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Abstract In marine invertebrates multiple modes of de-
velopment, or poecilogony, may occur in a single spe-
cies. However, after close examination, many of such
putative cases turned out to be sibling species. A case in
point may be the cosmopolitan orbiniid polychaete
Scoloplos armiger, which inhabits marine shallow sedi-
ments. In addition to the well-known direct, holobenthic
development from egg cocoons, pelagic larvae have also
been described. Our culture experiments revealed a
spatially segregated source of the two developmental
modes. All females of an intertidal population produced
egg cocoons and no pelagic larvae. All but 2 out of 15
females of an adjacent subtidal population produced
pelagic larvae and no egg cocoons. Based on these re-
sults we performed a molecular genetic analysis (RAPD-
PCR) on three intertidal and four subtidal populations
in the North Sea. Selected samples from all sites were
analysed also by the AFLP method. We found signifi-
cantly higher genetic diversity within subtidal than
within intertidal populations. This is consistent with a
wider dispersal by pelagic larvae and a smaller effective
population size when development is holobenthic. Total
genetic divergence is not related to distance but to the
intertidal/subtidal division. We suggest that S. armiger
actually represents two sibling species.

Introduction

For benthic marine invertebrates different modes of
development within one species, or poecilogony, have
been reported several times (Giard 1905). In many
cases, however, a re-examination of supposed poeci-
logonous species revealed misidentification or labora-
tory disturbance and later a split-up into sibling species
was necessary (Hoagland and Robertson 1988; Bouchet
1989). Shifts in developmental mode play an important
role in speciation processes in the marine habitat. Shifts
may be rapid and complete within local populations
and affect dispersal, and this may lead to reproductive
isolation and speciation (Hoagland and Robertson
1988). Currently, marine species represent a challenge
to the idea of allopatric speciation. Generally, rates
of dispersal and gene flow are assumed to be high
(Palumbi 1994).

In Scoloplos armiger, one of the most common mac-
rofauna species in sediments of eastern North Atlantic
coastal seas, two distinct modes of development were
identified recently. Spawning of this polychaete has usu-
ally been described to be benthic: conspicuous egg co-
coons are laid on the sediment surface of intertidal mud
flats, fixed with a stalk. Through this stalk juvenile worms
crawl directly into the sedimentwhen they have developed
to a nine-setiger stage (Anderson 1959).Only a decade ago
an additional mode of reproduction was attributed ex-
plicitly toS. armiger by Plate andHusemann (1991). They
described pelagic larvae occurring around the offshore
island ofHelgoland,North Sea. Pelagic larvae are distinct
from egg cocoon larvae by: (1) showing more ciliary
bands, which gives them the ability to swim actively, and
(2) by their smaller size, when comparing larvae of similar
setiger numbers (Anderson 1959; Plate and Husemann
1991). This mode of development is herein called pelago-
benthic, whereas development in egg cocoons is desig-
nated holobenthic (Jägersten 1972). Both pelagic and
benthic larvae are lecithotrophic (Plate and Husemann
1991).
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S. armiger is reported to have a cosmopolitan distri-
bution (Hartmann-Schröder 1996) and is present from
the intertidal down to the deep subtidal (Gibbs 1968;
Holte 1998). Reports of egg cocoon occurrence of
S. armiger in the literature, however, are restricted
mainly to the soft bottom intertidal of the North Sea
region (e.g. Schultze 1855; De Groot 1907; Thamdrup
1935; Gibbs 1968) and adjacent waters (Hornell 1891;
Cabioch et al. 1968; Rasmussen 1973). To our knowl-
edge, there are no reports on spawning behaviour of
S. armiger from other regions of the world. In spite of
the occurrence of two very distinct developmental types
in the North Sea, no systematic comparison between
these has been undertaken so far. S. armiger is purported
to be the only representative of the genus Scoloplos
(Blainville, 1828) (Hartmann-Schröder 1996) in the
North Sea region. However, Blake (1980) suspects sib-
ling species in S. armiger after comparing drawings of
holobenthic S. armiger from the North Sea and of
pelagic larvae from the White Sea.

The local origin of pelagic larvae has, however,
remained unknown. Although S. armiger is very com-
mon in subtidal sediments of the North Sea, egg cocoons
have neither been reported nor seen by staff of local
research vessels nor by divers (personal communica-
tions). Recently, pelagic larvae of S. armiger have also
been recorded close to the island of Sylt, at an even
higher density than near Helgoland (up to 30 larvae per
10 l water sample; Kruse, unpublished data). In contrast
to Helgoland, Sylt is located within the sedimentary
Wadden Sea and, therefore, surrounded by suitable in-
tertidal sediments for S. armiger. In the present study,
we first hypothesise that pelagic larvae near the island of
Sylt originate from subtidal sites. In the laboratory we
cultured adult worms ready to spawn to test if pelagic
larvae of S. armiger emerge from subtidal adults and if
intertidal adults produce egg cocoons only.

