CORE

Rising CO₂ and increased light exposure synergistically reduce marine primary productivity

METHODS

The parameters of the seawater carbonate system (Suppl. Table 1) were calculated from pH and pCO₂ or measured values of DIC with CO₂ SYS software¹, and cross-checked with DIC or pCO₂, using the equilibrium constants of K₁ and K₂ for carbonic acid dissociation after Roy et al. (1993)². The pH change was determined with a pH meter (pH510, OAKTON) which was calibrated with standard National Bureau of Standards (NBS) buffer solution (Hanna), and the pH_{NBS} values were converted to pH_{Total} (pH_T) using the CO₂ SYS software.

Seawater samples for phytoplankton pigment analysis (8 L) were filtered through 47-mm GF/F glass fiber filters (under a vacuum pressure < 75 mm Hg and in dim light), and then were immediately frozen in liquid nitrogen prior to analysis in the laboratory. Phytoplankton community structure was analyzed based on the fractions of pigments, which were extracted in N,N-dimethylformamide and determined using an Aglient series 1100 HPLC system fitted with a 3.5-mm Eclipse XDB C8 column $(100 \times 4.6 \text{ mm}; \text{Agilent Technologies})$ based on a modified method ³ according to Mantoura & Llewellyn $(1983)^4$ and Van Heukelem & Thomas $(2001)^5$. The abundance of different phytoplankton groups was determined using CHEMTAX⁶.

Photorespiration was estimated as the difference of the net photosynthetic O_2 evolution by the cells at reduced (2%) and ambient (21%) O_2 levels⁷. The tris-buffered seawater (pH 8.2) was flushed with either pure N_2 or air to establish the low (2%) or air-equilibrated (21%) levels of dissolved O_2 .

The apparent growth light use efficiency (α) was calculated by assuming that growth rate was zero at zero light and growth saturating point (PARexc) was taken as the light level at which maximal growth rate was observed.

The data were expressed as the means \pm standard deviation (SD). Field and lab data were analyzed using two-sample *t*-test or paired *t*-test, respectively, to establish statistical significance (P <0.05).

Supplementary Table 1. Parameters of the seawater carbonate system under the ambient and elevated CO_2 concentrations. Measurements and estimation of the parameters are described in the supplementary methods. Different superscripted letters indicate significant difference (P < 0.05) between the high- and low- CO_2 treatment.

	pCO ₂ (µatm)	pH_T	DIC (µmol kg ⁻¹)	HCO3 ⁻ (μmol kg ⁻¹)	CO3 ²⁻ (µmol kg ⁻¹)	Total alkalinity (μmol kg ⁻¹)
Lab	390	$8.02{\pm}0.01^{a}$	1913.6±57.4 ^a	1739.7±48.5 ^a	161.2±8.9 ^a	2155.3±68.3 ^a
	1000	7.68 ${\pm}0.01^{b}$	2116.3±72.8 ^b	2000.5±67.2 ^b	83.1±5.5 ^b	2217.9±79.6 ^a
Field	385	$8.04{\pm}0.01^{a}$	1889.7±38.6 ^a	1700.8±32.0 ^a	176.3 ± 6.6^{a}	2134.0 ± 46.5^{a}
	800	7.76 ${\pm}0.01^{b}$	1981.8±34.7 ^b	1854.7±34.7 ^b	101.0 ± 3.8^{b}	2102.8 ± 43.2^{a}
	1000	7.69 ${\pm}0.01^{c}$	2097.2±40.5 ^c	1973.3±37.1 ^c	91.5 ± 3.4^{b}	2196.1 ± 44.7^{a}

Supplementary Table 2. Locations of the stations, cruise information, sea surface temperature (SST, °C) and pH_T , $NO_3^-+NO_2$ (N, μ mol L^{-1}) and PO_4^{3-} (P, μ mol L^{-1}), solar PAR (mean, μ mol photons $m^{-2} s^{-1}$) during ¹⁴C-traced incubations, incubation time (h), surface seawater chlorophyll a concentration (Chl a, $\mu g L^{-1}$), chlorophyll a concentration ($\mu g L^{-1}$) of phytoplankton assemblages grown for 6-7 days under low CO_2 (LC,385 μ atm) and high CO_2 (HC, 800 μ atm for all stations except SEATS and C3, where 1000 μ atm CO_2 was applied), and the primary productivity (PP, triplicate incubations, $\mu g C L^{-1}h^{-1}$) by the phytoplankton assemblages grown in the low CO_2 microcosms at the end (day 7) of the growth-out in the microcosms. BLQ stands for "below the limit of quantification". The concentrations of the nutrients were determined by the chemistry group of Xiamen Univ. during the cruises. Chlorophyll a concentration in the microcosms at station PN07 was not measured (nd).

Station	Location	Season*	SST	pH_T	Ν	Р	Solar PAR	Incubation time (h)	Chl a	Chl a (LC)	Chl a (HC)	РР
LE04	(18.0°N, 113.0°E)	Summer	29.5	8.03	BLQ	0.014	1681	6	0.05	0.15	0.13	0.10±0.08
PN07	(30.0°N, 124.5°E)	Summer	29.6	8.03	BLQ	0.019	1371	6	0.71	Nd	nd	0.18±0.12
A4	(20.8°N, 115.2°E)	Autumn	25.5	8.04	BLQ	0.156	794	6	0.44	1.08	0.69	2.73±0.32
E606	(18.9°N, 114.1°E)	Autumn	25.3	8.06	BLQ	BLQ	821	6	0.34	0.82	0.20	4.74±0.10
SEATS	(18.0°N, 116.0°E)	Spring	28.7	8.04	BLQ	0.037	1251	12 (24)	0.10	0.49	0.59	2.08±0.14 (19.80±1.09) ^{**}
C3	(20.6°N, 114.2°E)	Spring	28.5	8.03	BLQ	0.032	1027	12 (24)	0.21	0.42	0.36	1.83±0.06 (16.28±0.73) ^{**}

*summer cruise (July 16 to August 31, 2009), autumn cruise (October 22 to November 25, 2010), spring cruise (April 30 to May 25, 2011). ** the PP values obtained over 24h-incubation period ($\mu g C L^{-1} d^{-1}$).

