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[11 The representation of the annual cycle of heavy daily precipitation events across

the United Kingdom within 14 regional climate models (RCMs) and the European
observation data set (E-OBS) over the 1961-2000 period is investigated. We model extreme
precipitation as an inhomogeneous Poisson process with a non-stationary threshold and use
a sinusoidal model for the location and scale parameter of the corresponding generalized
extreme value distribution and a constant shape parameter. First we fit the statistical model
to the UK Met Office 5 km gridded precipitation data set (UKMO). Second the statistical

model is fitted to 14 reanalysis driven 25 km resolution RCMs from the ENSEMBLES
project and to E-OBS. The resulting characteristics from the RCMs and from E-OBS are
compared with those from UKMO. We study the peak time of the annual cycle of the
monthly return levels, the relative amplitude of their annual cycle and the relative bias of
their absolute values. We show that the performance of the RCMs depends strongly on
the region. The RCMs show deficits in modeling the characteristics of the annual cycle,
especially in modeling its relative amplitude and mainly in Eastern England. However the
peak time of the annual cycle is adequately simulated by most RCMs. E-OBS exhibits
considerable biases in the absolute values of all monthly return levels, but the relative
amplitude and the phase of the annual cycle of heavy precipitation are well represented. Our
results imply that studies which rely on the explicit annual cycle of simulated heavy

precipitation should be carefully considered.
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1. Introduction

[2] Extreme precipitation events may cause severe
impacts on infrastructure, ecosystems and agriculture, [e.g.,
Intergovernmental Panel on Climate Change (IPCC), 2012,
and references therein]. Many natural cycles, such as the
growing season of crop, do not follow the simple parti-
tion into four seasons. Crop yields are most likely to suffer
if excess of precipitation occurs during critical develop-
ment stages such as the early stages of plant reproduction
[Rosenzweig et al., 2001; Parry et al., 2005].

[3] Future scenario simulations with global climate models
indicate an increase in intensities of extreme daily precipi-
tation for the northern hemisphere [Kharin et al., 2007,
Semenov and Bengtsson, 2002; Meehl et al., 2007; IPCC,
2012, and references therein]. For Europe, an increase of
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the intensity of extreme daily precipitation is expected for the
north, and a decrease for the south [Beniston et al., 2007; Frei
et al., 2006, Christensen et al., 2007]. For Central Europe an
increase in extreme precipitation is projected even for regions
where mean precipitation is projected to decrease [ Christensen
and Christensen, 2003; Fowler et al., 2007]. For the United
Kingdom, especially winter and spring extreme precipitation
is projected to increase [Fowler et al., 2005; Fowler and
Ekstrom, 2009; Fowler et al., 2010].

[4] A more detailed analysis of the timing and amplitude of
the annual cycle of extreme precipitation is of major impor-
tance for different sectors, such as agriculture, health, for-
estry, tourism, and water management [e.g., I[PCC, 2012, and
references therein]. For rain gauge data from the United
Kingdom a corresponding analysis of the annual cycle of
daily extreme precipitation has been carried out by Maraun
et al. [2009a] and Rust et al. [2009]. They identified the
northwest of the UK and East Anglia as two regions with a
strong annual cycle of the monthly maxima. The Midlands
are described as a region with a low annual cycle of the
monthly maxima. They also showed that the peak times of
these annual cycles differ by regions: the annual cycle peaks
in late summer in the eastern UK and in late fall or winter in
the western UK.

[5] Prior to investigation of future changes in the season-
ality of extreme precipitation based on numerical model
integrations, the representation of the corresponding aspects
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Table 1. Regional Climate Models Used in This Study®

RCM Institute ~ Grid (Number of Points Over UK) Reference
RACMO2 KNMI rotated pole (393) van Meijgaard et al. [2008]
HadRM3QO0 UKMO rotated pole (393) Collins et al. [2006]
HadRM3Q3 UKMO rotated pole (393) Collins et al. [2006]
HadRM3Q16 UKMO rotated pole (393) Collins et al. [2006]

HIRHAMS DMI rotated pole (393) Haugen and Haakenstad [2006]

HIRHAM METNO rotated pole (393) Christensen et al. [1996]

RPN _GEMLAM EC rotated pole (393)

CLM ETHZ rotated pole (393) Bohm et al. [2006]

REMO MPI-M rotated pole (393) Jacob [2001]

RCA SMHI rotated pole (393) Samuelsson et al. [2011], Kjellstrom et al. [2005]
RCA3 C41 rotated pole (393) Kjellstrom et al. [2005]

PROMES UCLM regular lat-lon (344) Sanchez et al. [2004]

ALADIN CHMI regular lat-lon(368) Pal et al. [2007]

REGCM3 ICTP regular lat-lon(353) Giorgi and Mearns [1999]

?First column: the acronyms of the RCMs used in this study; second column: the acronym of the institute; third column: the
grid they are operated on and in brackets the number of grid points over the UK; fourth column: relevant reference.

in these models for the present-day climate against observa-
tional data has to be rigorously validated.

[6] On an annual or seasonal basis, Fowler et al. [2007],
Buonomo et al. [2007], Rivington et al. [2008], and Fowler
and Ekstrém [2009] have validated the representation of
extreme precipitation in the UK by a selection of Regional
Climate Models (RCMs).

[7] In this study we evaluate how well the annual cycle of
extreme precipitation in the UK is represented by 14 RCMs
for the control run period 1961-2000. To this end we esti-
mate extreme value distributions from the output of the
RCMs (one for each grid point and for each RCM). We then
compare characteristics of these distributions to the char-
acteristics of the corresponding distributions estimated from
observational data in order to validate the performance of the
RCMs with respect to different aspects of moderate extreme
precipitation (i.e., extreme events with a return period of
less than 100 years).

[8] This paper is organized as follows: section 2 introduces
the observation data set from the UK Met Office (UKMO)
[Perry et al., 2009], the European observation data set
(E-OBS) [Haylock et al., 2008], as well as the simulated data
sets from 14 RCMs from the ENSEMBLE project [van der
Linden and Mitchell, 2009]. Section 3 is devoted to the sta-
tistical method we use to extract distributions for extreme
events from the various data sets and to the validation
methods. In section 4 we present results for a sample grid
point located in East Anglia and discuss the spatial patterns of
the annual cycle of heavy precipitation throughout the UK.

2. Observed and Modeled Data

[9] We compare the distributions derived from simulated
data with the distributions derived from observed data for the
time period 1961-2000. The observation data set containing
the largest number of observation time series serves as a
reference for precipitation.

