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‣ Some facts about „The Future Ocean“   ...   general research aim   ...   our workgroup

‣ Oceanic CO2 uptake   ...   marine ecosystem models

‣ The underlying models   ...   the math behind

‣ One example

‣ Parameter optimization

‣ Current Research
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Cluster of Excellence “The Future Ocean”
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Computer Science, Mathematics Marine Science

Economy

Art
Furthermore ... 

• medical scientists
• lawyers
• sociologists
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General Research Aims

Some well known facts ...

‣ CO2 concentration has doubled since 1900

‣ To-date we assume 4 − 8◦C increase ... in the buisiness as usual case

‣ Agreement on the “2-degree-aim” until the year 2100

‣ This relates to a CO2 emission reduction about 80% until 2050

‣ Only concentrating sustainable energypolitics will not comply with this aim

‣ Think of carbon management/sequestration approaches

4

Alltogether ...

‣ Jointly investigate climate and ocean change

‣ Re-evaluate the opportunities and risks of global change for the oceans 

‣ Develop a sustainable system of resource management of the world’s oceans and marine 
resources
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Algorithmic Optimal Control - C02 Uptake of the Ocean

‣ Understanding the oceanic CO2 uptake is of central importance for projections of climate 
change and oceanic ecosystems

‣ The ocean   ➔   biggest CO2 sink

‣ More than half of anthropogenic CO2 stored for long time   ➔   Crucial impact on climate

‣ Natural sequestration based upon global CO2 cycle

‣ Furthermore additional C02 sequestration approaches are considered and analyzed

5

‣ Coupling of ocean circulation to marine ecosystem models indispensible

‣ Simulating ocean circulation and biogeochemistry   ➔   key tool for understanding the 
ocean carbon cycle and its variability

‣ Furthermore parameter optimization for better predictibility of the models is highly desirable
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Marine Ecosystem Models - Oceanic CO2 Uptake ...

‣ ... is determined by the solution of CO2 in the water via the ocean surface

‣ ... and physical and biogeochemical processes in the water, i.e. 

‣ Ocean circulation                 
‣ Photosynthesis (depends on nutrients), consumption by zooplankton, sinking of 

dead material, ...

----------------------------------------------

Oceanic CO2 Uptake ...

is determined by 

... the solution of CO2 in the water via the ocean surface

... and physical and biogeochemical processes in the water                                                
(ocean circulation, photosynthesis, sinking of dead material)

Picture: Wagner GFDL
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‣ Sinking dead organic material exports 
the carbon to the deeper ocean, below 
the upper mixed layer
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The Underlying Models ...

‣ ... are governed by coupled systems of nonlinear parabolic partial differential equations for 
ocean circulation (ocean models) and transport of biogeochemical tracers (marine 
ecosystem models)

J(N, P ) = min{J1(P ), J2(N)}

G(�, g, P ) =
g�P 2

g + �P 2

q1 = −J(N,P )P + γmD + Φz
mZ,

q2 = J(N,P )P − Φp
mP −G(�, g)Z,

q3 = βG(�, g, P )Z − Φz
mZ − Φ∗

zZ
2,

q4 = (1− β)G(�, g, P )Z + Φ∗
zZ

2 + Φp
mP − γmD.

∂yi

∂t
= div (κ∇yi)� �� �

diffusion

+ div(�vyi)� �� �
advection

+ qi(y1, . . . , yn, T, S, u)� �� �
tracer coupling

The Maths Behind: NPZD Equations

Full 3-d tracer transport equations:

z

In 1-d: No advection except for detritus, only vertical diffusion

N

D

P

Z

‣ The coupling relations between the tracers are more or less empirical 
(i.e. it is not very clear how the coupling terms look like mathematically, and, moreover, how 
many tracers have to be taken into account) 

‣ The velocity and temperature and sometimes also salinity data are either computed 
simultaneously (online) or in advance by an ocean model (offline)

‣ Offline modus is ... computationally cheaper but neglects the feedback effects from the 
biogeochemistry to the ocean circulation and temperature distribution etc.
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One Example ...

