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INTRODUCTION

This report describes the invefse analysis of the IWEX data. The
analysis is entirely confined to the spectral data in the internal Wave
frequency band averaged over the entire dﬁration of the ekperiment.

The IWEX experiment has been described by Briscoe X1975). A brief
summary and some supplements can be found in part I of this report. The algebra
and methods used for the analysis are given in part IIX and 11X, the results
are described in part IV and V. The individual parts can be read separately.
Volume II contains the tables and figures.

A summary of this report will be published in the Jounal of Geophysical
Research ('The IWEX-Spectrum' by P. Miller, D.J. Olbers and J. Willebrand).



I. DATA SET

The Internal Wave Experiment (IWEX) was conceived to obtain spectral

data of suff101ent ékxtent and dens1ty to determine the klnematlcal structure
of the motlons 1n the 1nterna1 wave frequency band ‘ih the main thermocline of the
deep ocean. Based on the space—tlme scales of the model of Garrett and Munk
(1972) a 3- dimensxohal array of current meters and temperature sensors was
designed to obtain adequate Sampllng denSLty of the motion field in space and time.
Though_malnly conceived for kinematical purposes thé array was operating long
endugh to study the time variability of the kinematic structure and to attempt
the detection of dynamical processes. ' o '

_ We glve a brlef descrlptlon of the experlment, data handling and data
wiich partly reviews and paxtly supplements the article of Briscoe (1975).

I.1. The IWEX experimefit

The IWEX field experiment was performed for 42 days in November -
December 1973 at a site (27044'N, 69°51'W) in the Sargasso Sea shown in Figure
I.1 (from Bristoe 1975). This site in the region of the Mid-Ocean-Dynamics-
Experiment (MODE) was chosen to benefit by the results of MODE for the design
and interpretation of IWEX.

The current meter array was supported by a three-legged mooring with the
form of & teétrahedron of about 5 km height (Fig. I.2). The apex was at the top
of the main thexmocline The array was locateéd between 604 m and 2050 m depths.
Current meters and temperature sensors were attached to the three legs on 8
horizontal levels with vertical separations which are nearly equispaced on a
logarithmic axis. Instruments are labelled by a letter A, B, or C indicating
the associated leg, and by a number indicating the associated level. Table I.1
lists the current meteér Histribution in the trimooring.

Except for the lowest level the array was instrumented with vector averaging
current meters (VACM) which were modified to include two temperature sensors
measuring temperature and temperature difference over 1.74 m vertical separation.
The temperature measurements were obtained with the intention of estimating the
vertical displarement. The lowest level was instrumented with three Geodyne
850 current meteérs with attached temperature sensors. Here displacement hag to
be estimated in the traditional way using the temperature gradient obtained from
CID-profiles. The sampling ihtexrval was 225 sec for the VACM-DT and 900 sec
for the 850-T.

Overall return of data from the temperature and differential temperature
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serisors was 100%, from current meters about '95%. Rotor failures causéd the loss
of ‘current data at Cl, €2, A6, B6, AB-and AlO for 'some days and at B2 for almost
the entire experiment. For the f£irst 20 days the high frequency currents at

the lowest level (Geodyne 850) are unreliable because the rdtors were below the
threshold point. Nine current meters (indicated by % in Table I.1) gave high
guality, data for the entire perlod of 42 days. The subarray of these current
meters contalns all essentlal scales of the total array w1th the exceptlon of ‘the
largest and smallest horizontal and vertical separatlons. ' ‘

In addition to current and temperature sensors the moorlng 1ncluded nine
presSure—temperature recorders (at 1ntermed1ate leVels) ro monltor the moorlng
motion. The maximum (r m.s.) values of vertlcal excur51ons were 1.4 m (0.2 m)
at the apex, 3.5 m (1. 0 m) -at 1000 m, 5 2 m (3 m) at 1500 m; and 12 m (6 m)
at 3000 m depth (Panlcker and Schmldt 1975) Almost all energy of the moorlng
motlon was found at semldlurnal perlod ‘ .

Some additional measurements were made w1nd speed and dlrectlon at the
mooring site were monitored during the entire experiment; numérous CID-profiles
were collected at and near the site (Millard 1974); a serles of yoyo-CTD-profiles
in the main thermocline was made by Hayes (1975), durlng the deployment of the
mooring a simple spar buoy experiment monitored the near surface internal wave
field (Briscoe 1974, Zenk 1974).

I.2. Low frequency currents and temperatures

~ The low frequency data of IWEX show the typlcal oceanlc varlablllty

which has been observed durlng the MODE experlment

Time series of low frequency currents and temperatures were obtained
(Frankignoul 1974) by applying a Gaussian filter of 75 hours w1dth to the time
serles. Flgure I.3a (courtesy of C. Franklgnoul) shows the low passed temp-
eratures at dlfferent depths. At almost all levels the temperature increases
monotonically after the 7th of November Wlth a more abrupt ihcrease in the middle
of the experlment The 2000 m level shows a more 1rregular pattern than the upper
levels. The dlsplacements of the lsotherms associated with the increase is
about 7 m at the apex, 30 m at 1000 m, 60 m at 2000 nm, and 30 m at 3000m depth.

Low passed current vectors are shown in Flgure I.3b (courtesy of C.
Frankignoul). The currents at the two higher levels show some relation to the
low passed temperatures: clockwise rotation before and counterclockwise rotation
after the abrupt temperature increase associated with a slight weakening.

The low frequency currents and temperatures and the nearhy CID~profiles

can be interpreted as due to a westward advecting anticyclonic mesoscale eddy
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reaching IWEX in the middle of November. Bryden (1976) has pointed out that the
observed local time change of the low passed temperature is predominantly balanced

by horiZontai,advection.

I.3. Yoyo-CTD-profiles

A 12 Houx yoyo experiment was performed at the IWEX site (Hayes 1975) .
Tlme series of CTD were collected betweer 600 m and 900 m, successmve lowerings
were separated by about 12 mintites.

Hayes cdmputed the spectrum of vertical dlsplacément 1n the vertical
wavelerigth range 2 m to 300 m (Figure 1.4 from Hayes 1975y . It shows a change in
slope at about 10 m from <2 at larger wavelengths (50 - 300 m) to -2.5 at smaller
wavelengths ( < 10 m) Investlgatlons of tlme—lagged echerence indicate ‘that
vertical wavelengths of less than 10 m lo&e their coherénce within time lags of
less than 12 min while longer wavelengths show significant coherence for almost

all time lags considered (0 - 10 h).

I.4. Estimation of vertical displacement

The temperature time series were transformed to

(1.1)

The bar denotes the time average over the entire period of the éxperiment.
For the VACM-DT's the temperature gradient aT/dz is estimated by 4T/ 4z where
4T is the temperature differénce over a4z = 1.74 m Verticai separation. At
level 14 the mean temperature graaienﬁ is estimaﬁed from GTD«profiies;
The quantlty E(f ) is the traditional estimate of vertical dlsplacement.
The following analysis will show that there exist 51gn1f1cant deviations between
§ and the true vertical displacement. Therefore g will be called "up" .
following Briscoes's (1975) terminolody, though from the definition (I 1) it
is actually "down", i.e. positive § meaﬁs déwnward dlsplacement ThlS situation
is somewhat confusing but we decided té leave the original data sét and the name of
E unchanged. Ih this report the true sign of g will only be important
when relating'phases‘of cross-spettra between §  and the horizontal currént

to real physical quahtities.

I.5. Data handling .

To estimate cross-spectra in the internal wave freguency band a record

length of 40 days 15 hours of the time series was segimented in 13 nonoverlapping
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pieces with a Easib lengtﬁ of 75 hours, overlapped 50% by another 12 pieces.
The pidce length is between 3 inertial periods (77.36 h) and 6 periods (74.52 h)
of the sgmidiurnal_tide.' Crogs=spectia were compuéed‘kor thege 25 pieces by fast
Pourier transform routines using a Hanning data window. Ifo iticreasé statistical
stabiliﬁy and reducé the ambunt Of data the original cross spectral estimates at
600 equispaced fredquency points were averaged (top«hat averaglng) to y:.eld
estimates at 40 frequéncies (between 0.0133’ cph and 7.5 cph) whith aré héarly
equispaced on a logarithmic axis: Details of the data handling can Be found in
Briscoé (1975).

The ba51c data set of IWEX consists of 25 pieces of 1770 c¢ross- and 60
autospectra at 40 frequency points.

I.6. Notation of cross-spectra

We will use a right handed Cartésian coordinate system X &‘(Xi, Xoy xj) =
(%, vy, 2) with the xiwaxis pointing to the east, the xzéaxiS‘pointing to the: north
ard the x3-axis pointing upwards. The Cartesian components of the current vector

will be denocted by

For the cross-gspectrum betweerni tHe component u, at the position x and the

component u, at the positiocn xj we will use the notatlon

il o\ pli Y. _ .
p i , ) ,
Here .Pm,,, denotes the cospectrum and Qm“ the quadspectrum. For

= 9 we will also use

Lo f '
H,m(w) = Hma(w;.ﬁs;‘)' (1.4)
or even A, if the position is ndt specifically considered.: Deflnltlon of
the spectra is one-sided so that the integral over pOSltiVe frequenc1es ylelds
the total variance. A . ‘

Coherence and phase are defined by
i ¥ Logioyh (1.5)
= 'Hmnl(ﬁmn th )

mw

and

¢ .

(f);i = avelan ( Qm,,_, . ) (I.6)
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The current vector 4 may also be described by its rotary components

T (u, *iu,)

4 (1.7)
u‘o = u3‘
The crossa5peqtral mat:ix of these componenté will be denoted.by
) T i3 SN e Ly oo .. S .
Hﬂv(w) = Rw (m) Lva(w) g,v=+-,0 (1.8

Freqﬁently we will use inétead df\ug tﬁe verfical"diéblécemént E
{since this is ac¢tually estimated from the data). We then refer to the horizontal
current component as u and v and denote cross-spectra exP;iciFly by Puu’,Puv’
tgg et¢. Cross-spectra between rotary components and S will be denoted by
H+k ' H-S ete¢.  Notice that the transformation from uy to % leaves

the coherence’ unchanged bttt ¢changes the phase... We have e.g.

¢+O = ¢+I ~% (2.9)

sincé u.o;-,-'—g = *Lb)"g i

e '

1.7. Stationarity and Gaussianity of the wave

B

ield
T
The time variability of the energy in the internal wave fredquency band
has been inVestigatéd.by'Frankigncul and Joyce (1977). From»theiZS pieces
data set they computed energy.time series for different frequency bands.
Figure I.5 (from Frankignoulfénd Joycéd '1977) displays some of these energy time
series. '
The inertial energy shows considerable time variabil;ty at all depths.
The most striking feature is a lakge burst -of energy of 10- days duration in the
middle of the experiment.
‘ Energy in the semidiurnal tide shows even larger variability. By and large,
there is a slight increase at higher levels and a decrease at lower levels.
Within the internal wave continuum (10 - 0.4 h) variability of energy
on a broad range of scales is observed at all levels, both for horizontal kinetic
energy and pctential eneggy. On small time scales the time series of horizontal
kinétic'energy are uncofrelatea between different levels while potential energy
shows some significant correlations. On larger time scales almost all time series
reflect an increase of enerdy. By fitting the ehergy time series to a random

process with zero mean and linear increasing variance theé increase in the total



energy was found .to be :about 50%, almost independent .of freguency and depth.
Temperature alone shows this behavior at high frequencies (4 - .0.4 h), but no
significant increase at lower -freguencies. (10.- 4 h), ) o .
Gaussianity and its evolution im time have been investigated by Iida
and Briscoe (1975) and Briscoe (1977). Time series of selected instruments have
been eegmented into nonoverlapping pieces. For each piece the Chi-sguare and the
two-tailed Koélnmogorov-Smirnow goodness-of-£it tests were constructed and compared
to confidence limits obtained from an artificially generated random process with
the correlaticn structure of the observed internil wave spectrum. It was found
that the majority of the currént redords contain non-Gaussian pieces (even at the
99% confidence limit) whereas the displaceément records are Gaussian throughout.

In most cases non-Gaussianity is accompanied by high energy events.

I.8. The mean data set

H

The inverge analysis will only be applied to the mean data set which is
defined as the wriweighted time average (i.e. average over the.25 pieces) of the
basic data set. 'This data set will be parameterized by nonlinear models so
we have to emphasize that Hue to the small amount of instationarity in the data
the parameters of the mean data set differ from the average of the parameter
sets determined for dach piece separately.

I.8.1 Separatidns and frequencies

>We included only.sensors wﬁioh dave high’quallty data for fhe.entire

period of the experiment. The usé of sensois with data gaps poses the pfoblem
td construct the average cross~spectrum between sensors with different record
length This problem is sblvable but needs cumbersome data management. Moreover,
the high quality data &over almost all scales of the total array.

... The mean data set poptalns all temperature data but only current data
from ;he‘9 instrupents indicated by an asterix in Table I.1, leeving us with
38 autospectra and 1406 co- andyquadspectra, i.e. 1444vdata ﬁoints at each of
40 frequenties. The frequencies are logarithmically equispaced between .0133 cph
and 7.5 cph (Table I.2) with about 30 frequency points (dependlng on the level)
in the internal wave frequency range between the inertial freoﬁency £ = 0.03878 cph
and the local Brunt-V&is&lad frequency. .The third frequency, Wy , is slightly
larger than £, the sixth frequency, We , is slightly less than the frequency

‘Mz of- the semidiurnal tide.

Histograms of horizontal and vertical separations between the sensors

contributing to this data sét are shown in Figuré I.6. Table I.3 lists the
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total number of spectra, the number: of autospedtra and the humber of cross spedtra
with specified separation. These numbers vary with frequency. The level 14

is excluded for Ww,, to Wy, and the levels 14, 10 and 8 are excluded for wy,
since the frequericies exceed the local Brutit~vVaisdli frequeHCy.

I.8.2 Autospectra

Figure I.7a and b (court. of Brisc¢oe) show the autospectra Puu arnd va
of east and north components of the current at C6. The‘spectra are very similar
to those obtained in earlier experiments: the energy at the inertial frequency
{3rd frequency point) dominates, & smailer tidal peak (6th frequency point) is
visible, followed by a steep decreaSe to hlgher frequencies. There is a
noticeable change in the spectral slope from about %2 in the interndl wave
continuum (M2 <w ¢ N) to -4 in the beyornd buoyancy range. This feature is
not visible in other deep-sea current data, presumably because of mooring motion.

The autospectrium Py, of displacement at C6 is shown in Figure I.7c
(court. of Briscoe). The spectrum Has a much Smaller inertial peak and & matrked
tidal peak (the semidiurnal tide contributes about 10% to the total variance).
The decrease: 6f ‘the spectrum ih the. internal wavé ¢ontinutm with & slope close
to -2 is interrupted near the local budyancy frequency by a bmall hump followed
by a strong decrease ds steep as the spectral window chn estimate.. The hump
near the local busyancy frequency has also been reported by Gould (1871) and
Cairns (1975). For a possible explanation see Desaubies (1975).

More detailed information about autospectra of IWEX can be fouhd in
Tarbell, Briscoe and Chausse (1976). . '

WKB-scallng of the autospectra (cf. part II) has been demonstrated by’
Briscoe (1975). Since it works well in the internal wave continuum ( w > MZ)
we may construct average autospectra by scaling the avallable spectra to some 1evel
and taking the average; The average autospectra P 4 P__ ‘and POO of the totdry
components are displayed in Flgure I.8. Noticeé that the clockwise spectrum
P__ contains the inertial energy while the apticlockwiee spectrum P++ nearly

vanishes at w = f.

I.8.3 Cross-spectra

The cross-spectra constitute the main part of the data set. They contain
all information on the spatial scales of the observed fluctuations.

Figures I.9a-d (courtesy of M. Briscve) show sohe selected samé component
coherences and phases as func¢tion of freguency for some slart (same leg) and

horizontal distances. In the frequency domain the coherences first increase



up to the local inertial freguency (current) or up to the semidiurnal tidal
frequency (displacement) and then decrease almost monotonically, occasionally
interrupted by some peaks in the internal wave band (cf. section I.8.4).
Cohererices of displacement frequently increase towards the buoyancy freguency
(for a possible explanation see Desaubies 1975). 1In the:inte:nal.wave frequency
band the phases are essentially zero.

. Figures I.10-14 show cohérences and phases for some selected frequencies
as function of slant and horizontal distance. Included in the figures are the
95% confidence level for zero true coherence and standard deviations at some
points. Presented are coherence and phase for the components u_ and § .

The same component coherences are found well above the 95% confidence level at
almost all separations, the phases being zero in this case. The coherence between
u_ and g is below the 95% confidence level (the phase is not shown in this
case) for almost all frequehcies except M2, very high frequencies and marginally
f. By and large the ¢oherences decrease with increasing separation.

:

I.8.4 Variability in the frequency domain

The mean data’set is obtained by frequéncy and piece averaging and
thus represents a highly smoothed picture of the observed fluctuations. The
spectra are estimated with about 50 edof's at the lowest 10 frequencies up to
300 edof's at the local buoyancy frequency. Despite this high émdunt of.smoothing
some characteristic features in the internal wave continuum survived in almost
all auto- and cross-spectra, which cannot obviously be related to a smooth
internal wave picture. This is visible by higher energy and/or extreme high
or low values for coherence at some frequency points relative to the neighboring
frequencies. Some examples are demonstrated in Fig. IV.11 and I.15.

Fig. IV.11 shows the average of all up autospectra. Each spectrum is
WKB scaled and normalized by Garrett and Munk's (1972 , 1975) frequency dependence
(cf. part V.2). Notice that the averaging did not smooth the humps at the fre-~
quencies 10, 14 and 18.

Fig. I.15 shows the up coherences on leg A. Notice the extreme low coher-
ence at frequency 8 and the high coherence at 14 and 18.

Attempts to classify these frequencies as simple harmonics of the inertial

or semidiurnal frequency fail at least for the 8th and the 10th frequency.

I.9. Accuracy of the mean data set

Equivalent degrees of freedom (edof) V for the autospectral estimates

have been calculated from Nuttal (1971) and Perrson (1974) for the combined
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case of a Hanning data window, 50% overlaéping data segments, and top-hat
frequency and piece averaging. The effect of non-white internal wave spectra
and a small amount of non-stationarity (¢f. section I.7) can be taken into
account but reduces the edof only slightly (legs than 10%) with respect to the
case of a white spectrum and stationarity. Values for the edofs can be found
in T#ble I.Z2, |
Confidénce intervals for some values of true coherence have been calculated
following Carter, Knapp and Nuttal (1973). On figurées we will show 95% confidence
levels for zero true doherence or the standard deviétion for the ¢ase that the
estimated value is the true cohérence.
The covariances between co~ and quadspectra at the same freguency are
estimated by (Jenkins and Watts 1968)

COV[ keJ =-\!;-( mt ngan Pnt +kaQn8)
COVIPR,, QT 5 (PO P Q= Py Qi * P Oy ) (1.10)

covia,,,q kl]'z‘\!;(Pmkpt“Pm.lPﬂk*-Q Qre ¢ Qux)

"



.11 -

II. ALGEBRAIC STRUCTURE OF A RANDOM INTERNAL WAVE FIELD

IX.1. Basic formulas of time sérigs,analysis:
IL.1.1 Cartesian representation

The nmoored durrent meters and temperature sensors of the IWEX experiment
medsure time sdries of the three velocity c9mponent$ at a fixed point in space.
The vertical velocity is inferred from 'the Eime series of temperature and temp-
erature gradient. These 'time series will be denoted by um(gi,t) wherem = 1,2,3
denotes the three vélocity c¢omponents (u& ‘eastward, u

northwa¥d, u, upward)

2
ahd %, (i =1,...,20) the position of the instruments.

3

Assuming that the measured time series represent realizations of a statis-

" tically stationary process the covariance function

mn ~ Gt

R‘Lj (7) = <L;lm(§§~“t.)un_(x. teg) > (II.1)

depends on the time lag 7 only. Here cornered brackets denote the ensemble

. . e e Aaed : ) - PRk
average . The cross-spectral matrix is defined as the Fourier transform of Rntn(Z)

oy .
i _pii optio L ¥ iwe
Ao (w)= Pl -1Q, == Sdr R.) (1) e o (II.2)
~ o0
;::.Li . Ll ,
Here o denotes the co-spectrum and <Qvnn the duadrature spectrum.

The definition of the spectra is one-sided, i.e. the total variance of a variable
is obtained by integrating its auto spectrum over positive freguencies. Inversion
of (II.2) yields :

[

O LT

R (7)) =3 Sdw R (w)e (133

mn

‘The cross spectral matrix may also be defined by

285 (0) 6lw-w) = < Dunl o] u, (x,w) > (11.4)
where
! c <iwt

is the Fourier transform of w, (x t) .

The cross spectral matrix for negative frequencies is determined by
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RE (-w) = [ 7.5 (w)] i ~ (ar.e)

* -
which follows from the reality condition w, = w . The statistical stationarity

of the time seties implies
Ain (0) = Al (w) |
am W s g (W (11.7)

which determines the cross spectral matrix if the order of the time series is
interchanged. Because of the relations (II.8) and.(II.7) we can restrict our-

. L)
selves to positive frequencies and i ¢ j. 7The c¢cress spectral matrix H,“; thert

contains 18 different real functions of w3 0

—

. If i = j this number reduces
to 9 because of the additional relations

A, (w) = [Bo.(w]® (tt.8)

The coherence and phase is defined by

‘o A N T _I/ ‘
f” "H;L (P’V:m Pni) : (II.9)

mn

mn

¢ijn = arctan (Q;Jn , pii ) (II.10)

Positive phase means that the series um(gi,t) leads the seéries un(§j,t), i.e.

the phase propagates from £ to ﬁj‘

II.1.2 Rotary representation

For our purposes the velocity field is more conVeniently des¢ribed by
its rotary components

\ .
Ll_.!.=T“;:\(LL,tLuZ\

(11.11)

u, £ Uy

with the inverse relations

1 oy L = u )
e (u o vul ), u oz (u-uy) , wy =Y, (11.12)
\ 3 + ‘ ] 2 rzw
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The covariance function between the rotary components is defined by

R:ci (z) = <uglst) “‘y(?fj',twr) >0 (r1.a13)

and the cross spectral matrix by
« oo ‘ *e {‘5 - ~LuT
A (w) == Sol'r R,.(7)e (II.14)
e ™ . e ,
Note that this definition is not equivalenp‘ta the one given in Miller and
. Ly L]
Siedler (1976). Their cross spectrum r;F (u)) is related to ’qu (w)
by . _
“ = g (11.15)
Mow fw) = A, (w)

The "reality condition", uv(g,t) = uj;(ﬁ,t), implies

Hj{i(-w) = [ H_ii&(w)]* | (I1.16)

The stationarity condition implies

o gii
Ay

(w) = A () e (11.17)

—V-H

For i = j we have the additional relations

A, (w) = [ A

" (w)] (II.18)

MV

Again we can restrict ourselves to positive frequencies and i€ j.

In analogy to (II.4) the cross spectral matrix may also be defined by

.. . * .
2A5, (w) dlw-w) = < Uy (5;,w.)u«(5j W) (11.19)
where
too - v
' ) ~LWw
uv(zg»w) =#-§°d‘t uv(ﬁnt) e ‘ (II.ZO)

is the Fourier transform of uv(ﬁ,t). If we restrict ourselves to positive fre-
guencies, u+(u)) describes the counterclockwise rotating part of the motion and
uj'(u))= u+(—uJ) the clockwise rotating part.