[10] As reference data set we use the gauge-based data
provided by the UK Met Office (UKMO) with a resolution
of 5 km [Perry et al., 2009]. This data is rotated by bilinear
interpolation and averaged to a horizontal grid spacing of
~25 kilometers as described by Maraun et al. [2009a], to
match the different grids used by the RCMs (see Table 1).

[11] We validate the simulated precipitation of the control
run of 14 RCMs against the reference data. The RCMs were
driven by ERA-40 reanalysis data [Uppala et al., 2005] in
order to isolate RCM errors from general circulation model
errors (perfect boundary conditions [Christensen et al., 1997;
Frei, 2003]). In Table 1 we list the RCMs validated in this
study with information on the underlying grid and further
reference. Additional summarized information and further
references are given by Christensen et al. [2010].

[12] We also compare the European observation data set
(E-OBS) [Haylock et al., 2008] for the UK region to UKMO.
Since it comprises only 137 rain gauges over the UK (com-
pared to 3,000-5,000 rain gauges in the UKMO data set),
it is less useful as a reference data set [Hofstra et al., 2009;
Maraun et al., 2012]. We investigate whether the E-OBS
data set contains sufficient information to characterize var-
iations of daily extreme precipitation throughout the year.
If this is the case, confidence would be provided in the abil-
ity to analyze the annual cycle of extreme precipitation
throughout Europe at least in regions with similar station
density, topography and climate.

3. Methods

[13] Extreme value statistics has been widely used in
precipitation studies, e.g., by Katz et al. [2002], Maraun
et al. [2009a], Toreti et al. [2010], Kallache et al. [2011],
Buonomo et al. [2007], and Tomassini and Jacob [2009]. In a
first step we fit a statistical model based on extreme value
theory to observed and simulated data (section 3.1). In a
second step selected characteristics of all RCMs and of
E-OBS are validated against the reference characteristics
(section 3.2): all data sets are compared to the high resolution
gridded UKMO [Perry et al., 2009].

[14] The extreme value analysis of each gridded data set is
carried out independently for each grid point. This implies
fitting the marginal distributions to nearly 400 time series of
daily precipitation with 40 years of continuous data for each
of the data sets.

3.1.

[15] Three different approaches exist in univariate extreme
value statistics. In the block maxima approach, the most
common one, maxima of a block of data are modeled, e.g.,
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the one-year-maxima or one-month-maxima of daily obser-
vations, [Fowler and Kilsby, 2003; Maraun et al., 2009a].
The second approach models the excesses above a high
threshold, often called peaks over threshold approach [e.g.,
Toreti et al., 2010]. The third approach is a combination of
both: extreme events are modeled by using threshold exces-
ses but the distribution is expressed in terms of block maxima
[e.g., Tomassini and Jacob, 2009; Kallache et al., 2011].
This third approach will be applied in the present study as it
makes use of more data than the block maxima approach and
at the same time is independent of the threshold. Thus the
parameters of different grid points are comparable and a non-
stationary threshold can be used in order to make better use
of the data.

[16] To describe extreme events we need to specify the
occurrence rate as well as the intensity of the events. Here we
follow the approach by Coles [2001]. The occurrence of rare
events is assumed to be Poisson distributed and its intensity is
described by the generalized Pareto distribution (GPD). The
exceedances of the threshold # are modeled as a Poisson
point process where the parametrization is independent of u
and the parameters are equivalent to those of the corre-
sponding generalized extreme value distribution (GEV):

[17] To select rare events a high threshold u > 1 is fixed,
such that the assumptions hold. Then the intensity measure of
the Poisson process on [0, 1] x [z, o], for z > u, is given by

) g

(o2

where p, o, € are called location, scale and shape parameters.
[18] The threshold choice therefore only affects the infer-
ence, especially the bias-variance trade off.
[19] A characterization of precipitation extremes by a sin-
gle number is the quantile z, which is exceeded with proba-
bility p, called the return level to return period !1—):

.- {u—g [1={~log(1 =p)} <], if ¢#0 o)

p — olog{—log(1 —p)} ,if €=0

Loosely speaking, in a stationary climate z,, is expected to be
exceeded once every 1/p blocks, e.g., once every 1/p years if
the block length equals one year. These quantiles are easily
interpretable and will in the following be used for model
validation (section 4.2).

[20] Daily precipitation as well as extreme precipitation in
the UK show an annual cycle [Barrow and Hulme, 1997;
Maraun et al., 2009b] which needs to be incorporated into
the model [see Katz et al., 2002; Smith, 1989]. In order to
include the non-stationarity of the data in the stationary for-
mulation of the Poisson point process (equation (1)), it is
necessary to adapt the location and also the scale parameter
while the shape parameter remains unchanged [Rust et al.,
2009]. The non-stationary parameters then read

(£) = po + 1y sin 2mt + p, cos 2mt 3)
HAE = Ho T 1 S 3¢5 55 | ™ H2 €05\ 365 75 )

(t) = 09 + o7 sin _2mt + o, cos 2t 4)
o\ = o0 TSI 36505 ) T 925\ 36525 )
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for t = 1, ..., 36525 - 4 (to account for leap years).
Substituting equations (3) and (4) into the equation for the
probability (equation (1)) we arrive at an inverse problem
for the return levels (equation (5)), which we can solve
numerically.

1 _]lj = Pr(max(Xi,...X,) <z,) =

where

pi = {1 B n;l(l + f(zp - “i)/ai)71/£7 if 1 +§(zﬂ - l‘f)/ai 20
1 , otherwise

with the non-stationarity of the parameters denoted as ; :=
w(t;) and o; = o(t;) for i € {1, ..., n,} and n, being the
number of observations per block. To calculate the annual
return level z, the block length is set to 365, i.e., n, = 365.
To calculate monthly return levels, z,(m), (non-stationary
setting) the product over the index set is restricted to a
specific month, m. This can be achieved by choosing i €
{1, ..., n,} in equation (5) such that #; & m (January: i €
{1, ..., 31}; February: i € {32, ..., 60}; etc.).

[21] These monthly return levels are actually annual return
levels conditional on the month of their occurrence. For
instance the January-return level z;,s5(Jan) is on average
exceeded in January once every 25 years.