‣ Marine ecosystem model of NPZD type (Oschlies Garcon Glob. Biogeochem. Cycles 1999)

‣ Here: Ocean model data (velocity, diffusion coefficient, temperature) is precalculated by an 
ocean model (i.e. offline mode)

Marine Ecosystem Models: An Example

• Composition of marine phytoplankton (according to the Redfield ratio):               
Carbon - Nitrate -Phosphat - Oxygen

• The NPZD model (Oschlies Garcon Glob. Biogeochem. Cycles 1999)

N P

ZD

J · P

γD

Φ z
Z Φ

p P

Φ∗
zZ

2

G(P )Z
β

(1−
β)

sinking particles

C : N : P : O2 = 106 : 16 : 1 : −138

Detritus

Nitrate

Zooplankton

Phytoplankton
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The Maths behind
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q3 = βG(�, g, P )Z − Φz
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zZ
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q1 = −J(N,P )P + γmD + Φz
mZ,
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A Typical Simulation Output
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A Typical 
Simulation 
Output ...

• Spring bloom

• High-frequent 
oszillations

• Slight but global 
changes for different 
parameters

‣ Spring Bloom

‣ High-frequent oscillations

‣ Slight but global changes 
for different parameters

10
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Parameter Optimization

The Future Ocean

The Model

The OPT Problem

Surrogate OPT

SM Optimization

Example

Conclusions

Malte Prieß - 20/09/2010 - Cluster of Excellence “The Future Ocean” Surrogate-Based Optimization of Biogeochemical Models - p. 8/23

· Minimize distance between the model output y(u) and some target yd
(of least-squares type)

min u∈U J (y(u), u) :=
∣
∣
∣

∣
∣
∣y(u) − yd

∣
∣
∣

∣
∣
∣
2

Y
+ α · ||u ||2U

U := { u ∈ R
n : bl ≤ u ≤ bu } , J : Y ×U→ R

· Control variables u (scalar numbers ) = 12 unknown physical/ biological
parameters in the nonlinear coupling term Q(l)
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Improve models so they can be used e.g. for prediction of climate change ...

‣ Many parameters are used which ...
... are chosen such that the model output y(u) remains feasible (i.e. non-negative) and ...
... that given measurement data is matched yd

‣ For this purpose the aim is ...
... to minimize a least-squares type cost functional, measuring this misfit. 

‣ Control vector u = unknown physical/ biological parameters in the nonlinear coupling terms 
q in the tracer transport equations

‣ Cost function may have lots of local minima + is high-dimensional

11
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What optimization methods can be used?
What optimization methods can be used?

• Using only function evaluations (evolutionary/genetic alg.):

• many evaluations necessary -> need fast solver

• may find global optimum

• can easily treat box constraints 

• Using descent information (gradient, conjugate gradient, quasi-Newton/BFGS, SQP, 
active set, interior point methods …)

• need a formula for derivative/gradient (adjoint model)

• faster, may stick in local optimum

• need special treatment of constraints

What optimization methods can be used?

• Using only function evaluations (evolutionary/genetic alg.):

• many evaluations necessary -> need fast solver

• may find global optimum

• can easily treat box constraints 

• Using descent information (gradient, conjugate gradient, quasi-Newton/BFGS, SQP, 
active set, interior point methods …)

• need a formula for derivative/gradient (adjoint model)

• faster, may stick in local optimum

• need special treatment of constraints

Using only function evaluations 
(evolutionary/genetic alg.):

• many evaluations necessary, hence need fast solver

• may find global optimum

• can easily treat box constraints

Using descent information 
(gradient, conjugate gradient, quasi-Newton/BFGS, SQP, 
active set, interior point methods ...)

• need a formula for derivative/gradient (adjoint model)

• faster, migh become stuck in local optima

• need special treatment of constraints
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An important technology we use ...

‣ Algorithmic or Automatic Differentiation (AD)

‣ Generation of new computer code that 
compute derivatives, e.g. for optimization or 
sensitivities

An important technology we use ... 

• Algorithmic or Automatic Differentiation (AD):

• Generation of new computer code that compute 
derivatives, e.g. for optimization or sensitivities:

Model / 
simulation programx F(x)

new program F´(x)x

x

F(x)

F'(x)

Algorithmic Differentiation (AD)

Realisation:

Software

subroutine f(x,y,...) subroutine g_f(x,g_x,y,g_y,...)

Algorithmic Differentiation (AD)

Realisation:

Software

subroutine f(x,y,...) subroutine g_f(x,g_x,y,g_y,...)