It would have been sufficient to introduce u., =1-;‘-£, (u,+i%f)<5nly (Moocers

1973) and to retain negative frequencies. In this case inner and outer cross
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spectra Have to be defined. The inner cross spectrum
L - i.j ' *('. \
25+*(w)5(w-w)=<u+ g,q,w) (?5,,0))) (II.21)

L y
is reélated to our c¢ross Spectra F’\,;‘ (w) , w2 0 by

ciw) , w30
S..lw) = . (TI.22)
U Y C0)]T L weo

The outer ¢trdss spectrum

QY:i(w)J(w-w') = <“+(5L"*")u+<5g.w)> (IT.23)

is given By

'J( ) H*Li (w) , Ww» 0
Y i (w) = .
** [REw]™

The coherence and phiase between the rotary components are defined by

- (I1.24)

n
O

' - . Y
"ow . AN - . (2I.25)
X‘W | HV@* ( PW Pw*)
L) L i
d)\:; - avctan | A, Py ) (IZ.26)

II.1.3 Transformation formulas between the rotary and Cartesian representations

The transformation formulas between the rotary and Cartesian repreésentation

are explicitly given by

Ry =4 {RA +i (R, -8, )}

Al -1 {7 ~-—n~m<nw+n~>}

e

R R4

B4 (RS RS - (A ] .20
L e L i

H_; = & { .; + 1L H }
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"

o U, g
HM "‘-'22,‘{ H3l +LH32}
i Wo.opy
Ao {R-iA,}
Ly = N
A Fla

a0

SEFR R R SR RRLEY
]
2

R =g LRI - RH - Y +RE}

Fl:; =1_1:' { B b *H:Jo} | - (11.28)
Y =& {-RS + R - RE +RY ]
H;zj -+ { R + R - Ry - FL“;

g AL eRSE

{ Ay + Al

{ Rl - Rl

L
2
oo
st 7'
Ryl =

31 3

oo
R =&
‘aM . pti
A o= R 4 |
For i = j the coherences squared between the rotary components takeé the

form

2 H*:_LH:‘; = (,Pn,- Pn)z + L’ P‘:
H++ H.... (Pn + Pzz )1 = L‘ szz

o<
]
1

Xl : HMLFI:: | Pn‘ Q.s )z. + B.* Qw)z (11.*29)
o H-H- Hoo (Pn + Pzz ¥ 2le ) P?,j | ‘ v

2

KZ ., A - (anf.az:)z*(PnTQ\’!)
“o A.. A, (P, Py =20) P

IT.1.4 Relationship to gquantities defined in the literature

Fofonoff, 1969:

(A, F':—)Vz - [(Fn'Pn )2 + L*Ji\:. ]‘)z

colinear "coherence": Ci_ = - (I1.30)
PetPo Py * P .
rotary "coherence": C° = Ry-P- = 201 (I1.31)
Pes t P P+ P

Note that both guantities are neither coherences between the Cartesian components

nor coherences between the rotary components.
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Gonella, 1972:

2
ellipse stability: E = x'*‘_ (11.32)
rotary coefficient: CR = CD (I1.33)

II.2 Propagating internal waves

II.2.1 Representation of the wave f£ield

A superposition of propagating internal waves can be represented by

~

N
uy (x,) =2 Sdw (o [alq) U, (q) Y, (g %) exp {~i (ax-wt))
v i ) ) : (11.34)

P ala) W, ()42 (9,6 exp (i (g -0t }]

with
o.(ﬂ) = gmplitude
uv (q) = amplitude factors

Y, (q,xs) = vertical eigetifunctions

g‘ o (“.,“z.o)= horizontal wavémimber vector

o= (°‘i°‘i)‘,2= magnitude of the horizontal wavenumber vector
W = frequency

N = Brunt V&is#dld freguency

f = inertial f¥equency

G = sign of the vertical waverumber

In the representation II.34 the internal waves are specified by
q ={wx, ¢} (I1.35)
"~

‘The vertical eigenfunctions Y £ Yo o® ;‘;— .93 Yo are explicitly
given by
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4, (g% Y, 9“6‘0("3 (II,-36)
with
3 (e
y° = Clw) Q" -8 (I1.37)
Y, l
and

Oxy) = § dx} Blx;)

vertical phase

]
x3

N!(x) _wz I[Z
i) = o« ()

.Q(X3) = ﬁ.( 3! ’ aspect ratio of wavenumber vector
. u.

turning depth ( N(x3) = w)

I

local vertical.wavenumber

The normalization constant C(w) will be chosén ds

\ N? -
Clw) = = (w{* )l [ gd {‘)"* ] ’ (11.38)

L
w 3(N2

The integration has to be cérried out bétween the. turning points.
The amplitude factors are given by
ik e oY
(3) L (o) et
U = I Q*L‘P (I1.39)
_(g) _ LW:(‘ +§)
U, (q) W |

They may also be written

uv (q) = ‘Fv (w) 39 (:{a) (no summation) s (11.40)

where F\, ((.o) denotes the first and 9v (LP) the s.ec;o‘nd column vector on the
right hand side of (II.39). Here ¥ is the direction of the horizontal wave-
number counted counterclockw1se from the .east.

In the Cartesian representatlon the 1nternal wave fleld is represented

by (II.34) if the indices v and -v are replaced by the index m and if the
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Cartesian amplitude factors

U, (q) ~{sing <lwcosy
\ (I1.41)
U, (q) = [ cosp ~ilwsiny
ug(g_) W
and the Cartesian eigenfunctions
1“1 =’Lj+ ) m‘z = 1{*'\ \{3 = ’Ho ‘ (I1.42)

are substituted.

I1.2.2 Energy density spectrum

If the wave field is statistically statichary and horizontally homogeneous

and if up~ and downward propagating waves are uncorrelated the wave amplitudes
satisfy the orthogonality relations

<a(3)a(3)> = 0 (11.43)
< a(q)a'ig) > = 3 E(3)d(q-q')

Here E(q) denotes the energy density spectrum since the normlaization constant
C(w) is chesen so that

N
E, = Z $dw §d‘a E(q)‘ (IT.44)
¢ ~

represents the total energy density per uhit surface area.

II.2.3 Cross spectra

Using the field representation (II.34) and the orthogonality conditions
(I.43) the tross spectral matrix becomes

Hjj (w) = I (' Elg) Uy (q) U, (q) [q:(g)xi)]*q;(glxj)‘
(II.45)

cexp {-i (5‘-‘1.‘”' + 5 0y )}
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where

O = O(x)) =0(x5) - (11.46)
is the vertical phase .difference and

J L i_ L '
Tt (x-x EEARE A ) (11.47)
the horizontal separation of the instruments. The cxross spectré répreséht weighted
projections of the energy density spectrum onto the frequency axis. Explicitly

(II.45) takes the form

Ryl (w) = B, (w) T §d' E(q) €y le) D, (wionf o))

v
(II.48)
exp {-i (Q'Ii:‘ +5’@u)}' (no summation)
with .
. P07 el guled
{Bye}={1c:1(u}= ’;"(w-{)(w»r{) %(u+4)‘ éw(ua-() (II.,49)
“—_L—Pw(w-{) -& w(wef) w?
| E-ZLY e-tv
{CV(«} = {‘3:: 3“}1’ el'w | P | e:“° , (II,50)
‘ o ¥ o P \ .
a W U}
@)™ e WG\
©(II.51)

(0, b= 10 = Gl | (ap™ (a)™ w(&)™

-LG‘(%)VZ “is’(%‘)‘ll (_Q.Qu)"/z: E
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where
D=5 | R'=01x) (11.52)
The cross spectrum Hﬂin in the Cartesian representatish is given by
(I1.45) if v and @ are replaced by m and h. Explicitly it takes the form

N gy cilergeefy) ‘
p ZSdM E(q Tmn(w,f)DmL(w‘c')x;,x;)e . | (1I.53)

?nﬂ

with

D”} {D } o »(11.54)’

and

wzcosz‘f + {zsinitf (w‘-{')aoswin ¥ +Lw{ -w.{Smt{ +Lw"c05\f
{T,,m} (W cospsing ~iw  whin'y + {Tos’y wfcosy +iw’siny [ (II.55)

-wising =iwicosp  wlcosy -iwsiny w*

IT1.2.4 Scaling

If we consider the x3-dependence of the cross spectral matrix for i = j
we find

D) Nxyy
(et « | 20 Q) 1 (x1.56)
l [ (%)
Hence we find the scaling relations

o ' NY(xg) < w? |2 |
Aol ), A () AL () = (52 ) e NG

R, (), A (%) « const. (11.57)

. NZ(X)"WI "' -t
oo (i) o (s ) % W)
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2
The latter proportionalities hold if w?<« N . The total energy

: ) . N ,':
w X3 { ¥ POo * %‘ POo f = { Pu +Pzz t P33 ¥ wt PSBJIr (11.58)
scales according to
Nz(x:,;) - ‘Fz
Elw,%) = N(x,) (11.59)

(N'x,) -w?) "f

The latter proportionalitie again holds if w?« N?

I1.2.5 Consistency relations

Not all of the cross spectral components are independént. There ex1st
the following complete set of linearly independent relatlonshlps among the cross
spectral components which are satlsfled for arbltrary energy den51ty spectra

E(q) (Miller and Siedler 1976)

' ) oo 2 L3 . tae. T . .
pi . gt +R - 2xlgg Rl -0  (I1.60)
D;J c (we “ w - (- {)‘ R =0 o (11.61)

)
[
o

]

Fo e Al -l S0 (11.62)

by = Q',(w-{) Hti - {we{) Fl;:= 0 1.6y

O
1

These relations define 8 consistency relations (counting real and imaginery:'

part separately) which can be utilized to test Whether oﬁlnetnthegobsefved fluctua-
tions represent a field of propageting intexrnal Qeves. We have formulated the
consistency relations as linear relations among the cross spectral components

since this is convenient for algebraic manlpulatlons. For'i #.3 “thé conSLStency

relations take a simpler form if expressed in terms of coherences and phases
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]

S , ¢l =9,

‘.

iy X—Li : ¢“ - ¢‘”‘
K;+ L]} ‘4 (1]

(II.64)

1"

] i i L
R ¢, = ¢

K] +0 0=

o ii L Ly
J-.D b x‘“ ) d)-o <boq—
In deriving these formulas we have used the sc¢aling laws (II.56).

If i = j the number of consistency relations reduces to 4. In this case
the relation D, = O predicts the ratio of the horizontal and vertical kinetic
energy (Fofonoff 1969) ‘

+ 2 2 Z-‘ 2
P t By R = 2 -:j N,- -wz (I1.65)
P w w’ - §
0
This ratio is zero for w = N and infinite for w = f, The relation D2 = 0

prediéts the ratio between the anticlockwise and clockwise rotating part of the

motion

A (w-£)°

w———

P, (wef)®

which is zero for ihertial oscillations. The relation D3 = 0 may alsc be written

Yoo = 1., ) ‘P,o = - ¢_o (1I.67)

(I1.66)

In the Cartesian representation the consistency relations (I1.60)~(II.63)
take the form

D= A e, - el aptA] -0

w? 33

Dy = (R R) vi(AY - RY) =0

[N 2 12

L
'
1

o

; : % (R, -0 R) +ilan +o'R7) (I1.68)

'3

<
o-
£
1

G 4 . i 'pliy . D
q-f(nmpnmn~wﬂn+ﬂﬂd
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I1.2.6 Independent monents

If the observed fluctuations represent érépééating waves only 10. linearly

independent moments are measured, namely (in complex notation)
- ' ! mgrime cilEmi Ol o v Graes)
Mo lw) == T {dl Efq) 677" " ¢ , me0 8l ¥2 (L.
G ~~

If i = j the number of independent moments reduces to 5 since

M_o= MY

- cen - S (11.70)

C i - - 4
The cross spectra va can be expressed in:terms of these normalized moments
by

2 Laawp M

Al § 28 (wef) (wef) M/

i APt

it SRR Cwef) (o) M

1 e wC AR an (e
FI_L: 'v -.'-"-;-. .Q(w‘ﬂ()w M:: |

iy 1 e w MY

R e

ALl | | WM

where the factors depend on frequency' and pésitions only.
The signifidance of these moments can easily be inteérpreted for i = j,

Usihg polar coordinates for the horizontal wavenumber vector thHe normalized
monents reduce to

M

w) =~2-';r§ {dady Ek(u,«,f)c‘m g " (21.73)

Decomposing the speéctrum into its even and odd component

Eo'b(w,u\tf) 2 E*(w.«.'\f) + E*(‘w,oc.\.f) (II.73)
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we find
M., =5.1;r Sdud\p'e%m‘? E‘(w‘u‘tf) , o= 0,2
' : (IT.74)
{ -Lwn o
M., = v S<§u dy e fr ( UJ,u,*9) , fn f\
or
M, = {da e {wa)
M, = {da ¢ (w,«) (II:75)
M, = Sdu ¢ (w,a)
where
c (w o() 2L qu: E" (wou,¢) i (1I1.76)
are the Fourierlédéfficients of the expansior
ep ‘ Lwnp
E*(w,x,p) = Z ¢ w,«x) e (11.77)
‘ m-ooa

Hence cross spectra obtained from a single instrument only provide information
about the Fourier coefficients ce, ° cf

I1.2,7 1Isotropy and synmetry relations

In case of isotropy and (or) symmetry of the energy density spectrum
further relations hold among the independent moments.

For i = j these relations can easily be inferred from (1I.75). If the
energy density spectrum E(g) is vertically symmetric, i.e.”independent of the

sign of the vertical wavenumber, the 6dd comiponent of the spectrum is zero and
we find

M, =0 (I1.78)
If the energy density spectrum is horigontally isotropic, i.e. independent of

the direction ¢ of the horizontal wavenumber, the Fourier coefficients

Con (m$0) are zero and we find

M=0 | M, =0 (11.79)
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In terms of the cross spectra the symmetry relation is given by

R,,-H,=0 (11.80)

H,, = R, =0 R,. =0 " (11.81)

X_J,o = 3\.0 = “‘—"‘Mo = 0 (II.82)
and
AMal
ve s =0 (11.83)

The corresponding relation for slanted separation (Eij # 0, x:3] - x; # 0)
of the instruments may be derived as follows.

If E(q) is vertically symmetric the normalized moments simplify to

i-i | [ Limn ‘i-z('fi' . -I‘.G'Qi‘
_Mm=ﬁ_§d«d?5(w,¢x‘\9)e' \Pe ! %G'rhe ! (IT.84)

or

. . 2cos O, me(0, 12
i (o ~lm ~LRT Ly !
MY 2L fdudy E¥(w ) ™® g "R ' (11.85)
m 2 (I - I
™ -2 sin Ol‘-l‘ , m = ¢
No linear relations hold among the independent noments in this case,

If E(g) is horizontally isotropi¢ the hormalized moments reduce to

27
i \ [ - e O, ~lemip -L!-r”
M. =5 2 fda E'lwex,p) 67" 2 4o fdy e e ~°H
e 2 (I1.86)
] [ -m .iu'@' "[-m‘( -E.ot'r';-cos(‘f-"-i‘)
=ﬁzgd«5(w.«,q)c e f‘dee e !
[ . [y .
where 4 is the direction of the vector fi.j . The -integration can be
carried out analytically yielding
MY s T fdu Elwyong) 6™ e T8 1y Y

where }m is the Bessel function of order m. Hence the following 4
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relationships are satisfied for an arbitrary but isotropic internal wave field

“i L iy patd
e MM, metTMT =0
- y (11.88)
-2ly L g iy _
e M., e M =0
-2 3
If the wave field is b&Sth isotropic and symmetric, the normalized

moménts reduce to

; . . iy ( 2cos Oy s m=0,%2
= (ow E¥(w,,p) 1 b b)) e i-Zi an By et (II.89)
yielding the 7 relations
T { M:j} = 0
MH < TMITT =0
jm{ -iv Mu} - (I1.90)

My - IMEYT =0

Jwm { T2 Mu }

In this cas¢ only the 3 moments

RQ{MZI} gdo( E¥(w (%) J xt; ) cos 9“.
Re{ “‘-VM } & - Sdoc E ((.J O(l"f) ] O(T' Sln OLJ (1I.91)

Re {e-u‘i M.sz} = - Sdo( Ecl(wlf"-‘f) }z(“ri.i) cos @ill

do not vanish and provide a tool to determine the (w,x) dependence of E(w,x ). ‘
The above isotropy and symmetry relations together with the corresponding

relations for purely horizontal and purely vertical separation are listed in

Table II.1. When comparing these relations with those of Miller and Siedler

P

. ‘ u .
(1976) it must be considered that their definition M., of the independent
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moments is related to our definition by

Y )
M. = M (11:92)
The relations are eXpreSSed‘in terms of the irdependent moments M. . The
relation in terms of cross spectra or coherendes and phases can be obtained

by tsing the transformation formulas (II.71)., The number of isotropy and symmetry
relations is listed in Table II.2.

II.3.  Standing ihternal wave modes

1I.3.1 Representation of the wave field

In the modal réepresentation the intérnal wave field is given by
' K ( ~ | -‘( 2ot )
- L (gig
“v(?.‘n\t)'= gdedad [Q(b).ﬁ)uv(w.g)\}\,(wﬁ)(,)g)e -
{

_ i) (11,93)
e .g.* ~ o . 1(5,')5.4“ ]
+a*lw,g) U (w,2) 3 (wu x)e
Here thHe integration over « reduces to a one-dimensional iftegration and a
sum oVer discrete eigenvalues.
. B . v o~ ~ [od . R
" The vertical eigenfunctions ( Y4, ='Y_ = ﬁ'aiq, ) have to be determined
from the eigenvalue problem
2 2 :
~ . ‘vw LY . . . . p
d. 9 Y + H._(_x}a.)._.___v., = 0 : (11.94)
373 e wz_{:z °

with the boundary conditions

]
O

ot  x (1X,95)

~

21
i

o

oy, = 0 ,Qt xy 2 ~h, . (1I.96)

The eigenfunctions are conveniently hormalized agcording to

Z(N'&_ .[z) “ - 2 . N
gol)r3 wwz.‘ -f‘ 'qo(xs),qo(x:) +%—w¥—z—;~ “'p(x;* 0) Ho(x?:o) = | (IT.97)
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The amplitude factors are given by

~ Ch (e Ly
{] W |

~
Note that the amplitude factors U, for standing modes are identical to those

for propagéting waves,

II.3.2 Energy density spectrum

Assﬁming the field to be statistically stationary and hérizontally
homogeneous the amplitudes satisfy
“Zalwe)alw,g)> 0
" ' (I1.99)

¢alwg)a(wg) = 53(9'2‘) §lwrw') Sy - ')

Here Elw,ﬁ ) represents the energy density spectrum since the normalization
(11.97) is chosen so that

N .
~ ~
E = {dw {a’a Elw,a) (II.100)
° . , ™ . :
$ :
represents the total energy density per unit surface drea.

ITI.3.3 Cross spectra

The cross spectral matrix for w2 0 is given by

ﬁy: (w) = Td E(wa) U (w,) a(q(wlz) ’z}y(w,g,x;)qp(w,&,x;:)(n.iol)

. cexp{-igti;}
or explicitly by

.ig(.

ﬁ;:. (w) = Bw(&a)’fdz&‘g(witi‘) Cyplee) B\:j;('w,a,x; w)e

~

-

W (t1,102)

where Byﬂ(w) is given by (I.49), Cvt.(nr) by (II.50) and

(o d

D

~

o ’qV(wt%JXSi) Y (w,,x5) (1£.103)

v
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I1.3.4 Consistency relations

As for progagating waves there exist linear rélationéhips among the
different components of thé cross spectral matrix which are satisfied for
arbitrary energy density spec¢tra. These congistency relations for standing
modes are listed in Table II.3. They differ from the corresponding relations

for propagating waves. Our definition of propagating aneé implies
(i) that the solutions of (I194) can be approximated by the WKBJ solutions

N o -le O
Yy, = Clw) @7 ¢ THEO

Vo Y G(X3) {I1.104)
Yy rm Clw) 27 16 e

(ii) that up~ ( § = ~1) and downward (G = +1) prdpagating waves are
uncorrelated and ‘ :
(1iii} that there exists a continuum of solutions, i.e. to each value of w

.. . . i N7
and % there exist two eigensolutions with (3= & (N*w?) ™ {wi- ) ",
Our definition of standing modes, on the contrary, implies

(i) that we have to uée the exact solution of (II.94)

(i1) that there exist a fixed phase and amplitude reiation between up- and down-
ward propagating solutions (prescribed by the boundary condition (I1.95))
50 that a standing mode can be formed and

(iii)} that there only exists a distrete set bf solutions, i.e. for a given value
of WY there exist eigensolutions only for discrete values un(n =0,1,2,40.)

The values of «, are determined by the boundary condition (II.96).

Whethe¥ the .energy at a given frequency is confinedbto discrete values of

or spread over a coﬁtinuum is & property of the enefgy dehsity spectrum E and

does not affect the consistency relations which are to hold for arbitrary energy
density spectra. Also, whether the WKBJ solutiohs provide a sufficient descriptioh
or whether we have to consider the correct solutiOﬁs of (II.94) aléo does:not
affect the consistency relations since ﬂheAdifference between the WKBvaolutiohs
and the exact solutions may be arbitrarily small depending on the Brunt VAisiléa
profile and the values of w and & . The difference which affects the struc~
ture of the consigtency relations is the fact that the standing mode solutién :
consists of a single standing (i.e. real) mode whereas the propagating wave
solution consists of two propagating i.e. (complex) modes which are statistically

uncorrelated. This difference is reflected by the different structure of the,

~

matrices Dy, and D, .

Specifically we find for slanted separation that the reldtion

chs s (wef)P RN - (weg)tRl =0 (11.105)
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must be satisfied for both standing and propagating waves., This relation only

involves the horizontal velocity components. The relations D;’= Oy Dg = 0

and DZ = O are not satisfied by standing modes. However, evaluating D1 for
standing modes we find
o ~ s PRI kY {2 -~ v
iy _ U o, gd W+ 'Ll
D'=RA,, *AL - —o— 2 A,
(I1.106)

i

(e f?) S Elwg) e 550 {5, 60 T, () -20'F, () 5, () )

which may be arbitrarily small dependirnig on the energy density spectrum E and the
eigenfunction qv . The same is true for the relations D;J= O and DZJ= o.
i

Hence the acceptance of the consistency relations D, =0 (L =1,...4) for

propagating waves does hot imply theé rejection of standing modes.
The situation is different for horizontal separations of the instruments
(including no separation). Here we find instead of the consistency relations

i i .
ot =0 and D ! O for propagating waves the relations

3 4
5;3. = (w-f) RS+ (wef) R =0 (II.107)
B:j = (w+f) H:: + (w-{) H:J =0 | (II.108)

which allow to discriminate between standing and propagating modes. However,

if the consistency relations D? = 0(iL = 1,...4) and the symhetry relations

M::= 0 for propagating waves are satisfied then the relatiors 5;ﬂ = 0 for
standing modes are also satisfied. Hence if we find the measurements consisteént
with a symmetric field of propagating waves we also find them consistent with

a field of standing modes. If the consistency relatiohs for standing modes

are satisfied nothing can be said about propagating waves. The same arguments

‘hold for vertically separated instruments.

