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computationally efficient calibration of marine ecosystem 

models at low computational costs
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The importance of marine ecosystems

‣ Global warming is hardly scientifically doubted   ➔   CO2 as one main contributor

‣ 2010:   Global CO2 emissions exceeded the most pessimistic forecasts of the IPCC

4

Clearly indispensible ...

‣ understanding relevant processes in the earth’s climate system

‣ understanding its responses to human impact

‣ projections of future dynamics

Picture source: NASA Earth Science Enterprise

‣ Natural “sinks”:   Natural removal of atmospheric CO2

‣ Example:   Removal through biogeochemical cycle among carbon and the ocean biota 

➔    marine carbon cycle
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Marine Ecosystem Models

‣ Reliable representation of the past and today’s observed quantities 

➔   appropriate for prognostic simulations

‣ Modeled processes:   Marine carbon cycle

‣ Time-dependent systems for transport, interactions, biogeochemistry

‣ Coupled with a hydrodynamic model (online/ offline)

Marine Ecosystem Model: transport, interactions, biogeochemistry

Hydrodynamic Model: ocean circulation, temperature and salinity distribution 

(      )
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Why do we need model calibration (optimization)?

‣ Applicability for prognostic simulations 

➔   depends on ability to resemble observed quantities 

‣ Marine ecosystem models have to be calibrated

➔   identification of poorly known parameters 
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‣ Trade-off between high model complexity and simplified model formulation 

‣ Assessment of models‘ quality   ➔   calibration against observations  
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The direct optimization approach

‣ Consider nonlinear optimization problems of the form: 

Picture source: cf. Koziel and Yang (2011), p. 196–198.
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large number of objective function evaluations required

➔   possibly high computational costs

u⇤ = argmin
u

J(y(u) )
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How to address the typically high computational burden

in direct optimization?

9



/ 3010

Surrogate-based optimization

Picture source: cf. Koziel and Yang (2011), p. 196–198.
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Surrogate-based optimization

Picture source: cf. Koziel and Yang (2011), p. 196–198.
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Surrogate-based optimization
Physics-based surrogates

‣ Constructed from a physics-based low-fidelity (or coarse) model
‣ Coarse discretization
‣ Relaxed convergence criterion
‣ Simplified physics
‣ Analytical formulas

1 Bandler et al. (2004); 2 Søndergaard, J. (2003); 
3 Echeverria and Hemker (2008); 4 Koziel (2010b)

Advantages ...

‣ inherit relevant characteristics of fine model

‣ few fine model data necessary for sufficient accuracy 

‣ generalization capability much better than for other types (functional surrogates)

‣ efficient: comparably small number of fine model evaluations required

➔   overall optimization costs low

‣ Accuracy usually not sufficient for direct use

‣ Correction methods: 

Space Mapping 1, Response Correction 2, Manifold Mapping 3, Shape-Preserving 

Response Prediction 4, ...
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Study Design

Aggressive Space Mapping 

1D NPZD Model

Coarser Mesh Discretization

Numerical Stability

Multiplicative Response Correction

3D N-DOP Model

Truncated Spin-Up

My work comprised ...
‣ surrogate-based optimization methodologies employing physics-based coarse models
‣ computationally efficient calibration of marine ecosystem models
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Marine ecosystem models: Two examples under consideration

14
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1D NPZD Model

‣ One-dimensional, nitrogen-budget ecosystem model: 

Dissolved inorganic nitrogen, phytoplankton, zooplankton, detritus 1

(12 model parameters)

‣ Coupled (offline) with an ocean circulation model

‣ Time-dependent (non-periodic) forcing data + Euler time-stepping scheme  

➔   transient run

1 Oschlies and Garcon (1999); Bermuda Atlantic Time-Series Study, 
located at 31°N, 64°W - Schartau and Oschlies (2003)

N P

D Z
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3D N-DOP Model

‣ Three-dimensional simulation of phosphorus and dissolved organic matter 1

(7 model parameters)

‣ Coupled (offline) with an ocean circulation model

➔   tracer transport matrices precalculated

‣ Transport Matrix Method 2 + classical fixed point iteration  

➔   steady annual cycle 

‣ Implemented as part of the simulation package of Metos3D 3

1 Kriest et al. (2010); Parekh et al. (2005); 2 Khatiwala et al. (2005);
3 Piwonski and Slawig (2011)
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Efficient model calibration by surrogate-based optimization: 

Numerical results 

17
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Multiplicative response correction
Construction of the surrogate

‣ Basic idea:

‣ Consistency with fine model:

Exact agreement in function values, derivatives expected to be at least similar

s̄k(u) = ak yc(u), ak :=
yf (uk)
yc(uk)

, k = 1, 2, . . .

s̄k(uk) = yf (uk), s̄0
k(uk) ⇡ y0

f (uk)

sk(u) = s̄k(u) + Ek (u� uk), Ek := s̄0
k(uk)� y0

f (uk)

‣ Exact first-order consistency can be „forced“

‣ Convergence: 1   

Zero- and first order consistency + trust-region approach + „standard“ assumptions 

1 Conn et al. (2000); Koziel et al. (2010)
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1D NPZD model: Obtain a suitable coarse model

smoothing
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Figure:   Smoothed fine and coarse model response.
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‣ At iteration k in the optimization loop, with current parameter uk ...

) s̄k(u) = ak zc(u) ) uk+1 = argmin
u

J(s̄k(u)) . . .



/ 3019
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‣ At iteration k in the optimization loop, with current parameter uk ...

) s̄k(u) = ak zc(u) ) uk+1 = argmin
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1D NPZD model: Multiplicative response correction
Generalization capability

‣ Performance of the algorithm depends on:

quality of surrogate‘s approximation of the fine model
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3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1

x 10
4

0

0.05

0.1

0.15

0.2

time [ hours ]

D
E

T
 [
m

m
o
l N

 m
−

3
]

 

 

zf (ū)
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
0

10
2

10
4

10
6

# of equivalent fine model evaluations

m
is

fit

 

 

 fine model optimization               

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
0

10
2

10
4

10
6

# of equivalent fine model evaluations

m
is

fit

 

 

 fine model optimization               
 coarse model optimization

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
0

10
2

10
4

10
6

# of equivalent fine model evaluations

m
is

fit

 

 

 fine model optimization               
 coarse model optimization
 surrogate−based optimization

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
0

10
2

10
4

10
6

# of equivalent fine model evaluations

m
is

fit

 

 

 fine model optimization               
 coarse model optimization
 surrogate−based optimization

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
0

10
2

10
4

10
6

# of equivalent fine model evaluations

m
is

fit

 

 

 fine model optimization               
 coarse model optimization
 surrogate−based optimizationcost savings: ~90%

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

time [ hours ]

D
IN

 [
m

m
o
l N

 m
−

3
]

 

 

yd

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

time [ hours ]

D
IN

 [
m

m
o
l N

 m
−

3
]

 

 

yd

yf (u∗

f )

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

time [ hours ]

D
IN

 [
m

m
o
l N

 m
−

3
]

 

 

yd

yf (u∗

f )

yf (u∗

c)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

time [ hours ]

D
IN

 [
m

m
o
l N

 m
−

3
]

 

 

yd

yf (u∗

f )

yf (u∗

c)

yf (u∗

s)



/ 3021

1D NPZD model: Numerical results
Verification by model generated data

Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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1D NPZD model: Numerical results
Model calibration with measurement data

‣ Exact first-order consistency important

‣ Extensive optimization runs performed: 

Local, gradient-based + global, genetic algorithms   ➔   no suitable fit of the target 1

‣ However:    Similar performance of surrogate-based optimization

1 Schartau, Oschlies (2003);  Schartau (2001); Rückelt et al. (2010)

Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.
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3D N-DOP model: Obtain a suitable coarse model

‣ „Reference“ fine model:    3000 fixed-point iteration steps

‣ Coarse model:    Reduced number of fixed point iteration steps

Figure:   Convergence of the fixed point iteration towards a steady annual cycle.
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3D N-DOP model: Obtain a suitable coarse model

‣ „Reference“ fine model:    3000 fixed-point iteration steps

‣ Coarse model:    Reduced number of fixed point iteration steps

Figure:   Convergence of the fixed point iteration towards a steady annual cycle.
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3D N-DOP model: Obtain a suitable coarse model

‣ „Reference“ fine model:    3000 fixed-point iteration steps

‣ Coarse model:    Reduced number of fixed point iteration steps

Figure:   Convergence of the fixed point iteration towards a steady annual cycle.

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

0 5000 10000 15000 20000 25000 30000
10

−6

10
−4

10
−2

10
0

10
2

fixed point iteration steps

n
o

rm
 o

f 
re

si
d

u
a

l

0 500 1000 1500 2000 2500 3000 3500
10

−6

10
−4

10
−2

10
0

10
2

coarse model exploiting 25 iteration steps



/ 3024

3D N-DOP model: Multiplicative response correction
Generalization capability

Figure:   Distribution of tracer concentration (phosphorus) at ~455m depth at some neighboring parameter. 

‣ Again: Quality of approximation in neighborhood of „construction point“

➔   important for algorithm‘s performance

Figure:   ... and in a closer vicinity.
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3D N-DOP model: Numerical results
Verification by model generated data

Figure:   Trajectory of tracer concentration 
at one selected location: x=90°E, y=0°.

Figure:   Distribution of tracer concentration (phosphorus) at ~25m depth and some point in time.

Figure:   Convergence history of cost 
function.

Surrogate-based optimization:
‣ Accurate solution already after 9 - 46 equivalent fine model evaluations
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‣ Prospectively: 500 - 1000 fine model evaluations
‣ Whole optimization in the range of several days up to weeks

Initial response Target response       Solution

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

yf (u10)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit



0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

 

 

 

 

 

 

/ 3025

3D N-DOP model: Numerical results
Verification by model generated data

Figure:   Trajectory of tracer concentration 
at one selected location: x=90°E, y=0°.

Figure:   Distribution of tracer concentration (phosphorus) at ~25m depth and some point in time.

Figure:   Convergence history of cost 
function.

Surrogate-based optimization:
‣ Accurate solution already after 9 - 46 equivalent fine model evaluations
‣ Whole optimization in the range of hours

Direct fine model optimization: 
‣ Prospectively: 500 - 1000 fine model evaluations
‣ Whole optimization in the range of several days up to weeks

Initial response Target response       Solution

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

 

 

 

 

 

 

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

yf (u10)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit



0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

 

 

 

 

 

 

/ 3025

3D N-DOP model: Numerical results
Verification by model generated data

Figure:   Trajectory of tracer concentration 
at one selected location: x=90°E, y=0°.

Figure:   Distribution of tracer concentration (phosphorus) at ~25m depth and some point in time.

Figure:   Convergence history of cost 
function.

Surrogate-based optimization:
‣ Accurate solution already after 9 - 46 equivalent fine model evaluations
‣ Whole optimization in the range of hours

Direct fine model optimization: 
‣ Prospectively: 500 - 1000 fine model evaluations
‣ Whole optimization in the range of several days up to weeks

Initial response Target response       Solution

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

 

 

 

 

 

 

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

 

 

 

 

 

 

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

yf (u10)

 

 

 

 

 

 

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit



0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

 

/ 3025

3D N-DOP model: Numerical results
Verification by model generated data

Figure:   Trajectory of tracer concentration 
at one selected location: x=90°E, y=0°.

Figure:   Distribution of tracer concentration (phosphorus) at ~25m depth and some point in time.

Figure:   Convergence history of cost 
function.

Surrogate-based optimization:
‣ Accurate solution already after 9 - 46 equivalent fine model evaluations
‣ Whole optimization in the range of hours

Direct fine model optimization: 
‣ Prospectively: 500 - 1000 fine model evaluations
‣ Whole optimization in the range of several days up to weeks

Initial response Target response       Solution

0 10 20 30 40 50
1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time steps

N
 [

 m
m

o
l P

 /
 m

3
 ]

 

 

yd

yf (u0)

yf (u2)

yf (u5)

yf (u10)

 
0 10 20 30 40 50

1e−5

1e−3

1e−1

# equiv. fine model evals
m

is
fit



/ 3026

3D N-DOP model: Numerical results
Verification by model generated data

Figure:  Convergence history of parameters.
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Summary

‣ Fundamental aim:    Computationally efficient calibration of marine ecosystem models

‣ Surrogate-based optimization employing physics-based coarse models

‣ Coarse models:
‣ Coarser mesh discretization (1D NPZD model)
‣ Relaxed convergence criterion (3D N-DOP model)

‣ Coarse model accuracy is not sufficient for direct use

‣ A multiplicative response correction
➔   yields sufficiently accurate corrected coarse model (surrogate)

‣ Surrogate-based optimization
➔   solution at low computational costs
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Outlook

‣ Enhancements of current algorithms

➔   improvements of performance + decrease in computational costs

‣ 3D optimization with real measurement data

‣ Yet other approaches (e.g., Space Mapping) might have great potential

‣ Other physics-based coarse models (e.g., simplified physics)

‣ Coarser discretization   ➔   analysis of numerical stability

‣ Application for exhaustive model-data comparison studies

➔   essential to reveal full potential in practice
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Marine Ecosystem Model Calibration through Enhanced SBO 15

Table 1: Solutions u�
c ,u�

f ,u�
s1 and u�

s2 of an illustrative coarse, fine model opti-
mization and of a SBO run, exploiting the original and the improved correction
scheme. Solutions u�

s1 and u�
s2 correspond to points 1 and 2 in Figure 4.

iterate u1 u2 . . . u12

SBO (original and improved scheme)

u⇤
s1 0.705 0.626 0.044 0.015 0.060 0.937 1.908 0.016 0.147 0.020 0.629 4.237

u⇤
s2 0.738 0.604 0.028 0.010 0.036 1.024 1.678 0.010 0.206 0.020 0.541 4.318

Coarse model optimization

u⇤
c 0.300 1.066 0.036 0.065 0.064 0.025 0.040 0.065 0.010 0.012 0.730 3.448

Fine model optimization

u⇤
f 0.747 0.596 0.025 0.010 0.030 0.999 2.046 0.010 0.203 0.020 0.493 4.310

ud 0.750 0.600 0.025 0.010 0.030 1.000 2.000 0.010 0.205 0.020 0.500 4.320

in terms of parameter match and optimal fit of the target data – can be obtained
(cf. Figure 5 and Table 1) at the same cost as were required for the original one
u�

s1, i.e., 60 equivalent fine model evaluations.
It should be emphasized that the surrogate model utilized in this work only

satisfies zero-order consistency with the fine model. Still, as demonstrated in this
section, the performance of our surrogate-based optimization process is satisfac-
tory, particularly in terms of obtaining a good match between the model response
and a given target output. Improved matching between the optimized model pa-
rameters and those corresponding to the target output could be obtained by
executing larger number of SBO iterations (cf. Figure 4), which is mostly be-
cause of low sensitivity of the model with respect to some of the parameters.
Also, the use of derivative information together with the trust-region conver-
gence safeguards [4, 8] would bring further improvement in terms of matching
accuracy. Clearly, the trade-o�s between the accuracy of the solution and the
extra computational overhead related to sensitivity calculation has to be inves-
tigated. The aforementioned issues will be the subject of future research.

6 Conclusions

Parameter identification in climate models can be computationally very expen-
sive or even beyond the capabilities of modern computer power. Before a tran-
sient simulation of a model (e.g., used for predictions) is possible, the latter has
to be calibrated, i.e., relevant parameters have to be identified using measure-
ment data. This is the point where large-scale optimization methods become
crucial for a climate system forecast.

Using the high-fidelity (or fine) model under consideration in conventional
optimization algorithms that require large number of model evaluations is often
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In [14], we demonstrated that in a exemplary SBO run based on the original
response correction scheme, a reasonably accurate solution u�

s1 could be obtained
at the cost of approximately 60 equivalent fine model evaluations only (point 1
in Figure 4). This resulted in a significant reduction of the total optimization
cost of about 84% when compared to the direct fine model optimization (cor-
respondingly, 375 evaluations were required in the fine model optimization to
reach this cost function value, cf. Figure 4).

Exploiting the improved scheme, a similarly accurate solution – both in terms
of parameter match and optimal fit of the target data – can be obtained at a
remarkably lower cost of only 17 equivalent fine model evaluations (point 3 in
Figure 4). This is over three times less than for the original response correction
scheme corresponding to a reduction of the total optimization cost of about 96%.
Specific parameter values and model responses of this solution are omitted here,
since they are similar to those of the original solution u�
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On the other hand, when exploiting the improved correction scheme, a solu-
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s2 (point 2 in Figure 4) with a significantly higher accuracy – again both
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Table 2: Optimization problems considered in this work with u denoting the optimization variable. Uad := {u ⌅ R12 : bl ⇤ u ⇤
bu}, denotes the space of admissible parameters with component-wise upper and lower bounds bu and bl, respectively, as more
specifically given in Table 3 (see also Section 4.4). Cost functions J1 and J2 are formulated in (16) and (30). Prior to (O.1) - (O.3),
we further perform a random search with an initial guess u0. For the sake of brevity, corresponding results are omitted here.

ui Description Optimization Problem
u0 Randomly chosen initial parameter vector
u⇥f 1 Result of an original fine model optimization u⇥f 1 := argmin

u⌅Uad

J1( y f (u) ) (O.1)

u⇥f 2 Result of a reference fine model optimization u⇥f 2 := argmin
u⌅Uad

J2( z f (u) ) (O.2)

u⇥c Result of a coarse model optimization u⇥c := argmin
u⌅Uad

J2( zc(u) ) (O.3)

u⇥s Result of a SBO run using u⇥c as initial parameter vector uk+1 = argmin
u⌅Uad ,⌥u�uk ⌥2 ⇤ �k

J2( sk(u) ), k = 0, 1, . . . , u0 := u⇥c (O.4)

better result with other optimization methods seems not very
likely. Thus we tentatively accept the found minima in [19] and
argue that the NPZD model in the current formulation will have
to be changed or extended to yield a better quality of the fit.