Algorithmic Differentiation (AD)

Realisation:

Software

subroutine f(x,y,...) subroutine g_f(x,g_x,y,g_y,...)

subroutine    f ( x, y, ... ) subroutine    g_f ( x, g_x, y, g_y, ... )



Oceanic CO2 Uptake ...

is determined by 

... the solution of CO2 in the water via the ocean surface

... and physical and biogeochemical processes in the water                                                
(ocean circulation, photosynthesis, sinking of dead material)

Picture: Wagner GFDL

26.03.08 11:08Carbon-dioxide-3D-vdW.svg
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Ongoing Research ...



Questions arise ...
‣ Can the model reproduce real data? Is the model output injective? Is the model output 

independent of initial values? How is the dependency on data errors/uncertainties?

‣ Method:   SQP solver, repeated starts from randomly chosen parameters, AD generated 
gradients  =  useful tool for parameter optimization

‣ Test:   Reconstruction of random parameters up to arbitrary precision
( albeit only with additional restriction on P )

‣ Actual optimization: 320 starts, 180 ’identical’ minima with less than 1% spread in 
parameters
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Model Validation

15

(J. Rückelt, joru@informatik.uni-kiel.de)
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Optimization and Validation

• Calculate the uncertainties 
(if the model is not too big 
& our optimizer ist fast)

• Shown are optimal 
parameters values when 
introducing Gaussian data 
errors/uncertainties

• The optimal parameters 
are also nearly Gaussian
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Optimization Results
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Figure: Observational data and model trajectories, optimized with

constant parameters obtained by the SQP method. Again, values are

Shown for depth 0 - 5 meters and years 1991-1996

• Calculate the uncertainties (if the 
model is not too big & our optimizer 
ist fast)

• Shown are optimal parameters 
values when introducing gaussian 
data errors/uncertainties

• For this model the results above 
remain valid for real data, even 
though the model fit is not optimal

• For this model these results remain valid for real data, even though the model 
fit is not optimal:

Optimization and Validation
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(J. Rückelt, joru@informatik.uni-kiel.de)
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Linear Quadratic Optimal Control

� The aim of parameter optimization is to find the parameter

vector u with an optimal fit to given observational data yd .

� Application of Linear Quadratic Optimal Control (LQOC ) .

� the aim is to minimize the cost/misfit subject to the following

linear dynamics:

ẋ(t) = A(t)x(t) + B(t)u(t), t > t0 (1)

x(t0) = x0,

� The NPZD model is nonlinear, Essential for applying a

(LQOC) design is the linearization of the nonlinear differential

equation.

� A(t) = ∂f
∂y (yd (t), ud ),

� B(t) = ∂f
∂u (yd (t), ud )

Linear Quadratic Optimal Control

� The aim of parameter optimization is to find the parameter

vector u with an optimal fit to given observational data yd .

� Application of Linear Quadratic Optimal Control (LQOC ) .

� the aim is to minimize the cost/misfit subject to the following

linear dynamics:

ẋ(t) = A(t)x(t) + B(t)u(t), t > t0 (1)

x(t0) = x0,

� The NPZD model is nonlinear, Essential for applying a

(LQOC) design is the linearization of the nonlinear differential

equation.

� A(t) = ∂f
∂y (yd (t), ud ),

� B(t) = ∂f
∂u (yd (t), ud )

(M. El Jarbi, mej@informatik.uni-kiel.de)

‣ Application of Linear Quadratic Optimal Control (LQOC) approach

‣ The aim is ...
... to minimize the cost/misfit subject to the following linear dynamics:

‣ The NPZD model is nonlinear, 
➔   essential for applying a (LQOC) design is the linearization of the nonlinear differential 
equation
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Marine Ecosystem Optimization and Simulation Toolbox in 3D

‣ Framework towards ...
... parameter optimization of global marine ecosystem models (i.e. ocean circulation models 
coupled to 3D marine ecosystem models)

‣ Transport Matrix approach [Khatiwala et al., 2004]

‣ Flexible enough for different resolutions

‣ The software is ...
• based on the spin-up framework by [Khatiwala, 2007]
• written using the PETSc library only, http://www.mcs.anl.gov/petsc

‣ It admitts ...
• Scalable Nonlinear Equation Solvers (globalized Newton-Krylov, Trust region)
• Flexible FORTRAN/C interface for general marine ecosystem models

J. Piwonski, jpi@informatik.uni-kiel.de)
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METOS3D

Simulated surface nutrient (phosphate, P O4) concentration in m mol/m3. 
Longitudinal and latitudinal resolution: 2,8125° (upper), 1,0° (lower)
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Surrogate-Based Optimization

‣ Actual optimization process involves ...

... evaluations of the high-fidelity model 
+ its sensitivitiy

‣ High computational cost and maybe ...