II1.3.5 Independent moments, isotropy relatiohs and nonvanishing moments

Also listed in Table II.3 are the independent moments

| T T U R B ¥ 21
MY (w) =t fd' E(wig) e "_q\,(x3)y,,(x;)f:

! (1I.109)

the isotropy relations and the honvanishihg moments in case of isotropy.

Table IT.4 summarizes the number of moments and relations. The results can be
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, [y
converted to relations involving the cross spectra Hv;"by means of ‘the
transformation formulas ' :

::T ' ri'(w'-()z M:* _
R Flo-f)lwsf) My
bw

. i +0
H:i 7&- (w“{)w Ml o
n*i 1 tw-f)(wef) M,
A b = 2 3 (wef)* MM

H‘i ‘15;—\ (wrflw M  (II.110)
Fl;i ;t("ja;-x (wef)w MZ:
N 5 (Weflw M
s s

II.4 Isotropy and symmetry relations independént;pf_%heukinemaﬁiq'stxuctp;e

Here we will derive those relations among thé diﬁf;arent compbnents of
the cross spectral matyix which express the isotropy and - symmétry of the field
without specifying the kinematics. The method of establishing these reélations
has been described by Robertson (1940) and Batcheldr (1953). We will restrict
ourselves to the cross spectral matrix obtained from one instrument since the
field is vertically inhomogeneous.

Consider the cross spectral matrix
lw)uplw)d -
Aopn (w) o LU (wiu, (w - (1T,111)
and its projection onto 2 arbitrary unit vectors a and b

Qla b) = a, b, A (IT.112)

n e

If we require the velocity field to be ihvariant undetr a certain transformation
group the scalar () has to be invariant under the same group. It is a rigorous

result of group theory that an invariant scalar can be expressed ih termg of
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the fundamental invariants:of the trahsformation.

As an example let us consider a vertically symmetric field., If

}3 = (1,0,0) and “ = {0,1,0) denote the two unit vectors which define the

horizontal plane, Q can be expressed in terms of the fundamental invariants
ah, awy by g @ and b . According to (II.112) Q is linear in the

components of each of the vectors a and B and is a homogengous funotion of these
vectors. Hence

Q(ab, ey, by, a@,be) = Ra,by *Bawv. bave

(IX.113)

+ Capv byta * Doppim bave * Eanpn bop,

where A,B,C,D and E represent arbitrary constants. Hehce Amn must have the
form

Rmh = RS, *+By.v. + Cv, M, 2 Dppv, + Et’“'m(“n (IT.114)
or
.A+B C _
{An.}= | D R+E 0 | (II.115)
0] 0 A

A symmetric field hente satisfies the invariance relations

Ay=0 |, Hy=0. (II.116)

Table II.5 lists the fundaméntal invariants, the structure of Fwn

and the invariance relatiohs for various transformation c¢classes,
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III. BASIC METHODS OF ANALYSIS

I1X.1, Introduction

The basic goals of the‘IWEX—experimeﬁt are to establish
a) the exietenee of internal waves and

b) the distribution of wave energy among the different wavenumbers and

frequencies.

Because of . the inhomogeneous spatial resolution of the IWEX measurements both
these goals cannot be accomplished by the standard methods of time series analysis.
More general techniques have to be used for optimizing the Conclusion. Here

we describe the two techniques which are applied to thé IWEX data set. The

consistency tests provide a technique to test general hypotheses concerning the

kinematical structure of the observed fluctuations. The inverse technique

provides a technigue to estimate parameters of the enérgy distribution.
To be more specific consider the following example., Let us assume
that the observed fluctuations within the. intérnal- wave freqﬁency band represent
a statistically stationary and homogenecus ensemble of linear internal waves,
We will refer to such ee assumption as an assumption about the model class.
The cross spectruin H‘d between the velocity component u at position

J

xl and the velocity component u, at position X~ can then be expressed as a

weighted pro;ectlon of the ehergy density spectrum E(g) onto the frequency ‘axis
(¢f. part II). : :

_i(s-x--+69-')

AL -
Ly - : 2 . Ly [ A N (III.l
B, (w) = ;Z Sd(xE(g) U.mn(ﬁ)e )

The kernel Ll;t is determined by the model class, i.e. by the structure of

the internal wave eigensolutions. The'consisteney tests then provide a techtiigue
to test whether or not a random supérposition of linear internal waves represernts
a consistent description of the observed fluctuations. The inverse technique
then provides a technique to invert the relation (III 1), i.e. to
determlne the enexgy spectrum E(q) from the observed crOss spectra ,Hi" (w)
For the inversion the spectrum E(q) will be represented by an analytlcal functlon
E(S,g) containing a set of free parameters X = (x Y, w=1,...,P, The inverse
technique then‘reduces to the determination of these parameters.

A summary of this part can be found in Olbers, Miller and Willebrand
(1976) .
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ITI.2. Basic geometry

III.2.1 The data point

For the general description of the inverse method and the consistency
tests the following definitionsg will be ¢onvenient. For a single frequency

all measured cross spectra H;fh(hﬂ will be represented by the columh tvector
L | |
‘4’=(%£) = {H,ﬁ“(w)} £=1,...,L (1I1.2)

We will refer to y as the data point and represent it by a point in the
I-dimensional dat; spate.

Time series of finite length only provide estimates of the cross spectral
components. These estimates, and hence the data point ¥, have to be regarded
as realizations of random variables. For the following~we assume that the
covariance matrik of the data is known and given by

Cov [\}C’J%g'] = Su' . 2,1.'-': “....' L (ITI.3)

where § is the usual estimator of the covariance matrix as given by (I.10).
Furthermore; we assume that y is normally distributed. This asstumption is
justified since both the Chi:squared distribution for autospectra and the complex
wishart distribution for ¢ross spectra can be approximated by a normal dist-
ribution if the equivaleht number of degrees of freedom V 1is sufficiently large,
For the IWEX data set V is typically O (50-300) (cf. Table I.2). Knowing
the distribution function we can construct confidence levels for the data point
in the usual manner. »

In the following we will not try to represent the actual data point X
by & theoretical nodel but its expectation value <X>.

III.2.2 Characterization of model classes

A model oclass is characterized by all relations amOng the cross spectra
which are satisfied for arbitrary energy density spectra E(g). We will restriet

ourseélves mainly to linear relations of the form

Lu§4=o ‘ += 1 .... R . £=|,“,)L (I11.4)

RN )

The index r counts the number of linearly independent relations., These relations
will be referred to as consistency relations, For the model class "linear

internal waves" the GOmpletevset of linearly independent consistency relations
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is listed in part II (cf, Miller and Siedler .1976). Also listed are the consistency
relations for various othet model classes. All model cldsdds are cohstructed
so that they automatically satisfy. tﬁose constraints which follow from the fact
that the data represent cross spectra (e¢g. redlity dondlﬁlon, cohéréfnce less
or edqual one).
Within the data sgpacé the congistency relatmons Ly 0 define a
(I~R) -dimensivrial hyperplane in which the data pdlnt must lie if the data satisfy

the consistency relations.
IIT.2.3 The model point

If we specify the model class, the analytical fdrm of tHe éneérgy density
spectrum, and the parameters relations like.(IIé;l) provide us with a model

point
e (‘aczs {F' ' } Cgel L dIms)

which is a specific point on the hyperpiane'gz =

The gecmetric relations between the'data point 'y with its 95% confidetice
eliipsiod,:the‘hyperblané %Q = 0 and the modél point §?§) are displayed in Figure
III.1. o 4~ ‘ T

Generally the data point does not lie in the'hyperpiéne, nor does the
data point coincide with the model point. When will we tolerate these differ-
ences? Intuitively we would atcept a iiddel class if its hypérplane interseots
the, say, 95% cconfidence ellipsoid of the data point. Similérly we WOﬁid accept
a model point if it lies within the 95% confidence ellipsoid of the aaté point.
The model and the data point' are statistically indistinguishable in this case.
The precise formilation of these ¢riteria is given by thé likélihood ratio test.

IIT.3, Likélihood ratio test

Let us first consider the question whethér or not a given model point
§(x) provides a consistént represeéntation of thé data point Y. In this ¢ase we
haVe td' test the hypothesis whether the observed data polnt y can be regarded
as a realization of a Gaussian variable with Known covariance fatrix S and

expectation value

4 % =

~

(x) (I11.5)

1al>

Here the cornered bracket denotes the ensemble average., The lihe;ihdod ratio
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test yields as the appropriate statistie

e+ (yT- 4T ) Wiy *-*(3,'»-(5)) | (111.7)
where
w =.- $" | ,k(III.8)

is the inverse of the covariance matrix. If the hypothesis ¢y» = §(x):is true,
; Y yix
the statistic g*  follows a Chi-squared distribution with L degrees of freefom.

We hence reject the hbethesis at the 95% signhificance level if

2
£ % Q(L')mbs : : (I11.9)
since there is bnly a small probability 0.05 that a realization satisfies (IIL.9)
when the hypothesis is true. Here- X:,mbg dengtes ;the, 0.05 percentile of the
X: ~distribution. If E¢ ?i ,0.0§ We accept the hypothesis,'but being aware
that alternative hypotheses are not precluded.
In formula (IIX. 7) the matrlx W sérves as a metric in the data space
so that the condition (IIIﬁQ) may also be formulated that we reject theé hypothesis
<y> = §(x) when the distan¢e sguared between y and §(§) exceeds the 0,05
percentlle of the h:xl -~digtribition, f . ) o
As regards the problem whether or not a given model class, characterized
by the hyperplane Ly 0, represents a eorisistent description of the data
point y we consider all‘dlstanceg between Y and the pbints § on the hyperplane
and<§s;.;ﬁ the minimal.diStance-is syfficiently small. More precisely we consider
the p@int,%'Aon thé.hypefplang whic¢h is closest to the data point y (seéd
Fig. III,1). By straightforward algebra we f£ind

~

1 - % . \':/Jl L"\* I-‘!:: (III.].O)

Ras >

lak

where

e + :
T = LW { E (Irx.11)

~~

We now test the hypothesis

R4 3 > = (L b . (111.12)

al>

or equivalently
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~
The distance squared between y' and y becomes

2 ™ T -t
Eoin = Y L'"T" L% (I11.14)

2 : : o :
and follows a X, -distribution if the hypothesis (III.12) is true. We hence
reject the hypothesis that the model class provides a consistent description
of the data if

? 2

(II1.15)
emin % Xa,o.os )

Note that the number of degrees of freedom is given by the number R of indepen-—
dent consistency relations, not by the total number of data. This is due to
the fact that the consistency relations only ascribe specific values to R
lineaxr combinations of the data whereas the other (L~P) linear combinations
are adjusted so that they coincide with the data.

When applying the formulas (III.9) and (III.15) we meet with the problem
that the inverse of the matrices § (a IxL matrix) and T (a RxR matrix) does
not always exist ox that the inversion of the matricés is very elaborate. In
order to limit time and storage requiremerits modified versions of the likelihood
ratio test have been used. The modifications are slightly‘different for the

consistency tests and for the inverse techniqde.

111.4, Modified)likeiihood fatio test for the consistency relations

Let us assume that there only exists one consistency test
R v
Ln';je =0 (I1I.16)

In this case

| \

)
Tu - ( LS LT) . = - (II1.17)
- Z L Se b VARD Lyl
and (III.14) reduces to ‘
T
2 =AY = ﬁr'l: l“'% (II11.18)
Emin - ] - VHRE!;%] *

Hence A, is a Gaussian variable with zero mean and variance unity. We reject
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A
the Hypothesig L,¢34 2 0 if
2 2
4, % X 408 (III.19)

If there is more than one consistency test we congider the statistics

kN

1,5 40 = a__.a...._..._..___(tz Lot ) = 7 (ZLeeyd) (III.20)
4= . * B EvLﬂ.SwLﬂ‘ - T~r-r.

i.e. we replace gdl in (II1.14) by

T-r.*r.‘ - g’f’f‘ :%‘:f (III.21)
The expectation value of at is given by

<zﬁz> = R | (II1.22)
its wvariance by

VAR[4'] = 2 L T Tee (111.23)

A T-r'f‘

If all the single contributioné 4, (r =1,...,R) ate uncorrelated the statistic
4" would follow a X: —~distribution with R degrees of freedom. However in
our case the 4+ (r = 1,...,R) are generally correlated. In this case the
distribution function of 4° can be approximated by a nonnormalized
?(; ~distribution with
“ff
<ay’

— (III.24)
VRR[ 4]

Rey = 2

degrees of freedom where always R £ R. We hence reject the hypothesis

eff
that a given model class provides a consistent description of the fluctuations

if the normalized statistic

2

~a2 | '
satisfies
- ~2
Py X (III.26)

Regy 0.05
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where.

~ 3 ‘ 2 5
-l ( (II1.27)
XRQ“\o.os R Retw 008

ol ,
is the normalized 0.05 percentile of the X, -distribution.

The reduction factor Y, = R;H /R will’ ch:::‘ explicitly be calculated but
can be assumed to be of the same brder as the reduction factor ¥ = Le“ /L
which will ke discussed in section ITI.5. '

So given the model class, i.e. its consistency relatidns 5.;_7 2.0, it is
straightforward to compute -4 and to decide whetHer or not this mbdel class

must be rejected.

III.5. Modified likelihood ratio test for the inverse method

"Here we consider the modification of the }ikelihood ratio test which
is applied to the inverse method. For the consistency tests we have approxi-
mated the inverse of T, by 5},-/T},. Here we will use a slightly better
approximation for the inverse of S whose rationalization will be given in this

section.
III.5.1 Metric of the likelihovod ratio test

The matrix W in formula (IIX.7) defines a metric in the data space.

The likelihood ratio test suggests the metric § = §‘1. Generally, a metric W
corresponds to a weighting of the ddta by'y1/2; The specific weighting provided
by the likelihood ratio test may be ratiohalized as follows: If the rahdom
variables y = (yl,...,yL) are standardized, i.e. are transformed to a set of

uncorrelated variables ¥ = (§1,...,§L) which have zero mean and variance unity,

Ld

the statistic reduues to

e = ?t} (IIT.28)

ral?

Hence the likelihood ratio test postulates equal Weighﬁs for the stahdardized
variables. This is sensibile if the data represent the same physital quantity
(e.g. independent medsurements of the same guantity). In our case the data
represent different physical quantities and therézexista no dgenerally acdcepted
weighting function. The statistician has to decide what he regards an optimal
weighting function. His choice will be based on a priori inforiatioh about the:
data and the goals of his analysis.

Besides the uniform weighting of the standardized variables the maximu
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likelihood metrie E = §*1 has the fdllowing properties. First of all it makes
the variables nondimensional and hehce comparable. Secondly, the effective number
of data

2
L - 2<E2 if__sz_g_zy_i___ (TI1.29)
eff VARl ¢l e{isW Wi .

takes its maximal value L = I, for the maximum likelihood metric. Although

these are desirable propeiifes weé cannot apply W =,§—1 to the analysis of the
IWEX data Sincéiﬁd may not always exist and, more important, since the inversion
of the covaridnce matrix § is too elaborate. Furthermore, in order to limit

the time and stordge requirements we have to restrict ourselves to diagonal

metrics of the form

A ) (I11.30)

IIT1.5.2 Diagonal metrics

The trivial metric W, = 1 {L=1,...,1) cannot be applied since it does
not consider the different,dimensions of the components of the data vector ¥
The basic variables of the IWEX data set are the horizontal veloecity components
and the vertid¢al displacelment. A sensible way to avoid the problem of different
dimensions is to normalize ea;ch component of the ddta vector by its standard
deviation, i.é. to apply the metric

w2 -é—- j : (II1.31)

¢t

The effective number of data is then given by

2 :
L‘;; “ ZL (I11.32)
¢ C,
’ e -
whe;e
C.. = S“' S (ITI1.33)
W s 3“.

As can be seern from Figuré¢ III.2 the effective number. of data Légé is approxi-

mately 5% of the total number of data. Hence when applying the metric w(a)

we use the ihformation of thé data set rather ineffectively.
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In order to increase the effective number of data, that diagonal metric

can be chosen which maximizes this number. Its diagonal elements are given by

e |
AT (I11.34)
S“ e

and the effective number of data by

(b} ot
= Z C., = ‘ (I1I.35)
L‘” 4L u

Again we meet with the problem that the inversion of the matrix G requires too

much effort.

II.5.3 Metric applied to the IWEX data set

As a less optimal but manageable metric we have chosen that diagonal

metric which minimizes

2 UN)
Z ( S‘C‘ H - gtv ) —S'ﬁ" = ‘rnl‘,n (IIIa36)
L U

‘Its diagonal elements are given by

*vrusx = I A(III.37)
¢ Sec ; o

and its effective number of data by
EwER Z K K,
o A

L = AL (II.38)
¢ T KK, g
oo e "
where
i
K, =— (III.39)
cl

This choice of the metric improves the effective number of data (see Figure III.2)
but still leaves us with a reduction factor

. LINFX . . .
= ——;—_‘—‘—— L  (1II,40)

IWEX

which is of the order of 0.1,

For the various metrices discussed the weighting function, the expectation
value and variance of 52 , and the effective number of data are listed in
Table III.1. ' |
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The distancé¢ square calculated from our metric W g explicitly given
by

2 r o, IWEX é Jg |
2 dy W Sy = ) e 28 (III.41)
~ g ¢ (S_“)Iz (Su) h § Cu‘

where
63 <y - \3(5) | (III.42)

It implies that the components of the data vector are normalized by their standard
deviations ard then weighted according to their céxrelétion with other components.
Components whith aré strongly correlated with other components are less weighted
than those components which are less correlated.

' With the choice of a different metric we have to reformulate our criterion
(III.9) for the rejection of the hypothesis <Z> = §(§). We now have to reject
the hypothesis if i

w2 é 2

= — 2 X ' (1I1.43)
CEY Lopg ) 0:05

A
Note that this condition has Ffurther to be changed since y(§) is a random variable.

III.6. The inverse method

As regards the spécification of the analytic¢al form and the parameters
of the energy density spectrum we have so far only established the criterion
A
when we regard a model point y(x) as a consistent representation of the data point.

The algorithm to construct such a model point will be discussed in this chapter,

I11.6.1 Least square fit

SuppoSe a consistent model class has been found. For simplicity we further
assume that the analytical form of the spectrum and the number of parameters
is’ specified. Since the number R of data is typically 0(103) whereas the number
P of parameteérs is typically 0(20) the system is overconstrained, meaning that
the -equation y = g (ﬁ), or equivalently 6%5) = 0, has no solution for x.

HoWeve;, gince we reject a model point only if its distance squared from
the data poirit exceeds a certain ¢ritical value it is sensible to determine %

by minimizing

€(x) = Sy Wdy = min (III.44)

~
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This is a generalized least sguhare ¢ondition. Our solutiohr will mainly follow
Jackson (1972):

- We first determine a Zero drder estlmate 2 of the paraméter partly by
using & priori information and pattly by a rough determiﬁatlon of the minitum
of €&° following a strategy prOpOSed by Powell (1964),

We linearize the model X(x), which is generally highly nonllnear, at

=%
K A
ylx) = ulx,) + Rax (II1.45)
where
5 - 4% r L P .
Ht“ = ax”‘ ' T R A LI N S S T3 %
® §=§‘ V- R
and
45 = 5 - X

No (I1I.47)

Substituting (III.45) ifito the expreéssion (III.44) for the distance squared
we find

m
~
——

[ 34
S

”"w
—

s

as
a2

")W lay-Rax) (111.48)
with
ay =y - (x,) (111.49)

The minimum of 5%5) is obtained by setting the derivatives with respect to

lal >

the parameters equal to zero ( d¢*/d, =0, @ = 1,...,P), 'This yields the normal
equation

ET\L/E“ﬁ = ,,?V‘“é | (11%.50)
or, eguivalently,
'.11425 = a4z ‘ (I11.51)
if we define
M= ﬂT W AR (III.52)

and
(XI11.53)

112N
~
]
tm
]
Ed
.8
las



The normal. equation ig a set of P linear equiations for P unkfivwns, Its
solution may formally be written ‘

’ {ary .
M 4z (II.54)

~~

ax
If the matrix M is nonsingtlar and well conditioned we have

P1vn = M (IXI.55)

Note that only the P linear combinatiohs 42, (« = 1,...,P) of the data determine
the parameter increments 4%, .

If the matrix M is singular (with rank P' ¢ P) the system ig underdeter-
mined and the above standard least sduare procedure fails.:  In this case the least
square condiﬁion (I1I.44) has an infihity of soluitions. We construct a unigque

(=1)

solution by specifying M as follows. First we diagonalize M by an ortho-

gonal transformation T, i.e. construct

M, = T™MT (IIL.56)

"~

where

d . . ' - :
Mep = M, dup | (II.57)

The normal equation (IIL.51) then transforms to

My ax' = 43’ L (II1.58)

with
ax’ IT"i‘ | E (t11.59)

and
a@' = ITA}: (I1I.60)

We now determine the parameter intrements by

. en o,

ax' = M, a2z (111.61)
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(-1)
d 3
zero if m, = O.. Transforming.back to the unprimed variables we find.

where M is another diagonal matrix whose élements are m:; if m  # O and

ax = M""AZ (211.62)

I T M(-nTr (LI1.63)
i AT S S

The parameter increments (II1.62) satisfy the least square condition (ITI,.44).
out of the infinity of solutions, the solution (IIT.62) is that solution
which minimizes

T . )
45 45 = mun (111.64)

Note that in the underdetermined case only P' ¢ P linear cdmbinationsg of the
parameter increments are determined by the data. _Thpée linedt combinations
of the parameter increments which are not uniquely détermined by the least
‘square condition have been set equal to zerd,

Wheh expressed in terms of the original datd y the solutions take the

o

form

M-‘ Hr W ay (well-poged case)

?

AX 2 t““ﬁ - _ c (II1.65)

MSRTW ay (underdetermined cake)

- - ac . . ‘

The matrix § is known as the generalized (Lanczos) inverse of the matrix A.
Since we have linearized the functional dépendence of the model point

§ on the pérameters,'the above results are valid only for Smal; paraneter incre~

;ents. If 4% must be large to sétisfy the observation then the results must

be checked by expanding about the new parimeters.

III.6.2 Covariance matrix of the parameters

Since the estimated parameter increments depend on the data point y
-~
they have to be regarded as realizations of a random variablé. Their covariahce

matyix R is estimated from the covariance matrix § of the data by

R = <Ji<<§5r> s t|§Hf (II1.66)

~
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The parameter increments are ¢generally correlated. Statistically orthogonal
parameter increments can be constructed by diagonalizing the parameter co-

variance matrix 5, but the new parameters usually do not have any clear physical
meanings.