We further hypothesise that the two developmental
types represent sibling species. In a genetic analysis we
compared the assumed geographic pattern of develop-
mental modes with those of genetic divergence. We
found no character available in S. armiger, which
would allow prediction of which type of reproduction
will be performed by an individual. Thus, examination
of this hypothesis was based on separation of devel-
opmental modes by habitat type, according to our as-
sumptions and the results of our laboratory
experiment. We tested the hypothesis of genetic isola-
tion by habitat type against isolation by distance. If the
genetic diversity of S. armiger is mainly attributable to
habitat type and not to distance, the hypothesis of
sibling species would be supported. The alternative
hypothesis would apply if isolation by distance con-
tributes most to genetic population divergence. In our
study, we used the RAPD (randomly amplified poly-
morphic DNA) (Williams et al. 1990) method to ana-
lyse genetic diversity of S. armiger within the Sylt area.
AFLP (amplified fragment-length polymorphism) (Vos
et al. 1995) markers were used to validate the results of

the RAPD analysis. Samples from one location at
Helgoland with postulated pelago-benthic development
were used for comparison with Sylt locations and also
as a distant reference population.

Materials and methods

Aquaria culture experiment on the origin
of different developmental modes

To test the initial hypotheses that pelagic larvae originate from the
subtidal habitat and that intertidal adults exclusively produce egg
cocoons, Scoloplos armiger from both habitats were cultured sep-
arately in the laboratory until spawning in February/March 1998.
These data were prerequisite for the genetic analyses on differences
between subtidal and intertidal S. armiger populations.

Study area

This study was conducted on S. armiger in the Sylt–Rømø Bight,
an enclosed tidal basin in the northern Wadden Sea, and near the
island of Helgoland, further offshore in the North Sea (Fig. 1). In
both areas tides are semidiurnal, with a range of 2–2.4 m. The
Sylt–Rømø Bight covers about 400 km2, of which 33% belong to
the intertidal zone, 57% to the shallow subtidal (<5 m depth)
and 10% to deeper tidal channels (max. depth �40 m). Water

Fig. 1 Sampling design to test genetic differentiation according to
geographic locations (Odde, Morsum, Rømø, Helgoland) against
differentiation according to habitat (subtidal, intertidal)
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exchange between the Sylt–Rømø Bight and the open North Sea
takes place through a 2.8-km-wide tidal channel called the Lister
Deep. More information about the area is given in Gätje and
Reise (1998).

Origin-of-larvae experiment

Specimens of S. armiger from the subtidal and from the intertidal
were collected at locality ‘‘Odde’’ (shown in Fig. 1) in January/
February 1998, i.e. before spawning when males and females could
be distinguished easily by their well-developed gonads. Individuals
from the same habitat, five females and three males each, were put
together in one aquarium. Both habitats were replicated three
times. All six aquaria (55 · 40 · 30 cm) contained 7 cm of sedi-
ment from the subtidal habitat, sieved through 1 mm, covered with
20 cm of seawater. Placed in a culture room, aquaria were aerated
and were subjected to artificial light in a day–night rhythm. Tem-
perature was adjusted to the concurrent water temperature in the
field (5–7�C). Each day we recorded deposition of egg cocoons by
eye and occurrence of pelagic larvae and eggs by sampling the
water column. The latter was done using a tube to take a repre-
sentative 10 l water sample from each aquarium and to filter it
through a 80 lm mesh.

Sampling for genetic study

Worms for DNA analysis were collected in July/August 2000
around the island of Sylt within each of three localities (‘‘Odde’’,
‘‘Morsum’’, ‘‘Rømø’’) at one intertidal and one subtidal site
(Fig. 1). This sampling was designed to test if larger differences
exist between sites within localities (i.e. between intertidal and its
adjacent subtidal habitat) than between different localities (within
subtidal and intertidal habitats) situated further away from each
other. In other words, the hypothesis of isolation by distance of
localities was tested against isolation by type of habitat. Addi-
tionally, one site near the offshore island of Helgoland was sampled
as a distant subtidal site where the S. armiger population was as-
sumed to exhibit the pelago-benthic mode of reproduction. In this
context it was tested whether individuals from the locality ‘‘Hel-
goland’’ were more similar to subtidal Sylt specimens than to in-
tertidal ones. Positions of all sites are given in Table 1. Distances
between the sampling areas Helgoland and Sylt are about 95 km,
and within the Sylt area between the localities Morsum and Odde
9 km, Odde and Rømø 7.3 km and Rømø and Morsum 16.1 km.
Habitats within localities (intertidal and subtidal sites) were
2–2.5 km apart from each other. Subtidal sites were sampled using
a boxcorer from a boat. Intertidal worms were collected during low
tide as single specimens sampled randomly at least 2 m apart from
each other from 100 m2 areas. S. armiger was sieved out of the
sediment, sorted alive and isolated in seawater for at least 24 h, to
allow the gut contents to be digested. Then worms were frozen at
)80�C.