‣ ... sensitivities even not available

‣ High-fidelity model repaced by cheaper 
surrogate

Malte Prieß - 27/10/2010 - Cluster of Excellence “The Future Ocean” Surrogate-Based Optimization for Ecosystem Models - p. 1/5

Surrogate-Based Optimization for Ecosystem Models

u y(u) u ŷ(u)
high-fidelity low-fidelity

u sk(u)
surrogate

alignment/ correction≈

Actual optimization process involves . . .

Evaluation of “fine” model y(u) + its sensitivity y′(u)

! High computational cost

! Or even not available
⇓

y(u) replaced by computationally cheaper, less ac-
curate surrogate sk(u)

uk+1 = min s∈U J (sk(u + s), u)

sk(u) ≈ y(u) ,
(

s
′
k(u) ≈ y

′(u)
)

· Fine model evaluated once or a few times only per iteration

· Number of iterations needed to yield satisfactory solution is small

· Accurate (at least locally) and cheap surrogate model

· Analytically tractable (smooth, easy to optimize)

Key points ...

‣ Fine model evaluated once or a few times 
only per iteration

‣ Number of iterations needed to yield 
satisfactory solution is small

‣ Accurate (at least locally) and cheap 
surrogate model

‣ smooth, easy to optimize

(M. Priess, mpr@informatik.uni-kiel.de)
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Types of Surrogates

How to get the low-fidelity model?

‣ Using simplified physics

‣ Coarse discretization

‣ Using analytical formulas if available

Functional: 
Constructed without any particular knowledge of the system, based on sampled data and 
algebraic expressions, cheap to evaluate

Popular techniques: 
Low-order polynomials, Radial basis functions, Kriging

Physically based: 
Based on knowledge about the physical system in question, constructed from low-fidelity 
model, exist independently of the physical system, inherits more caharacteristics of the 
system, typically more expensive

Popular techniques:
Response correction, Space Mapping

u y(u) u ŷ(u)
high-fidelity low-fidelity

u sk(u)
surrogate

alignment/ correction≈



applications as in the case of the optimization of more complex three-dimensional mod-

els. The high-fidelity model output y in focus is replaced by a computationally cheaper

surrogate sk(u), in the optimization run in iteration k, in general

uk+1 = argmin s∈U J (sk(u + s),u) (3)

sk(u) ≈ y(u) , ( s�k(u) ≈ y�
(u) ) (4)

ŷ(u) , y(u)
alignment/ correction−→ sk(u) (5)

The surrogate should satisfy 0-order and ideally also 1st-order consistency with the high-

fidelity model in (and around) the current point u as given by Equation (4).

Key points for a well performing surrogate algorithm are a cheap function and sen-

sitivity evaluation of its basis, the low-fidelity model ŷ(u), a low cost for the correction

of this low-fidelity model to obtain the surrogate and a few number of iterations in the

surrogate-based optimization process in total resulting in a few evaluations of the high-

fidelity model only.

In general, surrogates are based upon a low-fidelity or coarse model which is then cor-

rected/aligned to obtain a reasonable approximation for the high-fidelity model (cf. Eq. (5)).

Surrogates can be either based upon a functional or a physical low-fidelity model. Those

obtained from a functional low-fidelity model are constructed without any particular

knowledge of the system on the basis of sampled data of the fine-model only and will

not be addressed further in this paper. On the other hand those surrogates based upon

a physical low-fidelity model (also known as physical surrogates), as the one we use here,

exist independently of the sampled data and therefore inherit more characteristics of the

fine model in focus. Possible ways to create such a physical low-fidelity model are by a

coarser discretisation, by using simplified physics or different ways of describing the same

physical phenomenon or even by using analytical formulas if available. In this paper we

will focus on a coarser discretised (in time) low-fidelity model as a basis for a surrogate.