1II.6.3 Reformulation of the likelihood ratio test

Since 4 x i$ a random variable our model pointé; (x) = % (2.{0) +hax
is a random variable as well. Hence we have to reformulate the likelihood ratio
test. We now test the hypothesis whether or not the data point y may be regarded
as a realization ¢f a Gaussian random variable with known coVari;nce‘matrix S

and mean

(x,) + Recax> (111.67)

A

ac

v

1
rall >

The statistic

g+ (?Thgr(gg))k/(té -§(5_)) (III.68)
then reduces to
£ = (6%7-6575‘7)\:/(6L§~555) (III.69)
Its expectation value is given by
CE > & tv{yé}'- tr{l‘j@} (II1.70)

N e . 2 i .
For W= S ! TW the distribution of &° is a X, .p —distribution with
~ e ~ :

IWEX

and H =‘§_1

~

(1~P) degrees of freedom. For our, choice of the weighting function W = W
we assume that £ can. be approximated by a Xiqf-P—distribution with (Leff - P)
degrees of freedom and reject the hpyothesis (III1.67) at the 95% significance

level, if

E 2
gty Tlyyep, o005 (ITI.71)
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III.6.4 General strategy

In order to determine the number of parametexs which are well determined
by the data we use an ahalytical form of the ernergy density spedtrum with more
paraméters than aré likely to be uniquély determined. by-the data. -Sihce the data

only have a certain numerical acturacy we defihe the diagonal elements of the

-1
“ .

by the numerical adeuracy of the data. This procedure then yields the numbex

. A A .
matrix Méhl) by m if my » ﬁ and O if m, & . Here the threshold m is given
of pakrameters whith are determinéa'by the data. However, the variance of the
parameter '

VAR [ ax,] =i—, VAR a2, ) (T

®

although finite, may be unacceptably large. A sénsible way to control the variance
is to consider an digenvalue m, alsd to be ze¥o if m ¢m, ¢ 1n; whére m; is
gome other threshold and then construct the Lanczos inverse. - This reduces the
resoluticdn, i.e. the nulmber of parameters which are determined by the data, but
improves thé variince of the remdining parsmeteérs. Thig tradeoff must be
carefully ‘¢hoseén in order not to try to redolve podrly determinéd features of the
data. . .

fThe th¥eshold m; may be set according to the following #aticnalization
(Curl 1970). One takes an & priori guess of the original physi¢al parameters
ﬁ(«=rLUUHEMCm%m%smémhmmmwrmimwmlﬂ<ﬁ<ﬁin
which the parameters fall accoxding to informatién from other experiments in sim-
ilar situations. One tHen considers the variables

o "P““"P“o
AT

(IX1.73)

and caltulates .the variance (II1.72). If thé variance of 8 x, is smaller than

1, i.e.

VAR [ ax, ] =;L*-,'- VAR[ az,] ¢} (ITI.74)
o
the experiment under consideration provides a more precise estimate of the para-
meter -thah what one knows from other experiments. If, on the contrary, the var-
iance of 4 %) is larger than 1 the estimates are less precise than what one
krnows from other experifhents. In this ¢ase the parameteérs should not be deter-

mined from the experiment under cénsideration. - The threshold should hence be
set
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Yy 1
= VAR " [ az, ] (III.75)

The choice of the thresholdtm; for thé IWEX data essentially followed this
rationalization, though no formal algorithm was constructed.

III.7.  Computdtional problems .

The inverse te'chnique mainly requires three algorithms:

1) computing the model crosshspectra for a glven parameter set
2) minimizing E

3) computing parameter covarianQé

The realization of these algorithms meets with a number of problems concernlhg

‘computer time, storage and accuracy.

1. The computation of model cross~spectra reguires the numerical evaluation

of the intedgral. (LII.1). Analytipal solutions could only be found for a few
special cases (cf. Desaubies 1977). The integrand is a product of a slowly
converging (energy spec¢trum} and a more o6r less rapidly oscillating (éxponential
or Bessel) function. This type of integral requires special methods. Conven-
tional algorithing like Simpson or Rhomberg fail completely. Also, to limit the
computer time, we had to use the fact that for each instrument pair (corres+
ponding -to a group.of 18 data) the inhtegral is essentially the same. This is
one of the reasons that thé inverse program is rather specialized teo internal
wave problems.

2. Because of the high ndnlinearity of the model the iteration procedure described
in section III.6.1 needed initial parameter values rather close té the final
solution. Besides éstimatihg initidl values from some obvious data features

(see part V) we needed a very &fficient minimum strategy. Also, the success

of the iteration was very sensitive to the accuracy of the numerical differen-

tiation a%L /axu necessary for the calculation of the matrix A.

3. For large data sets, the exact cofipitation 6f the parameter covariafice ig the
most time consumihg step ih the analysis, since the amount of -operations is
proportional to the square of L (total data number), i.e. to the fourth power .
of the number of sensors, whereas thé amount for the other calculations of the
inverse prograi is proportional to L.

A rough estimate of R can be obtained from (IIf.66). If W = §—1 one finds
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-l
B = VL- 5 tj (I1I.76)

This formula frequently occurs in the literature (e.g. Zurmihl, 1965). For
diagénél weights, it is exact only if the data are completely uncorreélated.
As shown in section III.S5. the data correlation reduces the effective number of

data considerably. We found, when replacing L by Loge in (ITI.76), that -the

parametér covariance R usually coincides within 20% iith its exact value given
by (I1Z.66). Despite this convenient approﬁimatibn we have calculated the
covariance matrix rigorously. o '

In Gontrast to the inverse technique, the evaluatioh of the consistency
tests posed almost no severe problems. The computer time rieeded for 'the
consistency tests was only about 1% of the total time spent for the analysis of

the IWEX data.
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IV. RESULTS OF CONSISTENCY TESTS

Iv.l. Consistendy relations

When répresenting the observed cross spectra by a theoretical model
both the model class and the energy distribution have to be specified. A model
class determines those general properties of the fluctuations which are independent
of the specific distribution Of enexgy among the different wavenumber and fre-~
quencies. Typical specifications of the model class are: the observed flue-
tuations represent a field of random propagating internal waves; the fluctgations
represent a field of standing internal waves; the fluctuations represent a field
of internal waves contaminated by density and (or) velocity finestructurg.

If the observed fluctuations represent a random field of propagating

internal waves the observed cross spectra are weighted projections of the energy

¢
density spectrum E'lwa) {w = frequency, X = horizontal wavenumber vector,
¢ = sign of the vertival wavenumber) onto the frequency axis (cf. II.46)
AL & Ly v 460 )
Ly 2 i %1
A (w) =§Sdo¢£(w,g)uhme pne (1v.1)

where Eij is the separation chtér of the instruments and ch the vertical phase
difference. Theé kernel ll;:n is determined by the structure of the internal
wave eigensolutions, i.e. by the model class.

A model class flay be characterized by all relations among the cross spectra
which are satisfied for arbitrary energy density spectra. We will restrict

ourselves to linear relations of the form
5 Lemey (WA (W) 20wt R av
. *,mnij W mn W ) IR :
myn L,

where R denotes the numbér of linearly independent relations. Such relations
will be referred to as consistency relations. They may also be written in

vector notation

Z Lo ‘3,, = 0 el R L=1 L b (TV.3)
L

where y denotes the vector

~

- (g,) = { R ()} xv.0

lak >

. A
constructed from all the theoretical cross spectra H;ﬂ,(UJ) The total

number of c¢ross spectra is denoted by L.
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The consistency relations for the model classes: "propagating and
standing ihternal waves" have been given by Miller and Siédler (1976). These
con51stency relations together with the con51stency relatlons for various other

.

model classes are listed and diséussed in part 1T,

Tv.2. General formulation of consistency tests

In part IIi we distusséd the statistical framework for testing whetheéx
or not the observed crbss'Spectrafsatisfy a given set of consistency relatiosns.

As a cenvenient statistic we found

e 2 as (1v.5)
+
where
2 &. (?Lﬂ%a)z
'A'f‘ - K i
VAR[ZL,y.]

(1Iv.6)

Here y denotes' the vector
'

g« (y,) = { H&‘;*(w)} - . (20.7)

constructed from all the observed cross spectra Hﬁi (w)

‘Assuming the observed cross spedtia to be normally distributed, ld* is
noymally distributed with variance 1léna zero mean. If all the single coftri-
butions 4, (r = 1,...,R) are uhcorrelated the statistic 2° follows a.

X; ~distribution Wwith R degrees of freedom. Generally the sirngle contributions
a
approximated by a Xﬂ +distribution but with

; are corrxelated. In this ¢ase the distribution of 2% ‘can still be

. <42>2' : ‘Rz
R = i it S 2..;...._.4__3—_;_. (IV‘Q)
Lol VARC 221 . VARLA'] _

degrées of freedomi We hence rejéct the hypothesis that the observed fluctuations
satisfy a certain sét of consistency relations at the 95% sighificance level if

2 | 2 ) ~ g

w2 )
4 == 4 y e X = X )
R Rag¢ R.“,o.osv."i ‘Rt{f,o.qs ) (Iv.9)
Here XRFG'°°5 denotes the 0.05 percentile of the X -distribution.

‘Given the consistency relation for a certaln model class, i. e. the

¢consistency matrix 5, the normallzed statistic d can easily be codmputed if



we approgimate
VAR [ELﬂ ‘h] = 1Zt' Lo byp COVE\“,%.'] ) Lee Lo Sqp (IV+10)
[y . . . B ¢|¢.

where § is the usual estimator of the covariance mdtrix given by (I.10).
The calculation of thé effective humber of degrees of freedom requires
more computational gffoxt‘since it ds a féurth order quantity in térms

of the cross spectra. We will not calculate Reff,exPlicitly butAwill assume

e” I R : (Iv.11)

where ¥ is the reduction factor shown in Figure III.2 and discussed in part
III. Generally f'= O (0.1). ©Our résults are not very sénsitive to the proper
choice of ¥ since Xkﬂf 0.08 is only glightly dependent on R ;.. For

= 3.84, 2.21, 1.83, 1.35, 1.24, 1.11 for R = 1, 5, 10,

example %R eff

eff 10,05
50, 100, 500 respectively.

In order to test whether or not a certain model c¢lass provides a con=
sistent description of the obs&rved cross speutra wé calculate the normalized

~ : . I v
statistic. 4 . This vdlue has to be cémpared with the normalized 0.05 percentile
~i ' 2 ' N . o
an"aos of the XR. distribution. Sinde we do not know Reff exactly

two criteria for the rejectlon will be applied.
For a4 single frequenty we reject a model class if A is much larxger

R
thfl: XR.{‘ . Q.DS ) Wlth
Regt ) 605"
thesis.

SFF = 0.1 R. If 4* is smaller or slightly larger than
we accept thé mddel class but do not predlude any alterhative hypo-

For a frequen¢y band we expect the values of Zz to scatter around its

mean value

"

< 4>
: (1v.12)
if the consistency relations are valid. If we find that the values of 4t are
systematically larger tpan 1 wé have to reject the model . class for this frequency
band as well. Formally this criterion may be deiived as follows. Consider the

~ 2
mean value of 4 over a certain frequency band

g
~ 2

4

ﬁrV1z.

1S Mty ’ '
= A ) Iv.13
~ [w | ( )

o o2 . ! ' Lo ’
Since the single contributibnsn(qa)follcw a X ~-distribution with Reff degrees

of freedom, the mean value 4° follows a X -distribution with N°R___. degrees

eff
of freedom. The différent frequéncies are assumed to be statistically independent.
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We hence have to reject the model if

iy

uzl

2t X (Iv.14),
NRyg10.05
~2 . , . _ -
Here XNRe“,O&s is typically O (1.1} if we take R = SQO, Reff 50 and
N = 10.

The results of the con51stendy tests are preSented by graphically
displaying 22 as a functlén of frequency The number R of conSlstency
relations or tests which go into the calculation of 22" is given in the
inlet of the figures. This numbér varies with frequency since for hlgher
frequencies those levels of the array dre excluded where L exceeds the local
Brunt Vaisilad frequency. Only the value R is given which is valid for the
3rd to the 21st freéguency point. Values of R for the other frequency intexvals
¢an be found in Table IV.1. Also shown in the figures is &;“‘,mos for

values of Reff = 0 (0.1 R).

IV.3.. Simple models

Before we . syStematically investigate physically reasonablé model classes

we tesgt somé simple models which will be used later in hybrid models.

IV.3.1 Zero model

As the simplest hypothe31s we assume that the expectatlon value of

all cross spectra vanishes

<A > =0 (all wm,i,i) 7 (zv.1s)

ox

#

- (Iv.1le)
<y,> 0 {'."'.".‘L “ |

The consistenCyvmatrix L for this model class is given by
Lye 204 * =1, L (1v.17)
~ 3
The statistic 4 reduces to

2
({‘:L“%L) e i-j— ‘ (Iv.18)
! ?—; L-‘rt Lﬂ',su' Lo S'f'!‘

L
42 —Q—Z

3

e P A 3
Figure IV.1 shows 4, as a function of frequency and demonstrates that the

hypdthesis <y?» = O must be rejected at all ffequencies;
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~i
The value of 4, is mainly determined by the equivalent numbexr of
degrees of freedom V of the spectral estimates. Since S,, « v™'

(see I.10) we find Ffor the statistict

dy = v (Iv.19)

Hence the large values of 3: at high‘frequencies reflect the large edof
at these frequencies. In order to illustrate this dependence, VvV is also

shown in Figure IV.1.
IV.3.2 White noise

White noise will be defined in ocur context as a field for which all
cross spectra ‘are zexo whereas the autospectra may take arbitrary values.

White noise must herice satisfy
b . Cos
<R,.> = 0 if mEmor (%) (I_V'ZO)

There are Lc such relations if Lc denotes the number of cross spectra. The

~2 )
statistic 4 is given in’ this case by

~ l
Aw -TT

n
11

y 4 (1v.21)
+ Ser '

. ~2
where the summation is over all croéss spectra. The values of 4,, 4dre also
shown in Figure IV.1l. They behave similar to those of Z: . The assumption

that the observed fluctuations represent white noise must be rejected as well.

Iv.3.3. Finestructure

As a modification of the white noise model we have also included in
Figure IV.1 the values z:s for a model where all cross spectra from vertically
separated instruments vanish whereas the other cross spectra and the autospectra
can take arbitrary valués. BSuch a model reflects the principal properties
of density and current finestfucture in the oceaﬁ, which has a small vertical
and a large horizontal coherence scale. In our definition the vertical
coherence scale is assumed to be smaller than the smallest vertical separation
of the array whereas the horizoéntal cohereﬁce écalé remains unspecified.

This finestructure model must be rejected as well. '

Generally, we observe
~1

~ ~ 2 .
4, > 4, >4y (1v.22)

consistent with physical intuition.
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IV.4. Basic asstmptions of the Garrett and Munk model

The first attempt to reconstruct the: energy den31ty spectrum of the internal
wave field in the deep ocean from the obserVed prOjecthhs was made by Garrett
and Munk (1972). Combining measurements from different locations; depths ahd
instruments they proposed an energy dlstrlbutlon which was beileVed to reflect
principal features of the mean internal wave fleld 1n the déep bceari. Here
we will test the basic assumptions of the Garrett and Munk model. The enerqgy and
wavenumber scales and the form of the spectrum will be discussed in part V.
Although Garrett and Munk start from vertically standing modes, they take locally
defined vertical averages and smear out the modal stgudture into a continuum.
This corresponds to a WKBJ approximation. Within this WKBJ framework the basic

assumptions of the Garrett and Munk spéctrum are:

(i) the ¢bserved fluctuations within the internal wave field range represent
realizations of a statistically stationary and hofizontally homogeétieous
process;

(ii) the fluctuations represent a superposition of free propagating internal
waves

(iii) the intefnal wave field scales in thé vertical .according. to WKBJ theory

(iv) the internal wave field is horizontally isotropic, i.e. independent of the
direction of the horizontal wavenumber .

{v) the internal wave field is vertically symmetric, i.&. independent of the
sign of the verxrtical wavenumber.

The last assumption is a consequence of the modal approach.

The stationarity has been discussed in part I. Here we will test all
linear relations among the cross spectra which follow from the other asdumptions.
Formally these relationsg can be divided into two classes. In the fi¥st glass
¢ross spectral components between two instruments or from oné instrument are

compared, i.e. the relations take the form

Z' L (W) ﬁ;in(w) =0 (1v.23)
oxr
5 Lelw) A (w) =0 (1v.20)

where Lwn\(w) is$ a known function of frequéncy. The consistéhty, isotropy and
symmetry conditions fall into this class. The secqnd class coltipares ¢ross spectra

between two instruments with cross spectra from another two instruments,
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LA
Y v - : .
2 Lua (WA, (w) =0 (1%.25)
or cross spectra from one instrument with the ¢ross spectra from another instrument

Z Lv’dni. (w) H?E:n (w) = 0 (IV.26)

i

The homogeneity and WKB—écaling relationg take for example the form (IV.26).
Here we will only tést ‘all relations which take the forms (IV.23), (IV.24) and
(Iv.26). Relations of the form (iV.25) are possible because of the specific
array gedmetry but will not be considereéd. Nevertheless, there remain 854
relations among 1444 cross spectral componeénts (¢f. Table IV.1)' which can be
utilized to test the basic assumptions of the Garrett and Munk model.

Thé results of théke tests arée shown in Pigure 1V.2, which demonstrates
that the basi¢ assumptions of the Garrett and Munk model cannot be acceptedi
They must clearly be rejected for high and low frequencies. They must, however,
also be rejected for medium frequehcies. Although the values of 4 are
acceptable for each single frequercy Ehey are rot randomly scattered around the
expectation value €Za>= 1, indicating that there exist slight but systematic
inconsistencies.

The violation at the inertial frequency f is not real but must be ascribed
to the finite frequendy resolutioh of the estimated cross spectra (sée séction
Iv.7.1).

In the following we will investigate in-detail the various tests which
contribute to the above result in order o determine whith assumptions are

inconsistent and .need to be modified.

I1vV.5. Homogeneity and WKB+scaling

If the fluectuations répresent realizations of a horizontally homogeneous

process the tross spectra should satisfy the homogeneity relations
' 3 . N
F’r‘hn(x;) - Hmn(x;) = 0 L‘ X=Xy s 0 (1IV.27)

If the fluctdations represent a field of propagating internal waves the spectra
should additionally satisfy the WKB-gcaling relations

H'mn(’i;) - Hw\h,(xzj) = 0 | (iV.28)
Do (1) Dy () -
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or
~ H : : / ‘
R = —% 2 const.. (Iv.29)
™mn
mn
where

» ) (k) | | s ,
v . 1 2
D00} = R0 Qx| ey) < [l "‘s’; Jizv. 30
, , .Q‘b(X3) ’ .

Specificdlly we f£ind for ' & N° the well known scaling relations

P Ut INT0x) Plxy) N7(x)) = comst,
(Iv.31)
P“ (X3) N("a\ = const.

As already demonstrated by Briscoe (1975) these specifi¢ scaling relations are
fairly well satisfied. '

In order to systematically investigateé whether or not there exist gigniw-
ficant deV1atlons from the scallng and homogénelty relations we detérmirne the
mean scaled spectra '

& %
<R,.> = Il P T (1V.32)
' L=
where N denotes the humber of different instruments which may dépend on m and n
since we have 20 instruments measuring Uy and 9 instruments measuring u, and

1
u,. We then test whether or not

CRAp,?> " Apw = 0 (1v.33)
The appropriate statistic
~ d 2
v W ¢A.S
212:_'..“_'-2 z (Ao . "‘“,,)’—-4 (1v.34)"
T TNT 9 & e VARLHE, - ¢Ann]

is shown in igure IV.3. The assumption that the spectrxa satisfy the homogeneity
and WKB-scaling relations must be rejected for the 5 highest frequency points.
For the other frequency poifnts this assumption might be actepted although the
distribution of the values indicates slight inconsistencies.

I order to demonstrate the sensitivity of these tests Fiyure IV.3 also

~2
shows 4 for a constant Brunt V&isdla profile or, equivalently, for a vertically
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homogeneous field. This assumption must be rejected at all frequencies. The
anomalously high values are mainly due to the fact that the autospectra at level
14 giffer by nearly a factor of 5 from the spectra at other levels. Since level
14 is excluded from the 22nd frequency point the value of 22 drops drastically.
Figure IV.4 shows the test results separately for the horizontal velocity

field and the displacement field, i.e.

' K oy n 2
Zz _.I__!:ZN zz (ann-<ﬂmn'>),'- |
N l" =t wWmn2) vnRt H ..< ﬁm"\"] (IV-BS)
and
oy L <Ry |
4 TN 5 varl Ay <Ry ] (1v.36)

The violation of the homogeneity and scaling relations at high frequencies is
mainly dde to the displacement field. ' The largest contributions arise from the
spectra at level 14 (not discernible from the figure). _

The inconsistencies at high frequencies are presumably due to turning
point -effects. As the frequency approaches N the WKBJ solutions become less
appropriate and break downh.at w = N where they predict an infinite vertical
wavelength. This result is confirmed by the drop 6f Zz a£ the 22nd frequency
since for this and higher freguencies level 14 is éxcludedd from the analysis.

The violation of the basic assumptioné of the Garrett and Munk model cannot
be ascribed to a violation of the hoﬁogeneity and scaling relations. This result
is confirmed if we only test the consistency relations and the isotropy and
symmetry relations. For the IWEX array this model is determined by 771 independent
relations per frequency. The result is shown in Flgure IV 5. Again the violation
is most pronounced at tidal freguency and at high frequencies whereas for medlum
frequencies. the violation is small but significant. The estimate at inertial
frequency ig again not reliable because of fiﬁite frequency resolution.

Result. The homogeneity and WKB-scaling relations_are only slightly
viclated for low and medium frequencies. For the highest frequencies there
exist larger inconsistencies But-tpgse must be ascribed to the proximity of the
turning point. The rejection‘of‘the basic assumptions of the Garrett and Munk
model is not mainly due to the violation of the homogeneity and scaling relations.
This result implies that contamipating fields also satisfy the homogeneity and

WKB-scaling relations.
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IV.6. Symmetry and isotropy

Here we will ipvéstiéate to what’extént'the viola%ioﬁé are due to the
assumptions of symmetry and (or) isoéfbpy. For this we ﬁest'ﬁhése relations among
the cross spectra which mtst hold for a symmetric or isotropic field independent
of the specific kinematic structure. These relations can éésily be ififerred
from the following arduments. '

Vertical symmetry inmplies that cross spectra do not change when reflected
at a horizontal plane ’

= =-F 12 _
Wy Uy ch-u‘ Hu“u, , %2 | (Iv.37)

from which the symmetry relations

o3 )

R.=0 ws 2 ‘ . (1v.38)

are inferred.
Similarly horizontal isotropy implies that cross spectra do not change when

rotated about the vertical axis

= = - o= | 7.
u, u -y u; [T ] F] H
a3 “ £ (IV. 39)
uu, = Hu:uz N u,ul' - 'H\A’2~u.= : ‘ Hu‘u‘.
yielding the isotropy relations
Haz =0 y & = W2 c
(IV.40)

~PH- PZZ ® O ) Pli ® 0

These relatlions are all sgymmetry and isotropy relations which hold among
cross spectra measured at the same position as can be inferred from the general
theoty presented in section II.4. Because of the specific atray geometry (a
perfect tetrahedron) there eéxist alsc isotropy relations fo¥ tross spectra ob-
tained from horizontally separated instruments. Some of these have been tested
by Briscoe (1975) but will not be considered here. It should also be mentioned
that there exists a more éxtehnsive set of isétfopy and symﬁetry relations
(Listed in Table II.1 and II.3) if one assumes that the field is an internal wave
f£field.

The estimates 3t for the isdfrdpy felétiong are shown in Figure IV.6.