	LE04	PN07	A4	E606	SEATS	C3
Fig1a	0.022	0.016	6*10 ⁻⁴	3*10 ⁻⁷	0.026	0.002
Fig1b	0.071		0.047	0.002	0.002	0.063
Fig1a inset					9*10 ⁻⁴	2*10 ⁻⁴
Fig1b inset					2*10 ⁻⁴	0.001

Supplementary Table 3. Statistically significant levels for the comparisons of photosynthetic carbon fixation rates between the low and high CO_2 treatments (Figure 1a,b). The P values were obtained using two-sample t-test.

Supplementary Table 4. The apparent growth light use efficiency (α , μ per μ mol photons⁻¹ m² s⁻¹ d⁻¹ or MJ m⁻²) and PAR threshold (PARexc) of the diatoms beyond which their growth rate declined with increasing light levels in the high CO₂ grown cells or leveled off in the low CO₂ grown ones. The data were derived from Figure 2 and represented as the means \pm SD (n=6). The different superscripted letters represent significant (P < 0.05) difference between the CO₂ levels. α , or PARexc values are shown either as photon flux density of PAR (μ mol photons m⁻² s⁻¹) or PAR dose (MJ m⁻² d⁻¹, in parenthesis).

	CO_2	P. tricornutum	T. pseudonana	S. costatum
	ЦС	$0.020{\pm}0.002^{a}$	$0.054{\pm}0.023^{a}$	$0.030{\pm}0.014^{a}$
a	HC	(2.24 ± 0.25^{a})	(5.23±1.91 ^a)	(2.82±1.29 ^a)
u	LC	0.016 ± 0.002^{b}	0.044 ± 0.012^{b}	0.028 ± 0.012^{b}
	LU	(1.84±0.23 ^b)	(4.24±0.97 ^b)	(2.64±1.15 ^b)
HC PARexc LC	ШС	159.5±66.5 ^a	125.0 ± 22.8^{a}	178.1 ± 105.2^{a}
	HC	(1.43±0.59 ^a)	(1.37±0.35 ^a)	(2.04±1.34 ^a)
	LC	315.3±117.4 ^b	226.7±46.7 ^b	359.6±143.5 ^b
	LU	(2.82±1.05 ^b)	(2.30±0.39 ^b)	(3.95±1.45 ^b)

Supplementary Table 5. Photorespiration (fmol $O_2 \operatorname{cell}^1 h^{-1}$) of T. pseudonana and P. tricornutum measured at ambient CO_2 level for the cells grown semi-continuously under the ambient (390 µatm, LC) and elevated (1000 µatm, HC) CO_2 levels for >20 generations. Difference letters represent the significant (P<0.05) difference among the treatments.

	T. pseudonana	P. tricomutum
LC	59±8 ^a	43±18 ^a
НС	73±3 ^b	54±16 ^b
Ratio (HC:LC)	1.23	1.26

Supplementary Figure 1. Composition of phytoplankton assemblages grown under LC (pCO₂ 385 μatm) and HC (pCO₂ 800 μatm) levels. a. Station A4, January 2010, 7-day CO₂ pre-conditioning; b. Station of A4, November 2010, 7-day CO₂ pre-conditioning; c. Station E606, November 2010, 6-day CO₂ pre-conditioning.

Supplementary Figure 2. Non photochemical quenching (NPQ) of phytoplankton assemblages grown under low pCO_2 (385 µatm, blue triangle) and high pCO_2 (1000 µatm, red triangle). a. Station SEATS (18° N, 116° E), May 2011; b. Station C3 (20.55° N, 114.20° E), May 2011. NPQ was determined from 10:30 to 13:30 on May 15th, 23rd, 2011, at day 7 after the CO₂ perturbation, for the two stations, respectively. The mean levels of PAR during the measuring periods were 1938 and 1684 µmol photons m⁻² s⁻¹ for SEATS and C3, respectively.

- Lewis, E. & Wallace, D. Program developed for CO₂ system calculations. *Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee* (1998).
- 2 Roy, R. N. *et al.* The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. *Mar. Chem.* **44**, 249-267 (1993).
- Huang, B. Q., Hu, J., Xu, H. Z., Cao, Z. R. & Wang, D. X. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. *Deep-sea Res. II* 57, 1792-1798, doi: 10.1016/j.dsr2.2010.04.005 (2010).
- 4 Mantoura, R. & Llewellyn, C. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. *Anal. Chim. Acta* **151**, 297-314 (1983).
- Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method
 development with applications to the isolation and analysis of phytoplankton pigments. *J. Chromatogr. A* 910, 31-49 (2001).
- Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX-A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. *Mar. Ecol. Prog. Ser.* 144, 265-283 (1996).
- Birmingham, B. C., Coleman, J. R. & Colman, B. Measurement of photorespiration in algae. *Plant Physiol* 69, 259-262 (1982).