5 The Low-Fidelity Model

The model (1) is solved using an operator splitting, with an explicit Euler-forward time

stepping scheme for the nonlinear coupling term Q and the sinking term on the one hand

and an implicit scheme for the diffusion on the other (cf. Eq. 1). OK?! An upstream

scheme for the sinking term and a central difference approximation for the diffusion is

used in the discretization of the corresponding operators. In the discretised form of the

model (1) we denote by yj the approximate solution in the time step j, where yj ≈
( y(zi, tj) )i=1,...,K , yj ∈ R4·K (cf. Eq. (1)) and K is equal to the number of discrete spatial

points. In matrix formulation we obtain

�
I − τ · Adiff

j

�
� �� �

:=Bdiff
j

yj+1 =
�
I + τ · Asink

j

�
� �� �

:=Bsink

◦BQ
j ◦BQ

j ◦BQ
j ◦BQ

j (yj)

BQ
j (yj) := [I + τ/4 · Qj(yj)] , j = 1, . . . ,M (6)

omitting the arguments t, u2, . . . , un in the operator Qj. In (6) the operators Adiff
j , Asink

contain the spatial discretisation of the sinking and diffusion term (4× 4 block-diagonal

6

‣ Low-fidelity model implementation from discretized model equations:

‣ For the low-fidelity model use:      state              with coarsening factor                       
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The Low-Fidelity Model

τ̂ = β · τŷ
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FIGURE 2. The figure shows one year of the fine model output y(u) and of the coarse model output ŷ for the state detritus at
depth z! 25 m for different values of ! with ! = "/"̂ and at some fixed parameters u.

‣ When chosing a coarse discretization one has to take into account ...
‣ numerical instabilities
‣ noisy model output due to low resolution of the model (huge peaks, maybe negative)

‣ The stability condition is determined mainly by the term:
(where h denotes the size of the discrete spatial step and v the ocean circulation)

Numerical Issues ...

h/v



‣ Aggressive Space Mapping approach (firstly developed by John W. Bandler et., 1994)

‣ Solving a (conditionally equivalent) nonlinear system of equations ...

‣ ... using a Quasi-Newton iteration with a Broyden rank-one approximation of the Jacobian of 
the mapping + 1st order Taylor approximation as above

7 Aggressive Space Mapping

The Aggressive Space Mapping (ASM) algorithm, which we use in this paper, was firstly
developed by John W. Bandler et al. [2, 1]. It is a conditionally equivalent approach
to directly optimize the surrogate from Equation (7) (cf. Section 4). We will later see
that both approaches coincide under certain conditions OK?! More details? . The ASM
algorithm in particular, first solves for the coarse model optimum û∗ and then iteratively
solves for a solution ū of the nonlinear system of equations

F(ū) := p(ū)− û∗ = 0 , û∗ := argmin u∈U J ( ŷ(u),u ) (9)

using a Quasi-Newton iteration [5, 6] with a 1st-order Taylor approximation pk for the
mapping p as in Equation (7) and a Broyden rank-one approximation [3] for the Jacobian
Bk ≈ p�(uk), i.e.

uk+1 = p−1
k (û∗) = uk + dk , Bk dk = −F(uk) = − (p(uk)− û∗)

Bk+1 = Bk +
(yk −Bk dk) dT

k

dT
k dk

. (10)

The idea behind this approach (as was illustrated e.g. in [4]) is that obviously if either
the fine model with optimum u∗ allows for an almost reachable design (y(u∗) ≈ yd) or
if both models are similar near their respective optima (ŷ(û∗) ≈ y(u∗)) we expect the
mapping to satisfy

p(u∗) = argminu∈U || ŷ(u)− y(u∗) ||2Y� �� �
ŷ[p(u∗)]≈y(u∗)≈yd

≈ argminu∈U || ŷ(u)− yd ||2Y = û∗ (11)

which is also referred to as a so-called perfect mapping. This motivates the approach
in Equation (9) seeking for a solution ū of p(ū) = û∗ with || ŷ(û∗)− y(ū) ||2 < � and
with ū ideally lying close to the fine model optimum u∗. Solving this nonlinear system of
equations is also referred to as the original SM approach (cf. [4]).

Note that, as was shown in [4], if the mapping is injective and the coarse model
optimum û∗ is unique then the solution of the ASM approach concides with the solution
ūs obtained by optimizing the surrogate (cf. Section (4)) defined in Equation (7), i.e.

ūs = argmin u∈U J (ŷ [p(u)] ,u) .

Furthermore note that one cannot expect in general the ASM solution ū and the one from
surrogate optimization ūs to coincide with the fine model optimum, i.e. ū �= u∗, ūs �= u∗,
unless the mapping is perfect, i.e. p(u∗) = û∗ as given in Eq. (11), and injective. However
in general one expects the fine and the coarse model to show important similarities and
hence to satisfy, depending on the model similarity, consistency at their respective optima,
i.e. y(u∗) ≈ ŷ(û∗), leading to an almost perfect mapping p(u∗) ≈ û∗ and hence ū ≈ ūs ≈
u∗. For a more detailed analysis we refer to [4] OK?! Comment about injectivity? .