The assumption of isotropy can be acceptéd for medium frequencies. At high
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frequencies we find a slight anisotropy. At low frequencies, especially at
inertial and tidal freguencies,a significant anisotropy is observed.
~ The test of the symmetry relations, shown in Figure Iv.7, shows essentially
the same features.
These above results are conflrmed when the mean value of the square

root of the ellipse stability

N . _
<X-+- -_l‘:_ z-:| X-: | (1v.41)
with
pi | AL _ [(P.:, PE ) 4y Pz ]'/z e
= (R,LRL)" (PL+PL) - yQit :

is considered (Figure IV.8). For an isotropic field X;_ should vanish.
However theé expectation ¥value of the estimate (IV.41) is not zero since the
coherence estimatée is biased. The bias is also shown. Figure IV.8 also

~displays the mean values of the coherences

X’L - Iﬂ:nl . [(Pns st) "'(Pzé +Q,3) }'ll

(R AL)™ (PieRy +20%) (2. 43)
- lqu‘ . [ ( é'*st) + (ﬁz 23)v ]‘h (1v.44)
X“"’ (H.i. R:o)llz (P|: "‘Pzz ’ZQu) Pn

which should vanish for isotropic or symmetric fields.

Generally the acceptance of a certain hypothesis does not preclude
any alternative hypothesis. In our case: the coherence Y¥,. vanishes for an
isotropic field. Thug we can conclude from To- being.unequal zero that the
field must be anisotropic. However, if Y,. is.found to be zero no exact
statement can be made except the vague one that the finding is consistent

with an isotropic field. More specifically, if the field is governed by internal
wave.kinematics the coherence

‘ RLLINCLY ) (1v.45)
Iy ) = §dua ¢ ()

is determined by the second coefficient ih the Fourier expansion

e Lmip
E“(wx ) = Z G () e '  (1V.46)

m -

of the énergy density spectrum. Hencé Xl-(“” =0 implies Sdotc;(hhd) =
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which does not imply that the energy density spectrum is isotropic. However,
from C: being zero some implications can be drawn on the other Fourier
coefficients since E must be a positive function. :

Result. The symmetry and isotropy relatiogs are well satisfied for
medium frequencies. FPFor low freguencies, esgpecially for inertial and tidal
frequency, there exist significant deviations from both' isotropy and symmetry
which must be considered when modelling the observed spectra. At high fre-
quencies slight asymmetries and anisotropies are found. Again these violations
cannot account for the violation of the basic assumptions ¢f the Garxett and
Munk model.

IV.7. Internal wave models

IV.7.1 Propagating waves

The preceeding discussions clearly demonstrate that the lérge violations of

the basic assumptions of the Garrett and Munk model are riot dde t® the violation
of the homogeneity, scaling, isotrbpy and symmetiry relatidné‘but must be due

to the invalidity of the assumption that the fluctuations represent propagating
ihternal waves. This statement is confirmed by Figure IV¢§thefe the‘resu1t

of the consistency relations for propagating waves dre shown; ’

The consistency relations for propagating waves take the form (cf. part II)

pi < RS+ Rl - 2L golRll o @
DY = (wef)P RS - (w-f)P A -0 (1v.48)
By« Rwef) AL - QN (w-f)RE =0 (17.49)

D'« Q% (w-§) R - 0 (wef) RY

'4
O

(Iv.50)

Let us consider these consistency relations for i = j first.

¢

The consistency relations D1 = 0 and D2 =0 inVOlVé the autospectra

P .+ P__ and Peg + The mean values of the scaled aﬁtospectra (scaled to the

depth xg of the apex of the array)
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are shown ih Figure I.8.

The consistency relation D, = O states that the ratio between the hori-

1
zontal and vertical kinetic energy is a given function of frequency

+P. wheft Lo
++ i '1¥ 511 (IV.52)
R. w ‘

This ratio becomes zero for buoyancy oscillations (w = N) and infinite for

inertial oscillations (w = £). The relation (IV.52) may also be written

=L Bt ~
P“:P;- Lo ) Pey (1v.53)
whe gt xg) >

The mean values of both terms are shown in Figure IV.10. They are normalized
by the factor CZ(N) EGH(‘") where C(UJ) is the normalization constant
(I1.38) and EGM(uJ) the Garrett and Munk frequency spectrum. For most
frequencies the observed horizontal kinetic energy spectrum is significantly
larger than the horizZontal kinetic energy spectrum calculated from the observed
displacement spectrum using internal wave theory. We will refer to this dis-
crepancy as the ehergy up~current disparity.

The consistency relation pé’= O compares the anticlockwise, P++, and the

clockwise, P__, rotating part of the motion

. Y
P w-§)
_i: - .i_ﬁhi_a ) (IV.54)
P. (w+f)

This ratio should become zero for inertial oscillations. The relations D, = O

2
cah also be written
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2 lomyo__2
(w-f)* i) ¥ (wef)?* S2x3)

Pt (IV.55)

The normalized mean values of both terms are shown in Figure IV.11. Except for
High frequencies the -agreement is rather poor. Figuré IV.1l also shows the
normalized mean value of ﬁ; Jl(xg) which ought to be equal to the two other

curves because of D1 = 0.

The discrepancy between P, and P__ at the imertial frequency £ is not real
but must be ascribed to the finite frequency resolution of the estimated spectra.
Our estimate P,,(w) is the average of the tru¢ spectrum dver a finite frequency
interval. If the true clockwise spectrum, P__, behaves smoothly at w  the
observed value of the anticlockwise spectrum is approximately

. . . b L L ) .
P, (w) = P (w) { dw'G%:%) ' (1V.56)

which yields P++/P__ ='T% azlfz at W = f, At ioﬁ frequencies the resolution
is 4 = £/3 and we find P++/Pi~ -‘—‘“10“2 as observe&»(Figuré I.8).

The consistency relations D3 = Q apd D4‘= O can be expressed in terms of
coherences and phases as

X’+o = X'_u (IV.57)

4’“ = - ¢.o (Iv.58)

Mean values of ¥,, and Y., were shown in Fié. IV.9. There is no strong
violation of the relation (IV.5Y7). | ’

Fir i # j the consistency relations take the form

) L3 i Ly
X‘: = K“ , d’*: = ¢°° (IV.59)

00

AR S . = ¢, (1V.60)

n

L b4 W AL
X}L:' lﬁ_ . o -=¢°' {1v.61)

- 4 o U
X.-o‘ - X‘OL: ) ¢—° b ¢0* (1v.62)

.

when expressed in terms of coherences and phases. In deriving {(IV.59)...(IV.62)



the WKB scaling relations have been used. The coherences Xff and f:j are
shown for two instrument separations in Figure V.22. A large discrepancy is

observed which will be referred to as the coherence up-current disparity (cf.
Briscoe 1975). ‘ '

All these discrepancies contribute to the vioclation of the consistency
relationg shown in Figure IV.9. The discrepancies are most.prenounced for low
and High frequencies, less pronounced but significnat for medium frequencieés.

To what degree the discrepancy at high frequencies can be remoVed by
choosing standing modes instead of propagating waves will be discussed in the

next section.

Iv.7.2 Standing nodes

The consistency relations for standing modes differ from those for pro-
pagating waves. This is only due tq the fact that up— and downward propagating
waves are assumed to be uncorrelated for propagatlng waves whereas up~ and downward
propagating waves have a fixed phase and amplitude relation for standipg modes. »
The fact that there exiats a continuum of solutions for propagating wavés whereas
there only ex1sts a dlscrete sét of solutlons for standlng modes and the fact
that the vertlcal elgenfunctlons ‘are appox1mated by WKB solutions in case of
propagating waves do not affect the structure of the con51stency relations.

For slant separations we only find (cf. Table II.3)

s

D' = (“"‘“2Hii - {w-f) RY =0 (IV.63)

as a consistency relation for standing modes. This relation is identical to the
relationsg D; = O for propagating waves.
For purely horizontal separation we additionally find

Dy = (wef) R +(wf) B <0 aves

c (uPRE + (edf)RD 0 aves

)

‘

which differ from the corresponding consistency relations ngﬁ O and DZ = 0
for propagating waves and provide a tool to discriminate between standing and
propadating wave. In terms of coherences and phases the relations (IV.64) and
(Iv.65) take the form
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Y:: = K“Lf ) ¢+L:= “70“ Y (IV.66)

g, i . = L + o (Iv .67
5:9 X;* ) ¢ho . ‘¢o+ v : )
The phase relations differ from the phase relations
4 i i i, .
4)40 = ¢’°- , ¢_° = ‘b“ (1v.é8)

for propagating modes.
In orxder to discriminate bétween standing and propagating modes ore has

to compare the phases ¢ii and ¢fi with the pheses :} and ¢ii for
horizontal separations. They are equal for propagating waves. The differ by'

180° for standing modes. However, if the correspondihg coherences are zero the
phases are hot well-defined and one cannot dlscrlmmnate between standlng and
propagating modes. A vertlcally symmetrlc field of propagAtlng anes, for example,
satisfies - K‘v'o— 0 (V="%,-) and fou=0 (v =+ =) for horlzontal
separations. A symmetrlc field of propagating Waves henCe satisfies the cons1stency
_relatlons D3‘ O and D4 O for standing modes. We cannot dlscrlmlnate betWeen

a symmetric field of propagating waves and a field of standing modes

For i = j the phase relations between u+, u_ and E (= down') take the
form

¢+§ + ¢_§ =0 for standing modes (Iv.69)
and
"th + ¢_3 = 9 for propagating modes (IV.70)
Figure IV.12 shows the phases of the mean scaled spectra < H+g> and ¢ R_¢?, i.e.
4)\15‘ = aretan (<Qv§>t< Pvg > ) Y st (IVLT)
At low frequencies where at least Xl: can be sald to dlffer 51gn1f1cantly
from zero (cf. Figure IV.8) we rather accept ’¢+S + ¢ ¢ G s, lL.e., pro-
pagating waves. At medium frequencies where the phases are not wellsdefined the

result is ambiguous. At high frequencies standing modes, i.e. ‘¢+5 ="¢_§

seems to be preferable.
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3’ BZ ©

and D3, D4 = O are tested for zero and horizontal separations. The result is

The same picture emerges when the consistency relations D

shown in Figure IV.13. At tidal frequency standing modes must be rejected. At
the other low and at medium frequencies both models are consistent. At high
frequencies propagating modes must be rejected.

If all the consistency relations D2, Dg, ﬁ;‘= 0 for standing modes are
tested the above result is not significantly changed (Figure IV.14). At low
frequencies, i.e. at inertial.and tidal frequencies, standing modes must clearly
be rejected. At the other frequencies standing modes seem to provide a consistent
description of the data. Also shown on Figure 1IV.14 are the corresponding tests
Dg, D”, DZ O for propagating waves which indicate that propagating waves seem
to be less appropriate at high frequencies. This presumably points to a genuine
physical effect, namely that the waves become phase-locked when approaching the
turning pqint;

The test results for an isotropic field of standing modes arxe shown on
Figure IV.15. This model must also be rejected at high frequencies where, as we
already know, the field is slightly bu£ significantly anisotropic.

At high frequencies a standing mode model seems to be more appropridte
than a propegating wave model. However, there exist more tests for propagating
waves than £or standing modes. The consistency relations Dg, Z = O also hold
= O, which has

—-

for slant separations. Additionally, there exists the test D1

no counterpart. Evaluating D1 for standing modes we find

2 2 2 T o~
_3 .p L wief? N-w?
Dl = P++ + P Wt whegr oo (Iv.72)

2 ? 2 P ’ ~ N"’ 2 ~
YE (o E(wg) {5 (8,9,)" - 5= 40 ]

I

where io denotes the vertical eigenfunction. The measured spectra va
have been obtained by averaging in time. Because of ergodicity this also corres+
ponds to a certaih averaging in space. The vertical average of the first term

in the parenthesis becomes
. . 4 : “
X3 Xy :
e 2,%, ++ . 9,4 1v.73)
S ax (3,%,) <=5 Stdxam,@; st LA, (
X3
where we haVe 1ntegrated by parts. The first term becomes equal to the vertical
[} 2 H
average of (Nw{w'- f” N, if the elgenequatlon d 93H-*N (New Ho' ‘) %420 for “o
is used (cf. IT.94). The second texm vanishes if the integration is carried out
between tHe nodes of the eigenfunctiens_%° . If only high mode numbers are
excited we hence expect standing modes to satisfy the relation D, = 0 as well.

The same argument holds if many modes are excited since an average over many modes
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is equivalent to a vertical average:. A standing mode field -containing many modes

or high modes hence does not remove the observed energy up—current disparity

Wo_
1

for 1 # j. A standing mode field consistlng of many modes or hlgh modes also

(see Figure IV.10). Similar arguments are true lf the test D, = O is cons1dered
does not remove the observed coherence up~current dlsparlty (see Flgure V 22).
A standing mode field consmstlng of a few low modes might produce systematlc
violations of the relation D; 0 but is 1nconSlstent w1th the observed coherenca
scale. v

Turning to the question to what degree the violation of the consistency
relations for propagating waves at high frequenCieé (Figure 1V.9) can be removed
by standing modes the above discussion suggests'that étaﬁding‘modes:though pre—
ferable cannot account for all of the observed discrepancy showh in Figure IV.9.
For the following we disregard the standing mode model and further investigate
the conceptually simpler pr0pagating wave model; but being aware of the fact that
part of the high frequency discrepancy can be ascribed to the proximity of the

turning point and its phase-locking effect.

Iv.7.3 Combination of standing and propagating waves

A more sophisticated model would represent the observed. spectra by -a.
combination of standlng and propagating waves. This model is described by the
consistency relation D2 O which is wvalid for both standing atd propagating waves.
Although acceptable for medium. and high freguencies (Figure IV.16) the above
-discussion implies that this model also canndt account for the observed up-current
disparities. The test however implies that random internal waves - propagating,
standing or a combination of both ~ do not represent a consistent description
at tidal frequency. Note that the estimate of 2‘ -at ‘inertial frequency is
not. reliable because of finite frequency resolution. The argument of section
IV.7.1 suggests that the observed fluctuations at imertial frequency are consistent
with free propagating internal waves.

Result. The consistency relations for propagating waves are violated for
all frequencies. The violation is most pronounced at low (especially at tidal -
frequency) and at high frequencies, less pronounced but significant for medium
frequencies. The violation at high frequencies is partly due to the proximity of
the turning point and its phase-locking effect. The consistency relations for
standing modes are violated for low frequen01es, but are satmsfled for medium and
high frequencies. Discussion of standlng mode solutlons, however, suggests that
standing modes -~ though preferable at_high frequencies - cannot remove the enexgy
and coherence up-current disparity and neither provide a consistent description

of the observed cross spectra.



 Iv.8. Up-current disparity

The preceeding discuséion clearly demonstrates that a model of propagating
internal waves does not Yepresent a consisteﬁtkde3c£iption of the observed fluc-
tuations. Herevwe ask théh tests mainly c0ntribute to this diserepancy.

Figure IV.16 already showed that all of the obserVed intonsigtericies cannot
be anrlbed to the vlolatlbn of the relatlon D2 O. This relation only involwves
the horizontal current Ve10c1ty. It is SLgnlflcantly vislated only for tidal
frequency. The vidlation at inertiallﬁrequency ;s not real and must be ascribed
to the finite frequency résolutioh. The discrepancies of Fhe propagating wave
model at medium and hlgh frequencies can hence not be esdribed to inconsistencies
within the horlental Veloc1ty fleld.

The consistency rélations D3,D = O only involve the cross spectra H:L

L

and' Hov (v =4%,-). The resuit of thé corresponding tests is shown in
Figure IV.17‘Y~These relaﬁions are significantly violated at high frequencieés
only. This violation is presumebly due to the proximity of the turning point
as might be inferred from the drop at the 30th ffequency point where the levels
8, 10 and 14 are excluded. o _
The most significant eontribution to the violation of the consistency rel-
ations for propagating waves arises from the test Dij = 0 whiceh c¢ompares the dis-
placement field with tHe horizontal current -field (Figure IV.18). Significant
violations are obvious. for all freguency bands, especially for the high frequency
band. The vieolation of the relation Dij.é 0 formally expresses the up<~current
disparity of the obsertved fluctuations since both the enerdy up—-current disparity
(Figure IV.10) and the coherence up-currént disparity (Figure V.22) contribute
to the violation of D) 13 - 0. Also shown in Figure IV.18 is the violation of the
relation Dl:J O for zero géparation, i.e. the energy up-current diegarity.-
Generally, the main contribution to the violation of the relation Dij = O does not

seem to arise from the violation of the energy relation D, = O although: some

spikes hinder a uniformly valid staténent. However,“exce;t for the low frequencies,
the relation Dij = O is much better satisfied for horizZontally separated instru-
mente than for vektically separated instruments (Figure IV.10).

A more guantitative piettre emerges when the enérgies (Figure IV.10) and
the cohererices (Figure V.22) are considered. .Inspection of both 'these figures

reveals that the enerdy up~current disparity

Wit 2 N -w?

4 p++*P~-“,“‘-w"f‘..P¢oi
e T .

is generally of the drder of 0.1 but 51gn1f1cantly alrger for sped1f1d fre—

(IV.74)

d

quency points. The coherénce uPJChrrent disparity
{

(f.,:‘ - X'.L.J ) ( H )‘ (IV.75)
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is generally of the order of 0.4 for vertically separated instruments and of
the order of 0.1 for horizontally separated instruments. This discrepancy
between the energy up~current disparity and the colerence up—durfentvdisparity
for vertical separations will be referred to as the disparity between the energy
and c¢oherence disparity.

Regult. The violation of tle congistency relatioris for propagating modes
is mostly due to the up-current disparity. InconsiStenciés within the horizontal

velocity field are only apparent for the tidal frequency.

IV.9. Hybrid model classes

The observed fluctuations within the internal wave band cannot be described
by a field congisting of internal waves only. Here we will investigate whether
or not internal waves contaminated by non-internal wave fluctuations will répre-
sent a consistent model class. Such model classes will beé named hybrid model
classes. Before we investigate specific hybrid model tlasses, we briefly describe

Lt

the general construction of the consistency relations for hybrid model classes.

Iv.9.1 Consistency relations for hybrid model classes

Within a hybrid model class the observed fluctuations are represented by

a linear combination

A N LT .
y = 11‘” + 11( ! (1V.76)
A Ay
where g(” represents the interngl wave field and %(z the contaminating
~ e DA
field. Suppose the consistency relations for the individual model classes g“’

and g‘l‘ are known. The problem then reduces to.the odnstruction of the con-

~ . A
sistency relations for the hybrid model c¢lass Y .

Let the first model class be defined by the relatiodns

WAy _ (n (IV.77)
Lueﬂt = 0 , %= b R
t ' m
The R" linear forms L;Z (x = oo, R™) define a R ~dimehsional

subspace

(1) . .
w“) = { L'e I LR‘”E } (IV-78)

. ,
in the I~dimensional data space. BAll vectors né‘” which satisfy L“’%"‘: 0

~

lie in a ( L- R“))ﬂdimensional hypexplane
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-+

Wo, + W o (1IV.79)

which is orthogonal to W . If the second model class is defined by

(2) a0} (2] »
Lo 4y = 0 , oa=1,..,R (1v.80)

we can constru¢t in the same manner

(3) cn (2) V
{ L .o, Lo (IV.81)
and
., L .
W LW (1v.82)
(2 _

] A A ) & L .
Thé vectodrs g = %(” * Y4 - are elements of Weo * VJ“) which is
orthogonal to Tweawm T

1 < () (z))‘L
W, * W, = (W AW (1v.83)

The consistency relations for the hybrid model class are hence given by the

. . . . M) Ay (2) A (2)
intersection of the consistency relations k 3 =0 and L % = 0

”~
~

for the individdal model classes.

IV.9.2 Propagating waves contaminated by white n01se
Let us flrst con51der propagatlng waves whlch are contaminated by whlte

. Ay _
n01se. In thls case L % =0 is glven by the consistency relations

D;ﬁ D2, Djﬂ DZ = Q, Whlpe n015ebwi;l be defined by

PN

arbitrary if m = n

[
L=y @ Amn ®
0 othng1se (IV.84)
. L) .
Le] ¢ Aow = 0
or, in terms of coherences, by
i=] : | x'w“‘lw =0 if men
(Iv.85)
L4 ] ¢ o2 0

mn
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Hence we characterize white noise by arxbitrary autospectra byt vanishing cross
spectra. Instrumental noise may for example be modelled in this way.

For the hybrid model class we find the consistency relations

t=f + D', Dy =0

. (IV.86)
. L . if v
L) D|’1D1J4D3“104 O

’

s . . " : , SRR
Because of the addition of white noise the consistercy relations D;ﬂ D, =

2
need not to be satisfied for zeroc separation. The test results are shown in

o

Figure IV.20. No significant improvement can be observed:  This is understandable
since white noise cannot remove the disparity between the energy and coherence

up~current disparity. If there exist an enerdy disparity d} we find for the
coherence disparity.

S \Rif| [ |l Ri %
PR P Sl ( )

T T ST
. (1v.87)

=)‘<t'JE) =6E

inconsistent with the data,

IV.9.3 Propagating waves contaminated by finestructure

A similar result is obtained if'we add current and temperature finestruc-
ture to the internal wave field. In section IV.3.3 we have characterized fine-
structure as a field for which all crdss spectra from vertically separated
instruments vanish whereas all other cross spectra and the autospectra can take
arbitrary values. Here we use a more restrictive model of finesﬁructure which

is defined by the relations

arbitrary if m

_ =n
g RS, -
O otherwise
(1v.88)
arbitrary if m=n
L$d, a2 =0 ¢ A,

0 otherwise |

L4
[»N
k.
L ad
(&)
x|
i
J

1}
<O
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or, in terms of coherences, by

L= X’:n=0 if m % n
i), 42:0: J,, =0 ifm=n . . (1V.89)

iej, az40: yo= 0
Again the wvertical correlation length of the finestructure field is assumed
to be smaller than the smallest vertical separation of the IWEX array. How-
ever, we additionally assume that the different velocity components are un-
correlated. _?he autospectra ﬁ,.‘%, ,F33 and the cross spectra

L) 5] L . . .
R, . A , Hy;  for norizontal separations can take arbitrary values.

The consistency relations for the hybrid model are given in this case by

I LJ
L:j y D;J ) Dq. = O
C Ly L
i4j  a42z20 : D D, =0 (Lv.90)

o TR TR R R
L+j az+0: D7 DS DS Dby =0

Because of the addition of finestructure the consistency relations D:J, D:J =0
need not to be satisfied for zero and for horizontal separations. . The corres-—
ponding test is shown in Figure IV.21. Again, no significant improvement occurs,
since flnestructure does not remove the dlsparlty between the energy disparity

and the coherence disparity for vertictal separatlons.

Iv.9.4 Propagating yayves contaminated by'éoherent noise

Coherent noise; characterized by X};i + 0 , ‘does not fit into 'our
framework of consistency relations since it is characterized by nonlinear rela-
tionships among the cross speéctra. Nevertheless, an ihcomplete set of consistency

relations may be obtained by physical reasoning.