However, it is not the focus of this paper to further address
this issue. Our aim clearly is to demonstrate the applicabil-
ity of the proposed approach to the parameter optimization of
the considered model. More specifically, the focus is to demon-
strate that, by exemplary optimization runs, SBO is able to yield
a solution close to the one obtained by a direct fine model opti-
mization at low optimization costs.

It should be emphasized that, given attainable measurement
data, direct fine model optimization is able to reconstruct the
target and corresponding optimal parameters (i.e., the discrete
model is well suited for parameter identification, see e.g. [19]).
Secondly, the performance of SBO is similar, i.e., a solution
which fits the observed quantities can be obtained at low com-
putational costs. In [21], this has been verified using model-
generated, attainable target data, where a surrogate as formu-
lated in (22) has been employed in an illustrative SBO run.

Because the optimization problem under consideration is
quite complex, we employ, for both the fine and coarse model
optimization, a random search algorithm prior to the MAT-
LAB’s gradient-based fmincon. This turned out to be quite
suitable for the considered problem to locate a rough solution
initially at low computational costs (since no sensitivity data is
used). More specifically, we use 500 model evaluations within
this algorithm, which turned out to yield a reasonable trade-o�
between the accuracy of the solution and the optimization cost.

Furthermore, the initial point for the SBO algorithm run is
the optimal solution of the coarse model. This is the best ap-
proximation of the optimum that we can obtain at a low cost,
without involving the fine model at all.

7.1. Reference Fine Model

To be precise, we have to distinguish between two fine model
responses and corresponding optimization problems.

Firstly, we consider the optimization of the original fine
model for comparison which has been utilized in various op-
timization runs (see, e.g., [18, 19, 20]) and which we briefly

described in Section 4.4. Let us recall that “original” denotes
the fine model with a time step of ⇤ f = 1 h where no further
operations such as down-sampling and smoothing have been
applied (cf. Section 4.3).

However, the coarse model response, due to the employed
coarser temporal discretization and applied smoothing, is sup-
posed to provide an approximation of the down-sampled and
smoothed fine model response z f . Moreover, the surrogate
(29) is zero- and first-order consistent with the transformed fine
model response z f (cf. (24)). Consequently, in order to obtain
a fair comparison, the down-sampled and smoothed fine model
response and corresponding optimization has to be treated as
the actual reference. A formulation of the corresponding ref-
erence cost function is provided below in Section 7.2. A well
performing surrogate-based algorithm, exploiting the proposed
surrogate, is thus expected converges to at least a local mini-
mum of this reference optimization problem (cf. Section 3.3).

7.2. Cost Function – Reference Fine, Corse and Surrogate
Model Optimization

The cost function used in conjunction with the original fine
model response y f has already been formulated in Section 4.4.

In this section we now propose a formulation for the refer-
ence fine, coarse model and for the surrogate-based optimiza-
tion, which briefly reads

J2 ( z ) := ⌥C2 z � yd ⌥2⇥,

z =

�⌅⌅⌅⇤
⌅⌅⌅⇥

reference fine model response, z = z f
smoothed coarse model response, z = zc
surrogate’s response at iteration k, z = sk

(30)

where, again, we choose an Euclidean norm weighted by as-
sumed standard deviations of the measurements ⇥ = (⇥ j) j=1...,5
(see [18, 19]) and where the operator C2, which has to be used
to make the model response commensurable with the measure-
ments, is similar to the one, C1, used in the original cost func-
tion (cf. Section 4.4).

However, di�erently to the operator C1 in (16), the constant
temporal alignment is adjusted to the coarser temporal grid. As
was motivated in Section 6.1.1, we further employ a simple di-
vision of the smoothed response (z)5 (i.e., the response of state
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the tracer detritus is used while using an implicit Euler time-
stepping scheme for the di�usion term. Furthermore, an oper-
ator splitting method is used. For details we refer the reader to
[21, 31, 35].

Assuming nz and n⇥ discrete spatial and temporal grid points,
with a time step ⇥ = T/n⇥ and using again a boldfaced notation
for discrete vectors, we denote by

yi = (yi jk) j=1,...,n⇥
k=1,...,nz

(14)

the approximate solution of (9), i.e., yi jk ⌃ yi(t j, zk), denoting
the concentration of tracer i at the discrete time step j and ver-
tical depth layer k. The four state vectors for the tracers dis-
solved inorganic nitrogen (N), phytoplankton (P), zooplankton
(Z) and detritus (D) as well as the state for the additional carbon
primary production (CUP) will be summarized in the discrete
vector y = (yi)i=1,...,5 in the following.

4.3. High-Fidelity Model
In the original discrete model, the time step ⇥ is chosen as

one hour. By choosing this time step all relevant processes are
captured and further decrease of the time step does not improve
the accuracy of the model. The number of vertical depth lay-
ers nz is 66 and the number of discrete time steps n⇥ is 43800,
corresponding to 5 years with 8760 steps per year.

From now on, we will refer to this model and corresponding
discrete solution as the original high-fidelity or fine model and
will denote its state variable, time step and number of overall
discrete time steps, to be distinguishable from the coarse model,
by y f , ⇥ f and n⇥, f , respectively.

4.4. Fine Model Optimization Problem
Our work is based on the following fine model optimiza-

tion problem, where extensive optimization runs with di�er-
ent methods including local, gradient-based and also global,
genetic algorithms have already been performed (see, e.g.,
[18, 19, 20]). It consists of finding optimal parameters yielding
a minimal misfit of the discrete model response y f to measure-
ment data yd as defined by the least-squares type cost function

argmin
u⌥Uad

J1(y f (u)) (15)

where

J1(y f ) := ⌦C1 y f � yd ⌦2�,

Uad := {u ⌥ Rnp : bl ⇧ u ⇧ bu},bl,bu ⌥ Rnp ,bl < bu.
(16)

More specifically, the measurement data yd is considered for the
years 1991-1995 and is taken from the Bermuda Atlantic Time-
Series Study, called BATS, located at 31⇤N, 64⇤W [18]. The
inequalities in (16) in the definition of the set Uad of admissible
parameters are meant component-wise. The parameters u are
the unknown scalar coe⇥cients in the non-linear biogeochem-
ical coupling terms qi in (9). The specific parameter bounds
bu,bl that we employ in the optimization runs in this paper are
provided in Table 3.

Furthermore, we have np = 12 model parameters subject to
optimization (cf. Table 1) and the norm is weighted by assumed
standard deviations of the measurements, � = (� j) j=1...,5 (see
[18, 19] for details).

The functional J1 may additionally include a regularization
term for the parameters. However, regularization turns out not
to be necessary to yield su⇥cient performance of the methods
employed in this paper, and, it is therefore not used. Additional
constraints on the state variable y f might be necessary, e.g.,
to ensure non-negativity of the tracer concentrations. In our
example model, this is ensured by using appropriate parameter
bounds bl and bu. This was already observed and used in [19].

C1 is an operator describing transformations of the high-
fidelity model response y f , to make it commensurable with the
given measurement data yd. In brief, this operator includes the
following transformation:

• A linear transformation to chlorophyll a (denoted as CHL)
as a function of phytoplankton P, using a constant conver-
sion factor.

• A linear transformation to particulate organic nitrogen
(denoted as PON), calculated as the sum of phytoplank-
ton P, zooplankton Z and detritus D.

• A spatial average of model response if the considered mea-
surement data point lies in between two adjacent spatial
grid cells.

• For zooplankton, a vertically averaged concentration in the
water column down to the given depth of the measurement
point (which is approximately 200 meters) is calculated.

• The observed zooplankton (with state (yd)3) is furthermore
transformed to (yd)3 = 1.23 · (yd)3 + 0.097 in order to at-
tempt an estimate of the total zooplankton from the mea-
sured mesozooplankton biomass (for the sake of simplic-
ity, this is omitted in our cost function formulation (16))

• A constant temporal alignment of the model response is
employed to make it commensurable with the measure-
ment data point in time.

• A 24-hourly temporal mean of the modeled carbon pri-
mary production CUP is calculated to make it commen-
surable with observations from 24-hourly incubation mea-
surements.

Except for zooplankton, only the data in the so-called euphotic
zone – equivalent to the upper 20 discrete vertical depth layers
in the model – is considered. For the sake of simplicity, we
omit a more detailed description and mathematical formulation
of these transformations and refer the reader to [18, 19, 20].

The measurement data in (16) is consequently given as yd =
(yd)i=1,...,5, with (yd)i denoting the measurement state corre-
sponding to the transformed model response C1 y f , i.e., cor-
responding to the concentration of dissolved inorganic nitro-
gen (N), of chlorophyll a (CHL), of the total zooplankton
biomass (ZOO), of particulate organic nitrogen (PON) and of
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Table 2: Optimization problems considered in this work with u denoting the optimization variable. Uad := {u ⌅ R12 : bl ⇤ u ⇤
bu}, denotes the space of admissible parameters with component-wise upper and lower bounds bu and bl, respectively, as more
specifically given in Table 3 (see also Section 4.4). Cost functions J1 and J2 are formulated in (16) and (30). Prior to (O.1) - (O.3),
we further perform a random search with an initial guess u0. For the sake of brevity, corresponding results are omitted here.

ui Description Optimization Problem
u0 Randomly chosen initial parameter vector
u⇥f 1 Result of an original fine model optimization u⇥f 1 := argmin

u⌅Uad

J1( y f (u) ) (O.1)

u⇥f 2 Result of a reference fine model optimization u⇥f 2 := argmin
u⌅Uad

J2( z f (u) ) (O.2)

u⇥c Result of a coarse model optimization u⇥c := argmin
u⌅Uad

J2( zc(u) ) (O.3)

u⇥s Result of a SBO run using u⇥c as initial parameter vector uk+1 = argmin
u⌅Uad ,⌥u�uk ⌥2 ⇤ �k

J2( sk(u) ), k = 0, 1, . . . , u0 := u⇥c (O.4)

better result with other optimization methods seems not very
likely. Thus we tentatively accept the found minima in [19] and
argue that the NPZD model in the current formulation will have
to be changed or extended to yield a better quality of the fit.

However, it is not the focus of this paper to further address
this issue. Our aim clearly is to demonstrate the applicabil-
ity of the proposed approach to the parameter optimization of
the considered model. More specifically, the focus is to demon-
strate that, by exemplary optimization runs, SBO is able to yield
a solution close to the one obtained by a direct fine model opti-
mization at low optimization costs.

It should be emphasized that, given attainable measurement
data, direct fine model optimization is able to reconstruct the
target and corresponding optimal parameters (i.e., the discrete
model is well suited for parameter identification, see e.g. [19]).
Secondly, the performance of SBO is similar, i.e., a solution
which fits the observed quantities can be obtained at low com-
putational costs. In [21], this has been verified using model-
generated, attainable target data, where a surrogate as formu-
lated in (22) has been employed in an illustrative SBO run.

Because the optimization problem under consideration is
quite complex, we employ, for both the fine and coarse model
optimization, a random search algorithm prior to the MAT-
LAB’s gradient-based fmincon. This turned out to be quite
suitable for the considered problem to locate a rough solution
initially at low computational costs (since no sensitivity data is
used). More specifically, we use 500 model evaluations within
this algorithm, which turned out to yield a reasonable trade-o�
between the accuracy of the solution and the optimization cost.

Furthermore, the initial point for the SBO algorithm run is
the optimal solution of the coarse model. This is the best ap-
proximation of the optimum that we can obtain at a low cost,
without involving the fine model at all.

7.1. Reference Fine Model

To be precise, we have to distinguish between two fine model
responses and corresponding optimization problems.

Firstly, we consider the optimization of the original fine
model for comparison which has been utilized in various op-
timization runs (see, e.g., [18, 19, 20]) and which we briefly

described in Section 4.4. Let us recall that “original” denotes
the fine model with a time step of ⇤ f = 1 h where no further
operations such as down-sampling and smoothing have been
applied (cf. Section 4.3).

However, the coarse model response, due to the employed
coarser temporal discretization and applied smoothing, is sup-
posed to provide an approximation of the down-sampled and
smoothed fine model response z f . Moreover, the surrogate
(29) is zero- and first-order consistent with the transformed fine
model response z f (cf. (24)). Consequently, in order to obtain
a fair comparison, the down-sampled and smoothed fine model
response and corresponding optimization has to be treated as
the actual reference. A formulation of the corresponding ref-
erence cost function is provided below in Section 7.2. A well
performing surrogate-based algorithm, exploiting the proposed
surrogate, is thus expected converges to at least a local mini-
mum of this reference optimization problem (cf. Section 3.3).

7.2. Cost Function – Reference Fine, Corse and Surrogate
Model Optimization

The cost function used in conjunction with the original fine
model response y f has already been formulated in Section 4.4.

In this section we now propose a formulation for the refer-
ence fine, coarse model and for the surrogate-based optimiza-
tion, which briefly reads

J2 ( z ) := ⌥C2 z � yd ⌥2⇥,

z =

�⌅⌅⌅⇤
⌅⌅⌅⇥

reference fine model response, z = z f
smoothed coarse model response, z = zc
surrogate’s response at iteration k, z = sk

(30)

where, again, we choose an Euclidean norm weighted by as-
sumed standard deviations of the measurements ⇥ = (⇥ j) j=1...,5
(see [18, 19]) and where the operator C2, which has to be used
to make the model response commensurable with the measure-
ments, is similar to the one, C1, used in the original cost func-
tion (cf. Section 4.4).

However, di�erently to the operator C1 in (16), the constant
temporal alignment is adjusted to the coarser temporal grid. As
was motivated in Section 6.1.1, we further employ a simple di-
vision of the smoothed response (z)5 (i.e., the response of state
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Figure 7: Original fine model response y f , for comparison, at the solutions u�f 1, u�f 2 of an original and reference fine model
optimization. Responses are shown for two illustrative tracers, some depth layer and, in (b), for the sake of better visibility, for a
section of the whole time interval.

hand, fine model optimization requires 567 model evaluations.
This corresponds to a significant reduction in the optimization
cost down to approximately 15% of that of a direct fine model
optimization.

Subsequent iterations within the SBO (or, equivalently, de-
creasing the thresholds used in the stopping criterion (33)), as
shown in lower right plots in Figures 4 and 4b and in Figures
5, 6 and Table 3, only marginally increases the accuracy of its
solution. However, proceeding to the subsequent iterate u10 in
the SBO requires approximately 150 additional equivalent fine
model evaluations (cf. upper right plot in Figure 5). Thus, ter-
minating the SBO after the first three iterations seems appropri-
ate for the considered problem.

Furthermore, the trade-o�s between the solution accuracy
and the extra computational overhead related to sensitivity cal-
culation have been investigated by additional numerical exper-
iments. It turns out that without using fine/coarse model sen-
sitivity, the solution of SBO is not su⇥ciently accurate for
the considered problem, whereas, clearly, the cost savings are
higher. For the sake of brevity, the results of these additional
experiments are not shown here.

8.1. Quality of Reference and Original Fine Model Solution

In order to assess the quality of the solutions obtained by the
reference and original fine model optimization, Figures 7a and
7b furthermore present the original fine model response y f at
the two fine model solutions, u f 1 and u f 2. Shown is the trans-
formed model response C1 y f in Figure 7a to assess the quality
and di�erence of the responses with respect to the measure-
ment data. Also shown is the “untransformed” response y f in

Figure 7b to furthermore investigate the overall quality. For
better visibility, a smaller illustrative time section is selected
here. Figures 5 and 6 present the optimal parameters u�f 1 and
corresponding cost function value J1(y f (u�f 1)), for comparison
with the corresponding quantities, u�f 2 and J1(y f (u�f 2)), for the
reference solution, respectively.

It can be observed that both solutions are fairly close in terms
of the quality of the responses (further reflected by the cor-
responding quite close cost function values) and in terms of
the parameter match. The rather small di�erences between the
original and reference fine model solutions is mainly due to
down-sampling and smoothing. These operations have been ap-
plied to the coarse and fine model response but not to the target
data, since the real measurements are not given on the temporal
grid of the fine model but are rather sparsely distributed. How-
ever, for dense model-generated data, it has been shown in [21]
that these di�erences are marginal and the solution obtained by
surrogate-based optimization converges to the original one as
desired.

9. Conclusions

Computationally e⇥cient calibration of a marine ecosystem
model is presented. We exploit a surrogate-based optimiza-
tion algorithm working with a low-fidelity (or coarse) model
obtained from a temporal coarser discretization. We employ a
multiplicative correction to the coarse model response which
allows us to create a reliable approximation (the surrogate) of
the computationally expensive original (or fine) model. The
surrogate model is furthermore enhanced by using fine model
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Table 3: Specific parameter values of the solutions obtained by coarse and fine (original and reference) model optimization and of
the iterates 3, 4 and 10 obtained in a SBO run. Also shown are the considered upper and lower parameter bounds bu and bl.

iterate uk,1 uk,2 . . . uk,12

Solution of a coarse model optimization (O.3)
u⇤c 1.000 0.522 0.051 0.040 0.010 4.000 4.000 0.007 0.059 0.010 0.747 5.000

Solution of SBO (O.4):
u3 1.000 1.195 0.052 0.035 0.024 4.000 4.000 0.003 0.089 0.010 1.000 5.000

u4 1.000 1.193 0.052 0.034 0.026 4.000 4.000 0.004 0.095 0.010 1.000 5.000

u10 1.000 1.176 0.048 0.035 0.018 4.000 4.000 0.004 0.094 0.010 1.000 5.000

Solution of a (reference) fine model optimization (O.2)
u⇤f 2 1.000 1.145 0.049 0.035 0.020 4.000 4.000 0.003 0.095 0.010 1.000 5.000

Solution of a (original) fine model optimization (O.1)
u⇤f 1 1.000 1.063 0.112 0.043 0.082 4.000 4.000 0.004 0.081 0.010 1.000 5.000

bl 0.300 0.200 0.001 0.000 0.010 0.025 0.040 0.000 0.010 0.010 0.100 2.000

bu 1.000 1.460 0.253 0.630 0.730 4.000 4.000 0.630 1.000 0.150 1.000 5.000
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Figure 6: Optimization history of the parameters uk obtained in the SBO as well as optimal parameter u⇤f 1 and u⇤f 2 obtained by
direct fine model optimization (original and reference).