Globalized Quasi-Newton

Since the standard Quasi-Newton Algorithm, as given in Equation (10), may suffer from
local convergence one can additional use a classical linesearch strategy. For this we intro-
duce a merit function h given as

h(u) :=
1

2
· || F(u) ||2 =

1

2
· || p(u)− û∗ ||2 . (12)
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using a Quasi-Newton iteration [5, 6] with a 1st-order Taylor approximation pk for the
mapping p as in Equation (7) and a Broyden rank-one approximation [3] for the Jacobian
Bk ≈ p�(uk), i.e.

uk+1 = p−1
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Figure 2: The high- and low-fidelity model output y(N), ŷ(N) for the state DIN at depth

z � 2.68 m for different values of the “coarsening factor” β with β = τ/τ̂ (cf. Section 5) and

a randomly chosen parameter vector u. Note that for simplicity we leave the superscript l and

subscript i in all figure legends with y denoting the discrete model output of one tracer, at a

certain depth i and for the shown time steps OK?! .

matrices), Qj the nonlinear coupling in the four tracers (4 × 4 block matrix) and M, τ
denote the number and size of the discrete time steps of the high-fidelity model. Note
that the operators Adiff

j and Qj are time-dependent.
Now the low-fidelity model is obtained by using a coarser time discretization with

τ̂ = β · τ using a “coarsening factor” β. The corresponding state variable for this coarser
discretized model will be denoted by ŷ, the corresponding number of discrete time steps
by M̂ , given as M̂ = M/β. Note that the parameters u for this coarse model are the
same as for the fine model. Figure 2 shows the fine and coarse model output y(D), ŷ(D)

for the state detritus, for different values of β and at a randomly chosen parameter vector
u. Obviously the coarse models provides a rough but still reasonable approximation of
the fine one.

When choosing β, it is important to keep in mind that on the one hand a coarse
discretization could lead to a numerically unstable model if conditions for stability are
violated. This condition is determined mainly by the term h/v where h denotes the size
of the discrete spatial step. On the other hand certain parameters could lead to a more
noisy model output (bigger peaks) or even to a negative values OK?! . A more detailed
analysis will not be the focus of this paper but will be treated elsewhere OK?! . In the
following we indirectly consider admissible parameter ranges leading to a numerical stable
and reasonable model output.

6 The Surrogate Model

The surrogate model we use is obtained by a space mapping approach introduced by
Badler et al. [?]. Here a physical low-fidelity model ŷ (cf. Section 5) is corrected by a
so-called parameter mapping p to obtain a surrogate sk for the fine model, in detail

sk(u) := ŷ [pk(u)] , pk(u) = p(uk) + p�(uk) (u− uk)

ûk = p(uk) := argminu∈U || ŷ(u)− y(uk) ||2Y (7)

where the mapping p is aligning the high- and low-fidelity model and is approximated
in the point uk using a 1st-order Taylor expansion and Y is some appropiately chosen
function space OK?! .

7
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Correction Approaches ...
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Correction Approaches ...

‣ Elemental response correction Ai,j

‣ Exact 0-order consistency in the point u and also good agreement in neighbourhood u + ε

‣ i.e. the surrogate provides a very reasonable approximation of the fine model
( even without including sensitivity information ! )

‣ Now replacing the high-fidelity model in the optimization in iteration k 

the unknown parameters in the nonlinear coupling term Q(l)
plus the vertical sinking velocity u1 in the sinking term.

The problem can be written as

min u∈U J (y(u),u) := ||y(u)−yd ||2Y +α · ||u ||2U , U := {u ∈ Rn
: bl ≤ u≤ bu} , J : Y ×U → R (2)

where the control parameters u (here: scalar numbers) are the 12 unknown physical/ biological parameters constrained

to the component wise lower and upper bounds bl and bu.

4. SURROGATE-BASED OPTIMISATION

For many nonlinear optimisation problems high computational costs of accurate simulations and derivatives or even

the lack of sensitivity information are major drawbacks. The need for a decrease in the computational costs becomes

more and more important in many applications as in the case of the optimisation of more complex three-dimensional

coupled ecosystem models.