When interpreting the IWEX time series one main problem is whether or not
oT
u, (1) = T(t) ( ) (Iv.91)

derived from
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atT *u, 0, T = 0 (IV.92).

yvields a sufficiently correct éstimate of the vertical Veloéity or displacement
field. Two effects might contribute to the invalidity ©f the above estimate:
(i) the terms neglécted in the equation of motion for the temperaturé field
might not be negligible, (ii) our estimate of the mean temperature gradient

(= temperature difference over 1.74 m averaged over 42 days) might not be
appropriate to our WKBJ theory of the inernal wave field. .The last argument also
applies to the Brunt V&isdli frequency N and to the local vertical wavenumber
which depends on N. Suppose the true values of the mean témpéfatﬁre gradient

and of the local vertical wavenumber are given by
A . .
5, T = (1+68,) 9, T (1v.93)

and by

a TR/ ' '
B3 =(N 2 )2“ = (1+6)p (1v.94)

Hére 63T and ﬁ denote the values used throughoutlthe cdlculations. The

"true" cross spectra are then given by

H\:C: = HVL;A \ Y=t
s Ui b
H‘VD = [+J. Hyo ( ‘“6,) HVO ) VvV = +,-
. (IV_..95)
AI.] - | (] ~ - i.j . ;
Hov ) \+6, H°V h ( l J') Hov : Voo,
v | i) - ( | - 26,) H::

00 =(l+5.)l oe

R e . o
ALY AL AL A

and the "true" consistency relations Dy+ Dy D3, D, = 0 by
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L J

iR vAl -l B (1026,026) = 0

-

i = (wef PRI - (u-f)'A = 0
| : ) | ‘ (Iv.96)
By = (13600160 { Etwe )Rl - L (w0 R} = 0

3

lS:j (1+6,)(! J){pl (w-f) R *%—(w»c,( F}”} 0

‘ : i id
The violation of the consistency relations D1 =

wrong choice of the mean temperature gradient and of the Brunt Viis&dld fre-

O might hence be due to our

quency. Taking this possibility into account only the relations Dg, D;i D2i= o
need to be satisfied. They are clearly much better satisfied (Figure 1IV.22)

than the whole set of consistency relations for propagating waves since the rela-
tion D;S= 0 is violated most of all.

Interpreting the above modification of the consistency relations as an
additional temperature SLgnal we indeed find that lt represents a coherent
contamlnatlon, as coherent as the temperature sxgnal itself. The consistency
relations D2, D3, D4 O are ipcomplete in the sense that additional relations
must hold among the cross spectra since only 2 free adjustable parameter d,
and 6} are introduced in order to satisfy the 81 consistency relations D;S= 0.

This figure improves when the parameters are allowed to depend on the depth.

iv.9.5 The IWEX model class

We have seen that the addition of c¢oherent noise provides a considerable
improvement of the mo&e; class whereas the addition of finestructure only provides
a small but signhificant improvement. As a sufficiently consistent model class
for the IWEX data set we choose the model class where both finestructure and
coherent noise are used as contaminating agents. This model class is character-

ized by the consistency relations

L=i D,', D, =0

(Iv.97)
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The corresponding tests are shown in the final figure of this part, Figure IV.23.
This model class seems to provide a consistent description for most frequencies.
Slight inconsistencies may occur for the tidal frequency and for the high7fre—
quency band. The drop at the 30th frequency point indicates that the slight
inconsistencies at high freguencies can be ascribed to the proximity of the
turning point. ' , ‘ V
Result. The consistency relations for various hybrid model classe;lwere‘
tested. Contaminating the internal wave field by white noié; or finestructure
only provides a small improvement since Poth these model classes do not rémove
the disparity between the energy and coherence up—cu?renﬁ disparity. Contém->
inating the internal wave field by coherent noise prondes a considerable im-
provement. The model class used for the following inverse analysis accounts forA
both contamination by finestructure and by coherent noise. This model class
provides a consistent description for most frequencies. Slight inconsistenciesv

may occur at tidal frequency and at high frequencies.

Iv.10. Summary

The results of the consistency relations are summarized in Table IV.2. We

distinguish 3 frequency bands:

(i) the low frequency band from the 3rd to about the 9th freguency point

dominated by fluctuations with inertial and tidal fredguency

(ii) the medium frequency band ranging from about the 10th to the 20th fre-

quency point and

(iii) the high frequency band ranging from about the 21st to the 30th fre-

quency point.

Within each frequency band the tested relations are called

(i) strongly violated when the relations are violated for each frequen&y point

(1i) slightly violated when the calculated values of the statistic imply

acceptance for each frequency point but do not scatter randomly about

their expectation value

(iii) satisfied when both the single values of ‘the statistic and its distribution

imply acceptance.

The question marks indicate that the results at inertial frequency are not

reliable because of finite frequency resolutien.
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V. PARAMETERS OF THE CONTAMINATED INTERNAYL WAVE SPECTRUM

V.1l. Internal wave enerqgy spectrum

When interpreting deep-sea current measurements it is generally assumed
that motions in the internal wave frequency band are primarily governed by linear
internal wave dynam;qs. For a pure linear random internal wave field the cross-
spectral matrix H;ﬂ\(w) can be expressed rigorously in terms of the complete
energy spectrum of the wave field which describes the distribution of wave energy
in wavenumber-frequency space.

The definition of the energy spectrum depends on the representation and
the sta;istical conception about the wave components constituting the wave
field.' In a modal representation vertically up- and downward propagating wave
components (with the same horizontal wavenumber) have a fixed phase and amplitude
relation thus forming a vertitally standing mode. The WKB representation allows
for independent phases between these components so that the wave field is a
superposition of wave groups which propagate horizontally as well as vertically.
The statistical models appropriate to these contrary conceptions of the wave
field naturally differ:lin the WKB picture up~- and downward propagating waves are
statistically independent while in the ﬁode picture they éfe deterministically
related. Which qf these descriptions is more appropriate to oceanic conditions
must be determined from measureéments.

The analysis of this part will be carried out within a WKB representation.

In the WKB picture the cross-spectral matrix of a pure linear internal wave field
takes the form

gty +o0y)

Al (w) = T Sy B o) Uy (e,0,6) e @.1

where & and Y are polar coordinates of the horizontal wavenumber, ILJ
is the horizontal distance vector between position i and j (pointing from i to Jj),

and oij is the vertical phase difference given by

2; ’ '
Oﬁ x g dz ﬁ(z) : C(v.2)
EH :
where

[ N*(z) - w? ]"z

{z) v

(v.3)



- 77 -

is the modulus of the vertical wavenumber. The matrix 'l:i‘ is constructed
from the amplitude factors of the linear wave field (cf. Schott and Willebrand
1973, Miller and Siedler 1976) and is given in part II where aléo the modal
counterpart of (V.1l) is derived. A \

The energy spectrum EV((u,a,\f) of a WKB field consists of two
branches, charécterized by & = + which is the’sign of fﬁe vertical wavenumber.
E is the spectrum of upward propagating enexgy, E+ of downward propagating

energy. Alterhatively we will use

EM w9 ) = E7(w,o,¢)
| | ' (v.4)
. + N .
E¥(w,x,9) = EM(w,x,¢)
which indicates the direction of energy propagation. If

EMw,a,p) = E¥{w,x,¢) (v.5)

we will call the wave field (vertically) éymmetric.

It is convenient to factorize the spectrum in the form
[ & ¢ ,
Ef(w,a,9) = ET(w) Al w) ST(¢, 0, w) (V.6)

=
and discuss successively the freguency distribution E (u) of the energy,
¢
the wavenumber distribution A («;m) at each frequency, and the directional
. . . ¢ \ . ,
distribution S bf;«,h}) at each frequency and wavenumber. These distribution

furictions are conveniently normalized according to
N
v &
SdwE(w) = €]
£
L
» v
Sdo Ala;e) = | e
o
Caw

Sdke Sc(up;(x,w) = |
]

The total energy per unit surface area is then given by
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. o; .
_Eo =%‘§‘dz"< u._'-uJ.+st:>
N o 29 ’
=Z'de5d Sdth (w,x,¢) (V.8)
ol 0 : ‘
= B +E,

The vertical distribution of wave energy can be derived from WKB theory. The

spectrum of energy per unit volume is given by (cf. part II)

o
Ec’(w.“\‘? 1) = __IE-_(_fi’_*.z_). Ew(wmx,tf) 4 (v.9)
' E"(w) ‘
where
¢ . L N(Z) N(i 'F !
E(w.2) = E%(w )(M-W — {Sd DE } o

The integration must be performed bétween the turning points. For w « N(z)
the energy varies with depth approximately as the buoyancy frequency.

The wave field will be called (horizontally) isotropic if

STy, w) =~2—'— (v.11) .

V.2. The GM-model

The most extensive and far-reaching attempt to reconstruct the energy
spectrum from ocean current and displacement measurements has been undertaken
by Garrett and Munk (1972 , 1975). Based on internal wave Spectral data made
at different locations and times and by different instruments, they proposed

a spectral model with the following features

~ horizontal isotropy,
- vertical gymmetry (which originates from their basic medal
approach) ,

- horizontal scales of the order of some km's,
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- vertical scales down to 100 m,
- a -2 slope in the frequency domain of the horizontal kinetic

.enexgy spectrum.

These features and in particular the form of the wavenumber distribution function
HF(«;w) are still subjedt of investigations. Alsb, the problem of contamination,
i.e. to what degree the observed fluctuationsg represent internal waves, is still

unsolved.

Horizontal isotropy and vertical symmetry implies

E*(«:uf'w) = E‘L(o(,tf'w) =—,_:;‘ E{x,w) (V.12)
The spectrum  E(a,w} may be factorized
Ele,w) = E, Blw) Alx,w) | (v.13)

For the frequency distribution function (riormalized to one) GM chose

)
! (V.14)

M X f 2 2)
T e w -
B*"(w) ww( {
. , " .
which is the well-established W law away from £, modified by an integrable
cusp at f to represent the inertial peak.

The wavenumber distribution function of GM i% confined to the self-

similarity tlass

Hoﬁ(«,w)? A ( ) /o (w) v.15)

x_
o, (w)

which-is characterized by a ‘bandwidth'’ u*(cu) . For H(A) &M took a simple

top~hat distribution

l. for O¢Ag¢l
R(2) = ' (GM 72) (V. 16)
() otherwise

in their 1972 model; and
N o -t
CRA)Y = (- {1+R) (GM 75) (V.17)

in their more sophisticated 1975 model. Cairns and Williams (1976) used a

slightly different distribution
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.t
A(2) = T(£2) (1+2) ™ (cairns & williams) (V.18)

The normalization constant L(t, 2) is given by (V.33).
For the 'bandwidth' & (Lu) GM chose
oM N e ey (V.19)
where bNa is the stratifiéation parameter and j, the mode number 'bandwidth'.
This form of the bandwidth is based on the WKB-dispersion relation
, 1 ¢y h
. r(w-§")
G () = d - (V.20)
(>4 w o 2 2 "2
Sdz(N(z)"w)
-h

For w'« N* and for an exponeritial profile of the buoyancy freduency,
Niz) = N, exp{ 2 /b} (V.20) reduces to (V.19) since

§da (N'(2) cwt) " s bN, (v.21)
-h ~
if b &« he If Ngb is defined by (V.21) the relation (V.19) applles generxally
to smooth proflles of N(x ).
The box model GM 72 is des¢ribed by two scale parameters: the energy:
level E;'and the mode number e 'The GM 7% model involves in addition to E,
and j* one shape parameter, the wavenumber slope t. For determining the values
of these parameters and verlfylng the whole model, GM not only used moored data
as provided by IWEX but all kinds of available data such as towed and dropped
spectra. There are various experimental efforts to get adcurate estimates of
the parameters (in particulér t and.j*). Recent values can be found ih Tableé 1.
The investigations of Garrett and Munk were followed by various efforts
which improved their model and pointed out its limitations and shortcomings
(see various papers in JGR 80, 1975, Bell 1976; also IWEX was conceived for this
purpose). The most obvious shortcoming of GM's approach is the fact that they
had to use an inhomogeneous data set and therefore could hot treat the contam-
ination problem adequately. Many models of contamination have been developed
and partly tested against data (e.g. Garrett and Munk 1971, Siedler 1974, Joyce
1974, McKean 1974). However, progress in the contamination problem can only
be expected from a homogeneous data set such as provided by IWEX where horizontal
currents, vertical displacements and temperature measurements can be studied

simultaneously.
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V.3. Paramétriégtion of the internal wave spectrum

In the following sections we discuss the distributicn of intexrnal wave
energy injanenumbermfrequency space as determined by applying inverse techniques
(part IXI) to the mean data set (part.I). It is foupnd that this data set can
not be explained by a pure internal wave field but that a tonsiderable amourt
of coritamination is present in the current and displacemerit records. The final
model of the energy spectrum involves internal waves and three kinds of contam—
inations. This complex model will be preserted step by step, always pointing
out those -features in the data which lead u$ to introduce ¢orresponding features
in the model. First we discuss the internal wave spedtrum, then the contém-
ination and finally the hybrid model which will be referred to as the IWEX
model . |

We want to recall that thé parametrization of the data had to be done
for each frequency separately so that a second parametrization step ig necessary
which treats the frequency behavior of the parameters obtained by the inverse

techniqgue.

V.3.1 Energy level and vertical symmetry

The IWEX-autospectra of horizontal current and vertical displacement show
the feéatures already observed in earlier experiments: peaks at the inértial and
the tidal frequencies, followed by an altmost -2 slope in the internal wave con-
tinvum. WKB-scaling works well (Briscoe 1975 and sectidn IV.5).

We cah estiimate the fregquency spectrum of the total energy per unit

surfate area
F(w) = EMw)* EY(w) | v.22)

either from the displatement or from current auto-spectra

2 2

w-{
N"’ ‘FZ

Poo (w,2) =

e Clw,2) E(w) (v.23)

»wz"_{l N« w?

P“(Q),Z) + Pzz(wnz) = T Nz_"z C_:(wlz) Ee(w) (vV.24)

Heare

__L_ﬁ_ QLI }-l .25)
((w,2) = o {fd | (V.25

Tty 'h : (N(&') - w?) ™
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denotes the ratio between energy per unit volume and energy per unit surface
area (cf. V.10). The integral must be performed between the turning points.
Fig. 1V.10 displays the two estimates of E°(w) obtained from
(v.23) and (V.24) :scaling the auto-spectra by the corresponding factor on the
right hand side and averaging over the entire array. The egtimates Ec( w)
are normalized by GM's frequency distribution function B“(Lu) (this will
be done for all enerxgy distributions in this report). Notice that the estimates
differ with statistical significance at almost all frequencies. In the intexrnal
wave continuum (with the exception of the frequencies 10, 14 and 18) the energy
in the horizontal currents systematically exceeds the one in the ups by about 10%.
. FPig. IV.10 also demonstrates that the observed inertial peak (as the sum
of the 3rd and 4th frequency) exceeds the one of GM's model significantly.
The slope of E*{w) is about -2 and thus steeper than those of the observed .
auto-spectra which are c¢ldse to -5/3. The difference comes about by the fre-
quency dependence of C(w,2) . This quantity feels already at intermediate
frequencies @ « Nlz}{ =. W,, in our case) the turning point (through the
integral) and expresses the fact that with increasing frequency a lesser part
of the water column can be filled with internal wave energy. We should mention
that this 'turning point effect' is described excellantly by the WKB approximation
though the singularity in the integral locks rather suspicious. The Airy fune¢tion
approximation le&ads with high accuracy to the same relations between the local
éutoSpectra and the energy spectrum Ee(w) (Desaubies 1973). Our equations
(v.10), (V.23), (V.24) are identical to Desaubies' equations (3.8), (3.9), (3.17).
We will see later that the estimation of Et(w) by means of (v.23) and
(V.24) is rather poor since currents as well as ups are highly contaminated.
Auto~-spectra involve only the even part of the energy spectrum. The
decomposition into the up- and downward propagatlng part becomes possible by
considering addltlonally the cross-spectra F‘lmm and. H«Li at nonzero vertical

separation and ng , m = 1,2 which depend on the even part and the odd part

11

E (o g w) = EMlop w) v E¥ (g w)

(v.26)

(1]

E° (&, ¢, ) ET(N,‘P,w)“E*(N.‘f.w)

of the energy'spectrum. For a horizonté.lly isotropic wave field (which is a
good approximation for > M, ’ cf. section IV.6.) many of these tross~spectra
vanish and eénly Q,mm and Q,) remain to determine E(w) .
Figure V.1 shows the even part ET(w) * € Y(w) and the odd part
E™w)~E *( w) of the inteérnal wave energy*(nomalized by the GM distribution
8% w) ) obtained by the final IWEX model. In the continuum ( w >M, ) the wave
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field turns out to be symmetric. Only .at low frequencies asymmetries are.sig-
nificant: inertial and tidal waves propagate downward. These results have been
obtained using currents and displacemenﬁs-measurements simultaneously. Currents
and displacements separately show quite a different behaviour as demonstrated
in Fig. V.2.

Since asymmetries are unhimportant at high frequencies the internal wave
continuum will be modelled by a symmetric spectrum. At' M, none of the models
which we considered gave a consistént representation of the. data. An asymmetric
wave field gave better results than a symmetric one or a modal field. We chose
a model which allows for asymmetyy in the energy but is symmetriC'otherwise

because further asymmetries in other parameters did not improve the fit.

V.3.2 Wavenumber structure

There are more direct methods to study the wavenumber structure of a
wave field than using moored instruments. For example, dropped or towed temp-
erature sensors yield displacement spectra of vertical wavenumber (Hayes 1975)
or horizontal wavenumber (Katz 1975). Measurements with towed (Bell 1976)
thermistor chains can be used to estimate two-dimensional ( o,(3 )-spectra of
the field. Clearly, these spectra yield direct estimates of the wavenumber
structure, but since the freguency is unknown it is gquestionable if the observed
fluctuations are in the internal wave range.' Moored data are not affected with
this problem but allow only the estimation of a few parameters characterizing

the wavenumbeyr structure.

V.3.2.1 Duality of wavenumber spettrum and coherences

The IWEX data set consists of frequency cross-spectra with separation
covering almost three decades. In order to model the wavenumber structure we
have to understand how it finds its way into the dependence of coherence and phase
on the separation. For simplicity consider an isotropic and symmetric internal
wave field. Then the coherence between two sensors separated horizontally by
r and vertically by a4 z becomes

"”

Ylwr az) = §du Rle,w) }, (ar) cos Bas (V.27)

o]

Strictly speaking § is the normalized cospectrum of the displacement or

rotary components
iy
R :
i iV )
(P PR.)

Plw,+ a2) = Vei,-ot 0 (v.28)



The quadspectrum vanishes. For the analytical discussion in this section we
will approximate the vertical phase eii by f[a# corresponding to a constant
Brunt Vdisdld frequency. In thé inverse program we use the correct expression
(v.2).

The coherence is a combination of cosine and Hankel transform and in
principle H(w.w) may be obtained by inverting either of them. IWEX was not
concelved for such a direct inversion method but rather for a parametrization
approach as described in part III. -Some parameters of the model as e.g. the
bandwidth of PR{x,w) or its asymptoti¢ behaviour can roughly be estimated
by inspection of (V.27). We will use displacement data only because they are
less contaminated than the current data. -

On the IWEX mooring there are horizontal separationhs for which the co-

herence becomes
[
¥ (w t) = § do Ala,w) },(Of'f) (v.29)
h ! °
There are no purely vertical separations. However, at frequéncies not too close

to N most slant angles are rather steep comparéd'to'the slope of the character-—

istics

(v.30)

- - - .

S
dr (N*-w?) " A

Hence

az » 7T - (v.31)

for most slant separations. For a rough discussion the slant coherente may be

replaced by the vertical coherence

Folw, az) = (do A (,w) cos fbaz (v.32)

V.3.2.2 The model spectrum

Our model of the wavenumber structure R{%, W) follows closely the one
of Garrett and Munk (1975). It includes two more parameters to allow for more
variability. ' .

The GM 75 model involves two parameters to describe the wavenumber strue~
ture of the internal wave spéctrum, the 'bandwidth' oy and the high wavenumber

slope t. A further parameter corresponding to a low-wavenumber cutoff at the
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lowest internal wave mode was discussed in their early GM 72 medel but was
dropped later t6 simplify the analysis. Because of evidence in the IWEX~data
we have to include such a ‘low-wavenumber cutéff ifi our model.' We also introduce
another parameter which is responsible for the shape ¢f the distribution at low
wavenumbers. ' These new parameters allow to model a distribution with a morxe

or less developed peak at a non~zero wavenumber. .

The analytical Fform of the model is g¢iven by

Fl&(o'(,m)‘= A%/, %/, o b, s) [ % w3
with o
. _d 3 t’s ) ]
A(A;d,t,s)= [+ (2-d)"] (v.34)
| 0 A ed
and
. Lo ‘
A= Yoy, AT (v.35)
The normalization constant I(t,s) is given by
te)
I(ts) =S .36

Clr) T (1)
dnd listed for some values of t and s in Table V.2. All four parameters

o, - horizontal scale wavenumbeér
Xp = peak-wavenumber

t+ - high-wavenumber slope

§ - peak shape parameter

are allowed to depend on W . Notice that H{«x,w) does not have the property
of self-similarity as the GM models unless Wp/&*, t and s are independent of w

In general the moments

<a"> = $daR(A) (V.37)

of the distribution (V.34) do not exist. To bypass this préblem we may introduce
a high-wavenumber cutoff which, however, can dily be determined if data with
sufficiently small separations are available.

The wavenumber distributions of GM and Cairns are included in the model
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(v.34) for the special values of 4, t and s given in Table V.1.

Figure V.3 a and b shows H(2;d, t,s) as a function of A  for
d = O (the dependence on d is evident) and various t and s. Notice that A
develops a pronounced peak at A =d as s+ 1 (GM 75) which flattens for large

s. Por fixed s and increasing t the energy is shifted to smaller scales.

V.3.2.3 The bandwidth

The usual definition of bandwidth in terms of the second moment makes no
sense if its existence is only achieved by a high-wavenumber cutoff. A dist-
ribution HA(®,w) with non-existing moments can be characterized by its

equivalent bandwidth

[. §d°( H(“\w)]z
w) = =5 .
Sd“[ﬁ(“lL‘J)]

X, {v.38)

This quantity is used in power spectral analysis to compare spectral windows
of different shape with respect to their widths.
The equivalent bandwidth of our model (V.34) is found to be

x (w) = J(t,s) &y (w) (v.39)

where the conversion factor J(t,s) is given by

(V.40)

7 (t,s) M%) (%Y%) { PO }1

s () L T(Ys)

and listed for some values of t and s in Table V.2. For a top-hat box (GM 72)

we have

and for s = 1 (GM 75)

2t-1
¢ (-1
If the dispersion relation is known an equivalent mode number Je(uﬁ may

be defined by

o o, (V.42)
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o (e () = g (w) (v.43)

Values of je for the models of GM and Cairmns and Williams are given in Table V.1

using the dispersion relation (V.20). Notice that the eguivalent mode numbers

je of the three models do not differ as drastically as the mode number scales Jge-
The values of the bandwidth is determined by the drop of coherence with

separation. Rough estimates may be obtained from the scaling argument

az, 3, = 0(1) (V.44)

where 4%, is the separation at which the vertical coherence drops below 1/2,

and

kY

T 'Y
Be = °(e ( :1_’:; ) = J (t,5> ﬁ)* (vV.45)

the vertical bandwidth. To¢ illustrate (vV.44) we have evaluated the vertical
coherence (V.32) for some special cases of our model distribution H({A) :

For the top~hat distribution GM 72

i a
¥ (a2) = _sin xa2 (V.46)
e az
and
az, f, = L9 (V.47)
For d = 0, s = 2 we have
(R
2 )
$laz) = (By az)” Ky (Byaz) (v.48)
M)
with &:‘t”)/z { K@, is the modified Bessel function). Almost independent
of t we find
sz,Be'“ 2.1 (V.49)
cp
An exponential decay H(A) « ¢ vields

az, 3, ~ 2.0 - (V. 50)



-~ 88 -

These examples show that &, is indeed a sensible definition of a
bandwidth: spectra with similar distribution of energy and same ®&p produce
a similar drop of coherence. This is illustrated in Fig. V.4.

