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N,O in the Ocean
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N,O in the Ocean

Surface
distribution
coincides with
upwelling and
low oxygen
regions.

Excess N,O dissolved in surface water
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N,O in the Eastern Tropical Atlantic Ocean

30°N
Three regions of elevated N,O:

o 1. Equatorial cold tongue
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N,O in the Eastern Tropical Atlantic Ocean

30°N Objective:

Get insight into pathways,

processes, sources in the interior.
20°N

Workhorse method:
Simultaneous recording of
N,O profiles

and diapycnal mixing

to infer diapycnal fluxes.
Typical fluxes are fractions of a
nmol per m? and second.

10°N
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Workhorse method

Simultaneous measurement of mixing intensity and N,O profile

dissipation rate ¢ N20 concentration
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Workhorse method

One important aspect is diapycnal flux through base of mixed layer

dissipation rate ¢ N20 concentration
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1. Equatorial cold tongue

Sea Surface Temperature 2011
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2 cruises took place in May to July 2011
during development phase of cold tongue.

NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/



2. Open ocean oxygen minimum zone (OM2)

oxygen concentration along 23 W umol/kg
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This OMZ is less intense than other OMZs.

Oxygen and N,O are largely anticorrelated.
A corresponding N,O section would in wide parts look inverse.



2. Open ocean oxygen minimum zone (OMZ2)

oxygen concentration along 23 W
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In large parts we not only find the deep OMZ but also a shallow oxygen
minimum. A corresponding shallow N,O maximum can also be found.
Here is a particularly prominent example.

2 cruises took place in Nov. 2008 and Dec. 2009.



3. Coastal upwelling

Sea-to-air flux of N,O  |oims .
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Seasonal upwelling in February and March.

From model study: there is a partial transport of shallow OMZ water to the
coastal upwelling (Glessmer et al. 2009) .

5 cruises in 2005 — 2008 , mostly in upwelling season.



2011 results during cold tongue development
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Average diapycnal flux: 0.04 nmol/m?3/s



2011 results during cold tongue development

N,O sea-to-air flux from shipboard underway monitoring
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More results and a preliminary synthesis

Equatorial Open ocean Coastal
cold tongue OoMZ Upwelling
May-July 2011 2008 - 2010 2006 - 2010
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More results and a preliminary synthesis

Equatorial Open ocean Coastal
cold tongue OoMZ Upwelling
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More results and a preliminary synthesis

Equatorial Open ocean Coastal
cold tongue OoMZ Upwelling
May-July 2011 2008 - 2010 2006 - 2010
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MLD N,O sea-to-air fluxes derived from state-of-the-art gas exchange
parametrizations seem too high in open ocean OMZ and coastal

100 m § upwelling (sea-to-air fluxes given here use Nightingale et al. 2000).
Surface clogging substances (surfactants) are one hypothetical cause of

200 m J local sea-to-air flux inhibition. A gas exchange parametrization by Tsai
and Liu (2003) accounting for surfactants finds substantially reduced
fluxes. In the coastal upwelling case it was shown that the Tsai and Liu

450 m | parametrization can close the N,O budget (Kock et al. 2012).
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More results and a preliminary synthesis

Equatorial Open ocean Coastal
cold tongue OoMZ Upwelling
May-July 2011 2008 - 2010 2006 - 2010
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Conclusions

In cold-tongue season 2011, diapycnal flux from below the mixed layer can
account for most of N,O sea-to-air-flux.

The deep OMZ seems to be no hotspot contributor of N,0.

The N,O mixed layer budget seems not closed with our current knowledge -
at least for the OMZ region and the coastal upwelling region.

Other supply processes seem too weak to close the discrepancy to
parametrized sea-to-air N,O flux. But local inhibition of sea-to-air flux could
be a solution.

Outlook

N,O flux measurements in Peruvian upwelling Nov.2012 - Feb.2013.

During theses cruises:

Further explore the sea-to-air flux inhibition hypothesis:
- Surface clogging substances (by a SFB754 team)

- ,Mixed layer stratification” (more on next 2 slides)



depth inm

Extreme shallow mixed layers are quite common in the Tropics
and may lead to bulk flux overestimation.

Glider mission in June 2011 with MicroRider (Marcus Dengler)

temperature diurnal cycle ON 10W

dissipation diurnalcycle ON 10W

depth inm
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Appreciable stratification Shallow mixing period during
through more than half the day. early daytime.
Mixed layer extremely shallow.



Extreme shallow mixed layers are quite common in the Tropics
and may lead to bulk flux overestimation.

From a simple 1-D-model of part-time-mixed layer:

flux overestimation from 10m bulk estimate

10

thickness of permanently mixed surface layer

5 10 15 20

hours duration of mixed phase
If estimating sea-to-air flux from concentration at
10m, estimate will be X times too high. Depends

on stratified time and depth of permanently
mixed layer. Small

pump
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