[22] Due to its flexibility to easily incorporate covariates in
the likelihood formulation the maximum likelihood approach
is used for the parameter estimation. For the realizations z; of
the random variable Z, fori =1, ... N, where N, is the
number of observations, one can maximize the likelihood
function with respect to the parameter 6 := (119, i1, 2, 0o, T1,
0,5, £). In general it is easier to minimize the negative log-
likelihood function than to maximize the likelihood function.
With 6; = 1 if z; > u; and 6; = 0 else we hence obtain

Va (-1/6-1)
1 Zi — M
+Z&i-1og<;(1+57“> )

with u; = u(#;) being the threshold at time ; € {1, ..., 365.25 - 4}
for ¢; being the time of the observation z; in the 4-year cycle.
For numerical stability the number of observations per block
is set to one, 1, := 1. Subsequently the parameters are trans-
formed to correspond to the GEV parameters of the distri-
bution of monthly maxima [see Katz et al., 2005].

[23] The asymptotic normality of the estimates is used for
estimating the standard errors of the maximum likelihood
estimates, 0. This theory for uncertainties also allows to adapt
the estimation errors to account for serial dependence in
the time series [Smith, 1990; Fawcett and Walshaw, 2007].
This is necessary since the requirement of independence in
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the time series is not necessarily met by precipitation data
[e.g., Coles et al., 1999; Katz et al., 2002]. We simulate from
the multivariate normal distribution of the parameter esti-
mates and calculate the return levels, z,. The 0.025- and
0.975-quantile envelope of these n = 1000 simulated return
levels is set as the point-wise 95% confidence interval for z,,.

[24] Threshold choice is a variance-bias trade-off. In order
to use as many data as possible in the analysis a low threshold
is chosen, but high enough so that above this threshold the
asymptotic marginal and dependence properties still appear
to be stable [Eastoe, 2007]. A means to achieve this goal are
diagnostic plots such as the mean residual life plot and plots
of the estimated GPD parameters across a range of thresh-
olds. Since this visual approach is not feasible for roughly
19 - 400 time series, we use a pragmatic, iterative approach.

[25] As a starting value we set the threshold u such that the
highest 5% of the data exceed u. To account for sub-annual
variation these 5% of the data are selected relative to the
mean precipitation amount at each day of the year (days of
zero precipitation are not excluded from the calculation).
This threshold is smoothed with a 60-day moving-average.
Since the main features, such as the annual return levels, are
similar for 10-day, 30-day and 60-day smoothing (not
shown) we choose the least complex threshold for the sub-
sequent analysis. In the next step we estimate 6 and assess the
goodness-of-fit. If the fit is good, see below, the threshold
is kept; if not, it is increased by 1% and the parameters are
estimated once more and the goodness-of-fit is assessed
again, [e.g., Kallache et al., 2011; Toreti et al., 2010]. The
iteration halts when the fit is good or increasing the threshold
does not improve it.

[26] In this study we assess the goodness-of-fit via
quantile-quantile plots. Quantile-quantile plots compare
the empirical quantiles with the theoretical quantiles. When
covariates are present, the random variables Z, are trans-
formed to standard Gumbel scale [Coles, 2001]. We simulate
confidence intervals for the theoretical quantiles and count
the data points outside the 95% confidence interval. The
goodness-of-fit is considered bad if 5% of the empirical
4th quartile of the data lies outside the simulated 95% con-
fidence interval.

[27] A higher threshold than the starting one was suggested
by the goodness-of-fit in less than 5% of the grid points.
Since we assumed a 95% confidence interval, we expect that
5% of all points are outside the confidence interval. Thus the
original threshold was kept.

3.2. Validation Methods

[28] For validation purposes we compare the fitted mar-
ginal distributions against the reference marginal distribution
grid point by grid point, [e.g., Brown et al., 2008], as well as
summaries of the spatial patterns of the marginal distribu-
tions, [e.g., Maraun et al., 2012]. As characteristics of the
marginal distributions, ¢ = char;, we choose the GEV para-
meters (offset, phase ¢ and amplitude 4 for the location and
scale sinusoids and the shape parameter), the annual return
levels (z1/2, z1/5, Z1/10, Z1/205 Z1/505 Z1/100) @nd the monthly
return levels, i.e., the annual return levels conditional on the
month of their occurrence, z,(m) for each month, m, and p €
{1/2, 1/5, 1/10, 1/25, 1/50} as well as their annual cycle. The
annual cycle of z,(m) is characterized by the offset (the mean
of z,(m) over all m), the phase (the month for which z,(m) is
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largest) and the relative amplitude (half the range of z,(m)
divided by the offset).

[29] In this study we focus on the analysis of the monthly
return levels and their annual cycle. Summarized information
on the GEV parameters and annual return levels is presented
in Appendix A.

[30] We take an arbitrary grid point (in East Anglia,
52°59'11.6"N, 0°56'98.046"E) to exemplify the characteristics
of the marginal distributions, especially the annual cycle of
the monthly return levels: in Figure 1 we show a radial plot
in polar coordinates. The radial coordinate corresponds to
the value of precipitation in mm and the angular coordinate
corresponds to the time of the year. If considered as a clock
face the first hour can be identified with January, the second
with February and so on. In this figure we plot a selection
of the characteristics of the reference marginal distribution at
one example grid point: the annual return levels zy., zy/s,
Z1/10, 2120, Z1/50 are represented by the gray circles centered
on the origin; the monthly return levels z;,,5(m) for m €
{1, ..., 12} are represented by the black polygon; the phase
and the amplitude of z;,,5(m), half the range of z,(m), are
represented by the black point. Additionally 40 years of daily
observations (dark gray rays) are plotted, where high pre-
cipitation events (events exceeding z;,,) are marked with a
small point. The monthly return levels z;,,5(m) of the other
data sets (colored polygons) together with their phase and
amplitude (colored points) are depicted as well.

[31] In the following the statistics used to summarize and
compare the information at all grid points are presented.
These do not account for spatial dependencies, since the
order of the grid points is not taken into account. The prefix
“pattern” emphasizes the spatial domain of the statistics as
opposed to time series statistics. For all characteristics under
consideration we calculate the pattern mean, ¢ := pmean(c),
the mean value over all grid points and the pattern standard
deviation over all grid points, denoted by psd(c), summariz-
ing the variation from grid point to grid point.