Figure V.5 shows some observed coherences as function of slant separation.
Notice that there is no monotonic behaviour of 4%, as function of frequency.
This is also visible in Fig. V.13 which displays the normalized.cospecﬁrum at
some other freguencies and Fig. I.9-14 showing coherences as function of sep~-
aration and frequency. The coherence at some frequencies, as e.g. the 8th,
obviously drops much faster than the coherence at other frequencies as e.g. the
18th. This behaviour cannot be modelled by a freguency independent Be as
proposed by GM's model. Thus already from a rough investigation of the data
we expect some variability of the bandwidth with frequency.

The results of the hybrid IWEX model are given in Fig. V.6. There are
two curves. The full line represents the equivalent mode number je (scale on
the left hand side), the dashed line represents the equivalent vertical wave-
length (scale on the right hand side). The equivalént‘mode numbexr je has been
calculated from the true dispersion relation (shown in Fig. V.7, courtesy of

M. Briscoe) of the IWEX profile. For w « N the long-wave approximation

. 1N
= e v (v.51)
Pe = de (BN rvex |
with
(bN°)Iw€x =~ 5.500 cph-m (V.52)

is valid -and both lines fall together. At frequencies larger than 0.5 cph the
long~wave approximation becomes invalid: it overestimétes the mode number for
a given frequency and horizontal wavenumber. This explains the drop of the
Jg-line below the 7”/pe -line at high frequencies.

As expected the equivalent mode number varies considerably with frequency.
We find extremely low values near Mz, near the 10th and at the 14th and 18th
frequency (the 11th, 14th and 18th are close to subharmonics of Mz). In the
continuum the values decrease more or less continuocusly starting with about
20 modes and dropping to values below 10. The subtraction of the subharmonics
of M2 does not remove all of the variability. In particular the low values at

frequency 9 and 10 spoil a simple picture.
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V.3.2.4 The high-wavenumber slope

Direct estimatés of the high-wdvenumber slope t have been obtained from
towed and dropped spectra. N l
-For the GM 75 model the dropped spectrum is approximately

t-! ' \

P VY o< R SN - {V.53)
ts(ﬁ'*) <3 (1R kg )E Ky
with
‘ . .
k*,‘ * Jr o Niz) (V. 54)

This represehtation was used by GM to fit the spectral slope to Millard's spectra
(Millard 1974) with the result ¢t = 2.5. Hayes' data (Hayes 1975), which were
taken at the IWEX site, are more tonsistent with t = 2 at vertical waveléngths
larger than 50 m. This is demonstrated iniFig} 1.4, where we have plotted
Hayes' data together with (I.53) for t = 2 and 2.5 ( <'§2>v’= 6m, k, = 10_2m—1
for IWEX). ' . .

Towed spectra from the MODE area have been reported by Katz (1975).
They show a slope of -2 for horizontal wavelengths from 100 m to6 10 km. This
is conéistent with t = 2 because for. &x, k*f{/N (% 1.6 - 1O-~4m-1 or
2.5+ 1072 cpkm for IWEX) the GM 75 model yields , .

-t

Peg (0,,2) = (k*-&)t-ug’_) Z(.t»,N/;) (v.55) .

which is shown for t = 2 and 3 on Fig: V.8 together with Katz' data. The constant
Z(t,N/£f) is derived in sectioh V.6.

Moored coherernces also reflect the high-wavenumber structure. Both,
cosine and Hankel transform, map the asymptotic behavicr of the wavenunber
spectyrum onto the behaviour of the coherente near the origin (and vice versa).
For illustration of this feature consider the horizontal and vertical ¢oherence
for the GM 75 model (details can be found in seotion V.6). Near the origin we
find

(1) 2 1= (ayr) G e 0((mr)) w50

¥y, (az) = |- (B*Al)t C, + 0((B,az)')
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where “'(t |)1r
CH"—'[F %cos(?")] 7 -
, . ot (V.57
C, = (t-1) |"( l-t) cos(%'g‘ﬂ‘)

Notice that Cu and'cv are positive and finite for 1.< t <« 3. Both expansions
become invalid if t equals an odd integer. In thig case the coherence is regular
at the origin.- The behaviour’ of. the COherence expressed by (V 56) is found to '
be a general property of spectra which decay as ﬂ“t foi Ao . This

is shown in section V.6, .

No real spectrum extends to infinity. We already mentioned that in order
to avoid infinite higher order moments we ha%e té require a high-wavenumber
cutoff, say, at 4, . If RA(A)« xt for A, < A<, with A»%, , we get
a two-scidle behaviour of the coherence. The vertical coherence, for example,.

beconies )

¥, (a2) = l~-((5*az) <w+0(<% ﬁw” Ex:

for 42 &« (ﬂ.ﬁ*) while (V.56) still holds for (A ﬁ& «az<<(2 B* The hori-
zontal coherence shows 'a similar behaviour. These results are illustrated in
Fig. V.9.

Let us now turn to the dbserved colerences. Fig. V.10 shows the coher-
ence of displacement as a function of horizontal separation for some representative
frequencies (we do not present vertical coherence because of finestructure
contamination). An almost linear decrease is visible for separations between
10 m and some hundred meters. To find the power t more precisely we have plotted
log (1 - ¥ ) against log r inh Fig. V.11l. Obviously 2 ¢ t ¢ 3 but the error
bars do not allow to determine the value much better. In particular we. carinot
distinguish between t = 2.5 (GM 75) and 't = 2 (Cairns .and Williams 1976).

The values obtained from the hybrid IWEX model are shown in Fig. V.12.

Here we find the same picture which was already. indicated by the few data in
Fig. V.11,

v.3.2.5 The peak wavenumber

Generally a cutoff or a sharp peak-in F4(2)>,generates oscillations in
the coherence, as can easily be seen for the limit Ala) = 5(“‘“p) . In

this case the coherences become

X'Y(AZ) = CDS Bpaz (V.59)
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and

T, (+) = }p(“p*) ' (V.60)

Os¢illaticns which are due to discontinuities at.higher wavenumbers have a smaller
period and generally a lower amplitude than those associated with &, . Hence
it is essentially-thé lowest discontinuity which determines the asymptotic
behaviour of the cocherence. ‘ ’

- There is some evidence in the IWEX data of oscillationg in the coherences
which can be interpreted in terms of a low-wavénumber c¢utoff. Some freguencies
do not show any zerd-crogsings in the separation interval covered by the array.
For some frequencies the tail  of the c¢oherence remains completely within the
95% confidence limit of zero true coherehce so that the cutoff &y -is not
significantly different from zero (cf. Fig. V.5). Most of the coherences, however,
rise again at large separations. This is illustrated in Fig. V.13, which shows the
hortialized cospectrd of displacement (up) for some typical frequencies.

Fig. V.14 displays the results obtained by the hybrid IWEX model Her'e

jp denbtes the low—mddeﬁumber cutoff deflned by

cx('j”(w»(w) = «, (w) ' ' (v.61)

Notlce that for most fregquencies (except for the tidal frequency) we find
j ? O, 1nalcat1ng ‘that there is no energy in the barotroplc mode. Fox various
frequenc1es (especially for f) we also find altost no energy in the first baro-
Cllnlc mode.

These features are also apparént in a modal interpretation of the coherence,

where the vertical coherénce of displacement takes the form

%‘(unz,zﬂ) = 2 A4 Nwe) g MNwe) .62
izo

~ g
Here Wf(”(u),z) is the eigenfunction of the jth mode (see Fig. V.15, courtesy

of ¥. Schott). In the depth interval covered by IWEX Y‘”

and 9™ do not change
sign. If these modes woﬁld have high energy the coherence would be positive

for all separations in the array. This is in contrast to the observations.
However already %(z)is (for most frequencies) capable of reproducing a zZero-

crossing.

V.3.2.6 The shape of the peak

THe shape of the distribution HI(A) at. low wavenumbers is determined

by the behaviour of the coherénce at large separations. We can find reélations
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between the functions in the two domains which are analogous to those for the
determination of the high-wavenumber slope.- However, if there is a peak at
non~-zero wavenumber then the associated oscillations in fhe coherence will mask
- completely the contribution of the low~wavenumber shape to the asymptotic be-
haviour of the ¢oherence. BAlso the estimates of coherence for, large separations
are less accurate than those near the origin. Therefore a quick inspection of
the data gave no valuable results. At this point the advantage of the inverse
technique becomes clear which uses all information simultaneously to estimate the
parameter values. In the inverse program the value of the shape parameter s
turned out to be reasonably well-defined.

Fig. V.16 shows the results of the hybrid IWEX model. We find s almost
constantly near unity with .large error bars. A value of s = 2 as suggested by

Cairns and Williams (1976) seems, less likely.

V.3.3. Angular distribution

In part IV we have discussed tests for fhe isotropy of the wave field.
For one-point measurements the test statistics were coherences ¢f the rotary
componerits of the current vector (e.g. the ellipse stability {1_ , Gonella
1972). These coherences only give restricted information about the angular
distribution of the energy because the cross—specpral matrix for Zero separation
only involwves the firet three (ccmplex) Fourier coefficien£s of the angular
distribution of wave energy. In order to obtain more detalled information about
the anisotropy of the wave field we had to conslder H,““ for non-zero sep-
aration, i.e. the complete set of consmstency relatlons for an isotfopic internal
wave field as listed in part II In this chapter we will dlscuss the zero sep-
aration coherences in relation to our model spectrum in order to 1llustrate the
results of the hybrid model.

The model of the directional distribution of wave energy was chosen to

be
ip
(ph)' 2" 2p
S(¢e,w) = —-——-—2—2——)-; cos (iif&) (v.63)
which for each « and W descrlbes a bean with‘a mean prcpagation difection
P, = ?g(«‘u)) and a beam width parameﬁer p= P(K.U)) . Equivalently we
may use '
P .
q 2 (V.64a)
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which may also bé expressed as

m®r

i ’ iy _
e P - §de Sly) et (V.64b)
o .

9

Isotropic distribution of energy is obtained for p -=» O (q “* 0) and a unidirec-
tional distribution of p— ® (q- 1). The beam width 4% associated with
S(¢) is defined by

cos " (4 ) =

o—

(V.65)

The ‘relation between 4% and g is almost linéar as shown in Fig. V.17.
The Fourier series representation of the directional distribution (V.63)
is given by

. o0 . , .
] \ - g Lﬂ(‘?"‘fb) )
, - o V.66
S(\P): 3ot ?;” " (v.66)
with"
S = |
Lt S““ : (v.§7) |
nel " S" p+n+i

The simple analytical structure of (V.63) allows the analytical evaluation
of the directional integration appearing in the model cross spectraziv.l)
(cf. Schott and Willebrand 1973). For an internal wave field the coherences

e 2 '{;0 and §., may be expressed in terms of the Fourier coefficients of
the eneryy spectrum (cf. II.82, 83)

L
b M, S (V.68)
M|
¥'+o : X:n * T

with

Mo(w) = YEe(w) | 1 ( }
M. () ¢ E°(w) §du A lx,w0) S (wwle v.69)

i % w)
M. () = E*(u) § do Bl(o,0) S, (o) & V2000
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The moments (V.69) take a very simple form if either p and ¥, do not depend

on & or - as our model - if H{w,x) is strongly peaked. We then find

2q-1
X‘+_ - q'.a_.l._.._

2-9
(v.70)
EO
oo = 30 * Al
The model coherence x;_ is shown in Fig. V.18 as a function of the beam
width A4V . We find zero ellipse stability not only for isotropy
(@ =0, 4P =27 ) but also for a beam width a4y = & ( q = Mo ) . This-

latter zero appedrs in general for directional disi}:ributions which are symmetric
about the mean propagation direction. The ellipse stability is hence a rather
poor test of isotropy in the case of (dlmost) symmetrical angular distributions.
It leads to a rejection of isotropy only for very peaked distributions.

The ccherence o is affected by another shortcoming because it only
measures the anisotropy of the odd part of the energy distributicn. Thus, only
if the asymmetry EO/Ee is large and known, then Y4, is a good measure of the
beam width.

The observed coherence ¥,. 1is given in Fig. V.19, The figure includes
the bias, i.e. the expectation value for zero true coherence:. Notice that in
the internal wave continuum ( w > M,) the ¢oherence 4. is close to the
biag so that an isotropic model would be consistent with the data, but also any
symmetric S(‘p‘) with a beam width 4Y larger than T . At low frequencies,
especially M2' the c¢oherence is significantly larger than the bias indicating
an anisotropic energy distribution; specifically we find ¥4.=%0.3 at M, which
yields 4y = 100° or q % O0.7.

The obsexrved Y,, and ., are also shown in Fig. V.19. These co-
herences are also c¢lose to the bias for w > M2, indicating isotropy and/or

vertical symmetry.
The model phases torresponding to (V.70) are given by

¢+- : gretam { sin 2¢,, cos 24, )
(v.71)

¢+°= d)_o = arctan (-Gsiny,, -Fcos Lf,)

Notice that Fig. V.19 @isplays the phases d’*S and ¢.: . From

Wo=u, :~iwg ( § is down!) we £ind 4)!'5 = 4’;‘:0 -o-ﬂ'/z . 'The observed

0 3 . B
phases at M2 and the corresponding directions of propagation are (with =+

from Fig. V.2)



-~ 95 -~

9,.
b, 55° = Y, = ~35° (v.72)
¢, 168° =~ ¢ = - 18°

[16°% 180°

fn
it

- i28°‘ -3 lfo

o
u

(73

Thus all three estimates yield propagation of tidal waves to the southeast,
consistent with the findings of Nobel and Joyce -(1977) .

The walues for g and P, ~of the hybrid IWEX model are presented in
Fig. V.20. At low frequencies (f ¢ W ¢ 2M2) we find a wave field with beam~
width less than 1 propagating to the southeast. The high-frequency part
is almost isotropic ( ¢, should be regarded to be undetermined in this part)
with a small anisotropy possibly at the very high frequencies (cf. the isotropy
test Fig. IV.6).

V.4. Contamination

So far we have discussed the parametriZzation of the enexrgy spectrum of
that part of the observed fluctuations which can be described by internal waves.
When illustrating the parametrization we have used data which are least affected
by contamination. The complete data set, however, cannot be parameterized by
a pure internal wave field. An attempt is shown in Fig. V.21: the model is
indeed unable.to reproduce all the observed coherences and behaves rather diplo~
matically, almost fitting hone of them. For this reason we introduced a hybrid
model which is a combination of internal waves and some contamination fields
which will be discussed in this section. The parameter values of the internal

wave spectrum obtained with this hybrid model have already been presented above.

V.4.,1 Disparity of disparities

‘We learned already in section V.3.1 that there is a discrepancy between
the IWEX dafa and a WKB internal wave field. A disparity was found between the
enexrgy levels of horiébntal currents and displacement (up): if the WKB relations
(V.23)Yahdb(v.24) holdvthen the total wave energy computed from currents exceeds
the one computed from ups by about 10% (cf. Fig. IV.10). This feature will
be referred to as energy disparity.

Anothexr much more obvious disparity was already noticed by Briscoe (1975).
He found a strohg disparity between up cocherence and current coherence for the
same pair of instruments. For ‘a’WKB wave field the coherences X‘oo( W, T, az)
and J'W(w)-;-,az)  v= %t , are identical. However, as displayed in
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Fig. V.22 the observed current coherence decreases with increasing frequency
faster than the up coherence. Generally this coherence disparity is small for
purely horizontal separatiéns and becomes noticeably larger if the instruments
are also vertically separated.

Let us consider the coherence disparity as a function of separation in
more detail. Fig. V.23 and V.24 display the current and displacement coherences
for a freguency in the internal wave continuum as function of horizontal and
slant (on leg A) separation. We notice that both slant coherences ( {§ and
u_u_) and the horizontal up coherence show a two-scale behaviour: for separations
less than é few meters (for TY¥ about 3 m; for u_u_ less than the smallest
separation =~ 7 m) they drop rapidly; for larger separations they decrease
linearly in the same way as the horizontal up coherence, but at a lower level.
The linear decrease is in agreement with a t # 2 high-wavenumber slope of the
internal wave energy sSpectrum. At separations larger than a few meters the
discrepancy between current and up coherence is about 10% for horizontal sep-
arations and considerably larger - about 30% - for slant separations.

Because of this strong spatial structure Briscoe (1975) excluded instru-
mental noise in the current measurements as a possible source of the coherence
disparity. This is also confirmed by the consistency tests in part IV. As a
possible explanation he suggested eithexr contamination by nonlinearities in the
wave field or by finestructure in the current profile.

At first sight contamination of thé current measurements by some small
scale velocity finesﬁructure seems to be a satisfactory explanation of the
coherence disparity because there is also an excess of energy in the current
autospectra. However, an energy excess of 10%, as observed, would only yield
a goherence disparity of the same amount if the contamination has a much smaller
correlation scale than the internal wave field (cf. IV.87). To explain the
¢oherence disparity of 30% we have to look for a more complicated contamination
pattern.

A two-scale behaviour of the qoherence must not necessarily be associated
with a contamination process. The rapid drop at small separatiohs of each single
¢oherence may of course be modelled by a correéponding hump of internal wéve
energy at high wavenumbers. Froﬁ the smooth behaviour of the horizontal up
coherence we can however exclude such a high-@avenumbe; hump. Therefore the
coherence drop must be associated with non-internal wave energy. In fact, the
spatial structure of the coherence may only be explained By at least twd sep~
arate contamination processes: a contamination in the current measurements which
degrades the coherence vertically and_horizonﬁally, and a contamination in the

displacement estimates which lowers only the vertical coherence.
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Sinceé we have estimated the displacement from moored temperature .meas—
urements its contamination may be understood as due to finestructure of the
temperature profile as discussed e.g. by Garrett and Munk (1972b) , McKean (1974)
and others. :

V.4.2 Contamination by temperature finestructure .

The contamination of dlsplacement (up) by. temperature flnestructure
is modelled aftex McKean (1974) (cf. Joyce and Desaubles 1977) The total ‘
i)
cross—spectrum Hy: ( ) is a sum of a mean gradlent part Hgs( )(whlch

must be identified with our model (V.1) of the internal wave cross—spectrUm)

and a finestructure cross-spectrum G}J(QJ)
i cebipt oy -
= + w V.73
HIX(“)) :3 (w) ! G ( ) .
For a true displacement spectrum
Pee (w) = ¢ £ - (V.74)
gs wz . . . . .

McKean obtains
. . ; ty ‘
GY (w) = & (w) [ Pe (w),ng(w)]',,i/\‘(‘w,dz) (V.75)

The finestructure ratio

GHw)
§ilw) = PL:)) (v.76)
|1 8t
is explicitly given by
v
o O (w(¥Xf
((“(UJ) = ’i (a :I:) h<'§z>"‘ (V.‘77)

i
—

where O is'the mean. square temperature jump over a medn layer thickness h
and 33T'-the mean temperature gradient. The finestructure coherence

(i.e. normalized cospectrum) is explicitly given by

. a&/ .
Alw,az) se |

a
cos A2 4 gin AR } (v.78)
o @

where the correlation scale alw) is given by

alw) = <§ > (~£~)V7‘ (V.79)
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Rough estimates of &, and a may be obtained from the relation between

the hybrid and the true coherence (i.e. normalized cospectrum)

. AL,
% '*‘6{

(v.80)
\

z 6»33 1 +d;

for 2z »a

Comparison with Fﬁ.g. V.24 yields 64 = 0(0.1) and a = 0(2m).

The results of the hybrid IWEX model (using only up-data) are given in
Fig. V.25 and V. 26‘ Included in the figures are the theoretical prec‘i:.ct:.ons
(Vv.77) and (V.79), taking 9 /(9 T)from Joyce and Desaubies (1977). The
values for J‘ are well represented by the theory. There is also reasonable
agreement in case of the correlation scale a. At low frequencies this latter

parameter could not be determined since & is almost zero.

V.4.3 The curréent contamination

The current contamination was modelled similarly to the displacement
contamination. Writing the total cross-spectrum of the horizontal curreént com-

ponents as
. u ‘
F’«:s (w) = H:;( w) * F«{;( w) (V.81)

the contamination part Ff,?, must produce coherences which drop very rapidly
to zexo with vertical separation and to some finite value with horizontal sep-~
aration (less than the smallest available separation of the IWEX array).

We took the simple model

Fep (w) = Sug Epone (w) {(w,a2) g (0, v} (v.82)
vwhere Econt denotes the enérgy of the curxent contamination. The sorrelation
functions f(w , 4 z) and g(Ww, r ) model the spatial structure of the current.
contamination. For sinmplicity we took £{(w , 4 2) egual to the displadement
finestructure coherence A ( w, "42) and

2
"(\*/""3) for +>» D

(l-g)e

g(u.'r) = (v.83)

I/
o

I . for T
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Here § denotes the horizontal coherence drop of the contaminating field.

D is a small scale and 4, is a large scale horizontal coherence length, These
two length scales could not be determined from the data as both lie outside the
separétion interval covered by the mean data set. ThHus we took A, = ® and

D smaller than the smallest separation of the IWEX array.

" The hybrid coherence then becomes -

Bt b flaz) glr)

A
&, = (vV.84)
L S v o
with'
X_ Econt
= (v.85)
<
F;v oo
The limiting cases
. N ¥ | »
450 =4 T for reD (V. 86)
| " T Ardlig) X};(’_”S-) "~ for De¢t «a
o Uvv ”|+»X‘<' o , h
) (1+y,)
= H = + v.87
T=0 Yoo Y., S, (v.87)
may ‘then be used to estimate the parameters 5"t ang ¢ from the observed
coherence drops in Fig. V.23 and V.24. We find 82 = 0.7 and ¢ =0.4
‘a‘t Wy .

The results of the hybrid IWEX model (from horizontal currents alone)
are shown in Fig. V.27 and V.28. The energy of the current contamination Econt

(normalized by GM's frequency distxribution BG"(m) - ) increases from zero
at w « M2 to values comparable to ‘the internal wavé energy at larger fre-
dguencies. The coherence drop & is almost constant (~ 0.3) for frequencies
larger than M, and essentially zero below. Thus at low frequencies the current

2
contamination is small but horizontally completely coherent; with increasing

frequency the contamination becomes larger and less coherent.

So far no physical process has been associated with the current contamin-
ation. In Miller, Olbers and Willebrand (1977) it .is argued that the current
contamitriation is presumably due to the superposition of two processes: the

passive advection of current finestructure past the sensors by the internal wave

field (in analogy to McKean's (1974) theory) and small scale three dimensional
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turbulence in the layers of the density stratification.

V.4.4 Coherent signal contamination

The parameters of the contaminating fields were adjusted in order to
reproduce the coherence disparity correctly. This is demonstrated in Fig. V.29,
which compares the hybrid IWEX model with a pure internal wave model. The
energy disparity Has not been removéd; on the contrary we are now faded with
an even larger disparity in the energies. The situation is illustrated in Fig.
V.30. BAs the finestructure ratio of the displacement field is about 0.1 the
decontaminated displacement spectrum Pye is about 10% less than the observed
one. Similarly the decontaminated current spectrum P__ must be about 40% less
than the observed %__. What remains is a 20% excess of enérgy in the displacenent.

