 0.57608E-02 
2 1 4 6.87 -.42115E-01 -0.48927E-01 -0.35303E-01 
3 83.723 89.989 88.596 91.381 

STANDARD ERROF 
OF COEFF.EST. 

0.38458E-02 
0.40880E-02 
0.83547 

ADJUSTED SUMS 
OF SQUARES 

0.22072 
826.59 

O.OOOOOE+OO 

PARTIAL F TEST 
VALUE 

0.28340E-01 
106.13 

O.OOOOOE+OO 

P(EXCEEDING F 
UNDER HYP.I) 

0.86678 
O.OOOOOE+OO 
O.OOOOOE+OO 

Pig. 14: Summary of multiple regression analysis for 
different parameters 
b) geopotential anomaly 25/700 dBar 



SOURCE OF 
VARIATION 

REGRESSION 
RESIDUAL 
TOTAL 

- 72 -
DEGREES OF 
FREEDOM 

2,00000 
75.00000 
77.00000 

SUMS OF 
SQUARES 

0.78883 
0.65849 
1.44733 

MEAN 
SQUARES 

0.39442 
0.00878 

F-VALUE FOR NULL HYPOTHESIS TEST 
(ALL REGRESSION PARAMETER ZERO) 

44.92256 
PROBABILITY OF EXCEEDING F UNDER ASSUMPTION 
OF THE NULL HYPOTHESIS 

PERCENTAGE 
OF VARIATION 
EXPLAINED 

54.50275 

0.00000 

STAND. DEVIATION 
OF 

RESIDUALS 

0.09370 

STD. DEV. AS 
PERCENTAGE OF 
RESPONSE MEAN 

0.3491B 

REGRESSION COEFFICIENT INTERFERENCES 

DIGITS OF ACCURACY 
FOR REGRESSION COEFF. 
ESTIMATES 

4.0 

VARIABLE 
NUMBER I MEAN 

1 126.15 
2 145.06 
3 26.834 

REGRESSION 
COEFFICIENT 

-.10878E-03 
.12822E-02 
26.662 

LOUER CONFID. 
LIMIT 

-0.31295E-03 
O.10561E-02 
26.617 

UPPER CONFID. 
LIMIT 

0.95382E-04 
O,15082E-02 
26.707 

STANDARD ERRO 
OF COEFF.EST. 

0.12259E-03 
0.13573E-03 
G.27067E-01 

ADJUSTED SUMS 
OF SQUARES 

0.69Í36E-02 
0.78347 
0.OOOOOE+00 

PARTIAL F TEST 
VALUE 

0.78743 
89,234 

0.OOOOOE+OO 

p(EXCEEDING F 
UNDER HYP. I) 

0.37772 
0.OOOOOE+OO 
0.OOOOOE+00 

Fig. Ik: Summary of multiple regression analysis for 
different parameters 
c) potential density at 250 dBar 
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SOURCE OF 
VARIATION 

REGRESSION 
RESIDUAL 
TOTAL 

DEGREES OF 
FREEDOM 

2.00000 
75.00000 
77.00000 

SUMS OF 
SQUARES 

24,68738 
12.03227 
36.71965 

MEAN 
SQUARES 

12.34369 
0.16043 

F-VALUE FOR NULL HYPOTHESIS TEST 
(ALL REGRESSION PARAMETER ZERO) 

76.94112 
PROBABILITY OF EXCEEDING F UNDER ASSUMPTION 
OF THE NULL HYPOTHESIS 

PERCENTAGE 
OF VARIATION 
EXPLAINED 

67,23206 

0.00000 

STAND. DEVIATION 
OF 

RESIDUALS 

0,40054 

STD. DEV. AS 
PERCENTAGE OF 
RESPONSE MEAN 

2.32973 

REGRESSION COEFFICIENT INTERFERENCES 

DIGITS OF ACCURACY 
FOR REGRESSION COEFF. 
ESTIMATES 

VARIABLE 
NUMBER I MEAN 

REGRESSION 
COEFFICIENT 

LOWER CONFID. UPPER CONFID. 
LIMIT LIMIT 

126. 15 
145,06 
17 . 192 

.92870E-03 0.55968E-04 
-.71346E-02 -0.81009E-02 
18.110 17.918 

0.18014E-02 
-0.61683E-02 

18.303 

STANDARD ERROR 
OF COEFF.EST. 

0.52403E-03 
0.58021E-03 
0.11570 

ADJUSTED SUMS PARTIAL F TEST P(EXCEEDING F 
SF SQUARES VALUE UNDER HYP.I) 

v.5G3Se 3.1403 0.S0419E-01 
24.259 151.21 0.OOOOOE+OO 

0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 

Pig. 14: Summary of multiple regression analysis 
— for different parameters 

d) surface temperature 



- n -

SOURCE OF 
VARIATION 

REGRESSION 
RESIDUAL 
TOTAL 

DEGREES OF 
FREEDOM 

2.00000 
75.00000 
77.00000 

SUMS OF 
SQUARES 

1.31180 
0.73615 
2.04795 

MEAN 
SQUARES 

0.65590 
0.00982 

F-VALUE FOR NULL HYPOTHESIS TEST 
(ALL REGRESSION PARAMETER ZERO) 

66.82385 
PROBABILITY OF EXCEEDING F UNDER ASSUMPTION 
OF THE NULL HYPOTHESIS 

0.00000 

PERCENTAGE STAND. DEVIATION STD. DEV. AS 
OF VARIATION OF PERCENTAGE OF 
EXPLAINED RESIDUALS RESPONSE MEAN 

64.05424 0.09907 0.27178 

REGRESSION COEFFICIENT INTERFERENCES 

DIGITS OF ACCURACY 
FOR REGRESSION COEFF. 
ESTIMATES 

4.0 

VARIABLE 
NUMBER I MEAN 

REGRESSION 
COEFFICIENT 

LOUER CONFID. UPPER CONFID, 
LIMIT LIMIT 

1 126.15 
2 145.06 
3 36.453 

.47663E-03 0.26076E-03 0.69250E-03 
-.1.5787E-02 -0.18177E-02 -0.13397E-02 
36.622 36.575 36.670 

STANDARD ERROR 
OF COEFF.EST. 

0.12962E-03 
0.14351E-03 
0.28619E-01 

ADJUSTED SUMS PARTIAL F TEST P(EXCEEDING F 
OF SQUARES VALUE UNDER HYP.I) 

0.13272 13.522 0.44172E-03 
1.1878 121.01 O.OOOOOE+OO 

O.OOOOOE+00 O.OOOOOE+OO O.OOOOOE+OO 

Fig. 14: Summary of multiple regression analysis for 
different parameters 

e) surface salinity 
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F i g . 15: a) Objective a n a l y s i s of the g e o p o t e n t i a l 
anomaly f i e l d 25/700 dBar 



P i g . 15: b) Objective a n a l y s i s of the p o t e n t i a l d e n s i t y 
f i e l d at 250 dBar 
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temperature f i e l d 
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P l K j 1 5 ; d) O b j e c t i v e a n a l y s i s of the 25 dBar 
s a l i n i t y f i e l d 