Figure 4a shows the model response which is transformed (us-
ing the operator C2) to be commensurable with the given mea-
surement data yd, i.e., C2 z f (cf. Section 7.2). Shown are the
solution u3 obtained by SBO after 3 iterations (corresponding
to a stopping criterion of {�, ⇥min

k } = {10�2, 10�3}). Furthermore
shown are – by means of the tracer Chlorophyll a – also the
subsequent solutions u4 and u10 after 4 and 10 iterations (corre-
sponding to {�, ⇥min

k } = {10�4, 10�5} and {2.5 · 10�5, 2.5 · 10�6},
respectively). In order to verify that also the overall quality of
the solution obtained by SBO is su�ciently close to the one ob-
tained by fine model optimization, we present the correspond-
ing “untransformed” response z f in Figure 4b.

It can be observed that SBO converges to the optimal solu-
tion u⇤f 2 obtained by the reference fine model optimization as
shown in Figures 4, 4b, 5 and 6 (see also Table 3). Whereas
coarse model optimization provides a rather inaccurate solution
(i.e., not close to the reference fine one), SBO is able to yield
a remarkably accuracy already after 3 iterations – both in terms
of quality of the solution (cf. Figure 4, 4b and 5) and param-
eter match (cf. Figure 6 and Table 3). Only approximately 63
equivalent fine model evaluations were required (cf. Figure 5)
for these first three iterations of the SBO run, whereas the prior
coarse model optimization requires 22 equivalent fine model
evaluations which adds to the costs of the SBO. On the other
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Figure 5: Optimization history (SBO) of the original and the reference cost function value J1 and J2, both versus number of iter-
ations and the computational costs (measured in equivalent number of fine model evaluations). Also shown are the corresponding
cost function values at optimal solutions u⇤f 1 and u⇤f 2 (obtained by the original and reference fine model optimization), the opti-
mization history of the trust-region radius ⇥k and of the squared step size norm. Note that, for the sake of simplicity, we omit
explicit results of the prior coarse model optimization run. Horizontal red solid/dashed lines denote distinct termination conditions
considered in the SBO. Legends also apply to the plots on the right, accordingly.

7.4. Trust Region Approach

For the SBO, we use a trust-region (TR) safeguard (cf. Sec-
tion 3.3) to further increase the robustness of the optimization
process, i.e., to guarantee convergence to at least a local min-
imum of the (reference) optimization problem. The TR radius
⇥k is updated according to standard rules as follows [22, 23]

⇥0 = 2, ⇥k =

⌅⌥⌥⌃
⌥⌥⇧
⇥k/mdecr, if ⇤k < rdecr

⇥k · mincr, if ⇤k > rincr
,

rincr = 0.75, rdecr = 0.01, mincr = 3, mdecr = 20,

(31)

with ⇤k denoting the gain ratio in iteration k defined as

⇤k :=
fnew � fold

snew � sold
,

fold := J2( z f (uk) ), fnew := J2( z f (uk+1) ),
sold := J2( sk(uk) ), snew := J2( sk(uk+1) ).

(32)

Except for rdecr and mdecr, which are smaller, respectively larger
than usual, all values specified above are fairly standard. It
turned out that these values are typically more suitable for
surrogate-based optimization schemes exploiting physics-based
surrogates (see, e.g., [23]).

7.5. Stopping Criterion

As a termination condition for the SBO, we use the absolute
step size (measured in the Euclidean norm) between two suc-
cessive iterates uk and uk�1 as well as a lower bound for the
TR radius ⇥k, in the following denoted by ⇥min

k . In practice, we
choose a smaller bound for TR radius than for gamma because
of the large value of mdecr. The solution u⇤s obtained by SBO is
thus defined as

u⇤s :=
�

uk
���
⇥
�uk � uk�1 �2 ⌅ �

⇤
⇧

⇥
⇥k ⌅ ⇥min

k

⇤  
. (33)

To test various trade-o�s between the quality of the solution
obtained by SBO and the corresponding computational cost we
consider three distinct values for the threshold, more specifi-
cally

{�, ⇥min
k } = {10�2, 10�3}, {10�4, 10�5}, {2.5 · 10�5, 2.5 · 10�6}.

8. Numerical Results and Outlook

In Figure 4, the solutions of the exemplary optimization runs
as described in Section 7.3 (cf. optimization problems (O.2) -
(O.4) in Table 2) are presented, comparing the reference fine
model response z f at the respective optima. More specifically,
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‣ Using TMM + fixed time step τ, the time integration scheme reads
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‣ Steady annual cycle:   we are looking for a fixed point of the mapping
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‣ The whole fixed point iteration now consists of a repeated application of the mapping Φ:
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Table 1: Element in parameter vector, variable name, description and units for the N-DOP model parameters.

ui Name Description Unit
u1 ⇥ remineralization rate of DOP 1/d
u2 � maximum community production rate 1/d
u3 ⇤ fraction of DOP, ⇤̄ = (1 � ⇤) �
u4 KN half saturation constant of N m molP/m3

u5 KI half saturation constant of light W/m2

u6 KH2O attenuation of water 1/m
u7 b sinking velocity exponent �

cess of evaluating transport matrices, especially in combination
with operator splitting schemes can be found in Khatiwala et al.
(2005). For our results we used twelve implicit and twelve ex-
plicit transport matrices, which represent monthly averaged dif-
fusion and advection. The matrices are interpolated linearly to
the corresponding discrete time step during simulation.

We now introduce a time discretization for (2) and denote by
y j the appropriately arranged vector of the values (yi(xk, t j))i,k
of all n tracers on all spatial grid points xk ⇧ ⇥ at the time step j.
In the same way, we denote the vector of the discretized source-
minus-sink terms qi at all spatial grid points xk, evaluated at
fixed time t j, by q j(y j,u). Using the TMM and for simplicity a
fixed time step ⌅, the time integration scheme for (2) now reads

yj+1 = Aimp, j (Aexp, j yj + ⌅q j(yj,u))
=: ⇧ j(y j,u), j = 0, . . . , n⌅ � 1 . (3)

Here n⌅ is the total number of time steps and Aimp, j,Aexp, j are
the implicit and explicit transport matrices at time step j. The
matrices are block-diagonal and usually sparse, depending on
the used numerical scheme of the ocean model. Starting from a
vector y0 of initial values for the tracers, each step in the time
integration scheme to solve the tracer transport equations (1)
just consists of the evaluation of the source-minus-sink term
and two matrix-vector multiplications.

2.4. Computation of a steady annual cycle

In our exemplary application, we use precomputed ideal or
synthetic data denoted by yd that have been generated by run-
ning the model into a (up to a certain numerical threshold)
steady annual cycle. A model run in the optimization process
thus means to compute a periodic solution of the discretized
system (3) with a given fixed period of one year. Setting the
end point T of the considered time interval to one year, we are
looking for a fixed point of the mapping

yn⌅ = �(y0,u),

where � := ⇧n⌅�1 ⇤ · · · ⇤ ⇧0 with the ⇧ j defined in (3), i.e., for a
trajectory (y j) j=0,...,n⌅ with

yn⌅ = �(y0,u) = y0 . (4)

In this setting one application of the mapping � corresponds
to the computation of one year model time. Thus we will also

refer to a period as a model year in the following. In the sequel
we set the number of steps per year to n⌅ = 45. Assuming 360
days a year this time step corresponds to 192 hours. Both, the
time step and the step count is kept fixed for our analysis and
hence is not explicitly specified again.

The whole fixed point iteration now consists of a repeated
application of the mapping �, i.e., we set

yl+1 = �(yl,u), l = 0, . . . , nl � 1, (5)

where nl is the total number of iterations (model years) neces-
sary to compute a steady annual cycle and yl denotes the vector
of discretized tracer after l years, i.e., yl := yl·n⌅ . The iteration
starts with a constant distribution y0 of all tracers.

It is implemented as part of the simulation package of
Metos3D (Marine Ecosystem Toolkit for Simulation and Op-
timization in 3-D), see Piwonski and Slawig (2011). From sev-
eral computations it can be observed that after nl = 3000 it-
erations (model years), a numerical steady solution (up to an
accuracy of more than 10�2 in Euclidean norm, compare Fig-
ure 1) is obtained. Thus we refer to this as a converged steady
annual cycle and take it as the reference high-fidelity (or fine)
model output/response.

As shown in Figure 1, the residual in the solution of (4) can
be further decreased by using a higher number nl of model years
used in the fixed point iteration (5). However, the number nl =
3000 of steps (already used for example in Kriest et al. (2010))
provides a satisfactory accuracy.

We add the subscript f to distinguish the fine model state
and corresponding number of model years, i.e., y f , n f ,l, from
the corresponding coarse model ones.

3. The optimization problem

In order to identify the parameters in the biogeochemical
model, we solve the following nonlinear optimization problem
with given data yd:

min
u⇧Uad

J(y(u)), (6)

where

J(y) :=
1
2
� y � yd �2Y , Uad := {u ⇧ Rm : bl ⌅ u ⌅ bu},

bl,bu ⇧ Rm, bl < bu,

4
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Table 1: Element in parameter vector, variable name, description and units for the N-DOP model parameters.

ui Name Description Unit
u1 λ remineralization rate of DOP 1/d
u2 α maximum community production rate 1/d
u3 σ fraction of DOP, σ̄ = (1 − σ) −

u4 KN half saturation constant of N mmolP/m3
u5 KI half saturation constant of light W/m2
u6 KH2O attenuation of water 1/m
u7 b sinking velocity exponent −

with operator splitting schemes can be found in Khatiwala et al.
(2005). For our results we used twelve implicit and twelve ex-
plicit transport matrices, which represent monthly averaged dif-
fusion and advection. The matrices are interpolated linearly to
the corresponding discrete time step during simulation.
We now introduce a time discretization for (2) and denote by

y j the appropriately arranged vector of the values (yi(xk, t j))i,k
of all n tracers on all spatial grid points xk ∈ Ω at the time step j.
In the same way, we denote the vector of the discretized source-
minus-sink terms qi at all spatial grid points xk, evaluated at
fixed time t j, by q j(y j, u). Using the TMM and for simplicity a
fixed time step τ, the time integration scheme for (2) now reads

yj+1 = Aimp, j (Aexp, j yj + τq j(yj, u))
=: ϕ j(y j, u), j = 0, . . . , nτ − 1 . (3)

Here nτ is the total number of time steps and Aimp, j,Aexp, j are
the implicit and explicit transport matrices at time step j. The
matrices are block-diagonal and usually sparse, depending on
the used numerical scheme of the ocean model. Starting from a
vector y0 of initial values for the tracers, each step in the time
integration scheme to solve the tracer transport equations (1)
just consists of the evaluation of the source-minus-sink term
and two matrix-vector multiplications.

2.4. Computation of a steady annual cycle

In our exemplary application, we use precomputed ideal or
synthetic data denoted by yd that have been generated by run-
ning the model into a (up to a certain numerical threshold)
steady annual cycle. A model run in the optimization process
thus means to compute a periodic solution of the discretized
system (3) with a given fixed period of one year. Setting the
end point T of the considered time interval to one year, we are
looking for a fixed point of the mapping

ynτ = Φ(y0, u),

where Φ := ϕnτ−1 ◦ · · · ◦ ϕ0 with the ϕ j defined in (3), i.e., for a
trajectory (y j) j=0,...,nτ with

ynτ = Φ(y0, u) = y0 . (4)

In this setting one application of the mapping Φ corresponds
to the computation of one year model time. Thus we will also
refer to a period as a model year in the following. In the sequel

we set the number of steps per year to nτ = 45. Assuming 360
days a year this time step corresponds to 192 hours. Both, the
time step and the step count is kept fixed for our analysis and
hence is not explicitly specified again.
The whole fixed point iteration now consists of a repeated

application of the mapping Φ, i.e., we set

yl+1 = Φ(yl, u), l = 0, . . . , nl − 1, (5)

where nl is the total number of iterations (model years) neces-
sary to compute a steady annual cycle and yl denotes the vector
of discretized tracer after l years, i.e., yl := yl·nτ . The iteration
starts with a constant distribution y0 of all tracers.
It is implemented as part of the simulation package of

Metos3D (Marine Ecosystem Toolkit for Simulation and Op-
timization in 3-D), see Piwonski and Slawig (2011). From sev-
eral computations it can be observed that after nl = 3000 it-
erations (model years), a numerical steady solution (up to an
accuracy of more than 10−2 in Euclidean norm, compare Fig-
ure 1) is obtained. Thus we refer to this as a converged steady
annual cycle and take it as the reference high-fidelity (or fine)
model output/response.
As shown in Figure 1, the residual in the solution of (4) can

be further decreased by using a higher number nl of model years
used in the fixed point iteration (5). However, the number nl =
3000 of steps (already used for example in Kriest et al. (2010))
provides a satisfactory accuracy.
We add the subscript f to distinguish the fine model state

and corresponding number of model years, i.e., y f , n f ,l, from
the corresponding coarse model ones.

3. The optimization problem

In order to identify the parameters in the biogeochemical
model, we solve the following nonlinear optimization problem
with given data yd:

min
u∈Uad

J(y(u)), (6)

where

J(y) := 1
2
‖ y − yd ‖2Y , Uad := {u ∈ R

m : bl ≤ u ≤ bu},

bl, bu ∈ R
m, bl < bu,

4
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What has been done so far?

‣ Transport matrix approach for passive tracers (Transport Matrix Method) 1

‣ Another approach: exploit a coarse resolution model initially
➔   seek a model state already close to the desired periodic solution
➔   utilized as initial condition for a subsequent high-resolution (fine) model simulation 1

‣ Yet another, common strategy to obtain a computationally cheaper coarse model:
Direct optimization of a temporally/ spatially coarser resolution model

‣ However:
‣ Such coarse models are usually not sufficiently accurate to directly exploit them in a 

classical optimization loop in lieu of the original fine model
‣ Optimized solution: rather inaccurate approximation of the desired fine one only
‣ Most likely, a subsequent and usually expensive fine model optimization is required
‣ Therefore, the overall optimization costs can be still comparably high

1 Khatiwala et al. (2005)
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Surrogate-based optimization
Function-approximation surrogates

Functional Surrogatesg

Features:
� Constructed without any particular knowledge of the systemConstructed without any particular knowledge of the system
� Based on algebraic expressions
� Exist only in the context of sampled data obtained from the system
� Generic => applicable to a wide class of problems
� Cheap to evaluate
� Typically require considerable amount of data from the system� Typically, require considerable amount of data from the system

Popular techniques:
L d l i l� Low-order polynomials

� Radial basis functions
� Kriging� Kriging
� Support vector regression
� Artificial neural networks

‣ Suitable approximations of sampled fine model data 
(e.g., polynomial regression, kriging, support-vector regression, ...)

‣ Constructed without previous knowledge of the system

‣ Do not inherit any physical characteristics
(generalization capability not as good)

‣ Cheap model evaluation

‣ But, typically substantial amount of fine model data samples to set up a model is 
required and to ensures a reasonable accuracy level

‣ Methodology is rather generic   ➔   applicable to a wide class of problems

Picture Source: S. Koziel, Reykjavik University, Iceland
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Physics-Based Surrogates
‣ Fundamental advantage: 

SBO schemes working with physics-based surrogates normally require small number of 
fine model evaluations to yield a sufficient accuracy (often, only one per iteration)

‣ Thus, the computational burden is shifted towards the cheap coarse model

‣ Key prerequisites:
‣ Quality of the coarse model is critical   ➔   inaccurate model may result in poor 

algorithm performance
‣ Cheap and yet reasonably accurate coarse model as well as a properly selected and 

low-cost alignment procedure 
‣ Agreement of function and derivative information (not necessarily exact)
‣ Globalization: Some standard trust-region/ line-search approaches

‣ Underlying coarse model, correction approach is problem specific
➔   their reuse across different problems is rare

Functional vs. Physics-Based Surrogates

40



Space Mapping: Coarse Model Correction Methods p pp g
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Space Mapping: Coarse Model Correction Methods p pp g
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Response distortion (output SM)
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Surrogate-based optimization: State-of-the-art
Space Mapping

‣ One of the most recognized SBO techniques exploiting physics-based coarse 
models

‣ A mapping relating the fine and coarse model parameters is proposed to 
calibrate a physics-based coarse model

‣ This mapping using so-called parameter extraction (PE) is a nonlinear opt. 
problem itself

(Generic SM surrogate model, i.e., coarse model yc with auxiliary mapping pk)

Picture Source: S. Koziel, Reykjavik University, Iceland
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1D NPZD model: Aggressive Space Mapping

‣ Aggressive Space Mapping 1 (firstly developed by John W. Bandler et al. in 1994):

‣ If either the fine model nearly matches the data in an optimum or if both models are similar 
near their respective optima we obtain so-called perfect mapping 2

‣ This motivates to solve for

‣ Under certain conditions, ASM is equivalent to use the surrogate in a SBO algorithm 12

10 ASM for Optimization of a Marine Ecosystem Model

The following results were shown in Echeverŕıa and Hemker (2005): If either
the fine model nearly matches the data in an optimum

u⇤ := argmin
u2U

J (y(u) ) , i.e. y(u⇤) ⇤ yd,

or if both models are similar near their respective optima (y(u⇤) ⇤ ŷ(û⇤)), we
obtain (using (5))

p(u⇤) = argmin
u2U

|| ŷ(u)� y(u⇤) ||2Y ⇤ argmin
u2U

|| ŷ(u)� yd ||2Y = û⇤. (8)

which is also referred to as a perfect mapping and which motivates to solve for a
solution of (7).