Accurate values are given in Fig. V.31, which displays the wave energy
as obtained separately from the displacement and horizental currents with in-
clusion of the corresponding contaminations discussed above. Notice that at all
frequencies larger than M2 the wave énergy in the displacémehts is almost
constantly larger than the one in the currents. Since £he coherences are
now modelled correétly this excess energy. in the displacements must be at least
as coherent as the wave field itself. In other words, if we impose an additional
coherent signal on the displacements we areé able to model the observations

correctly.

V.5. The IWEX model

In chapter V.3 and V.4 we have introduced the parametrization of the
IWEX cross-spectra by a combination of a random internal waﬁe field and some
contamination processes. This chapter will present a summary of the final model

and will discuss its éonsistency and uniqueness.
v.5.1 Summary of the parametrization
Our final model 'is given by

“l’.i" i Li
Rug = Rup * Fin |

“p
n L Wog oy Ee ) + GY V.8
H§§ = Hg'g ( ‘ + Fe (v.88)

ALy Ly
H«} F R“K
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Herg the internal wave part H:d\ is given by (V.1), the c¢urrent contamination
F:é by (v.82), the finestructure contamination of displacement by (V.75)
and the coherent contamination of displacement by a coherent signal with energy
B This model has been called the hybrid IWEX model. Its parameters have
been shown in the course of this part. A summary is diven in Fig. V.32a-c.
Notice that the wave energies E® and E° are scaled by GM's frequency distribution
“Ben(ul). The energies of the contaminations are presented in form of the
energy ratios 5{ (w) (c£. v.76), Ec(w)/ E¢(w) ana Eeomtlw) [ ES(w) .
‘ The parameters show a large variability in the frequency domain (e.g.
the equivalent mode numbér and the peak shape parameter). We have demonstrated
in this report that this variability corresponds closely to the data but we
were unable to provide a physical explanation. Some features c¢an be attributed
to subharmonics of the tides, but inh addition to those frequéncies there are
others which also show a completely different behaviour than their next neighbours.
The most prominent representatives of this group aré the 10th and 26th frequency.
Apart from this variability the magnitudes of the errcr bars allow simple
parameﬁfizations in the frequency domain which for this purpose should be divided
into the low frequency part ( w <- 0.1 cph) and the internal wavé continuum
( w » 0.1 cph). The behaviour in the low frequency part is dominated by

inertial and tidal waves which must be treated seéparately.
In the continuum the wave spectrum is similar to the GM model:

(1) the distribution of energy is horizontally isotfopic and vertically
symmetric

(2) the wavenumber structure is characterized by an equivalent mode nunber
je = 0 (10~15) with a slight tendency to decrease. with fredquency

(3) the slope of the spectrum at high wavenumbers is well described by

.t =0 (2-2.5)

(4) theére is a sharp peak at low wavenumbers corresponding to a mode number -
jp =0 (1-2)

(5) the frequency distribution of the total energy per unit surface area is

-

well-represented by a W -~law.

The low frequency part of the wave field is found to be anisotropic and
asymmetric. We find a propagation of energy to the southeast with a beamwidth
around {2 . The vertical asymmetry is characterized by an excess of down-
ward propagating energy which is about 20% larger than the upward propagating
ene?gy. |

The tide Mz‘is charaéterized by an extremely small-bandwidth: only about
3 equivalent modes are excited. However, it should be pointed out that our

model at this frequency is not consistent with the data (see section 5.2.1).
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Inertial waves show a peak of energy in the,frequency domain which is well
above the one of GM's model (by a factor of about 5). The bandwidth is about
15 equivalent modes -with a peak at the third mode.

The parameters which describe the contamination processes have & rather
simple frequency dependence. The relative enérgies of the current contamination
and of the displacement contamination by temperature finestructure are negli-
gibly small in the low frequency part and increase in the internal wave continuum.
The displacement contamination by temperature finestructure is in good agreement
with McKean's theory (McKean 1974) though a smaller vertical correlation scale
is found (~ 1.8 m). The energy of the current finestructure becomes comparable
with the wave energy for w > 0.5 cph. The horizontal coherence drop can be
considered as constant in the wave continuum. The relative energy of the cgherent
signal imposed on the displacement.estimates (ups) is about 20% of the wave
energy, almost independent of frequency. Marked peaks are only found at the
inertial and tidal frequency.

The sub-buoyancy range covering the last three to four frequency points
shows some peculiarities. Here many of the parameters do not follow the general
trend indicated in the continuum at lower frequencies. Also, as shown below
(section V.5.2.1), the model is.not completely consistent with the data. ?he
reason is obviously ‘the poor WKB approximation near the turning point. Never-—
theless our model does riot fail completely, which must be attributed to the
inclusion of the contaminations. The hybrid IWEX model is complex enough to
fit to some degree the sub-buoyancy humps in energy and coherence (Desaubies
1975).

V.5.2. Consistency and uniqueness of the hybrid model

In the previous chapters of this part we have developed some character-
istic features of the hybrid IWEX model and specified its parameters. We will

now discuss the following questions:

i) Do these parameters give a consistent description of the full data set?

ii) Are they determined uniquely?

V.5.2.1 Consistency

To find out whether or not our model cross-spectra coincide with the
observed croSs—spectra, we may use the technique described in part III. The

appropriate statistical quantity is the deviation between observed and model

data 2 ' .on

£ ={y-y) W(y-y) (v.89)
) - ~

(For the notation see part III

R
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In Fig. V733 we show for all frequencies the actual value of €' , the expec~
tation value < Ez> under the hypothesis that <y > =¢ g > and the 95% confidence
limit, All these guantities are normalized by ~e: = \;' \f,(‘é' , So that the
absolute magnitude gives some idea to what percentageré and g coincide. The
somewhat irregular dependence of < £t on the fregquency is due to two oppesing
influentes. Since the majority of all coherences decreases with increasing.
frequency, this should lead to an increéase of < £ . On the other hand, the
increasing number of degrees of freedom leads to a decrease in <> . which
is stepwise at low, but continuous at high freguencies due to the freguency
averaging as described in Section I.8.1. Near W = 0.5 cph we find a jump
because for higher frequencies the instruments on level 14 have been omitted
(For the inverse fit we omitted sensors already at frequencies far before the
turning point, whereas the consistency tests take all sensors i with W< N(zi).

By and large the actually obtained value for Ez. scatters around the
expected value. Except fox M2 and frequencies larger than 1 cph, the hybrid
IWEX model gives -~ on the 95% probability level - a consistent description of
the IWEX.data set. WThe discrepancy at high freguencies could be easily removed
by using instead of the WKB-solution for the veértical wave functions the more
accurate Airy functions (Desaubies 1973), or a modal representation.

At Mz; we must conclude that no random internal wave model, even if modi~
fied as described above, gives a consistent representation of the observed data.

Fig. V.34 shows the normalized dquantity 81/4 g which allows a direct
comparison with the results of the consistency tests, in particular Fig. Iv.23,
The two pictures agree satisfactorily; deviaticdns must be attributed to the
fact that the results of the fitting procedure depend on all data while the results

of the tests only depehd on some linear combinations.

V.5.2.2 Correlations between the parameters

The parameters are estimatgd from random data, and must hean be regarded
as random as well. Their statistical variability is described by the parameter
covariance R“ﬂ = cov( xx;xrsl which can be calculated according to (III.66).
The diagohal elements of R determine the standard deviations G0, = R;&
which have been shown together with the corresponding parémeters. I£ the matrix
R is nondiagonal the different parameters are correlated.

. From eg. (II1.66), one finds explicitly

1

R v T wusw M (V.90)

L Y A L

For the special metric W ='§_1, which is optimal in the sense discussed in
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part III, (V.90) reduces to

\

R = wl = (a"y N : (v.51)

Though we did not use W= §h1, but rather the diagofial metric defined by
(III.37), we always found a strong similarity between R and y—l, i.e.
-1
R~ M (V.92)
Usually more than 90% of the corresponding matrix elements had the same sign.
Also the scaling of eigenvalues and the eigenvector systets were. similar. This
is not surprising gince the metric (III.37) was chosen to resemble 5—1 as much

as. possible. As M reflects the properties of the model matrix E ={ég¢/6x“},

we expect that a high parameter correlation should be related in a simple way

to some feature in our model.

Let us consider a simple example with two parameters. Asstme that the

2 by 2-matrix M has the eigenvectors (1,1) and 1,~1), the corresporiding eigen-
values being 4, and A, . Then

”\:+)z 9‘1‘.9'2
30‘22 : A1-'.?\2

{V.93)

and

R « (V.94)

The correlation between x, and %, is given by

R.l?. Az“ lAa

$u = W T T | (v.95)
2
(Ru ;Ru) A‘&v* Al
Consider first the case A, » A, >0 . This means that our model

depends mainly on the parameter combination (x1 + x2) and much more weakly on

(x1 - x2). Then 8, ¢ 0 , so that a strong negative correlation is found

if both parameters describe essentially the same features in the data.

Considet text the case ﬁz » 3, > 0 which means that %y = X,
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is the more important parameter. . In this case we obtain  §, > o . . Thus
a strong Eositive correlation.occurs if both, parametexrs have opposing influences.
- Note that this sign rule does not hold if the matrix M is nearly singular,
i.e. if A, or 23 are smaller than the threshold discussed in section I1I.6.4.
In this case the.correlation would be +1.with the opposite sigp than discussed
above. ' ' .

For more than two variables the situation is more complex, and the above
interpretation must be used with caution. .Ag discussed in.section IIT.6.4 for
the variances, the correlations are also very sensitive to the value of the
threshold.  Usually a correlation between two well-determined parameters will
be dcminated by théir mutual correlations with thé poorest determined patameters.

‘In-.the following the correlations for some parameter pairs are discussed.
The list is not complete, mainly because of the large number ( ~ 100) of possible
combinations. The 95% confidence level for zers true correlation has not been
calcdulated exactly; a rough estimate leads to a value 0.1 -~ 0.2.

et

- E*-(Fig. V.35 a) The correlation is positivé for all frequencies.
This is due to the fact that both E' and gY are correlated in exactly the same
Way ‘with most of the weakly determined parameters. If’Only‘E* and EY were
determined, their correlation would turh out to be negative, gince et + eV is
obviously the more important parameter than E' - BV (see below).

: Et:—&4;‘E» ~~64(Fig.'v.35 a) The correlation is - negative (inCreaéing

both paraméters increases the energy if the displacement spéctra) but small
for most frequencies -(the parameters are nearly independent).

v . . . L .
_cont’_E Econtl (Pig. V.35 b) The corrélation is hegative for
all frequencies: all parameters increase the energy in horizontal -current spectra.

"E - je (Fig. V.35 ¢) The correlation is positive throughout (E* - je

shows a'similar‘behavioﬁr). 'Both parameters have opposite effects on all cross-
spectra between spatially separated instruments, which roughly are proportional
to E/je. This correlation could be avoided by fitting complex coherences in-
stead of cross-spectra.

Econt - je (Fig. V.35 ¢) The correlation ié neéative throughout.
Both parameters, when increasing, lower the coherence between current cross-

spectra.

Je ™ Ip. (Fig. V.35 4)

These parameters are negatively correlatéd. Both
parametéers, when increasing, lower coherences between separatéd instruments
'(je generally, jp for most IWEX separations).

je - t (Fig. V.35 d) The correlation is.significant, but no clear

trend is visibie. -

EY - q, BV - g (Fig. V.35 e) Both correldtions have almost the same
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magnitude but opposite sign. 'This can be understood since the current-dis-

placemerit ¢ross-spectra Which dominate the determination of ¢ are approximately

¢ v

proportional to (E* - uY Jg. One hence expects q to be correlated with E' -~ EV ,

but not with E* +'E*.

A %r 3o Boone -

t (Fig. V.35 £) These represent examples of
unsignifzbant correlations.

V.5.2.3 Statistically uncorrelated parameters

An obvious way to overcome the difficulties connected with the intex-
pretation of correlated parameters is to construct statisticdlly uncorrelated
parameters. Conceptually, this is straightforward, requiring the diagonalization
of the covariance matrix R. There are no computational problems involved,
and so we have always performed this calculation. The interpretation of the
new parameters, however, repreSents a severe problem. We found ourselves
unable to attribute a distinet physical meaning to linear combinations of so
different quantities as energies, shape parameters, directions étc.

It is nevertheless possible to define physically meaningful parameters
which are at least much less correlated than the original ones. For example,
from our experience it would have been more optimal to choose the total energy
E = &' + EY and the ratio (' - E*)/(E" + EY) instead of E* anda Y. also,
thé use of the rotary instead of Cartesian representation would reduce parameter
correlations since then different parameter groups (isctropy, symmetry etc.)
areé essentially determined from different subsets of the data.

Finally, we akk for the relative importance of the different parameters
(or parameter combinations). Formally, this is found by ordering the uncorrelated
.parameters with inctreasing variance, provided the original parameters are scaled
properly to have the same dimension and order of magnitude. It was found that -
the origihal parameters fell eéssentially into three groups:

b E‘r.' B! ',,,Fcont

-

i Ec These parameters were most strongly determined.

From these, the combination T+ EY (+ E t) was found to be the most important
con
parameter in almost all runs, but even E* - BY was usually morée important than
the parameters of the following groups.
2) .3
)’Je

+ Jgr 8/ 9+ § + (¢,) These parameters (or some linear combinations
of them) were on intermediate positions; usually they could bé well determined.

3) t, Jf, a, (q%) These parameters were determined least of all., Some-

times they caused the least~square problem to be ill=-conditioned,
These results are supported by Fig. V.36 where g* is plotted as a function
of each of the parameters, all other parameteis held constant. .The curvature

of these curves at the minimum characterizes the standard deviations of the
parameters;
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V.6, Bome analytical features of gpectra and coherences

Here we& present some analytical results for spectra and coherences which
we used in this part. A detailed discussion of these quantities for the spectrum
A(A) « (IJ«;\’)J'l (i.e. s = 2, t = 2) has been reported by Desaubies (1977).
Our analysis will mainly be done for GM 75 (i.e. s = 1 and t arbitrary).

V.6.1 Towed spectrum (derivation of V.55)

The one-sided towed spectrum is given by (Garrett and Munk 1972)

N [
2 w1 M (V.96)
Pss («,z) = - §dw E(w:Z)wz(Nz_{a) S do (-0 )
For the model spectrum V.34 we find
g C R(2)
=2 - dw Elwz) = w dA = (V.97)
For u,/&*(N)=K./k*>>| this becomes
t . T_f* £l .
Peg (2,,2) :—;%f—% B($3) " §dw E(w,z) ww:f L (v.98)
or
Ni¢ +) .
P (a,2) = "“<g> , Its) B(%,1) 'gdxx‘a(xz“) Y w.e9)

where B(. ) ) is the Beta function and

A Lo L )

x =k, $/N =, * BN, (V. 100)

The integral in (V.99) can be expressed by a Beta function for t < 2. For t » 2
we did not find a general representation (note that the integral depends oh the
upper limit N/£). For the specific values t = 2 and t = 3 we obtain
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LT N %1‘4‘\% , =2

Saxx3(x*1) =

° 3N t =3
g

which has been used in Fig. V.8.

V.6.2 Vertical coherence

v.6.2.1 GM 75

(v.101)

For the GM 75 model spectrum the vertical coherence (V.32) becomes

t-1) $da cosg'/\

“3) o (1ea)t

(V.102)

(t-1) gt.' {cos'ts C.(l‘t.'vé) + siny S"(I-t,'td)}‘

where Yy =3 az and C and S are the generalized Fresnel integrals
0 | ¢
Cla,y) = Sdx x*' cosx
4
(v.103)
«
a-1 .
Slay) = §ax x® sinx
4
After some algebra we get the more useful representation
e tel . ' (t-lhr}
X‘(g)~(tl)\3 P(It)cos{g’r———-—-z
(v.104)
% ("i)m mﬂ'
- ({.,) S cos { b }
_ meo M (m+l-t) 4
which has been used in (V.56).
V.6.2.2 Spectrum with s = 2 and t arbitrary
The vertical coherence becomes in ‘this case
cosy? 108
X(\a) (t 2) gdﬁ WO (V.105)
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and may be expressed in terms of the modified Bessel function X P

I~

¥ (y) T ‘-_&M‘K&(g‘) | | (V. 106)

with me(t-0/2 . PFor t = 2,3,4 and 5 we find

F,QT% . n‘t=2
ply s 4 40 e

4 e % |*3) £y (v.107)
14 Kaly) s

K1 and K2 are i:alo_l{latéd A(Abramowitz"and Stegun 1964)%;: 8"(3):15 plotted -in

Fig. V.4,

V.6.2.3 Asymptotic tail

-t ’
An asymptotic tail o A Qetermines the behaviour of ﬂg) near the origin.
-t
1f A(AY= R,2 for A>3, we have

A ¢ ol
X(ﬁ) = S da R(2) cosﬂfé .+ H, S d thos'htg, (V. 108)
0 ) ) A,

The second integral is a generalized Fresnel integral (cf. v.103). After some
algebra we find for t » O ' ‘ » ‘

A

© ()7 .

-7y g e ; A,
p) - 3 S | famRm -Raa s |

ne®

(v.109)

+ A(3,) A, (?\oua)t" [(1-t) cos [—Zn-—(ht)]



- 110 -

V.6.3 HorizZontal coherehce

v.6.3.1 GM 75

For the GM 75 model the horizontal c¢oherence (V.29) becomes

(v.110)

Flx) = (t-1) Sda

where x = &, r. For t > -=1/2 this reduces to (Gradshteyn and Ryzhik 1965,
eq. 6.563)

- — 'ﬁ‘(t |) L w 3- Zm_L .
¥ T(t) sin [or(2+ t)] mz-o(z) b

(v.111)
. {'(.,)"‘ _P(Zmel) r'(t+m)5Ln[,_(2 t- m)] }
Mm«t) T (2m +2- t) re ‘f#;ﬂl

which has beeh used in (V.56).

V.6.3.2 Asymptotic tail

If  R(A) = Hba't for A> 2 we have

A, o i
¥ix) = fanmm) 7, ()~ A, (%)'/zx.,, Sana" "cos (-T)  (.112)
S %o

uging the asymptotic representation for J,(Ax) . For x = 0 the sectond
integral produces the singular term

Sy(x) = (13‘-,)"2 A3 2, (x2,) Y M(3-t) cos (tT) (V.113)

if t < 3/2.
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Vi. CONCLUSIONS

The IWEX experiment provided a unique data set to study the structure
and energy distribution of oceanic motions in the internal wave frequency band.
The simultaneous measurement of horizontal current and vertical displacement
and the space and time scales covered by the experiment were sufficient for the
determination of the kinematic structure and the essential parameters of the
energy spectrum. ‘

The analysis was basically performed in two steps. We defined as a model
class the kinematic structure of a motion field which is independent of the
specific distribution of energy in wavenumber-frequency space, and as model a
model class with a parameterized functional form of the energy distribution.
First we tested vwhether or not a given model class is able to represent the
observed fluctuations consistently. Having found a consistent model class
we then determined the energy distribution by parametrization and least square
fit. The combination of these two methods - the consistency tests and the least
square fit - was found to be a powerful tool in the interpretation of spectral
data of a vector time series. Parametrization methods alone are also able to
find consistent models. For a data set as large as IWEX's, this would however
be extremely (man and computer) time consuming.

The computer time to be used for the testing of model classes by means
of consistency relations was negligible (~1 O/oo) in comparison with the least
square fit of the final model. Therefore consistency tests are an efficient
method when searching for a consistent picture of the data. By successive
splitting of complex tests one is able to locate those structures of the model
class which are least consistent with the data and thereby comes to the construc-
tion of better model classes.

The least square fitting procedure, though formally reducing to the dia-
gohalization of a small matrix, turned out to be a highly elaborate taskf Both
the large amount of data and the complicated kinematic structure of the model
which was. necessary to parameterize the data were responsible for this fact.

In order to keep the computer time within reasonable limits and still keep

the model as variable as necessary (and of course meet the required numerical
accuracy) we had to construct a rather specialized least square fitting program,
which was specifically tailored to our data organization and available computer
facilities.

It should be mentioned that the least square fitting program could in
no way be used as black box where one specifies a model puts in data and gets

out parameters. The highly nonlinear models we had to use required a careful
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choice of the start values for the parameters. Even then the minimum search
had to be watched conscientiously. Start values were found by investigating
the analytical properties of model classes and of models of the energy spectrum
in ¢lose relation to corresponding features in the data. The least square fit
was then used to make the conceptions obtained by _

simple analysis of only few data as precise as possible using all data. Beyond
that the least square fit enabled us to decide whether or not a consistent
model was found.

The model that gives a consistent representation of the IWEX measurements
is a sum of internal waves and three kinds of contamination signals: a current
contamination, a displacement contamination, by temperature finestructure and
a coherent signal in the displacement estimate.

The internal wave part of the observed fluctuations could be fitted by
a spectrum that differs from Garrett and Munk's (1975) spectrum only slightly
but significantly. Horizontal isotropy and vertical symmetry is found except
at low frequencies where we find energy propagation to the southeast and an
energy excess propagating downwards through the water column. The wavenumber
structure of the spectrum differs in so far from GM's that there is a marked
peak at non-zero wavenumber corresponding approximately to the first or second
mode, and that the bandwidth is not constant with frequency but decreases from
about 20 modes at O.1 cph to about 10 at high frequencies. The tide and its
harmonics tend to have a much smaller bandwidth.

The current contamination and the displacement contaminatioh by tempera-
ture had to be included to fit the observed two-scale behaviour of the coherences
correctly. Current as well as temperature coherence drop rapidly within a few
meters and then show the smooth decrease associated with the wave field. That
this small scale drop is indeed associated with non-internal-wave energy can
be learned from the fact that the horizontal ¢coherence of temperature behaves
smoothly at small separations.

The contamination of the displacement field by temperature finestructure
was found to be in good agreement with McKean's theory (McKean 1974) as well
as with the results of Joyce and Desaubies (1977), who used the temperature
difference records of IWEX in their analysis.

The kinematic structure of the current contamination can be described
as a horizontal motion with a vertical coherence scale of a few meters and a
two-scale behaviour of the horizontal coherence: a 30 - 40% drop of coherence
within a few meters and a second coherence scale larger than the resolutieh of
our array. Physically this behaviour may be explained by a superposition of

two processes: current finestructure advected past the sensors by the internal
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wave field and small scale three dimensional turbulence in the layers.of the... .:
density stratification (Miller, Olbers and Willebrand 1977). The energy in the
current contamination is zero at low- freqguencies and increases continuously to .
values comparable to the enerdy in the wave field at higher frequencies..  '. . .:
The coherent contamination in the displacement field had to 'be -intro-.i -«
duced in.order to:model the energy correctly.  Hawving fitted thelcohereﬁces of ..
current and displacement .correctly tlere remains.a disparity between .the wave .: -
energies in the current and the displacement:. . This. disparity may be described...
as a coherent signal of about 10 ~ 20% of the wave:energy- imposed on the ..
displacemeﬁt field. It is suggested that this.contamination |ig not .associated
with a real oceanic f£ield .but represents a systematic bias..of the displacement. °

spectra due to an inconsistent value for the Brunt V&is#lad frequency.
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