[32] To compare the respective characteristics derived
from one RCM against the reference characteristics not only
point-wise, we also calculate the regionalized absolute or
relative bias respectively and the anomaly pattern accordance
[Wilks, 2006]. The relative bias of ¢; a4, a characteristic of a
model M at grid point i, is defined as the quotient bias, ,.; =
¢iMm/ci e, While the absolute bias of ¢; o4 is defined as the
difference bias; 45s = ¢; m — Ci o The regionalized relative/
absolute bias is defined as median;ecgion(bias; yeruss). The
UK is divided into nine regions according to Gregory et al.
[2007] and Wigley et al. [1984] depending on mean precipi-
tation: North Scotland (NS), East Scotland (ES), South
Scotland (SS), Northwest England (and North Wales)
(NWE), Northeast England (NEE), Northern Ireland (NI),
Southwest England (and South Wales) (SWE), Central and
East England (CEE), and Southeast England (SEE). Fowler
and Kilsby [2003] have demonstrated that these regions can
also be used to classify extreme precipitation.

[33] To investigate the anomaly pattern accordance of
a model M with the reference, we calculate the pattern
correlation,

— p?d cMm) psd(c,.e_/) -N
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Figure 1. Forty years of gridded daily observations of precipitation (gray rays) and monthly return level
estimates to probability 1/25 (colored polygons) at a grid point in East Anglia (52N 59'11.6", OE 56
98.046"). Time of the year as angular coordinate, daily precipitation amount in mm as radial coordinate
and estimated annual 2-,5-,10- and 20-year return levels in mm as radial labels. The information is two-
folded: (1) the fit of the statistical model (gray rays compared to black polygon) and (2) the validation of
the representation of the monthly 1/25-return levels by the RCMs (colored polygons compared to black
polygon). The colored points near the pole correspond to the centroids of the polygons, summarizing the
information of the amplitude and phase of the annual cycle of the monthly return levels. Small points at
the end of the gray rays indicate an observed 2-year event.

and the pattern centered root mean square distance,

g N ~ - El"e . 2
Pcrmsd(CM7Cref) = \/ ! (( lYM M]\i ( e /)) .
(7

The anomaly pattern accordance is measured by the ratio of
the pattern standard deviations, the pattern correlation and the
pattern centered root mean square distance. It can be summa-
rized by a single point in a two-dimensional diagram, the
Taylor diagram [Taylor, 2001]. The distance of the point from
the origin of the diagram represents the quotient psd(cq)/psd
(¢rep, the angular coordinate of the point indicates the arcus
cosine of pcor(c, ¢,o) and pcrmsd(c s, ¢, is proportional to
the distance from (1, 1). Taylor diagrams in general do not
display the uncertainties associated with the estimated values.

4. Results

[34] We first compare the fit of the statistical model with
the observed data from the UK Met Office [Perry et al.,
2009] at one arbitrarily chosen example grid point located
in East Anglia (Section 4.1). We then validate the estimated
return levels from E-OBS and from the simulated data
against the estimated return levels from UKMO, the refer-
ence data: at the specific grid point and also with respect to
their spatial patterns and to their absolute and relative bias
respectively (Section 4.2).

[35] The example grid point is located in the eastern rain
shadow areas with a less marked annual cycle in mean pre-
cipitation. There the summer precipitation can make the
highest contribution to the annual total and is likely to be of
convective origin [Barrow and Hulme, 1997]. This grid point
exemplifies typical problems of the RCMs in simulating the
annual cycle of heavy precipitation.

4.1. Statistically Modeled Versus Observed Intensities

[36] To illustrate the ability of the statistical model to rep-
resent the annual cycle of extreme precipitation, we arbi-
trarily choose an example grid point in East Anglia. At this
location we demonstrate the suitability of the statistical
model visually. We then perform a likelihood ratio test for all
grid points.

[37] For the validation of the statistical model at the
selected grid point, we focus on the dark gray rays and the
black polygon in Figure 1. The radial labels mark the annual
2-, 5-, 10- and 20-year return level estimates of the statistical
model. The outermost circle represents the estimated 50-year
return level (=48 mm). These return levels are exceeded by
observations in 40 years 26, 10, 5, 1 and 0 times respectively,
which is consistent with the expected exceedance numbers
(20, 8, 4, 2 and 0).

[38] The black polygon corresponds to the estimated
monthly return levels, z;,5(m), which is in one month on
average exceeded once every 25 years. The mean of these
monthly values, 26.8 mm, corresponds to the annual return
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level with probability 0.48, that is an annual return period
of 2.2 years.

[39] Focusing on the observed 2-year events, i.e., the gray
rays exceeding z;, = 26 mm (marked with a small point), and
their occurrence in the course of the year, the annual cycle in
high precipitation events is visible: of the 26 exceedances
during the time period 1961-2000 there has been zero
observed 2-year events during the winter months (DJF) while
during summer at least two events occurred each month. This
sub-annual variation has to be represented in the statistical
model and the monthly return levels, z; »5(m), should display
a similar behavior as the observed 2-year events.

[40] As inferred from Figure 1 this annual cycle is captured
by the statistical model: the monthly return level estimates
z125(m) are smaller for the winter months and higher for the
summer months, accounting for the sub-annual variation of
the intensity of the precipitation events. Therefore the return
period, i.e., the probability of exceeding z1,,5(m), does not
depend on the time of the year. This visual examination
shows that the statistical model fits and captures the annual
cycle in observed heavy precipitation at this location.

[41] At this grid point the associated uncertainties, the
simulated, point-wise 95% confidence intervals, with the
monthly return levels vary between 16% and 23% of |z,,(m))|
for all p and for all m. Throughout all grid points the uncer-
tainties vary between 10% and 25% of the monthly return
levels. The uncertainties, since given as a percentage of
z,(m), neither depend on m nor on the location of the grid
point. As expected the uncertainties tend to be larger for
higher return periods.

[42] Forall grid points we perform a likelihood ratio test, to
check if the inclusion of the annual cycle in the parameters is
necessary for describing extremes on a sub-annual scale. The
likelihood ratio test (for block length one) suggests that the
incorporation of the annual cycle in the location parameter
improves the model significantly (o = 5%) at all grid points
but one; the further incorporation of the annual cycle in the
scale parameter only significantly improves the model at
85% of the grid points. Nonetheless we include the non-
stationarity in both parameters in order to have one statistical
model for the whole of UK. We believe that the model can be
further improved by using second-order harmonics or splines
as covariates for the location or scale parameter.

4.2. Simulated Versus Observed Intensities

[43] In the following paragraphs we investigate the
dependence of the intra-annual variation (relative amplitude),
the time of the maximum (phase) and the absolute values of
the annual cycle of the monthly return levels on the location.
The resulting spatial patterns of E-OBS and of the RCMs
are compared and validated against the spatial pattern of the
UKMO data set. We start the investigation with an example
grid point to illustrate the characteristics under investigation
and the possible problems of the RCMs.