The high-fidelity model in focus is replaced by a computationally cheaper, less accurate surrogate with state sk(u)
in the optimisation run in iteration k, in general

uk+1 = min s∈U J (sk(u+ s),u) (3)

sk(u)≈ y(u) ,
�

s
�
k(u)≈ y

�(u)
�

(4)

ŷ(u) , y(u) alignment/ correction−→ sk(u) (5)

where the surrogate should satisfy 0-order and ideally also 1st-order similarity with the high-fidelity model in (and

around!) the current point u (or uk ?) as given by (4).

Key points for a well performing surrogate algorithm are a cheap function and sensitivity evaluation of the low-

fidelity model and a low cost for its correction to obtain the surrogate resulting in equivalently a few evaluations of the

high-fidelity model only.

In general surrogates are based upon a low-fidelity or coarse model which is then aligned/ corrected to obtain a

reasonable approximation for the high-fidelity model (cf. Eq. (5)). Surrogates can be either based upon a functional

or a physical low-fidelity model. Surrogates obtained from a functional low-fidelity model are constructed without

any particular knowledge of the system on the basis of sampled data of the fine-model only and will not be addressed

further in this paper. On the other hand surrogates based upon a physical low-fidelity model, as in our case, exist

independently of the sampled data and therefore inherit more characteristics of the fine model in focus.

Possible ways to create such a physical low-fidelity model are by a coarser discretisation, by using simplified physics

or different ways of describing the same physical phenomenon or even by using analytical formulas if available. In

this paper we will focus on a coarser discretised (in time) low-fidelity model as a basis for a surrogate.

5. LOW-FIDELITY MODEL

The model (1) is solved explicitly in the nonlinear coupling term Q and the sinking term for y
(D)

with an Euler-forward

time stepping method and implicitly in the diffusion term (cf. Eq. 1).

An upstream scheme with u1 > 0 for the sinking term and a central difference approximation for the diffusion is

used in the discretisation of the model equations. In the discretised form of (1) we denote by y j the approximate

solution in the jth time step, where y j ≈ (y(zi, t j))i=1,...,K , y j ∈ R4·K
and K is equal to the number of spatial discrete

points. With A j := A(t j) we have in matrix formulation

�
I− τ ·Adiff

j
�

� �� �
:=Bdiff

j

y j+1 =
�
I + τ ·Asink

j
�

� �� �
:=Bsink

◦BQ
j ◦BQ

j ◦BQ
j ◦BQ

j (y j) , BQ
j (y j) := [I + τ/4 ·Q j(y j)] , j = 1, . . . ,M (6)

where the (time-dependent) operators Adiff

j ,Asink
contain the spatial discretisation of the sinking and diffusion term

(4×4 block-diagonal matrices), Q j the nonlinear coupling in the four tracers (4×4 block matrix) and M,τ denote the
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FIGURE 2. The figure shows a section of the smoothed fine model ỹ(u) and of the coarse model responses ˜̂y for the state y(N)

(nitrogen) at depth z� 2.68 m for different values of the “coarsening factor” β with β = τ/τ̂ (cf. section 5) and at some randomly
chosen parameters u. Note that here the smoothed responses are shown as the surrogate is based upon smoothed fine and coarse
model responses and optimised against smoothed target data (cf. section 6).

number and size of the discrete time steps. For the low-fidelity model we now use a coarser time discretisation with
τ̂ = β · τ with a “coarsening factor” β .

Figure 2 shows sections of the smoothed fine and coarse model responses ỹ(N), ˜̂y(N) (state nitrogen) for different
values of β at some radomly chosen parameters u.

For the sake of simplicity in the following we will use only the notation y(l) instead of y(l)
i, j = y(l)(zi, t j) leaving

the spatial and temporal subscripts i, j. This hence denotes the concentration of tracer l at discrete depth zi and
time t j. Furthermore we sometimes also skip the superscript “l” simply writing y in general for any tracer instead
of y(l)

l=N,P,Z,D(zi, t j). Boldfaced letters will always denote a vector in the discrete space such as for example y ≈
(y(zi, t j))i=1,...,K; j=1,...,M , yi ≈ (y(zi, t j)) j=1,...,M or y j as already introduced above. Is this description of the used
notations complete? Maybe improve this formulation! It might still be a bit confusing.

Include comment about smoothing!