If in addition to (8) the mapping is injective and the coarse model optimum û⇤
is unique, then the solution of the ASM approach, ū, coincides with the fine model
optimum u⇤ and the solution ūs obtained by directly optimizing the surrogate
defined in (5), i.e.,

ūs = argmin
u2U

J ( ŷ(p(u)) ) . (9)

However, in most real applications these theoretically derived conditions might
of course not be exactly satisfied. For a more detailed analysis we also refer to
Echeverŕıa and Hemker (2005)

For the complex model used here, it is not the focus of this paper (and it
is not clear if it is possible) to prove those theoretical conditions. Instead, the
applicability of the ASM algorithm is verified by using synthetic target data yd =
y(ud) with known parameters ud and by comparing the ASM solution ū to those
obtained by fine and coarse model optimization, u⇤ and û⇤, as well as to the known
optimal parameters ud.

7.1 Globalized Quasi-Newton Method

Since the standard Quasi-Newton Algorithm, as given in e.g. Kosmol (1993) and
Nocedal and Wright (2000), may su�er from local convergence one can additional
use a classical line search strategy introducing a merit function h : U ⌅ R given
as (Kosmol, 1993)

h(u) :=
1
2

|| F(u) ||2 =
1
2

|| p(u)� û⇤ ||2 .

If F0(uk)B�1
k is positive-definite, then

⌃h(uk)>dk = F(uk)>F0(uk)B�1
k F(uk) ⇥ 0,

i.e., dk is a descent direction for h at the point uk.
Obviously the Newton direction (where Bk is replaced by F0(uk)) is always a

descent direction for h in uk, satisfying ⌃h(uk)>dk = �2h(uk). Assuming that Bk

is a ”good” approximation of F0(uk), we use the last relation also in a line search
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Figure 3 Fine and coarse model output y, ŷ as well as the aligned surrogate
sk(uk) = ŷ (pk(uk)) for the state detritus, at the same randomly chosen
parameter vector uk, at depths z � 25m (top) and z � 60m. The surrogate
model provides a reasonable approximation of the fine model while lying
closer than the coarse model itself.

where the second relation is ensured by the minimization (5). Figure 3 illustrates
this property showing the fine and coarse as well as the surrogate model output
for the state detritus at a randomly chosen parameter vector uk. This supports
the argumentation above: In the point uk the surrogate obviously provides a
reasonable approximation for the fine model while being closer to it than the coarse
model itself. We will see in the next section that this property is also given in a
neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û� := argmin
u⇤U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)� û� = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ⇥ p⇥(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).
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neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û� := argmin
u⇤U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)� û� = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ⇥ p⇥(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).

10 ASM for Optimization of a Marine Ecosystem Model

The following results were shown in Echeverŕıa and Hemker (2005): If either
the fine model nearly matches the data in an optimum

u⇤ := argmin
u2U

J (y(u) ) , i.e. y(u⇤) ⇤ yd,

or if both models are similar near their respective optima (y(u⇤) ⇤ ŷ(û⇤)), we
obtain (using (5))

p(u⇤) = argmin
u2U

|| ŷ(u)� y(u⇤) ||2Y ⇤ argmin
u2U

|| ŷ(u)� yd ||2Y = û⇤. (8)

which is also referred to as a perfect mapping and which motivates to solve for a
solution of (7).

If in addition to (8) the mapping is injective and the coarse model optimum û⇤
is unique, then the solution of the ASM approach, ū, coincides with the fine model
optimum u⇤ and the solution ūs obtained by directly optimizing the surrogate
defined in (5), i.e.,

ūs = argmin
u2U

J ( ŷ(p(u)) ) . (9)

However, in most real applications these theoretically derived conditions might
of course not be exactly satisfied. For a more detailed analysis we also refer to
Echeverŕıa and Hemker (2005)

For the complex model used here, it is not the focus of this paper (and it
is not clear if it is possible) to prove those theoretical conditions. Instead, the
applicability of the ASM algorithm is verified by using synthetic target data yd =
y(ud) with known parameters ud and by comparing the ASM solution ū to those
obtained by fine and coarse model optimization, u⇤ and û⇤, as well as to the known
optimal parameters ud.

7.1 Globalized Quasi-Newton Method

Since the standard Quasi-Newton Algorithm, as given in e.g. Kosmol (1993) and
Nocedal and Wright (2000), may su�er from local convergence one can additional
use a classical line search strategy introducing a merit function h : U ⌅ R given
as (Kosmol, 1993)

h(u) :=
1
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|| F(u) ||2 =
1
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|| p(u)� û⇤ ||2 .

If F0(uk)B�1
k is positive-definite, then

⌃h(uk)>dk = F(uk)>F0(uk)B�1
k F(uk) ⇥ 0,

i.e., dk is a descent direction for h at the point uk.
Obviously the Newton direction (where Bk is replaced by F0(uk)) is always a

descent direction for h in uk, satisfying ⌃h(uk)>dk = �2h(uk). Assuming that Bk

is a ”good” approximation of F0(uk), we use the last relation also in a line search

8 ASM for Optimization of a Marine Ecosystem Model
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ŷ(u) , � = 60

Figure 2 Fine and coarse model output y, ŷ, respectively, for the state dissolved
inorganic nitrogen at depth z � 2.68 m for di�erent values of the coarsening
factor � and the same randomly chosen parameter vector u. For simplicity we
skip subscripts in the legends of all figures.

6 The Surrogate Model

The ASM algorithm, as will be described in the next section, is a conditionally
equivalent approach to use a surrogate model in the optimization which is obtained
by a space mapping approach introduced by Bandler et al. (1994). Here a a
physical low-fidelity or coarse model with output ŷ (cf. Section 5) is corrected
in the kth optimization step by a so-called parameter mapping pk to obtain a
surrogate sk for the fine model, in detail

sk(u) := ŷ (pk(u)) , pk(u) = p(uk) + p�(uk) (u� uk),

ûk = p(uk) := argmin
u⇥U

|| ŷ(u)� y(uk) ||2Y . (5)

The usually non-linear mapping p is aligning the fine and coarse model and is
approximated in the point uk using a first-order Taylor expansion.

6.1 0-order Consistency

Assuming that the minimization in (5) actually yields perfect alignment

ŷ(ûk) = y(uk),

the surrogate exactly satisfies 0-order consistency, i.e., sk(uk) = y(uk) (cf. Section
4).

If this is not the case, i.e., the minimization (5) yields a local minimum for
which we would have obtained an approximate alignment only, i.e., ŷ(ûk) ⇤ y(uk)
then obviously the surrogate’s consistency is only satisfied approximately, i.e.,
sk(uk) ⇤ y(uk).

The 0-order consistency is dependent on how close the alignment of the coarse
model can be achieved by p. However, using the definition of the surrogate and
the mapping from (5), the surrogate obviously is at least as close to the fine model
as the coarse model itself, i.e.,

⇧sk(uk)� y(uk)⇧ = ⇧ŷ [p(uk)]� y(uk)⇧ ⇥ ⇧ŷ(uk)� y(uk)⇧ (6)

1 John W. Bandler et al. (1994); 2 Echeverría and Hemker (2005)
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1D NPZD model: Aggressive Space Mapping

‣ Aggressive Space Mapping 1 (firstly developed by John W. Bandler et al. in 1994)
➔   based on a parameter mapping from the fine to the coarse model parameters

‣ such that the mapped coarse model – the surrogate – provides an approximation of the 
fine model y, i.e.,

‣ Original Space Mapping approach:

‣ or equivalently, using (*):

‣ Aggressive Space Mapping   ➔   solves for a solution of (**), using

‣ ... and exploiting a Quasi-Newton iteration + Broyden rank-one approximation for p‘(uk)

OVERVIEW 21

provide reliable approximations of the corresponding fine models. Subsequently, their
application in a surrogate-based scheme as in (2) will be investigated (cf. Figure 1b).
Moreover, I will assess the applicability of the corresponding coarse models as direct re-
placement of the fine models in the optimization (cf. Figure 1a). The quality of the solution
obtained by surrogate-based optimization as well as the algorithms’ performance in terms
of the computational costs will be compared to what can be achieved by direct coarse and
fine model optimization (in case the latter is computationally aordable).

The focus of this work clearly is demonstrating the applicability of the proposed method-
ologies to the parameter optimization of the considered models and not the actual inter-
pretation of the obtained results in the biogeochemical context. Principally, it will be
investigated, whether the presented surrogate-based optimization methodologies allow to
yield a reasonable solution at low optimization costs.

Aggressive Space Mapping

In the first part, I focus on one of the original Space Mapping approaches – Aggressive
Space Mapping (see, e.g., Bandler et al., 2004) in Paper 1 (Appenix A.1). I investigate
the applicability of this approach to achieve a computationally e�cient parameter opti-
mization of the 1-D NPZD model. The Aggressive Space Mapping algorithm evolves from
the original formulation of Space Mapping (Bandler et al., 1994, 2004). Therein, some
parameter mapping, p : u ⇥ û, from the fine to the coarse model parameters (u and û,
respectively) is proposed as

p(u) = û, (5)

such that the mapped coarse model – the surrogate – provides an approximation of the
fine model y, i.e.,

y(u) � ŷ (p(u)) (6)

in a region of interest, with ŷ denoting the coarse model response. The idea of the
original Space Mapping approach is to first solve for a coarse model optimum û� and to
subsequently seek a solution ū of the following non-linear system of equations

p(ū) = û� . (7)
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p(ū) = û� . (7)

22 STUDY DESIGN AND RESULTS

Since the mapping p is defined such that the similarity (6) holds, solving the above
equation (7) is equivalent to solving for

y(ū) ⇥ ŷ(û�) . (8)

This can be realized by, e.g., minimizing the di⇢erence in a least-squares type objective.
Thus, the solution ū of (7) is close to the fine model optimum u�, provided that the fine
and the coarse model responses are close to each other at their respective optima, i.e.,

y(u�) ⇥ ŷ(û�) . (9)

In this case, the mapping p satisfies

p(u�) ⇥ û�,

which is sometimes referred to as perfect mapping (see, e.g., Echeverría and Hemker, 2005).
The connection of this original Space Mapping approach to the introduced strategy of
surrogate-based optimization is as follows: The solution of (7) is equivalent to exploiting
the mapped coarse model as a surrogate, i.e,

sk(u) := ŷ(pk(u)),

in a surrogate-based scheme as in (2), provided that the mapping is injective and the
coarse model optimum û� is unique (see here and the following, e.g., Bandler et al., 2004;
Echeverría and Hemker, 2005). Here, pk(u) denotes some approximation of the mapping
p in the point uk.

The Aggressive Space Mapping as a particular approach now solves for a solution of
the non-linear system of equations given in (7), using a first-order Taylor approximation
of the mapping, i.e.,

pk(u) := p(uk) + p⇥(uk)(u� uk)

and exploiting a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000). Fur-
thermore, a Broyden rank-one approximation is used to approximate the derivative p⇥ of
the mapping (Bandler et al., 2004; Broyden, 1965). Since the standard Quasi-Newton algo-
rithm may su⇢er from local convergence, it is typically reasonable to use some globalization
strategies such as a trust-region or a line-search approach. In this work, I will exploit the
latter.

For the considered temporally coarser discretized NPZD model, the required similarity
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strategies such as a trust-region or a line-search approach. In this work, I will exploit the
latter.

For the considered temporally coarser discretized NPZD model, the required similarity
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Figure 2: High- and low-fidelity model output y(N), ŷ(N), respectively, for the state dissolved inorganic
nitrogen (DIN) at depth z ⇤ 2.68 m for di�erent values of the coarsening factor � and the same randomly
chosen parameter vector u. For simplicity we skip super- and subscripts in the legends of all figures.

Here we omitted the additional arguments of the Qj for simplicity.
Then, an explicit Euler step with full step-size ⇥ is performed for the sinking term which

is spatially discretized by an upstream scheme. This step is summarized in the matrix Bsink.
Since the sinking velocity is temporal constant, this matrix does not depend on the time step j.

Finally, an implicit Euler step for the di�usion operator, discretized with second order central
di�erences, is applied. Due to K� = K�(z, t) the resulting matrix Bdi�

j depends on j and is non-
symmetric, cf. [6, Section 5]. It is tridiagonal, and the system is solved directly. Note that
Adi�

j , Asink are 4⇥ 4 block-diagonal matrices.

Coarser Time Discretization

The low-fidelity model is obtained by using a coarser time discretization with

⇥̂ = �⇥

with a coarsening factor � in the range [10, 60], while keeping the spatial discretization fixed.
The state variable for this coarser discretized model will be denoted by ŷ, the corresponding
number of discrete time steps by M̂ = M/�. The parameters u for this coarse model are the
same as for the fine model. Figure 2 shows the fine and coarse model output y(D), ŷ(D) for the
state detritus, for di�erent values of � and at the same randomly chosen parameter vector u.

It is important to keep in mind that choosing � too big could lead to a numerically unstable
scheme. The condition on stability is determined by the ratio h/u1 where h denotes the size of
the discrete spatial step. All computations in this paper were performed with parameters that
guarantee stability.

6 The Surrogate Model

The surrogate model we use is obtained by a space mapping approach introduced by Bandler
et al. [3]. The physical low-fidelity model with output ŷ (cf. Section 5) is corrected in the kth
optimization step by a so-called parameter mapping pk to obtain a surrogate sk for the fine
model, in detail

sk(u) := ŷ [pk(u)] , pk(u) = p(uk) + p�(uk) (u� uk)

ûk = p(uk) := argminu⇥U || ŷ(u)� y(uk) ||2Y . (7)

The usually non-linear mapping p is aligning the high- and low-fidelity model and is approxi-
mated in the point uk using a first-order Taylor expansion.

7
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Figure 3 Fine and coarse model output y, ŷ as well as the aligned surrogate
sk(uk) = ŷ (pk(uk)) for the state detritus, at the same randomly chosen
parameter vector uk, at depths z � 25m (top) and z � 60m. The surrogate
model provides a reasonable approximation of the fine model while lying
closer than the coarse model itself.

where the second relation is ensured by the minimization (5). Figure 3 illustrates
this property showing the fine and coarse as well as the surrogate model output
for the state detritus at a randomly chosen parameter vector uk. This supports
the argumentation above: In the point uk the surrogate obviously provides a
reasonable approximation for the fine model while being closer to it than the coarse
model itself. We will see in the next section that this property is also given in a
neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û� := argmin
u⇤U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)� û� = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ⇥ p⇥(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).
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Figure 3 Fine and coarse model output y, ŷ as well as the aligned surrogate
sk(uk) = ŷ (pk(uk)) for the state detritus, at the same randomly chosen
parameter vector uk, at depths z � 25m (top) and z � 60m. The surrogate
model provides a reasonable approximation of the fine model while lying
closer than the coarse model itself.

where the second relation is ensured by the minimization (5). Figure 3 illustrates
this property showing the fine and coarse as well as the surrogate model output
for the state detritus at a randomly chosen parameter vector uk. This supports
the argumentation above: In the point uk the surrogate obviously provides a
reasonable approximation for the fine model while being closer to it than the coarse
model itself. We will see in the next section that this property is also given in a
neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û� := argmin
u⇤U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)� û� = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ⇥ p⇥(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).

1 John W. Bandler et al. (1994); Echeverría and Hemker (2005)
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Figure 3 Fine and coarse model output y, ŷ as well as the aligned surrogate
sk(uk) = ŷ (pk(uk)) for the state detritus, at the same randomly chosen
parameter vector uk, at depths z � 25m (top) and z � 60m. The surrogate
model provides a reasonable approximation of the fine model while lying
closer than the coarse model itself.

where the second relation is ensured by the minimization (5). Figure 3 illustrates
this property showing the fine and coarse as well as the surrogate model output
for the state detritus at a randomly chosen parameter vector uk. This supports
the argumentation above: In the point uk the surrogate obviously provides a
reasonable approximation for the fine model while being closer to it than the coarse
model itself. We will see in the next section that this property is also given in a
neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û� := argmin
u⇤U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)� û� = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ⇥ p⇥(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).