[44] Grid point. For the validation of the monthly return
levels estimated from simulated data, at this single grid point,
we focus on the spider diagram in Figure 1. It consists of the
colored polygons (z,55(m)) and their centroids, the colored
points near the pole. The centroid summarizes the infor-
mation of the phase and the amplitude of the annual cycle of
z125(m): the angular coordinate indicates the phase, i.e., the
time of its maximum value and the radial coordinate indicates
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the amplitude, i.e., (max — min)/2. The offset, that is the
annual mean, is not explicitly shown but can be retrieved
from the monthly values.

[45] The following discussion of the estimates for the
example grid point all refer to Figure 1.

[46] The annual return levels of the UKMO data set range
from =26 mm (2-year)(first radius) to =53 mm (100-year)
(not shown). The values of z;,5(m) range from 19.8 mm in
February to 33.7 mm in August (black polygon), with an
amplitude of =7 mm (radial coordinate of black centroid).
This amplitude of the annual cycle amounts to 25.88% of the
annual mean (7/26.8 =~ 0.2588), the relative amplitude. The
phase is given by the month of the maximum value (August,
angular coordinate of black centroid).

[47] The return levels from the E-OBS data are under-
represented: the annual return levels range from ~22 mm
(2-year)(not shown) to ~47 mm (100-year)(not shown) as
well as zj,s5(m), ranging from ~17.0 mm (February) to
~28.5 mm (August, red polygon). The amplitude is under-
represented as well with =~5.8 mm (radial coordinate of red
centroid). For E-OBS the under-representation of the offset
and the under-representation of the absolute amplitude
results in a good representation of the relative amplitude,
25.19%: the intra-annual variation is represented well by
the E-OBS data set. The phase is also well represented:
the maximum occurs in August (angular coordinate of red
centroid).

[48] The annual return levels derived from the RCMs are
either slightly under-represented, i.e., range from 24 mm to
50 mm (HADRM3Q16), or overrepresented, i.e., range from
29 mm to 91 mm (HIRHAM). Considering the annual return
levels, the range is best captured by RACMO?2 (from =26 mm
(2-year) to =56 mm (100-year))(not shown).

[49] Focusing on the absolute values of the monthly return
levels to p = 1/25, we see different behaviors throughout the
year and throughout the RCMs: for the winter months all
RCMs over-represent the return levels, but for the summer
months three RCMs over-represent the return levels and six
RCMs under-represent it, respectively.

[s0] The amplitude of zy,s5(m) is under-represented by
most RCMs. Almost all RCMs agree on late summer as the
time of the maximum return level, i.e., the phase of the
annual cycle is, apart from HADRM3Q3 and Ql6, well
simulated at this grid point in East Anglia.

[51] At this specific grid point in the UK, the intensity of a
heavy precipitation event depends on the time of the year,
both for observations and simulations.

[52] Relative amplitude. The relative amplitude, as defined
in section 3.2, measures the strength of the annual cycle
of the monthly return levels relative to the annual mean.
In Figure 2 the maps of the relative amplitude of zj/,5(m)
derived from each data set are presented. The map of the
relative amplitude of the reference data set UKMO shows a
strong annual cycle of the monthly return levels in Northwest
Scotland and East Anglia with an amplitude of the annual
cycle that exceeds 25% of the annual mean. In between those
two regions there is a transition zone where the amplitude of
the annual cycle is less than 10% of the annual mean. For the
majority of the grid points the relative amplitudes range
between 12% and 25% of the annual mean throughout the UK.

[53] For the UKMO data set the spatial patterns of the
relative amplitude to different return periods are similar: the
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Figure 2. Maps of the relative amplitude (unitless) of the annual cycle of the monthly 1/25-return levels,
estimated from gridded (first plot) UKMO data, (second plot) E-OBS and (third through sixteenth plots)

14 regional climate models.

size of the regions with a strong annual cycle are smaller for
smaller return periods and similar for larger return periods
(not shown).

[s4] The map to the E-OBS data exhibits most regional
features of the relative amplitude, with correct relative
strength of the annual cycle, except for the Welsh mountains
(Figure 2). There the grid points at higher elevations show
a weaker annual cycle than the surrounding grid points,
which is opposite to the behavior of the reference data. These
could be effects of the interpolation since the gauge stations

contributing to the data set are mainly located along the
coast or along the border to England and not in the Welsh
mountains.

[ss] Figure 2 illustrates that the representation of the
relative strength of the annual cycle of heavy precipitation
by the RCMs varies considerably. Almost all RCMs show
good ability to identify Northwest Scotland as a region with
above average relative amplitude. For the second region with
a strong annual cycle, East Anglia, this is true only for a
few RCMs. There are RCMs which simulate no intra-annual

7 of 17



D18107 SCHINDLER ET AL.: VALIDATION ANNUAL CYCLE EXTREME RAINFALL D18107
0.1 0.1
92 43 2 - 92 43
0.6 0.6
Correlation Correlation
o
[ c (-
k) o
kS kS
> >
(0] (0]
© ©
B B
o IS
e) ©
5 5
S o 0
@ 095 @ 54 0.95
0.99 0.99
o : : o
g T ® I P T L 4 |
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
data set return period
[ UKMO
——e—— EOBS —=&—— HIHRAMS5 -—--@--— SMHIRCA » 2years
---®-- RACMO2 HIRHAM C4IRCA3 ® 5years
44444 ®----- HADRM3QO0 RPNGEMLAM —=e— PROMES ® 10 years
---e--- HADRM3Q3 CLM ALADIN @ 25 years
HADRM3Q16 —--®--- REMO REGCM3 @ 50 years
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of the reference (UKMO). The angular coordinate represents the pattern correlation. The radial coordinate
represents the ratio of the standard deviations. The distance to the black reference point (1, 1) is propor-
tional to the pattern centered root mean square distance. The diameters of the points correspond to the return

periods.

variation in this region. Both the local features and correct
magnitude of the relative amplitude are not represented cor-
rectly by any RCM.

[s6] The relative amplitude is mostly under-represented by
the RCMs. For most regions and for most RCMs the bias
amounts to less than 20% (not shown). However the bias
depends on the region: it is smaller for western regions and
larger for eastern regions (not shown). For instance for NEE,
CE and SEE the spread between RCMs is large, the bias
ranges between 15% and 70% (not shown).

[57] In Figure 3 (left) we compare the anomaly patterns of
the relative amplitude of the RCMs to the reference across all
probabilities. The pattern deviation against the reference
pattern (black point) is depicted by the colored points.

