

LOOP Current variability – its relation to meridional overturning circulation and the impact of Mississippi discharge

A Preliminary Outline

Malte Prieß

 \star

RD1 / Theory and Modelling

IFM-GEOMAR, Leibniz Institute of Marine Sciences (at Kiel University)

CORE

Key Objectives

 \bigcap

Interprete paleo-records found in the Gulf of Mexiko (GOM) aiming at a better understanding of the circulation changes in this region.

- Main Outline
- Model Setup
- Response to Sealevel Change
- Conclusions

- for the interpretation of these records we will focus on
- the role of Loop Current strength and eddy shedding
- freshwater discharge events from the Mississippi
- under different climatic boundary conditions
- cold-deglacial
- warm-deglacial
- interglacial

Main Outline

- Model Setup
- Response to Sealevel Change

- Use present day regional model of the North Atlantic (FLAME) with different setups with increasing **resolution from 100 km up to 10 km**
- in particular **eddy resolving** resolution (5-10 km) will be used to analyze ocean dynamics on smaller length scales
- simulate the response of the circulation in the GOM to
 - (i) decreased **sea level**
 - (ii) changes in surface forcing over the North Atlantic (focus on windstress as the major contributor)
 - (iii) Mississippi point-source **freshwater influx** at different rates

FLAME

- FLAME = Family of Linked Atlantic Model Experiments

Main Outline

Model Setup

Response to Sealevel Change

- "eddy-resolving" circulation model, which predicts and simulates velocity, temperature, and salinity
- Model code: extended and revised version of the MOM2-Code (http://www.ifm-geomar.de/index.php?id=spflame)
- **Model area**: 20°S 70°N
- Horizontal (grid-) resolution: $4/3^{\circ}$, $1/3^{\circ}$ and $1/12^{\circ}$ (~ 8 km in the GOM)
- Vertical resolution: 45 vertical layers (10 m at the surface up to 250 m at depth)
- Forcing: thermohaline forcing (heat-, freshwater fluxes), wind stress

Numerical Simulation of the instantaneous velocities in the GOM at 200m depth with horizontal resolution of (a) $4/3^{\circ}$ (b) $1/3^{\circ}$ (c) $1/12^{\circ}$

Main Outline

Model Setup

Response to Sealevel Change

Outline

- Response of Flame-4/3°-model to lowered sea level as **a first step**

Main Outline

Model Setup

Response to Sealevel Change

Conclusions

- using **present day climatological forcing data** (windstress, heat flux)

- two experiments:

- (1) Reference experiment without change in sea level (*"reference exp"*)
- (2) Experiment with 67m lower sea level ("-67m exp")

Outline

Main Outline

Model Setup

Response to Sealevel Change

Conclusions

Cold-deglacial

Heinrich I (\sim 16 kyrs BP) -110m Younger Dryas (\sim 12 kyrs BP) -67m

Warm-deglacial

Bølling/Allerød (\sim 14 kyrs BP) -89 m

Interglacial

Early Holocene (\sim 9 kyrs BP) -24m Late Holocene (\sim 3 kyrs BP) -1m

(Waelbroeck et al., 2002, Quaternary Science Reviews 21(1-3): 295-305)

Model Spin-Up

Temperature spin-up at 70W / 35N / 1000m depth

Streamfunction [Sv] after 200 yrs spin-up

Volume Transport

 \sim major reduction at the boundary layers (e.g. Florida Strait: \sim 3 Sv)

- away from the boundary layers

Main Outline

Model Setup

Response to Sealevel Change

- → flat-bottom Sverdrup relation independent of depth
- near the coastal boundaries
 - Florida Strait: reduction in the cross-section between Florida and Cuba
 - \sim other processes might affect the transport (**JEBAR**...?!)
 - \frown further analysis needed
- change in **volume transport** might affect **eddy-shedding** and also the **heat-budget** in the GOM, thus influencing the paleo-records

Temperature

Ann. mean temperature [°C] after 200 yrs spin-up at 200m depth

At this stage...

. . .

Main Outline

Model Setup

Response to Sealevel Change

- reponse can provide **only preliminary** but still can some qualitative information
- higher resolution is needed to provide more accurate results on smaller (eddy resolving) scales

Main Outline

Model Setup

Response to Sealevel Change

Conclusions

Thank you for listening...