Figure:   Fine and coarse model output y, ŷ as well as the aligned surrogate sk(uk) = ŷ( pk( uk ) ) for the 
state detritus, at the same randomly chosen parameter vector uk, at depths z ≈ 25m (top) and z ≈ 60 m 
(bottom). 
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uk,1 uk,2 . . . uk,12 J Ci

u0 0.486 0.644 0.019 0.01 0.037 0.933 1.905 0.006 0.18 0.017 0.406 6.937 5.9e-03

Fine model optimization: u� := argmin u⇥U J (y(u) )

u� 0.764 0.599 0.027 0.01 0.035 1.018 1.93 0.01 0.218 0.02 0.495 5.866 1.6e-05 281

Coarse model optimization: û� := argmin u⇥U J ( ŷ(u) )

û� 0.759 0.363 0.025 0.012 0.029 1.118 0.864 0.007 0.194 0.016 0.491 5.42 1.8e-03 19.95

ASM: Solve F(ū) := p(ū)� û� = 0

ū 0.759 0.587 0.027 0.011 0.034 0.944 1.524 0.01 0.179 0.02 0.49 6.073 5.0e-05 80.25

ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 6.0 57.54%

reduction

uk,1 uk,2 . . . uk,12 J Ci

u0 0.565 0.672 0.015 0.012 0.036 1.096 2.335 0.013 0.209 0.028 0.452 5.235 7.0e-02

Fine model optimization: u� := argmin u⇥U J (y(u) )

u� 0.871 0.593 0.029 0.012 0.038 1.0478 0.952 0.011 0.223 0.019 0.466 5.836 5.6e-05 418

Coarse model optimization: û� := argmin u⇥U J ( ŷ(u) )

û� 0.759 0.356 0.029 0.012 0.037 1.138 0.848 0.007 0.188 0.016 0.502 5.475 1.8e-03 26.35

ASM: Solve F(ū) := p(ū)� û� = 0

ū 0.761 0.572 0.031 0.011 0.043 0.96 1.529 0.011 0.174 0.02 0.512 5.976 5.9e-05 91.15

ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 6.0 71.27%

reduction

Table 1 Results of the fine and coarse model optimization and of the ASM algorithm
from two illustrative test runs, corresponding to Figures 5 (top) and 6
(bottom), See the text for details. Also shown are the corresponding values of
the cost function J given in (12) and the computational cost Ci in terms of
the total number of equivalent fine model evaluations required to obtain the
given cost function value J , again for the three cases, i.e.,
Ci � {Copt,h, Copt,l, CQN}.

optimization (Copt,h, Copt,l) we consider the cost in terms of total number of
equivalent fine model evaluations. We generally yield the following:

CASM := Copt,l + CQN , CQN := NASM · Cp · Nqn
LS ,

Cp := Calign + 1, Calign := Nopt,p · (Cgrad + Nopt
LS )/�,

Copt,l := Nopt,l · (Cgrad + Nopt
LS )/�,

Copt,h := Nopt,h · (Cgrad + Nopt
LS ), Cgrad = 12. (14)

The optimization cost for the fine and coarse model optimization is given as the
number of iterations, denoted by Nopt,h, Nopt,l, times the cost of the gradient Cgrad

plus the number of line search steps done per iteration, denoted by Nopt
LS . Note that
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û� 0.759 0.363 0.025 0.012 0.029 1.118 0.864 0.007 0.194 0.016 0.491 5.42 1.8e-03 19.95

ASM: Solve F(ū) := p(ū)� û� = 0

ū 0.759 0.587 0.027 0.011 0.034 0.944 1.524 0.01 0.179 0.02 0.49 6.073 5.0e-05 80.25

ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 6.0 57.54%

reduction

uk,1 uk,2 . . . uk,12 J Ci

u0 0.565 0.672 0.015 0.012 0.036 1.096 2.335 0.013 0.209 0.028 0.452 5.235 7.0e-02

Fine model optimization: u� := argmin u⇥U J (y(u) )

u� 0.871 0.593 0.029 0.012 0.038 1.0478 0.952 0.011 0.223 0.019 0.466 5.836 5.6e-05 418

Coarse model optimization: û� := argmin u⇥U J ( ŷ(u) )

û� 0.759 0.356 0.029 0.012 0.037 1.138 0.848 0.007 0.188 0.016 0.502 5.475 1.8e-03 26.35

ASM: Solve F(ū) := p(ū)� û� = 0
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ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 6.0 71.27%

reduction

Table 1 Results of the fine and coarse model optimization and of the ASM algorithm
from two illustrative test runs, corresponding to Figures 5 (top) and 6
(bottom), See the text for details. Also shown are the corresponding values of
the cost function J given in (12) and the computational cost Ci in terms of
the total number of equivalent fine model evaluations required to obtain the
given cost function value J , again for the three cases, i.e.,
Ci � {Copt,h, Copt,l, CQN}.

optimization (Copt,h, Copt,l) we consider the cost in terms of total number of
equivalent fine model evaluations. We generally yield the following:

CASM := Copt,l + CQN , CQN := NASM · Cp · Nqn
LS ,

Cp := Calign + 1, Calign := Nopt,p · (Cgrad + Nopt
LS )/�,

Copt,l := Nopt,l · (Cgrad + Nopt
LS )/�,

Copt,h := Nopt,h · (Cgrad + Nopt
LS ), Cgrad = 12. (14)

The optimization cost for the fine and coarse model optimization is given as the
number of iterations, denoted by Nopt,h, Nopt,l, times the cost of the gradient Cgrad

plus the number of line search steps done per iteration, denoted by Nopt
LS . Note that
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Figure 5 Fine model output y for dissolved inorganic nitrogen (left) and for
zooplankton (right) at depth z � 2.68m (top) and z � 108.15m (bottom).
Shown are, in the legend from top to bottom: (i) Target yd, i.e., fine model
output at randomly chosen parameters ud, (ii) fine model output at the
initial value u0, (iii) at the coarse model optimum û�, (iv) at the result of the
ASM algorithm ū, and (v) at the result of the direct fine model optimization
yielding u�. On the top left, we only show the interesting time interval.
Curves corresponding to (i), (iv) and (v) are very close.

parameters and values of the cost function J are given in the upper part of
Table 1. Furthermore the table shows the total cost of the fine (Copt,h) and the
coarse model optimization (Copt,l) and of the Quasi-Newton iterations of the ASM
algorithm (CQN ) in terms of the total number of equivalent fine model evaluations,
which were required to reach the given value of the cost function J . Equivalent
in this case means that for example � evaluations of the coarse model used here
with a coarsening factor � are equivalent to (or, as expensive as) one fine model
evaluation. Note that the total cost in the ASM approach consists of the cost for
the coarse model optimization Copt,l and those for solving the nonlinear system of
equations by the Quasi-Newton method, i.e., CQN . For details see also the next
subsection.

From Figure 5 we see that by the direct fine model optimization we yield a
very reasonable optimal fit y(u�) (grey dashed line) of the target data yd (black
line). This corresponds to a cost function value of J(y(u�)) = 1.611e� 05 obtained
after 281 function evaluations (cf. Table 1). We furthermore see that by the coarse
model optimization we yield parameters û� with a fit y(û�) (light grey line) which
obviously provides only a rough approximation of the target data, but in Copt,l =
19.95 equivalent fine model evaluations only. Using the ASM approach, we finally

Figure:  
(left) Fine model output yβ for dissolved inorganic nitrogen at depth z ≈ 2.68 m. Shown are (from top to bottom): 
(i) Synthetic target data, i.e., fine model output at randomly chosen parameters ud, 
(ii) fine model output at the initial value u0, 
(iii) at the coarse model optimum û* 
(iv) at the result of the ASM algorithm ū
(v) at the result of the direct fine model optimization u*, 

(right) Values of the cost function J, computational costs Ci (in terms of number of equivalent fine model evaluations) 
Cost savings, when using ASM algorithm, are about 57% when compared to the direct fine model optimization.
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Difficulties of the Basic Surrogate Formulation

Figure:   Surrogate’s, fine and coarse model responses for the state detritus at 
depth z ≈ −2.68 m, at one iterate uk and in a vicinity ūk. 

‣ Coarse model response might be close to zero (and maybe even negative due to 
approximation errors) and a few magnitudes smaller than the fine one

‣ This leads to large (possibly negative) entries in the corresponding correction tensor Ak

‣ Such a correction tensor still ensures zero-order consistency

‣ But it may lead to (locally) poor approximation in the vicinity of uk

‣ Still, the overall shape of the surrogate’s response provides a reasonable approximation10 Malte Prieß et al.
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Fig. 2: Responses as in Figure 1 for a di�erent time interval using the basic
surrogate formulation (10) (top) and exploiting the modifications (13) of the
response correction scheme (bottom).

surrogate is required to locate the fine model optimum more accurately. The
”‘spikes”’ appearing in the response due to large values of the correction term
can be viewed, in a way, as a numerical noise that slows down the algorithm
convergence and makes the optimum more di⇤cult to locate.

A few simple means described below can address these issues and further
improve the accuracy of the surrogate’s response as well as the performance
of the optimization algorithm. We introduce non-negative bounds for the coarse
model response (the negative response is non-physical and is a result of numerical
errors due to using large time steps in the numerical solution of the coarse model)
and an upper bound aub for the correction factors. We furthermore restrict the
correction factors to one in case the fine and coarse model responses are below a
certain threshold � which should be of the order of the discretization error below
which the responses can be treated as zero.

More specifically, the following modifications of the model outputs and the
scaling factors are performed for each iteration k

(i) yc =

�
0; if yc � 0
yc; else

, (ii) ak =

�
aub; if ak ⇥ aub

ak; else
,

(iii) ak = 1 if (ỹ�
f � � and ỹc � �),

(13)

where the operations are again meant point-wise and where (i) is applied before
smoothing. From numerical experiments, aub = 10 turned out to be a reasonable
choice and we furthermore consider � = 10�4.



/ 3047

Improved Correction Scheme

Figure:   Same model responses as on previous slide.

‣ A few simple means can address these issues and further improve the accuracy of the 
surrogate’s response as well as the performance of the optimization algorithm

‣ Large positive and negative peaks present in the surrogate responses using the original 
correction scheme are removed

10 Malte Prieß et al.
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ỹ c(u)
sk(u)
ỹ�

f(ū)
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surrogate formulation (10) (top) and exploiting the modifications (13) of the
response correction scheme (bottom).

surrogate is required to locate the fine model optimum more accurately. The
”‘spikes”’ appearing in the response due to large values of the correction term
can be viewed, in a way, as a numerical noise that slows down the algorithm
convergence and makes the optimum more di⇤cult to locate.

A few simple means described below can address these issues and further
improve the accuracy of the surrogate’s response as well as the performance
of the optimization algorithm. We introduce non-negative bounds for the coarse
model response (the negative response is non-physical and is a result of numerical
errors due to using large time steps in the numerical solution of the coarse model)
and an upper bound aub for the correction factors. We furthermore restrict the
correction factors to one in case the fine and coarse model responses are below a
certain threshold � which should be of the order of the discretization error below
which the responses can be treated as zero.

More specifically, the following modifications of the model outputs and the
scaling factors are performed for each iteration k

(i) yc =

�
0; if yc � 0
yc; else

, (ii) ak =

�
aub; if ak ⇥ aub

ak; else
,

(iii) ak = 1 if (ỹ�
f � � and ỹc � �),

(13)

where the operations are again meant point-wise and where (i) is applied before
smoothing. From numerical experiments, aub = 10 turned out to be a reasonable
choice and we furthermore consider � = 10�4.

10 Malte Prieß et al.
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3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1

x 10
4

0

0.05

0.1

0.15

0.2

time [ hours ]

D
E

T
 [
m

m
o
l 
N

 m
−

3
]

Fig. 2: Responses as in Figure 1 for a di�erent time interval using the basic
surrogate formulation (10) (top) and exploiting the modifications (13) of the
response correction scheme (bottom).

surrogate is required to locate the fine model optimum more accurately. The
”‘spikes”’ appearing in the response due to large values of the correction term
can be viewed, in a way, as a numerical noise that slows down the algorithm
convergence and makes the optimum more di⇤cult to locate.

A few simple means described below can address these issues and further
improve the accuracy of the surrogate’s response as well as the performance
of the optimization algorithm. We introduce non-negative bounds for the coarse
model response (the negative response is non-physical and is a result of numerical
errors due to using large time steps in the numerical solution of the coarse model)
and an upper bound aub for the correction factors. We furthermore restrict the
correction factors to one in case the fine and coarse model responses are below a
certain threshold � which should be of the order of the discretization error below
which the responses can be treated as zero.

More specifically, the following modifications of the model outputs and the
scaling factors are performed for each iteration k
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�
0; if yc � 0
yc; else

, (ii) ak =

�
aub; if ak ⇥ aub

ak; else
,

(iii) ak = 1 if (ỹ�
f � � and ỹc � �),

(13)

where the operations are again meant point-wise and where (i) is applied before
smoothing. From numerical experiments, aub = 10 turned out to be a reasonable
choice and we furthermore consider � = 10�4.
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The Maths Behind: NPZD Equations

Full 3-d tracer transport equations:
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Physics-based surrogates inherit relevant physical character-
istics of the original fine model so that only a limited amount of
fine model data is necessary to ensure su⇧cient accuracy. Also,
generalization capability of the physics-based models is typi-
cally much better than that of the functional ones. As a results,
SBO schemes working with physics-based surrogates normally
require small number of fine model evaluations to yield a satis-
factory solution.

The low-fidelity (or coarse) model can be created in various
ways. The simple and straightforward approaches include the
use of a coarser discretization in time and/or space (while em-
ploying the same simulation tool as for the fine model), simpli-
fied physics or di⌅erent ways of describing the same physical
phenomenon or even by using analytical formulas if available.

The surrogate, we use in this paper is physics-based. The
specific coarse model is obtained by a coarser time discretiza-
tion (cf. Section 5) which is further aligned by using a multi-
plicative response correction (cf. Section 6).

3.3. Consistency Conditions and Convergence of SBO

Provided that the surrogate sk satisfies so-called zero- and
first-order consistency conditions with the original fine model
y f (uk) at the iterate uk, i.e., agreement between the function
values and first-order derivatives at the current iteration point,
mathematically written as

sk(uk) = y(uk), s⌥k(uk) = y⌥(uk), (6)

the surrogate-based scheme (5) is provably convergent to at
least a local optimum of (4) under mild conditions regarding
the coarse and fine model smoothness (see, e.g., [30]), and pro-
vided that the surrogate optimization scheme is enhanced by the
trust-region (TR) safeguard, i.e.,

uk+1 = argmin
 u�uk  ⇧ ⌅k

J ( sk(u) ) s.t. constraints, (7)

with ⌅k being the trust-region radius updated according to the
TR rules. We refer the reader to e.g. [22, 23] for more details.

In (6), y⌥ (and s⌥k) denotes the derivatives of the fine model
and surrogate’s response w.r.t. the parameter vector u and at
the point uk, i.e., generally given as

y⌥(uk) :=
d y
d u

�����u=uk

. (8)

In practice, exact sensitivity information may not be obtainable,
e.g., if the derivatives are calculated using finite di⌅erentiation.
In such cases, the consistency conditions (6) only hold approx-
imately. While this may not be su⇧cient for “theoretical” con-
vergence, the use of trust-region and even approximate sensitiv-
ity substantially improve the SBO algorithm performance (see,
e.g., [23])

The surrogate in this paper uses both fine model sensitivity
information as well as trust-region convergence safeguards to
increase the robustness of the optimization procedure and the
accuracy of the solution obtained by SBO.

4. Example: A Marine Ecosystem Model

The model developed by Oschlies and Garçon [31] is a cou-
pled system of four tracers with dissolved inorganic nitrogen
(N), phytoplankton (P), zooplankton (Z), and detritus (D), thus
also called NPZD model, in the following summarized in the
tracer or state vector y = (yi)i=1,...,nt with nt = 4.

The NPZD model simulates the tracer concentrations in one
water column at a given horizontal position. This is moti-
vated by the fact that there have been special time series studies
at fixed locations [18]. Clearly, the computational e⌅ort in a
one-dimensional simulation is significantly smaller than in the
three-dimensional case. However, since biochemistry mainly
happens locally in space and since the complexity of response
of this specific model is high, this model serves as a good test
example for the applicability of SBO approaches.

The model basically fits into our general framework (2). In
the specific NPZD model considered here, no advection term
“div(vyi)” as in (2) is used, since a reduction to vertical advec-
tion would make no sense. Starting from a general continuous
formulation, the model is governed by the equations

⌦yi

⌦t
= ⌦z (⌃ ⌦zyi) + qi(y,u), i = 1, . . . , 4, (9)

where, as in (2), yi(t, z) : I ⇤ ⇤ ⌃ R (with the domain ⇤ � R)
denotes the concentration of tracer i at time t and the vertical
spatial location z. The coupling terms qi(y,u) are explicitly
given as

q1(y, u) = ⇥z
m y3 + ⇤m y4 � J(y1, y2, t, z) y2,

q2(y, u) = J(y1, y2, t, z)y2 � G(y2, ⇧, g) y3 � ⇥p
m y2,

q3(y, u) = ⇥G(y2, ⇧, g) y3 � ⇥z
m y3 � ⇥⌅

z (y3)2,

q4(y, u) = (1 � ⇥) G(y2, ⇧, g) y3 + ⇥
p
m y2 + ⇥

⌅
z (y3)2

� ⇤m y4 � ws ⌦zy4.

(10)

The system involves an explicit sinking velocity ws for the tracer
detritus, and a non-di⌅erentiability, namely in the growth rate
of phytoplankton, which is modeled after the minimum princi-
ple of von Liebig [32] as

J(y1, y2, t, z) = min
⇥
µ̄(y2, t, z),Vp · u(y1, t, z)

⇤
, (11)

where the analytical solution for the light-limited growth rate,
denoted as µ̄(y2, t, z), is given according to Evans and Parslow
[33], integrated down to the given depth z [31, 19]. Here, addi-
tional parameters �, kw and ⌃ are involved (cf. Table 1).

The factor for nutrient limited growth of phytoplankton u and
the maximal phytoplankton growth rate Vp are given as

u(y1, t, z) =
y1

kN + y1
, Vp = µm · (Cre f )c�(t,z), (12)

where the parameters kN ,Cre f and c are briefly described in Ta-
ble 1 and where Vp further depends on the water temperature�,
which has to be provided by an ocean circulation model. Due
to the minimum in the growth rate of phytoplankton in (11), the
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2, 3], for example in the following form:

E
⌅y
⌅t
= f
�
y,
⌅y
⌅xi
,
⌅2y
⌅xi⌅x j

, u
⇥

in I ⇤⇥

y(t0, x) = yinit in ⇥

By = 0 on I ⇤ �,

(1)

where y(t, x) : I ⇤ ⇥ ⌅ R is the vector of the state variable,
with a definite time interval I = [t0, t0 + T ], t0 ⇧ R an initial
point in time, T ⇧ R a duration, ⇥ ⇧ R3 a domain and where
� = ⌅⇥ denotes its boundary. The time variable is denoted by
t ⇧ I and the spacial variable by x = (x1, x2, x3)⌃ ⇧ ⇥. We use a
boldfaced notation to distinguish a vector from a continuous or
scalar variable in the following.