[58] The anomaly pattern to the E-OBS data set (red point)
correlates considerably better to the reference pattern across
all probabilities than the RCMs’ anomaly patterns (Figure 3,
left). Since E-OBS is observation-based, this result is
not surprising. But regarding other characteristics of daily
extreme precipitation E-OBS does not necessarily perform
better than the RCMs [Hofstra et al., 2009; Maraun et al.,
2012].

[59] The increasing distance of the points from (1, 1)
with increasing return period (increasing diameter of points)

shows that the representation of the relative amplitude
worsens with decreasing probabilities across most RCMs.
Especially the pattern correlation of the anomaly patterns is
decreasing to small positive or even negative values for most
RCMs suggesting no accordance to the reference data. In part
this might be related to increasing uncertainties of the esti-
mates with smaller probabilities not represented in the Taylor
diagrams.

[60] The behavior of the three Hadley Centre RCMs is
noteworthy, because they only differ in some parameteriza-
tions, resulting in different climate sensitivities. All three
versions represent the spatial patterns of the relative ampli-
tude of the annual cycle badly but their representation varies
considerably. The spatial pattern to the standard (QO) climate
sensitivity version is the closest to the reference pattern.
The spatial patterns of the low (Q3) and high (Q16) climate
sensitivity versions are very close to the spatial patterns of
the elevation (Figures 2 and 3).

[61] As we have seen in Figures 2 (left) and 3 (left), the
magnitude of the annual cycle of the monthly return levels as
well as its spatial pattern are not well represented by any
RCM. Few RCMs are able to identify both regions with a
strong annual cycle, but even then the relative strength is not
well simulated.
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Figure 4. As in Figure 2, but for the month of the maximum monthly 1/25-return level.

[62] Peak time of the annual cycle. The maximum monthly [64] Most RCMs are able to reproduce the east-west
return levels of the UKMO data set reveal spatiotemporal gradient despite some difficulties in representing local char-
dependencies (Figure 4). The map of the occurrence time acteristics and in modeling the spatial extent of homogeneous
of the maximum monthly return levels reveals an east-west  regions (Figure 4). In regions, such as the south-east coast of
gradient following the orography. In the lower regions of Scotland, the simulation of the phase of the annual cycle
CEE the maximum return level occurs in August propagating spreads widely and seems to vary randomly spatially, e.g.,
to the mountainous regions in the west with the peak of the HADRM3Q16, and between models. The influence of the
annual cycle during December. highlands of Scotland reaches farther to the north—east, e.g.

[3] The E-OBS data set shows again a good agreement HADRM3Q3 or not far enough to the east, e.g., C4IRCA3,
with the reference data set except for Wales where the max- than in the reference data.

imum occurs in September and October (Figure 4). This [65] Apart from the spatial inhomogeneity (local estima-
is possibly related to the same interpolation problems in the tion problems and misrepresentations of the range of a uniform
E-OBS data as hypothesized for the relative amplitude. area) there are two additional types of misrepresentations in
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England: REMO shows an additional homogeneous subre-
gion in NWE where the maximum return level occurs one
month early (July) but the surrounding regions are modeled
correctly (Figure 4). In HADRM3Q3 the maximum return
levels in CEE occur in January and December (not in August)
(Figure 4) as already seen at the example grid point (Figure 1,
navy blue centroid).

[66] These biases do not depend on the return period (not
shown). For all return periods the bias in the peak time is
largest for grid points located in CEE or SEE: there for most
RCMs the spatially averaged bias ranges from one month to
four months late (not shown). In these regions the observed
peak occurs during summer and is most likely of convective
origin. Convective precipitation is not resolved by the RCMs
used in this study and needs to be parameterized. This leads
to uncertainties and errors in the simulation of especially
summer precipitation [Maraun et al., 2010, and references
therein].

[67] The spatial anomaly patterns of the peak time of the
annual cycle is well represented in the E-OBS data set and
well simulated by all RCMs but one (Figure 3, right). For
all RCMs the pattern variability depends on the return period.
It is well represented for high return periods and less well
for small return periods. This is in contrast to the behavior of
the pattern accordance with respect to the relative amplitude.

[68] For few RCMs and few grid points the deviation from
the peak time of the annual cycle might arise from simulating
the annual cycle too weak (Figure 2). But this is not the
explanation for the difficulties of most RCMs and at most
grid points (Figures 4 and 2).

[69] Monthly return level. The difficulties of the RCMs in
capturing the annual cycle can be examined by studying the
monthly return levels for each month separately. Exemplarily
for all months we do this for February- and August-return
levels, since their difference determines the amplitude of the
annual cycle in CEE, which is the worst simulated region
(in terms of the relative amplitude, Figure 2).

[70] The maps of the intensities of z;,,5(m) based on the
reference data reveal an east-west gradient throughout the
year (e.g., Figures 5 and 6), with lower values in the east and
higher in the west. The gradient is strong in the winter
months.

[71] In the respective maps based on the E-OBS data, we
see the east-west gradient in the winter months but the
gradient in the summer disappears (Figures 5 and 6, second
map).

[72] The performance of the RCMs in modeling heavy
precipitation patterns is better for the winter months than for
summer (Figures 5, 6 and 7). The east-west gradient appears
in most return level maps for the winter months but is not
prevalent in the summer. In most RCMs the modeled gradi-
ent is too weak, except for the PROMES RCM in which it is
too strong (see Figure 5).

[73] In Figure 7 we examine the anomaly pattern accor-
dance of the absolute intensities of the monthly return level
maps: the four Taylor diagrams show the dependency of the
accordance of the anomaly patterns of the February- and
August-return levels on the return periods (Figures 7a
and 7b) and the dependency of the anomaly pattern accor-
dance of the monthly 1/5- and 1/25-return levels on the time
of the year (Figures 7c and 7d).
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[74] The accordance of the February-return level maps
exhibits only a slight dependency on the return period
(Figure 7a). The accordance of the August-return level maps
however depends strongly on the return period for all RCMs:
smaller return periods result in stronger pattern correlations
and better pcrmsd values (Figure 7b). The accordance of
the monthly 1/5-return level maps depends on the time of
the year (Figure 7¢). This dependence is even stronger for the
accordance of the monthly 1/25-return level maps (Figure 7d).
The pattern accordance is better for winter months (DJFM)
than for extended summer months. This might be due to the
fact that for summer months part of the precipitation is of
convective origin, which is not resolved by the RCMs. It also
varies considerably for different return periods. The perfor-
mance for small return periods varies less throughout the year
and is better correlated than the performance for high return
periods. This is to be expected since return levels to small
return periods are closer to mean precipitation, which is
reasonably well modeled (including its annual cycle). Fur-
ther, the estimation of higher return periods is more uncertain
leading to large confidence intervals which are not taken into
consideration when calculating the pattern correlation.