6. THE SURROGATE

The approach we follow for the alignment of the low-fidelity model to obtain a reasonable surrogate is an elemental
response correction Ai, j given as

sk(u,zi, t j) := Ai, j · ˜̂y(u,zi, t j) , A j := ỹ(u,zi, t j)/ ˜̂y(u,zi, t j) , t j ∈ T̂ = β ,2 · β , . . . ,M (7)

where T̂ contains the discrete time steps corresponding to the low-fidelity model response and where the high- and
low-fidelity responses y, ŷ are smoothened to states ỹ, ˜̂y before obtaining the correction Ai, j. The smoothening here was
simply done by arithmetic averages/ moving averages of n neighbouring points (in this paper n = 3)

ỹ(u,zi, t j) =
1

2k +1
·

j+n

∑
m= j−n

y(u,zi, tm) (8)

Obviously this surrogate exactly satisfies 0-order similarity in the point of alignment u, i.e. sk(u, t j) = y(u, t j). Also in
a brought neighbourhood of this point u it still provides a quite reasonable approximation of the high-fidelity model.

This is illustrated in Figure 3 showing the smoothed high- and low-fidelity responses ỹ, ˜̂y as well as the surrogate
sk at the initial and sixth iterate u0,u6 misunderstandable? and a perturbation u0 + ε,u6 + ε of the first experiment
(cf. section 7, fig. 4,?? and table 1). Here the perturbation ε is chosen as the half step towards the known optimal
parameters uopt , i.e. ε := (uopt −u)/2.

Obviously the surrogate s0(u0 + ε) still provides a reasonable approximation of the fine model ỹ(u0 + ε). Further-
more it can be seen that the surrogate s6(u6 +ε) is even more accurate as the parameters lie closer to the optimum uopt

decreasing the neighbourhood ε at the iterate u1. Hence the closer the iterate uk lies w.r.t. the optimum uopt the higher
the accuracy of the surrogate model sk obtained from aligning the low-fidelity model in this iterate.

applications as in the case of the optimization of more complex three-dimensional mod-

els. The high-fidelity model output y in focus is replaced by a computationally cheaper

surrogate sk(u), in the optimization run in iteration k, in general
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Surrogates can be either based upon a functional or a physical low-fidelity model. Those
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knowledge of the system on the basis of sampled data of the fine-model only and will
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a physical low-fidelity model (also known as physical surrogates), as the one we use here,

exist independently of the sampled data and therefore inherit more characteristics of the

fine model in focus. Possible ways to create such a physical low-fidelity model are by a

coarser discretisation, by using simplified physics or different ways of describing the same

physical phenomenon or even by using analytical formulas if available. In this paper we

will focus on a coarser discretised (in time) low-fidelity model as a basis for a surrogate.

5 The Low-Fidelity Model

The model (1) is solved using an operator splitting, with an explicit Euler-forward time

stepping scheme for the nonlinear coupling term Q and the sinking term on the one hand

and an implicit scheme for the diffusion on the other (cf. Eq. 1). OK?! An upstream

scheme for the sinking term and a central difference approximation for the diffusion is

used in the discretization of the corresponding operators. In the discretised form of the

model (1) we denote by yj the approximate solution in the time step j, where yj ≈
( y(zi, tj) )i=1,...,K , yj ∈ R4·K (cf. Eq. (1)) and K is equal to the number of discrete spatial

points. In matrix formulation we obtain

�
I − τ · Adiff

j

�
� �� �

:=Bdiff
j

yj+1 =
�
I + τ · Asink

j

�
� �� �

:=Bsink

◦BQ
j ◦BQ

j ◦BQ
j ◦BQ

j (yj)

BQ
j (yj) := [I + τ/4 · Qj(yj)] , j = 1, . . . ,M (6)

omitting the arguments t, u2, . . . , un in the operator Qj. In (6) the operators Adiff
j , Asink

contain the spatial discretisation of the sinking and diffusion term (4× 4 block-diagonal
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~95  96 %

~94 %

~88  90 %

~84 %

J(y(u),u) Ci

0.718 0.314 0.018 0.060 0.026 1.992 0.839 0.001 0.152 0.079 0.661 3.823 6.609e+04

0.747 0.596 0.025 0.010 0.030 0.999 2.046 0.010 0.203 0.020 0.493 4.310 1.267e-02 983

(375)

0.646 0.430 0.022 0.000 0.047 1.411 0.790 0.000 0.237 0.013 0.730 3.751 2.430e+03 25.350

0.705 0.626 0.044 0.015 0.060 0.937 1.908 0.016 0.147 0.020 0.629 4.237 48.527 59.575

0.750 0.600 0.025 0.010 0.030 1.000 2.000 0.010 0.205 0.020 0.500 4.320 ∼ 84% reduction
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