The right-hand side f includes all spatial di⇤erential opera-
tors as well as the coupling between the components of the state
variable y. In climate models, it often additionally depends ex-
plicitly on the space and time variables x and t, respectively,
which, for simplicity, is omitted in the notation. Moreover, f
depends on a number of model parameters which are summa-
rized in the vector u. The vector-valued function yinit : ⇥ ⌅ R
includes the initial model data and B denotes the boundary oper-
ator which – when representing for example a Neumann bound-
ary condition – is nonlinear and includes the first normal deriva-
tive.

E is a matrix with the size of y, typically being the iden-
tity matrix for a PDE while having rank deficiency for a PDAE
[24]. We include PDAEs in this formulation since for example
in ocean circulation models [3], the underlying Navier-Stokes
equations are – when written in the above form – a PDAE sys-
tem. Then y may for example consist of the velocity, pressure,
temperature or salinity field. In the case of marine ecosystem
models, which are formulated as a PDE system, the matrix E
can be set to the identity and thus omitted. In this case, the
state vector y contains so-called biogeochemical tracers such
as phytoplankton, see Section 2.1 below and 4 for details.

2.1. Marine Ecosystem Models
Marine ecosystem models mainly consist of two parts,

namely the ocean circulation and the biogeochemical model
[see, e.g., 4, 5, 25]. The coupling between ocean circulation
and the biogeochemical interactions such as photosynthesis is
mostly regarded as a one-way coupling. This means that the
influence of the biota on the circulation (including temperature
and maybe salinity distribution) is assumed to be negligible and
thus is often omitted (so-called o�-line mode). See for example
[26] where such an o⇤-line computation has been thoroughly
described and investigated for an atmospheric model. Velocity
and temperature fields are computed beforehand by an ocean
circulation model and only used as forcing data for the biogeo-
chemical simulations which significantly reduces the computa-
tional e⇤ort (see, e.g., [27]). Our example model (cf. Section 4)
is simulated in such an o⇤-line mode.

The model equations consist of a system of coupled
advection-di⇤usion-reaction equations, where the reaction
terms (also called source minus sink, or sms terms) are given

by the biogeochemical interactions between the biogeochemi-
cal tracers. As a special form of (1), a system of these transport
equations for nt tracers then generally reads

⌅yi

⌅t
= div(�⌥yi) � div(vyi) + qi(y,u), i = 1, . . . , nt (2)

where yi(t, x) : I ⇤ ⇥ ⌅ R denotes the concentration of tracer
i at time t and the spatial location x. If no interactions with the
atmosphere is taken into account, homogeneous Neumann con-
ditions on the boundary � for all concentrations are employed,
i.e.,

⌅yi

⌅n
= n · ⌥y = 0 on I ⇤ �, i = 1, . . . , nt, (3)

where n denotes the normal vector. The time dependent turbu-
lent mixing/di⇤usion coe⌅cient �(t, x) : I ⇤ ⇥ ⌅ R as well as
the velocity vector field v(t, x) : I ⇤⇥⌅ R3 with v = (vi)i=1,2,3,
both satisfy the Navier-Stokes equations. Since, here, the pa-
rameters u ⇧ Rnp , which are subject to the parameter opti-
mization, are scalar coe⌅cients in the nonlinear biogeochem-
ical coupling terms qi, we use a boldfaced notation.

3. Surrogate-Based Optimization

The optimization task is typically formulated as the mini-
mization problem of the form

min
u

J(y(u)) s.t. constraints, (4)

where J denotes a cost function measuring the misfit between
relevant quantities (which are obtained from the discrete model
response y at the parameters/design u) and some desired spec-
ifications. For the considered optimization problem in this
paper, these quantities are tracer concentrations, whereas the
desired specifications are corresponding observed quantities
(cf. Section 4.4). However, for the purpose of this section, to
sketch the basic ideas of SBO, we omit a more detailed for-
mulation of J here. The state y is normally evaluated through
a computationally expensive numerical simulation and will be
referred to as the high-fidelity or fine model in the following.

For many optimization problems, a high computational cost
and/or even the lack of sensitivity information of the model un-
der consideration is a major bottleneck. As a result, straightfor-
ward attempts of solving (4) by employing the fine model under
consideration directly in an optimization loop (cf. Figure 1a)
using conventional optimization algorithms are often tedious or
even infeasible, since typically a large number of the expensive
fine model evaluations are required. The need for an accelerated
optimization process becomes critical, for which the optimiza-
tion of complex marine ecosystem models is a representative
example.

Surrogate-based optimization (SBO) [11, 15, 16, 17] ad-
dresses these issues by replacing the original fine model in the
optimization loop by its computationally cheaper but yet rea-
sonably accurate surrogate (cf. Figure 1b). In particular, the
surrogate at the iterate uk, in the following denoted by sk(u), is
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Table 1: Model parameters (cf. Section 4). Those included in the parameter vector u = (u)i=1,...,12 are subject to the optimization.

ui symbol value/range unit (d=86400 s) parameter meaning

Cre f 1.066 1 growth coe⇤cient
c 1 ⌅C�1 growth coe⇤cient
R 6.625 1 molar carbon to nitrogen ratio (Redfield ratio)
kw 25 m�1 PAR extinction length

u1 ⇥ [0, 1] 1 assimilation e⇤ciency of zooplankton
u2 µm R+0 d�1 phytoplankton growth rate parameter
u3 � R+0 m2W�1d�1 slope of photosynthesis versus light intensity
u4 �z

m R+0 d�1 zooplankton loss rate
u5 ⇧ R+0 m2(mmol N)�1 light attenuation by phytoplankton
u6 ⌅ R+0 m6(mmol N)�2d�1 grazing encounter rate
u7 g R+0 d�1 maximum grazing rate
u8 �

p
m R+0 d�1 phytoplankton linear mortality

u9 �⇤z R+0 m3(mmol N)�1d�1 zooplankton quadratic mortality
u10 ⇤m R+0 d�1 detritus remineralization rate
u11 kN R+0 mmol Nm�3 half saturation for NO3 uptake
u12 ws R+0 m d�1 detritus sinking velocity

model becomes non-di⇥erentiable. Another non-linear term in
the equations is the zooplankton grazing function G given as

G(y2, ⌅, g) =
g ⌅ (y2)2

g + ⌅ (y2)2 , (13)

which describes the transfer from phytoplankton to zooplank-
ton and detritus with the parameters ⌅ and g again briefly de-
scribed in Table 1. There are totally twelve model parameters
subject to the optimization, which are all summarized in Table
1. For the purpose of this paper, to demonstrate the applicabil-
ity of the proposed SBO approach, we don’t omit more details
on the model and the involved parameters and refer the reader
to [31, 18] for a more thorough description.

4.1. Carbon Primary Production
In addition to the tracers N, P,Z and D, the so-called carbon

fixation or carbon primary production measured as carbon up-
take (denotes as CUP in the following) is additionally taken
into account in the optimization process for this model [18, 19]
(see also Section 4.4). For a given depth z and time t, it can be
briefly formulated as

y5 := J(y1, y2, t, z) · y2(t, z) · R

where R denotes the Redfield ratio, see, e.g., [34] and [4, Sec-
tion 4.2]. It depends non-linearly on the states y1 and y2, i.e., the
tracers dissolved inorganic nitrogen (N) and phytoplankton (P).
It states that the relation between carbon (C), nitrogen (N) and
phosphorus (P) in marine phytoplankton is given as C : N : P =
106 : 16 : 1. Thus, N can be used as a model state from which
the potential uptake of CO2 can be estimated (assuming that
there is no limit on phosphorus P and carbon dioxide CO2 in
the water).

The carbon primary production obeys a daily cycle (cf. Fig-
ure 3a), since the growth of phytoplankton, J(y1, y2, t, z), is light
limited due to the term µ̄(y2, t, z) in (11) (see, e.g., [18] for de-
tails). The state CUP is calculated “internally” in the model
simulation and provided as an additional state y5 of the full
model response y.

4.2. Numerical Solution

In an o⇥-line coupled marine ecosystem model (as for ex-
ample the NPZD model considered here), there are two ways
to make use of the precomputed ocean circulation data. One
way is to employ the ocean model that precomputes the data to
generate so-called transport matrices, see [27]. These matrices
usually represent a mean ocean circulation field for one month.
Another approach, which the NPZD model is based on, is that
the ocean model data is stored directly and afterwards used for
assembling the system matrices for the di⇥erential operators for
adjective and di⇥usive tracer transport in the marine ecosystem
model itself.

For the numerical simulation, one may consider a spin-up
into a steady quasi-periodic or periodic seasonal cycle, thus ap-
plying some kind of fixed point iteration. Another way, which
is employed in the NPZD model considered in this paper, is to
perform a complete transient run with time-dependent forcing
data (as for example the temperature) to obtain a solution of (9).

More specifically, the time discretization is performed by
a sequential integration at the discrete time steps 0 = t0 <
. . . < t j < . . . < tn⌥�1 = T using a time step ⌥ := t j � t j�1
and with totally n⌥ steps. A typical integration time is 5
years (see below, Section 4.3, for the details). This integration
is partially implicit. An explicit Euler time-stepping scheme
for the non-linear coupling terms qi and the sinking term for
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‣ Discretized model equation of the high-fidelity model (with state variable y):

( M = # of discrete temporal points of the fine model, I = # of discrete spatial points)

Physical Low-Fidelity Model - One Example

Thus, before going to 3-D, this model serves as a good test example for the applicability of surrogate-based

optimization approaches, since it includes all significant features of ecosystem models.

In the NPZD model, the concentrations (in mmol N m�3) of dissolved inorganic nitrogen N , phytoplank-

ton P , zooplankton Z, and detritus (i.e., dead material) D are summarized in the vector y = (y(l))l=N,P,Z,D

and described by the following coupled PDE system

⇧y(l)

⇧t
=

⇧

⇧z

⇤
�

⇧y(l)

⇧z

⌅
+ Q(l)(y, u2, . . . , un), l = N, P,Z

⇧y(D)

⇧t
=

⇧

⇧z

⇤
�

⇧y(D)

⇧z

⌅
+ Q(D)(y, u2, . . . , un)� ⇧y(D)

⇧z
u1, l = D

⇧
���⌥

���⌃
(6)

in (�H, 0)⇥ (0, T )

with additional appropriate initial values. Here, z denotes the only remaining, vertical spatial coordinate,

and H the depth of the water column. The terms Q(l) are the biogeochemical coupling (or source-minus-sink)

terms for the four tracers and u = (u1, . . . , un) is the vector of unknown physical and biological parameters.

The sinking term is only apparent in the equation for detritus. In the one-dimensional model no advection

term is used, since a reduction to vertical advection would make no sense. Thus, the circulation data (taken

from an ocean model) are the turbulent mixing coe⌅cient � = �(z, t) and the temperature � = �(z, t), which

goes into the nonlinear coupling terms Q(l) but is omitted in the notation.

4.2. Discretization Scheme and Discretized Model

The continuous model (6) is discretized and solved using an operator splitting method, which for a given

a time-step ⇥ reads

�
I � ⇥Adi�

j

⇥
� �↵ �

:=Bdiff
j

yj+1 =
�
I + ⇥Asink

⇥
� �↵ �

:=Bsink

BQ
j ⇤BQ

j ⇤BQ
j ⇤BQ

j (yj), j = 1, . . . ,M. (7)

Recall that by yj we denote the discrete solution in time step j given as

yj = (yji)i=1,...,I , j = 1, . . . ,M. (8)

at the discrete spatial points. Since in our case the model output consists of four tracers, I denotes the

number of spatial discrete points times 4.

If the discrete state yj is given in such a way that the four discrete tracer vectors at the time step j

are concatenated, the matrices Adi�
j , Asink in (7) are (4 ⇥ 4)-block-diagonal matrices. They represent the

discretization of the di⇥usion (with second order central di⇥erences) and the sinking (discretized by an

upstream scheme), respectively.

In every time step j ⌅ j + 1, at first the nonlinear coupling operators Qj (that depend on tj directly

and/or via the temperature field �) are computed at every spatial grid point and integrated by four explicit

Euler steps, each of which is described by the nonlinear operator

BQ
j (yj) :=

 
yj +

⇥

4
Qj(yj)

⌦
.
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Figure 2: High- and low-fidelity model output y, ŷ, respectively, for the state dissolved inorganic nitrogen at depth
z ⇥ �2.68m for di�erent values of the coarsening factor � and the same randomly chosen parameter vector u. For
simplicity we skip super- and subscripts in the legends of all figures.

resulting matrix Bdi�
j depends on j and is non-symmetric [21, Section 5]. It is tridiagonal, and the system is

solved directly by splitting it up into the four blocks. Writing this last step formally as a matrix inversion,

formulation (7) corresponds to (2).

In the original discrete model (6) the time step ⇥ is chosen as one hour, and this version is from now on

what in surrogate-based optimization is called the high-fidelity or coarse model.

5. The Low-Fidelity Model

Surrogates can be either based upon an approximation of the sampled high-fidelity model data (functional

surrogates) or on a physical low-fidelity model. Functional surrogates are constructed without any particular

knowledge of the system and will not be addressed further in this paper. In contrast, surrogates based upon

a physical low-fidelity model (also known as physically based surrogates [22]) inherit more characteristics of

the fine model under consideration. Possible ways to create such a physical low-fidelity model are by using

a coarser discretization (while employing the same simulation tool as for the high-fidelity model), simplified

physics or di�erent ways of describing the same physical phenomenon or even by using analytical formulas

if available. In this paper, we use a low-fidelity model which has a coarser time discretization which we will

explain below.

5.1. Coarser Time Discretization

The low-fidelity model is obtained by using a coarser time discretization with

⇥̂ = �⇥

with a coarsening factor � � N \ {0, 1}, while keeping the spatial discretization fixed. The state variable

for this coarser discretized model will be denoted by ŷ, the corresponding number of discrete time steps by

M̂ = M/�. Note that the parameters u for this coarse model are the same as for the fine model. Figure 2

shows the fine and coarse model output y, ŷ for the state dissolved inorganic nitrogen, for di�erent values of

� and at the same randomly chosen parameter vector u.
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In every time step j ⌅ j + 1, at first the nonlinear coupling operators Qj (that depend on tj directly

and/or via the temperature field �) are computed at every spatial grid point and integrated by four explicit

Euler steps, each of which is described by the nonlinear operator

BQ
j (yj) :=
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⇥

4
Qj(yj)

⌦
.

Note that, for simplicity, we omitted the additional arguments of the term Qj in the formulation above.

Then, an explicit Euler step with full step-size ⇥ is performed for the sinking term. This step is represented

by the matrix Bsink. Since the sinking velocity is temporarily constant, this matrix does not depend on the

time step j. Finally, an implicit Euler step for the di⇥usion operator is applied. Due to � = �(z, t) the
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‣ In the original discrete model (high-fidelity model) the time step τ is chosen as one hour

‣ The low-fidelity model (with state variable ŷ) is obtained by using a coarser time 
discretization with

(with a coarsening factor β ∈ N \ {0, 1}, while keeping the spatial discretization fixed)

50
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The Optimization Problem

‣ Adjust/identify model parameters u such that 
given measurement data yd  is matched by the 
model output y( u )

‣ The mathematical task thus can be classified as a 
least-squares type optimization or inverse 
problem 

‣ The opt. process requires a substantial number of 
(typically expensive) function evaluations

‣ Methods that aim at reducing the optimization 
cost (e.g. surrogate-based optimization), are 
highly desirable

2.2. Optimization Problem

In this subsection we formulate the optimization problem for the discrete model. Omitting the boldface

notation, the same formulation holds for the continuous model, but naturally would require further analysis,

which is beyond the scope of this paper.

The key task in parameter optimization is to minimize a least-squares type cost function measuring the

misfit between the discrete model output y = y(u), i.e., the solution of (2), and given observational data

yd [11, 12]. We assume that yd ⇤ Y , otherwise an appropriate observation/restriction operator has to be

introduced. In most cases, the cost function is constrained by parameter bounds. Thus the parameter

optimization problem can be written as

min
u�Uad

J(y(u) ) (3)

where

J(y ) :=
1
2
||y � yd ||2Y , Uad := {u ⇤ Rn : bl ⇥ u ⇥ bu} , bl,bu ⇤ Rn , bl < bu.

The inequalities in the definition of the set Uad of admissible parameters are meant component-wise. The

functional J may additionally include a regularization term for the parameters, which was not necessary in

our case.

Additional constraints on the state variable y might be necessary, e.g., to ensure non-negativity of the

temperature or of the concentrations of biogeochemical quantities. In our example model however, by using

appropriate parameter bounds bl and bu, non-negativity of the state variables can be ensured. This was

already observed and used in [14].

3. Surrogate-Based Optimization

For many nonlinear optimization problems, a high computational cost of evaluating the objective function

and its sensitivity, and, in some cases, the lack of sensitivity information, is a major bottleneck. The need for

decreasing the computational cost of the optimization process is especially important while handling complex

three-dimensional models.

Surrogate-based optimization [1–4] addresses these issues by replacing the original high-fidelity model y

by its surrogate model s. The surrogate should be computationally cheap and analytical tractable. It can be

obtained by approximating the sampled high-fidelity model data using a suitable technique, e.g., polynomial

regression [1], kriging [17] or support-vector regression [18].

Another possibility, explored in this paper, is to construct the surrogate through correction of a coarse

or low-fidelity model, a less accurate but computationally cheap representation of y. The surrogate model

is updated at each iteration of the optimization algorithm, typically using available high-fidelity model data.

In particular, the surrogate model sk at iteration k can be constructed by only using the high-fidelity model

output y(uk) at the current optimization variable vector uk and the corresponding low-fidelity model output.