[75] The relative bias of the monthly return levels z; ,5(m)
focuses on the performance of reproducing the amount of
precipitation. The median of the relative bias over all grid
boxes in one region shows the under- and over-representation
of the intensity summarized by regions and resolved for each
month (Figure 8). The shaded area in Figure 8 originates
from the simulated 95% confidence intervals of the UKMO
return levels: the upper bound of the confidence interval as
well as its lower bound are divided by the reference estimate
for each grid point and summarized by the median over the
regional grid points. Note that this is only a visual guidance
on the average uncertainty of the UKMO return level esti-
mates throughout the region and not a confidence interval for
the regional median.

[76] The monthly return levels based on the E-OBS data
(red line) are under-represented by 4% (NI) to 25% (NS) and
the relative bias shows no intra-annual variation (Figure 8).

[77] The RCMs tend to under-represent z;,5(m) by differ-
ent amounts depending on the region and on the month under
consideration (Figure 8). In the northern regions of the Brit-
ish Island most RCMs largely under-represent the monthly
return levels with no intra-annual variation. In CEE and
SEE the relative bias exhibits an annual cycle with over-
representation of the monthly return levels for the winter
months by most RCMs. Only REMO shows no pronounced
annual cycle in the relative bias, it even tends to have
a smaller bias in summer months. On the other hand
HADRM3Q3 shows a very pronounced annual cycle: the
monthly return levels from April until November are under-
represented and the winter months over-represented by 25%.

[78] Discussion by regions. The different performances
of RCMs, as revealed by biases and maps, are summarized
by regions.

[79] 1. Northern Ireland is the only region with no serious
misrepresentations by almost all RCMs. This region is
represented quite well in terms of relative amplitude and
phase. The relative bias of the monthly return levels is neg-
ligible for most of the RCMs. The good performance of
the RCMs could be related to the relatively homogeneous
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Figure 5. As in Figure 2, but for February-return levels to the probability 1/25, z|,,5(Feb).

topography and mostly frontal origin of precipitation in
Northern Ireland.

[so] 2. In Scotland the relative amplitude is under-repre-
sented by some and over-represented by other RCMs. The
peak times are well simulated, only in ES one or two months
too early by few RCMs. Northwest Scotland’s distinctive
features, that is high absolute values, strong annual cycle,
maximum values late in the year, are also captured by most
RCMs. The spatial expansion of these features and their
exact values on the other hand are not well represented.
The relative bias of the monthly return levels is large, only
few RCMs have a bias of less than 10%, the other RCMs
under-represent the monthly return levels by up to 35%. Even
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though precipitation in West Scotland is also mostly of
frontal origin, the representation of the position of the storm
tracks might explain the large bias in the absolute values
(contrary to Northern Ireland).

[s1] 3. West England and Wales are not consistently
represented across different RCMs and across different
characteristics. The relative amplitude is too strongly repre-
sented by some RCMs and not strong enough by others. The
peak time is well represented by some RCMs and one month
too late by others. The monthly return levels are mostly
under-represented, some RCMs show a slight annual cycle in
the relative bias.
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Figure 6. As in Figure 2, but for August-return levels to the probability 1/25, z;,,5(Aug).

[82] 4. East England is the region with the most serious
misrepresentations by almost all RCMs. The relative ampli-
tude is under-represented by almost all RCMs in CEE and
SEE and by most in NEE. In East Anglia, a region with a
strong relative amplitude, the simulated relative amplitude by
some RCMs amounts to less than 10%. Only some RCMs
represent the timing of the maximum value well, some RCMs
misrepresent the peak time by up to four months late. The
relative bias of the monthly return levels for CEE and SEE
shows an annual cycle, over-representing the return levels
of the winter months and under-representing the return levels
of the summer months.

[83] The annual cycle in the relative bias is prevalent in
those regions and those RCMs where, respectively in which,
the relative amplitude is not well represented.

[s4] The ability of E-OBS to represent the annual cycle
of monthly return levels is independent from the region
(apart from a collection of grid points in Wales).

5. Conclusion

[s5] In this study we evaluate the performance of 14
Regional Climate Models (RCMs) of the ENSEMBLES
project in representing the annual cycle of daily heavy pre-
cipitation across the UK over the 1961-2000 time period.
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[s6] We estimate extreme value distributions from the
output of the RCMs following the Poisson process approach.
To describe the annual cycle of observed heavy precipitation
events, it is necessary to use a sinusoidal model for the dis-
tributions’ location and scale parameters.

[87] We show that the RCMs represent the annual cycle of
heavy precipitation in the UK with different quality. The
representation of the monthly return levels, i.e., the annual
return levels conditional on the month of their occurrence,
depends strongly on the region, the time of the year and
slightly on the return period. HIRHAMS is the only RCM
with a relative bias of less than 10% for all months and
regions but one. For most of the other RCMs this is only true
for Northern Ireland. In general the months with the lowest
relative biases are the fall and spring months, since an annual
cycle in the bias exists with over-representation of winter
return levels and under-representation of summer return
levels.

[88] A significant shortcoming is the misrepresentation of
the amplitude of the annual cycle relative to the annual mean.
The RCMs fail in representing its anomaly patterns across
all return periods. Especially regions with a strong peak of
the annual cycle in summer, such as East Anglia, are

simulated with almost no annual cycle by some RCMs.
Despite problems in representing the strength of the annual
cycle the timing of its maximum value is simulated rather
well. The spatial pattern of the peak time of the annual cycle,
with peaks in the late summer in the east of the UK and late
fall or early winter in the west, is well represented in almost
all models and across almost all return periods.

[s9] Some characteristics, such as the peak time of the
annual cycle, have a temporal accuracy of one month and
show a homogeneous spatial structure on larger scales. These
characteristics might be simulated robustly enough to serve
for regional climate change studies. Characteristics with finer
spatial structures, such as the relative amplitude of the annual
cycle, are rather poorly represented. Hence the simulated
relation between heavy precipitation intensities occurring in
different seasons cannot be interpreted in a meaningful way.

[90] Consequently simulations with impact models which
strongly depend on the explicit annual cycle of heavy pre-
cipitation should be carefully considered.