5

4.1. The Continuous Model

Simulating the marine ecosystem has become a key tool for understanding the ocean carbon cycle and its

variability. The marine ecosystem contains several biogeochemical quantities (called tracers), for example

nutrients, phyto- and zooplankton which interact and are moreover transported by the ocean circulation

and influenced by temperature and salinity. Thus ecosystem simulations require modeling and computation

both of ocean circulation and biogeochemistry. The underlying continuous models are governed by coupled

systems of nonlinear, parabolic PDEs or DAEs, for ocean circulation (ocean models, i.e., Navier-Stokes

equations with additional temperature and salinity transport equations) and transport of biogeochemical

tracers (marine ecosystem models, i.e., convection- or advection-di�usion-reaction type equations) [9]. Thus

they fit in our general formulation (1) and its discrete counterpart (2).

In ecosystem models, the parameters to be optimized – summarized in the vector u in (2) – are for example

growth and dying rates of the tracers and thus appear in the usually nonlinear coupling or interaction terms

in the model.

Our example ecosystem model was developed by Oschlies and Garcon [13] and simulates the interac-

tion of dissolved inorganic nitrogen, phytoplankton, zooplankton and detritus (thus also called NPZD

model). One aim was to reproduce observations yd at di�erent North Atlantic locations by the optimiza-

tion of model parameters within credible limits. Figure 4.1 shows the model output and target data,

respectively, as illustration for the tracer detritus for a certain depth and a part of the time interval.
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Figure 1: Model output y(D) (detritus) and observa-

tion data y(D)
d for one year at depth z ⇥ �25m.

The model uses pre-computed ocean circulation and

temperature data from an ocean model (in a sometimes

called o�-line modus), i.e., no feedback by the biogeo-

chemistry on the circulation and temperature is mod-

eled [13]. Thus the continuous model (1) here just con-

tains the biochemistry, whereas all circulation data are

hidden in the right-hand side f .

As a test case and since biogeochemistry – except for

sinking processes – mainly happens locally in space, we

use here a one-dimensional version of the model. This

version simulates one water column at a given horizontal

position. This is additionally motivated by the fact that

there have been special time series studies at fixed locations. Clearly the computational e�ort in a one-

dimensional simulation is significantly smaller than in the three-dimensional case. Thus, before going to 3-D,

this model serves as a good test example for the applicability of surrogate-based optimization approaches,

since it includes all significant features of ecosystem models.

In the NPZD model, the concentrations (in mmol N m�3) of dissolved inorganic nitrogen N , phytoplank-

ton P , zooplankton Z, and detritus (i.e., dead material) D are summarized in the vector y = (y(l))l=N,P,Z,D

7

Figure:   Model output y(D) (detritus) and target 
data yd  for one year at depth z ≃ −25 m.

6 Malte Prieß et al.

3 Optimization Problem

The task of parameter optimization in climate science typically is to minimize
a least-squares type cost function measuring the misfit between the discrete
model output y = y(u) and given observational data yd [2, 21]. In most cases,
the problem is constrained by parameter bounds. The optimization problem can
generally be written as

min
u�Uad

J(y(u) ), (5)

where

J(y ) := ||y � yd ||2,

Uad := {u ⇤ Rn : bl ⇥ u ⇥ bu},bl,bu ⇤ Rn, bl < bu .
(6)

The inequalities in the definition of the set Uad of admissible parameters are
meant component-wise. The functional J may additionally include a regulariza-
tion term for the parameters. However, from numerical experiments, it turned
out that such a term is not necessary to ensure a well performing optimization
process.

Additional constraints on the state variable y might be necessary, e.g., to en-
sure non-negativity of the temperature or of the concentrations of biogeochemi-
cal quantities. In our example model, however, by using appropriate parameter
bounds bl and bu, non-negativity of the state variables can be ensured. This
was already observed and used in [16].

4 Surrogate-Based Optimization

For many nonlinear optimization problems, a high computational cost of eval-
uating the objective function and its sensitivity, and, in some cases, the lack
of sensitivity information, is a major bottleneck. The need for decreasing the
computational cost of the optimization process is especially important while
handling complex three-dimensional models.

Surrogate-based optimization [1, 6, 9, 15] is a methodology that addresses
these issues by replacing the original high-fidelity or fine model y by a surro-
gate, in the following denoted by s, a computationally cheap and yet reasonably
accurate representation of y.

Surrogates can be created by approximating sampled fine model data (func-
tional surrogates). Popular techniques include polynomial regression, kriging,
artificial neural networks and support vector regression [15, 18, 19]. Another
possibility, exploited in this work, is to construct the surrogate model through
appropriate correction/alignment of a low-fidelity or coarse model (physics-based
surrogates) [20].

Physics-based surrogates inherit physical characteristics of the original fine
model so that only a few fine model data is necessary to ensure their good
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Climate Models - A General Formulation 

‣ Ocean circulation models (Navier-Stokes equations): 
‣ y may consist for example of the velocity field, pressure, temperature, salinity 

‣ Marine ecosystem model:  
‣ The matrix E can be set to the identity and thus omitted
‣ here, the rhs f( y, u ) contains 

(a) the transport (diffusion,advection) and nonlinear coupling of so-called 
biogeochemical tracers such as phyto-/ zooplankton etc.

(b) the ocean model data: precalculated („offline“) or obtained simultaneously („online“)

2, 3], for example in the following form:

E
⌅y
⌅t
= f
�
y,
⌅y
⌅xi
,
⌅2y
⌅xi⌅x j

, u
⇥

in I ⇤⇥

y(t0, x) = yinit in ⇥

By = 0 on I ⇤ �,

(1)

where y(t, x) : I ⇤ ⇥ ⌅ R is the vector of the state variable,
with a definite time interval I = [t0, t0 + T ], t0 ⇧ R an initial
point in time, T ⇧ R a duration, ⇥ ⇧ R3 a domain and where
� = ⌅⇥ denotes its boundary. The time variable is denoted by
t ⇧ I and the spacial variable by x = (x1, x2, x3)⌃ ⇧ ⇥. We use a
boldfaced notation to distinguish a vector from a continuous or
scalar variable in the following.

The right-hand side f includes all spatial di⇤erential opera-
tors as well as the coupling between the components of the state
variable y. In climate models, it often additionally depends ex-
plicitly on the space and time variables x and t, respectively,
which, for simplicity, is omitted in the notation. Moreover, f
depends on a number of model parameters which are summa-
rized in the vector u. The vector-valued function yinit : ⇥ ⌅ R
includes the initial model data and B denotes the boundary oper-
ator which – when representing for example a Neumann bound-
ary condition – is nonlinear and includes the first normal deriva-
tive.

E is a matrix with the size of y, typically being the iden-
tity matrix for a PDE while having rank deficiency for a PDAE
[24]. We include PDAEs in this formulation since for example
in ocean circulation models [3], the underlying Navier-Stokes
equations are – when written in the above form – a PDAE sys-
tem. Then y may for example consist of the velocity, pressure,
temperature or salinity field. In the case of marine ecosystem
models, which are formulated as a PDE system, the matrix E
can be set to the identity and thus omitted. In this case, the
state vector y contains so-called biogeochemical tracers such
as phytoplankton, see Section 2.1 below and 4 for details.

2.1. Marine Ecosystem Models
Marine ecosystem models mainly consist of two parts,

namely the ocean circulation and the biogeochemical model
[see, e.g., 4, 5, 25]. The coupling between ocean circulation
and the biogeochemical interactions such as photosynthesis is
mostly regarded as a one-way coupling. This means that the
influence of the biota on the circulation (including temperature
and maybe salinity distribution) is assumed to be negligible and
thus is often omitted (so-called o�-line mode). See for example
[26] where such an o⇤-line computation has been thoroughly
described and investigated for an atmospheric model. Velocity
and temperature fields are computed beforehand by an ocean
circulation model and only used as forcing data for the biogeo-
chemical simulations which significantly reduces the computa-
tional e⇤ort (see, e.g., [27]). Our example model (cf. Section 4)
is simulated in such an o⇤-line mode.

The model equations consist of a system of coupled
advection-di⇤usion-reaction equations, where the reaction
terms (also called source minus sink, or sms terms) are given

by the biogeochemical interactions between the biogeochemi-
cal tracers. As a special form of (1), a system of these transport
equations for nt tracers then generally reads

⌅yi

⌅t
= div(�⌥yi) � div(vyi) + qi(y,u), i = 1, . . . , nt (2)

where yi(t, x) : I ⇤ ⇥ ⌅ R denotes the concentration of tracer
i at time t and the spatial location x. If no interactions with the
atmosphere is taken into account, homogeneous Neumann con-
ditions on the boundary � for all concentrations are employed,
i.e.,

⌅yi

⌅n
= n · ⌥y = 0 on I ⇤ �, i = 1, . . . , nt, (3)

where n denotes the normal vector. The time dependent turbu-
lent mixing/di⇤usion coe⌅cient �(t, x) : I ⇤ ⇥ ⌅ R as well as
the velocity vector field v(t, x) : I ⇤⇥⌅ R3 with v = (vi)i=1,2,3,
both satisfy the Navier-Stokes equations. Since, here, the pa-
rameters u ⇧ Rnp , which are subject to the parameter opti-
mization, are scalar coe⌅cients in the nonlinear biogeochem-
ical coupling terms qi, we use a boldfaced notation.

3. Surrogate-Based Optimization

The optimization task is typically formulated as the mini-
mization problem of the form

min
u

J(y(u)) s.t. constraints, (4)

where J denotes a cost function measuring the misfit between
relevant quantities (which are obtained from the discrete model
response y at the parameters/design u) and some desired spec-
ifications. For the considered optimization problem in this
paper, these quantities are tracer concentrations, whereas the
desired specifications are corresponding observed quantities
(cf. Section 4.4). However, for the purpose of this section, to
sketch the basic ideas of SBO, we omit a more detailed for-
mulation of J here. The state y is normally evaluated through
a computationally expensive numerical simulation and will be
referred to as the high-fidelity or fine model in the following.

For many optimization problems, a high computational cost
and/or even the lack of sensitivity information of the model un-
der consideration is a major bottleneck. As a result, straightfor-
ward attempts of solving (4) by employing the fine model under
consideration directly in an optimization loop (cf. Figure 1a)
using conventional optimization algorithms are often tedious or
even infeasible, since typically a large number of the expensive
fine model evaluations are required. The need for an accelerated
optimization process becomes critical, for which the optimiza-
tion of complex marine ecosystem models is a representative
example.

Surrogate-based optimization (SBO) [11, 15, 16, 17] ad-
dresses these issues by replacing the original fine model in the
optimization loop by its computationally cheaper but yet rea-
sonably accurate surrogate (cf. Figure 1b). In particular, the
surrogate at the iterate uk, in the following denoted by sk(u), is
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‣ Marine ecosystem model:  
‣ The matrix E can be set to the identity and thus omitted
‣ here, the rhs f( y, u ) contains 

(a) the transport (diffusion,advection) and nonlinear coupling of so-called 
biogeochemical tracers such as phyto-/ zooplankton etc.

(b) the ocean model data: precalculated („offline“) or obtained simultaneously („online“)

2, 3], for example in the following form:

E
⌅y
⌅t
= f
�
y,
⌅y
⌅xi
,
⌅2y
⌅xi⌅x j

, u
⇥

in I ⇤⇥

y(t0, x) = yinit in ⇥

By = 0 on I ⇤ �,

(1)

where y(t, x) : I ⇤ ⇥ ⌅ R is the vector of the state variable,
with a definite time interval I = [t0, t0 + T ], t0 ⇧ R an initial
point in time, T ⇧ R a duration, ⇥ ⇧ R3 a domain and where
� = ⌅⇥ denotes its boundary. The time variable is denoted by
t ⇧ I and the spacial variable by x = (x1, x2, x3)⌃ ⇧ ⇥. We use a
boldfaced notation to distinguish a vector from a continuous or
scalar variable in the following.

The right-hand side f includes all spatial di⇤erential opera-
tors as well as the coupling between the components of the state
variable y. In climate models, it often additionally depends ex-
plicitly on the space and time variables x and t, respectively,
which, for simplicity, is omitted in the notation. Moreover, f
depends on a number of model parameters which are summa-
rized in the vector u. The vector-valued function yinit : ⇥ ⌅ R
includes the initial model data and B denotes the boundary oper-
ator which – when representing for example a Neumann bound-
ary condition – is nonlinear and includes the first normal deriva-
tive.

E is a matrix with the size of y, typically being the iden-
tity matrix for a PDE while having rank deficiency for a PDAE
[24]. We include PDAEs in this formulation since for example
in ocean circulation models [3], the underlying Navier-Stokes
equations are – when written in the above form – a PDAE sys-
tem. Then y may for example consist of the velocity, pressure,
temperature or salinity field. In the case of marine ecosystem
models, which are formulated as a PDE system, the matrix E
can be set to the identity and thus omitted. In this case, the
state vector y contains so-called biogeochemical tracers such
as phytoplankton, see Section 2.1 below and 4 for details.

2.1. Marine Ecosystem Models
Marine ecosystem models mainly consist of two parts,

namely the ocean circulation and the biogeochemical model
[see, e.g., 4, 5, 25]. The coupling between ocean circulation
and the biogeochemical interactions such as photosynthesis is
mostly regarded as a one-way coupling. This means that the
influence of the biota on the circulation (including temperature
and maybe salinity distribution) is assumed to be negligible and
thus is often omitted (so-called o�-line mode). See for example
[26] where such an o⇤-line computation has been thoroughly
described and investigated for an atmospheric model. Velocity
and temperature fields are computed beforehand by an ocean
circulation model and only used as forcing data for the biogeo-
chemical simulations which significantly reduces the computa-
tional e⇤ort (see, e.g., [27]). Our example model (cf. Section 4)
is simulated in such an o⇤-line mode.

The model equations consist of a system of coupled
advection-di⇤usion-reaction equations, where the reaction
terms (also called source minus sink, or sms terms) are given

by the biogeochemical interactions between the biogeochemi-
cal tracers. As a special form of (1), a system of these transport
equations for nt tracers then generally reads

⌅yi

⌅t
= div(�⌥yi) � div(vyi) + qi(y,u), i = 1, . . . , nt (2)

where yi(t, x) : I ⇤ ⇥ ⌅ R denotes the concentration of tracer
i at time t and the spatial location x. If no interactions with the
atmosphere is taken into account, homogeneous Neumann con-
ditions on the boundary � for all concentrations are employed,
i.e.,

⌅yi

⌅n
= n · ⌥y = 0 on I ⇤ �, i = 1, . . . , nt, (3)

where n denotes the normal vector. The time dependent turbu-
lent mixing/di⇤usion coe⌅cient �(t, x) : I ⇤ ⇥ ⌅ R as well as
the velocity vector field v(t, x) : I ⇤⇥⌅ R3 with v = (vi)i=1,2,3,
both satisfy the Navier-Stokes equations. Since, here, the pa-
rameters u ⇧ Rnp , which are subject to the parameter opti-
mization, are scalar coe⌅cients in the nonlinear biogeochem-
ical coupling terms qi, we use a boldfaced notation.

3. Surrogate-Based Optimization

The optimization task is typically formulated as the mini-
mization problem of the form

min
u

J(y(u)) s.t. constraints, (4)

where J denotes a cost function measuring the misfit between
relevant quantities (which are obtained from the discrete model
response y at the parameters/design u) and some desired spec-
ifications. For the considered optimization problem in this
paper, these quantities are tracer concentrations, whereas the
desired specifications are corresponding observed quantities
(cf. Section 4.4). However, for the purpose of this section, to
sketch the basic ideas of SBO, we omit a more detailed for-
mulation of J here. The state y is normally evaluated through
a computationally expensive numerical simulation and will be
referred to as the high-fidelity or fine model in the following.

For many optimization problems, a high computational cost
and/or even the lack of sensitivity information of the model un-
der consideration is a major bottleneck. As a result, straightfor-
ward attempts of solving (4) by employing the fine model under
consideration directly in an optimization loop (cf. Figure 1a)
using conventional optimization algorithms are often tedious or
even infeasible, since typically a large number of the expensive
fine model evaluations are required. The need for an accelerated
optimization process becomes critical, for which the optimiza-
tion of complex marine ecosystem models is a representative
example.

Surrogate-based optimization (SBO) [11, 15, 16, 17] ad-
dresses these issues by replacing the original fine model in the
optimization loop by its computationally cheaper but yet rea-
sonably accurate surrogate (cf. Figure 1b). In particular, the
surrogate at the iterate uk, in the following denoted by sk(u), is
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1D NPZD model: Numerical stability

‣ Choosing the time step too large could lead to a numerically unstable scheme
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1D NPZD model: Numerical stability

‣ The condition of stability seems to be dominated by the vertical advective transport
➔   yielding a dependance of the time step on the ratio h / v („standard“ CFL condition)
( h = spatial step-size, v = here, sinking velocity )

‣ I investigate a numerical scheme of the following form

(Grigorieff, Numerische Mathematik II für Ingenieure, St - 1)

3 Numerical Stability

In this section we want to analyze the numerical stability of the discretization scheme used in
the original model implementation as given in Subestion 2.2.

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] we investigate a
numerical scheme of the following form

yj+1 = Cj yj , Cj = Cj(�,⌥zi)i=1,...,n, j = 0, 1, . . . ,m� 1. (16)

[Note: Before we used j = 1, . . . ,m. Decide for one notation.] Here Cj are the propagation
matrices representing the processes in the model. They are dependant on the chosen temporal
and spatial discretization (�,⌥zi)i=1,...,n.