[o1] We also observe the well-known findings that the
noise on grid point scales can be too large to extract mean-
ingful information, [e.g., Kendon et al., 2008; Maraun et al.,
2010]. Therefore, instead of studying a single grid point
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Table Al. Pattern Bias of GEV Parameters and Annual Return Levels®
GEV Parameter Return Period in Years

RCM 1o B AQ) o0 B(o)* A(0) e+ 2 10 20 50 100
UKMO 1 0 1 1 0 1 0 1 1 1 1 1
EOBS 0.91 —0.01 0.9 0.85 0.04 0.88 —0.01897 0.86 0.84 0.83 0.825 0.82
RACMO2 0.94 —0.27 0.84 0.88 —0.07 0.99 —0.01439 0.89 0.87 0.87 0.86 0.86
HADRM3QO0 0.95 —-0.27 0.71 0.98 —0.09 1.11 0.02529 0.97 1 1.01 1.03 1.05
HADRM3Q3 0.92 —0.71 0.97 0.94 —0.58 1.07 0.01892 0.94 0.96 0.97 0.98 1
HADRM3Ql16 0.91 —0.29 0.64 0.90 —0.34 1 —0.01019 0.89 0.88 0.87 0.87 0.87
HIRHAMS 1 —0.28 0.98 1.02 —0.24 1.27 —0.00064 1.01 1.01 1.02 1.02 1.03
HIRHAM 0.97 —0.32 1.03 0.97 —0.02 1.26 0.03293 1 1.03 1.04 1.068 1.09
RPNGEMLAM 1 —0.09 0.78 0.95 0.11 1.02 —0.02844 0.94 0.92 0.91 0.9 0.89
CLM 0.94 —0.01 0.75 0.93 0.08 1.1 0.01868 0.94 0.96 0.97 0.98 1
REMO 0.95 0.35 0.89 0.92 0.12 1.22 0.01676 0.95 0.96 0.96 0.98 0.99
SMHIRCA 0.94 —0.02 0.67 0.8 0.24 0.75 0.00578 0.85 0.83 0.83 0.83 0.83
C4IRCA3 0.98 —0.13 0.8 0.84 0.05 0.86 0.00721 0.9 0.88 0.88 0.89 0.89
PROMES 0.96 —-0.29 1.11 1.01 —-0.24 1.44 —0.00189 0.99 1.01 1.01 1.02 1.03
ALADIN 0.94 —0.57 0.77 0.9 —0.33 0.89 —0.02768 0.89 0.87 0.86 0.9 0.84
REGCM3 1.01 —0.54 0.65 0.93 —0.17 1.08 —0.00128 0.95 0.94 0.94 0.94 0.94

*The biases to the reference data (UKMO) are calculated for each grid point and then averaged over all grid points. The relative biases are (as a ratio)
unitless; the absolute biases, marked with an asterisk, are given in radians (¢) or unitless (). In each column the best RCM (boldface only) and the worst
RCM (boldfaced italics) are highlighted. In the row for E-OBS the characteristics which are represented as good as/better than the best RCM are set in
boldface and the characteristics which are represented as worse as/worse than the worst RCM are set in italic.

separately, one should make use of a large ensemble of
RCMs. Results from a single RCM should be based on a set
of grid points to avoid noise on grid point scales. Either way a
bias of the RCMs remains. Further averaging over larger
regions only seemingly reduces the overall bias by averaging
out compensating biases.

[92] Apart from the validation of the RCMs, we also
investigate a second observation-based data set, the E-OBS
data set. It fails to represent the intensity of the monthly
return levels, but is able to represent the spatial patterns of the
phase and the relative amplitude of their annual cycle. The
exact values of the phase and relative amplitude of the annual
cycle of heavy precipitation are well represented as well.
In this regard it could be used as a reference data set for
validation studies. However, it should not be used for vali-
dating the amount of heavy precipitation or the absolute
amplitude of its annual cycle.

Appendix A: GEV Parameters and Annual
Return Level

Al. GEYV Parameters

[93] The GEV maximum likelihood estimates for both
observation-based data sets show similar spatial patterns but
differ in magnitude, regional smoothness and spatial exten-
sion of the regional characteristics (see auxiliary material).'

[94] For all data sets the spatial patterns in the offset of the
location, u, and scale, o, parameters show an east-west gra-
dient with smaller values in the east. By the RCMs the offset
of u is the best represented of all characteristics in terms of
pattern bias and pattern accordance. The spatial variation of
the offset of o is very divergently represented, mostly under-
estimated. The amplitude of i as well as the phase of y are
diversely represented (0.5 < pcor(A(w)) < 0.92 and 0.2 <

'Auxiliary materials are available in the HTML. doi:10.1029/
2012JD017828.

pecor(p(o)) < 0.8, and overall bias in Table Al). The
amplitude of o is rather poorly represented: the centered
pattern root mean squared distance varies between 1 and 2.1.
The phase of o is represented fairly well by half of the
RCMs. The shape parameter, £, which is difficult to esti-
mate, exhibits the largest differences between the data sets
(see auxiliary material). In observations, the values of ¢ are
positive in the eastern parts and in Northern Ireland, zero
(or slightly negative) along the south coasts of Wales and
England and the west coast of Scotland.

[95s] As we have seen in section 4.2, the pattern accordance
of the peak time of the annual cycle of the monthly return
levels is worse represented at small return periods than at
large return periods. However, the pattern accordance of
the phase of the location parameter is better represented
than the accordance of the phase of the scale parameter (not
shown).

[v6] The RCM HADRM3Q3, which seriously mis-
represents the annual cycle in the eastern parts of the UK,
does not have a strong annual cycle in the scale parameter in
these parts of the UK (auxiliary material). The pattern bias of
the phase of both location and scale parameter is greatest for
HADRM3Q3 as well (Table Al), resulting in the deficits
shown in previous sections.

A2. Annual Return Level

[97] Table Al shows the pattern bias for five return peri-
ods: 2,10,20,50,100 years. The overall biases are small, less
than 20% for all return periods and all RCMs. HADRM3QO0
and HADRM3Q3 show very little biases in the annual return
levels. Surprisingly the second observation-based data set,
E-OBS, shows largest bias in the annual return levels.

[98] The pattern accordance is best for HIRHAMS (1p2,10)
and RACMO?2 (rp20-100) and worst for REMO (1p2,10) and
HADRM3Q3 (rp20-100) (not shown).

[99] The RCMs which represent the annual 2-year return
levels best, in terms of relative bias or pcrmsd values
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(Table Al), are not the same RCMs which represent the
annual cycle best, in terms of relative amplitude or phase.
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