From (16) we directly obtain the following description

yj =

⌅
m�1⌃

l=0

Cl

⇧
y0

� ||yj || ⇤ K ||y0 || , K :=
m�1⌃

l=0

||Cl || . (17)

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] the numerical scheme
(16) is stable if for K in (17) it holds that

sup{ K(�, (⌥zi)i=1,...,n), � ⇧ 0, (⌥zi)i=1,...,n ⇧ 0} <⌃. (18)

It follows that (18) in turn is satisfied if

||Cj(�,⌥zi)i=1,...,n || ⇤ 1, j = 0, . . . ,m� 1. (19)

or more precisely a su⇤cient condition for stability is

||Cj(�,⌥zi)i=1,...,n || ⇤ 1 + L�, j = 0, . . . ,m� 1 (20)

where L is a number independent of j, � and (⌥zi)i=1,...,n. Stability is ensured since

m�1⌃

l=0

||Cl || ⇤
m�1⌃

l=0

exp (L�) = exp(LT ) <⌃ (21)

where T = m · � denotes the total discrete time.
To follow (17) we linearize the nonlinear operator B̃Q

j in the discretization scheme of the
NPZD model given in (3) as follows

B̃Q
j ⌅ yj +

�

4
�
Qj(0) + JQj (0)yj

⇥
=

⌥
I4n⇥4n +

�

4
JQj (0)

�

↵ ⌦ �
=:Lj

yj , Qj(0) = 0. (22)

Then we obtain the following scheme:

yj =

⌅
m�1⌃

l=0

Dl

⇧
y0, Dl =: (B̃diff

l )�1 B̃sink L4
l (23)

� ||yj || ⇤
⌅

m�1⌃

l=0

⇤⇤⇤
⇤⇤⇤ (B̃diff

l )�1
⇤⇤⇤
⇤⇤⇤

⇧ ⇤⇤⇤
⇤⇤⇤ B̃sink

⇤⇤⇤
⇤⇤⇤

⌅
m�1⌃

l=0

||Ll ||4
⇧

. (24)
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data (taken from an ocean model) are the turbulent mixing coe⌅cient K� = K�(z, t) and the
temperature T = T (z, t) which is used in the nonlinear term (Cref )cT where c = 1.066 is kept
constant. Note that besides the nonlinearities there is an additional non-di⇥erentiability due to
the term ’min (. . .)’.

2.2 Discretization Scheme and Discretized Model Equations

The continuous model (1) is discretized and solved using an operator splitting method, which
for a given a time-step � reads

 
I4n�4n � � Ãdi�

j

⌦

� �↵ �
=:B̃di�

j

yj+1 =
 
I4n�4n + � Ãsink

⌦

� �↵ �
=:B̃sink

B̃Q
j ⌅ B̃Q

j ⌅ B̃Q
j ⌅ B̃Q

j (yj), j = 0, . . . ,m� 1.(3)

[Capital letter? Then, consequently N would have to be used for vertical depth which already
denotes nitrogen / m defined? / Model started from y0 but stored is y1, y2, . . .. Change to
j = 1, . . . ,m? Comment about this?] For simplicity, we further define the following state
variables

ŷj+1 := B̃Q
j ⌅ B̃Q

j ⌅ B̃Q
j ⌅ B̃Q

j (yj),

ỹj+1 := B̃sink ŷj+1, j = 0, . . . ,m� 1.

[Better?: ŷj instead of ŷj ] Recall that by yj we denote the discrete solution in time step j given
as

yj = (yji)i=1,...,I , j = 0, . . . ,m� 1. (4)

at the discrete spatial points. Since in our case the model output consists of four tracers, n
denotes the number of spatial discrete points times 4.

If the discrete state yj is given in such a way that the four discrete tracer vectors at the time
step j are concatenated, i.e.,

yj =
�
y(N)

ji , y(P )
ji , y(Z)

ji , y(D)
ji

⇥T

i=1,...,I
, j = 0, . . . ,m� 1

the matrices Ãdi�
j , Ãsink in (8) are (4⇤ 4)-block-diagonal matrices and further given as follows:

B̃sink :=

⇤

⌥⌥⇧

In�n 0 0 0
0 In�n 0 0
0 0 In�n 0
0 0 0 Bsink

⌅

��⌃ , B̃di�
j :=

⇤

⌥⌥⇧

Bdi�
j 0 0 0
0 Bdi�

j 0 0
0 0 Bdi�

j 0
0 0 0 Bdi�

j

⌅

��⌃ (5)

where the sub-matrices Bsink := II�I + � · Asink and Bdi�
j := II�I � � · Adi�

j represent the
discretization of the di⇥usion (with second order central di⇥erences) and the sinking (discretized
by an upstream scheme) for one of the four tracers N,P,Z,D, respectively.

In every time step j ⌃ j + 1, at first the nonlinear coupling operators Q(l)
j ⇧ Q(l)(tj) (that

depend on tj directly and/or via the temperature field �) are computed at every spatial grid
point and integrated by four explicit Euler steps, each of which is described by the nonlinear
operator

B̃Q
j (yj) :=

 
yj +

�

4
Qj(yj)

⌦
, (6)

Qj(yj) :=
�
Q(N)

j (y), Q(P )
j (y), Q(Z)

j (y), Q(D)
j (y)

⇥T
. (7)

3

data (taken from an ocean model) are the turbulent mixing coe⌅cient K� = K�(z, t) and the
temperature T = T (z, t) which is used in the nonlinear term (Cref )cT where c = 1.066 is kept
constant. Note that besides the nonlinearities there is an additional non-di⇥erentiability due to
the term ’min (. . .)’.
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at the discrete spatial points. Since in our case the model output consists of four tracers, n
denotes the number of spatial discrete points times 4.
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where the sub-matrices Bsink := II�I + � · Asink and Bdi�
j := II�I � � · Adi�

j represent the
discretization of the di⇥usion (with second order central di⇥erences) and the sinking (discretized
by an upstream scheme) for one of the four tracers N, P, Z,D, respectively.

In every time step j ⌃ j + 1, at first the nonlinear coupling operators Q(l)
j ⇧ Q(l)(tj) (that

depend on tj directly and/or via the temperature field �) are computed at every spatial grid
point and integrated by four explicit Euler steps, each of which is described by the nonlinear
operator
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⌦
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1D NPZD model: Numerical stability

‣ One directly obtains the following description:

‣ The numerical scheme is stable if for K it holds that

‣ It follows this in turn is satisfied if

3 Numerical Stability

In this section we want to analyze the numerical stability of the discretization scheme used in
the original model implementation as given in Subestion 2.2.

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] we investigate a
numerical scheme of the following form

yj+1 = Cj yj , Cj = Cj(�,⌥zi)i=1,...,n, j = 0, 1, . . . ,m� 1. (16)

[Note: Before we used j = 1, . . . ,m. Decide for one notation.] Here Cj are the propagation
matrices representing the processes in the model. They are dependant on the chosen temporal
and spatial discretization (�,⌥zi)i=1,...,n.

From (16) we directly obtain the following description

yj =

⌅
m�1⌃

l=0

Cl

⇧
y0

� ||yj || ⇤ K ||y0 || , K :=
m�1⌃

l=0

||Cl || . (17)

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] the numerical scheme
(16) is stable if for K in (17) it holds that

sup{ K(�, (⌥zi)i=1,...,n), � ⇧ 0, (⌥zi)i=1,...,n ⇧ 0} <⌃. (18)

It follows that (18) in turn is satisfied if

||Cj(�,⌥zi)i=1,...,n || ⇤ 1, j = 0, . . . ,m� 1. (19)

or more precisely a su⇤cient condition for stability is

||Cj(�,⌥zi)i=1,...,n || ⇤ 1 + L�, j = 0, . . . ,m� 1 (20)

where L is a number independent of j, � and (⌥zi)i=1,...,n. Stability is ensured since

m�1⌃

l=0

||Cl || ⇤
m�1⌃

l=0

exp (L�) = exp(LT ) <⌃ (21)

where T = m · � denotes the total discrete time.
To follow (17) we linearize the nonlinear operator B̃Q

j in the discretization scheme of the
NPZD model given in (3) as follows

B̃Q
j ⌅ yj +

�

4
�
Qj(0) + JQj (0)yj

⇥
=

⌥
I4n⇥4n +

�

4
JQj (0)

�

↵ ⌦ �
=:Lj

yj , Qj(0) = 0. (22)

Then we obtain the following scheme:

yj =

⌅
m�1⌃

l=0

Dl

⇧
y0, Dl =: (B̃diff

l )�1 B̃sink L4
l (23)

� ||yj || ⇤
⌅

m�1⌃

l=0

⇤⇤⇤
⇤⇤⇤ (B̃diff

l )�1
⇤⇤⇤
⇤⇤⇤

⇧ ⇤⇤⇤
⇤⇤⇤ B̃sink

⇤⇤⇤
⇤⇤⇤

⌅
m�1⌃

l=0

||Ll ||4
⇧

. (24)
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To follow (17) we linearize the nonlinear operator B̃Q

j in the discretization scheme of the
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�
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⇤⇤⇤
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⇤⇤⇤
⇤⇤⇤
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⇤⇤⇤
⇤⇤⇤

⌅
m�1⌃

l=0

||Ll ||4
⇧

. (24)

8

3 Numerical Stability

In this section we want to analyze the numerical stability of the discretization scheme used in
the original model implementation as given in Subestion 2.2.

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] we investigate a
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⇤⇤⇤
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⇤⇤⇤
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‣ I linearize the nonlinear operator in the discretization scheme of the NPZD model

‣ Accordingly, a suffiient criterion for stability of the linearized scheme in the NPZD model is

3 Numerical Stability

In this section we want to analyze the numerical stability of the discretization scheme used in
the original model implementation as given in Subestion 2.2.

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] we investigate a
numerical scheme of the following form

yj+1 = Cj yj , Cj = Cj(�,⌥zi)i=1,...,n, j = 0, 1, . . . ,m� 1. (16)

[Note: Before we used j = 1, . . . ,m. Decide for one notation.] Here Cj are the propagation
matrices representing the processes in the model. They are dependant on the chosen temporal
and spatial discretization (�,⌥zi)i=1,...,n.

From (16) we directly obtain the following description

yj =

⌅
m�1⌃

l=0

Cl

⇧
y0

� ||yj || ⇤ K ||y0 || , K :=
m�1⌃

l=0

||Cl || . (17)

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] the numerical scheme
(16) is stable if for K in (17) it holds that

sup{ K(�, (⌥zi)i=1,...,n), � ⇧ 0, (⌥zi)i=1,...,n ⇧ 0} <⌃. (18)

It follows that (18) in turn is satisfied if

||Cj(�,⌥zi)i=1,...,n || ⇤ 1, j = 0, . . . ,m� 1. (19)

or more precisely a su⇤cient condition for stability is

||Cj(�,⌥zi)i=1,...,n || ⇤ 1 + L�, j = 0, . . . ,m� 1 (20)

where L is a number independent of j, � and (⌥zi)i=1,...,n. Stability is ensured since

m�1⌃

l=0

||Cl || ⇤
m�1⌃

l=0

exp (L�) = exp(LT ) <⌃ (21)

where T = m · � denotes the total discrete time.
To follow (17) we linearize the nonlinear operator B̃Q

j in the discretization scheme of the
NPZD model given in (3) as follows

B̃Q
j ⌅ yj +

�

4
�
Qj(0) + JQj (0)yj

⇥
=

⌥
I4n⇥4n +

�

4
JQj (0)

�

↵ ⌦ �
=:Lj

yj , Qj(0) = 0. (22)

Then we obtain the following scheme:

yj =

⌅
m�1⌃

l=0

Dl

⇧
y0, Dl =: (B̃diff

l )�1 B̃sink L4
l (23)

� ||yj || ⇤
⌅

m�1⌃

l=0

⇤⇤⇤
⇤⇤⇤ (B̃diff

l )�1
⇤⇤⇤
⇤⇤⇤

⇧ ⇤⇤⇤
⇤⇤⇤ B̃sink

⇤⇤⇤
⇤⇤⇤

⌅
m�1⌃

l=0

||Ll ||4
⇧

. (24)

8

3 Numerical Stability

In this section we want to analyze the numerical stability of the discretization scheme used in
the original model implementation as given in Subestion 2.2.

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] we investigate a
numerical scheme of the following form

yj+1 = Cj yj , Cj = Cj(�,⌥zi)i=1,...,n, j = 0, 1, . . . ,m� 1. (16)

[Note: Before we used j = 1, . . . ,m. Decide for one notation.] Here Cj are the propagation
matrices representing the processes in the model. They are dependant on the chosen temporal
and spatial discretization (�,⌥zi)i=1,...,n.

From (16) we directly obtain the following description

yj =

⌅
m�1⌃

l=0

Cl

⇧
y0

� ||yj || ⇤ K ||y0 || , K :=
m�1⌃

l=0

||Cl || . (17)

According to [Grigorie�, Numerische Mathematik II für Ingenieure, St - 1] the numerical scheme
(16) is stable if for K in (17) it holds that

sup{ K(�, (⌥zi)i=1,...,n), � ⇧ 0, (⌥zi)i=1,...,n ⇧ 0} <⌃. (18)

It follows that (18) in turn is satisfied if

||Cj(�,⌥zi)i=1,...,n || ⇤ 1, j = 0, . . . ,m� 1. (19)

or more precisely a su⇤cient condition for stability is

||Cj(�,⌥zi)i=1,...,n || ⇤ 1 + L�, j = 0, . . . ,m� 1 (20)

where L is a number independent of j, � and (⌥zi)i=1,...,n. Stability is ensured since

m�1⌃

l=0

||Cl || ⇤
m�1⌃

l=0

exp (L�) = exp(LT ) <⌃ (21)

where T = m · � denotes the total discrete time.
To follow (17) we linearize the nonlinear operator B̃Q

j in the discretization scheme of the
NPZD model given in (3) as follows

B̃Q
j ⌅ yj +

�

4
�
Qj(0) + JQj (0)yj

⇥
=

⌥
I4n⇥4n +

�

4
JQj (0)

�

↵ ⌦ �
=:Lj

yj , Qj(0) = 0. (22)

Then we obtain the following scheme:

yj =

⌅
m�1⌃

l=0

Dl

⇧
y0, Dl =: (B̃diff

l )�1 B̃sink L4
l (23)

� ||yj || ⇤
⌅

m�1⌃

l=0

⇤⇤⇤
⇤⇤⇤ (B̃diff

l )�1
⇤⇤⇤
⇤⇤⇤

⇧ ⇤⇤⇤
⇤⇤⇤ B̃sink

⇤⇤⇤
⇤⇤⇤

⌅
m�1⌃

l=0

||Ll ||4
⇧

. (24)

8

whereas, when formulating the sinking in an implicit way, we obtain

yj =

⇥
m�1⇧

l=0

Dl

⇤
y0, Dl =: (B̃diff

l )�1 (D̃sink)�1 L4
l (25)

� || yj || ⇥
⇥

m�1⇧

l=0

���
��� (B̃diff

l )�1
���
���

⇤ ���
��� (D̃sink)�1

���
���

⇥
m�1⇧

l=0

|| Ll ||4
⇤

. (26)

According to (19), a su⇤ient criterion for stability of the scheme (23) is
���
��� (B̃diff

j )�1
���
��� ⇥ 1,

���
��� B̃sink

���
��� ⇥ 1, || Lj || ⇥ 1, j = 0, . . . ,m� 1, (27)

or, according to (20), even more strictly
���
��� (B̃diff

j )�1
���
��� ⇥ 1 + L1⇤,

���
��� B̃sink

���
��� ⇥ 1 + L2⇤, || Lj || ⇥ 1 + L3⇤, j = 0, . . . ,m� 1. (28)

for some numbers L1, L2, L3 independent of j, ⇤ and (⌅zi)i=1,...,n.
On the other hand, for the scheme (25) the criterion for the sinking matrix changes to

���
��� (D̃sink)�1

���
��� ⇥ 1, j = 0, . . . ,m� 1, (29)

or, according to (20), even more strictly
���
��� (D̃sink)�1

���
��� ⇥ 1 + L4⇤, j = 0, . . . ,m� 1. (30)

for some numbers L4 independent of j, ⇤ and (⌅zi)i=1,...,n.

3.1 Proof of ||(B̃diff
j )�1|| ⇥ 1

Since B̃diff
j contains only the submatrices Bdiff

j (cf. (5)), i.e., the same matrices are used to
propagate all tracers, it is su⇤cient to look at the submatrices Bdiff

j correspondingly.
According to [1, p. 49�] the matrix B̃diff

j is called a M-matrix, since for the matrix elements,
denoted by a�⇥ , �, ⇥ ⇤ I, I := XXX, it obviously holds

a�� > 0 ⌃� ⇤ I, a�⇥ ⇥ 0 ⌃� ⇧= ⇥. (31)

whereas also the matrix is strictly diagonally dominant, since
⌅

⇥ ⌅=�, ⇥⇤I

|a�⇥| < |a��| ⌃� ⇤ I. (32)

Finally, according to [XXX] , the first inequality in (27) holds. [Where did we find this in the book
by Hackbusch? Does this also hold in our case since here the matrix B̃diff

j is non-symmetric?]

Another Approach
According to [Moraca, 2008, Equation (3)] the following upper bound for the norm of the

inverse can be obtained if the matrix Bdiff
j is strictly diagonally dominant

�(Bdiff
j )�1�⇥ ⇥ 1

min�⇤I( |a��|� r� )
, r� :=

⌅

⇥ ⌅=�, ⇥⇤I

|a�⇥ |. (33)

Since obviously the matrix is strictly diagonally dominant and min�⇤I( |a��|�r� ) = 1 we obtain

�(Bdiff
j )�1�⇥ ⇥ 1, ⌃j

and subsequently, according to (5),

�(B̃diff
j )�1�⇥ ⇥ 1, ⌃j.
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‣ Independence of the numerical stability of quantities in the numerical model such as the 
mesh discretization is clearly desirable

‣ Most importantly in the context of surrogate-based optimization, this would allow to exploit 
an even coarser resolution to create a physically yet reasonable coarse model

‣ I furthermore investigated a modification of the originally exploited explicit time integration 
approach for the vertical advection by exploiting an implicit Euler scheme instead

‣ It turned out that this enhancement allows to obtain a numerically stable solution without 
restrictions to the mesh discretization and the vertical velocity
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1D NPZD model: Numerical results
Verification by model generated data

Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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Figure:   Fine, coarse model and surrogate optimization: Optimal solutions.

Figure:   Convergence history of cost function.
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