DNA extraction

DNA was extracted from frozen adult worms with the spin-column
method (DNeasy tissue kit, Quiagen), using 20–25 mg fresh tissue
from the front ends. Following the DNeasy protocol for animal
tissues, a RNAse-A digestion step was included, and the elution
was done once with 100 ll buffer AE.

RAPD procedure

A total of 30 arbitrary decamer primers from the kits A (OPA-01
to OPA-10) and B (OPB-01 to OPB-20) (Operon Technology,
Calif., USA) and 5 from RAPD primer set 4 (Biotechnology
Laboratory, University of British Columbia, Canada) were tested.
The codes of the four primers that provided satisfactory results
(several bright, clear bands for most of the samples) were: OPA-
02, -03, -09 and -10. For PCR (polymerase chain reaction), vials
were placed in a Biometra T gradient thermocycler for an initial
3 min at 94�C; then cycled 10 times through 1 min at 94�C, 1 min
at 35�C and 1 min at 72�C; followed by another cycle of 30 times
through 30 s at 94�C, 30 s at 35�C and 1:30 min at 72�C; and
finally paused at 72�C. The reaction volume (20 ll) contained 2 ll
of each 10x dNTP (Roche), 5 lM primer, 1% BSA, 25 mM
MgCl2, storage buffer B (20 mM Tris-HCL, pH 8.0; 100 mM
KCL; 0.1 mM EDTA; 1 mM DTT; 50% glycerol; 0.5% Nonidet-
P40; 0.5% Tween 20) and 0.15 ll Taq DNA polymerase (si-
ze=100 U, 5 U ll)1) (the latter three chemicals by Promega,
Madison, USA), 1 ll of DNA template solution and 8.85 ll
HPLC-water. Each PCR was run with all samples for one primer,
placing two samples each of subtidal and intertidal polychaetes in
alternate order in 96-well microtiter dishes and adding one rep-
licate and one blank. The replicates were samples from one worm
divided into two pieces prior to DNA extraction. All replicates
indicated reproducibility. Amplified RAPD products (8 ll) were
loaded on 2.5% agarose gels with two samples each of subtidal
and intertidal polychaetes in alternate order. They were analysed
by gel electrophoresis (200 V for 2 h 20 min to 3 h) in 1x TAE
buffer. A 100 base pair (bp) ladder (Amersham Pharmacia Bio-
tech), thinned to 0.1x, was used as a size standard. Gels were
stained in an ethidium bromide bath (0.5 lg ml)1) and recorded
using a CCD video camera system with an image-processing
workstation (GeneSnap by Syngene, Synoptics, Cambridge,
England). In gel images printed from GeneTools (Syngene), the
presence and absence of bands were scored visually. Only bands
>400 bp size were considered in the analysis.

Data analysis

Presence/absence matrices of RAPD bands were obtained for each
primer and entered first into TREECON (Van de Peer and De
Wachter 1994) to calculate genetic distances using the Nei–Li dis-
tance coefficient. The advantage of Nei–Li distance estimates is that

Table 1 Position of sites, water
depths (metres below spring low
tide level) and number of
sampledScoloplos armiger
(intertidal mid-intertidalzone,
sampled randomly in 10·10 m2;
waterdepth in metres below
spring low tide level)

Site Abbreviation Position Water
depth

Number of
individuals

Sylt, intertidal
Morsum EM 54�56.26 N; 08�26.90�E 0 11
Odde EO 55�01.09 N; 08�26.00�E 0 12
Rømø ER 55�05.65 N; 08�27.75�E 0 12

Sylt, subtidal
Morsum SM 54�57.13 N; 08�26.40�E 5 12
Odde SO 55�01.47 N; 08�27.98�E 10 12
Rømø SR 55�05.90 N; 08�26.01�E 6 11

Helgoland, subtidal SH 54�17.00 N; 7�48.00�E–54�16.20 N;
7�47.20�E

20 21

Total no. of individuals 91
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they use only the shared presence of a band (assuming homology)
(Nei and Li 1979; Harris 1999), which is appropriate for RAPD
data (Lamboy 1994; Wolfe and Liston 1998). That is, since RAPD
bands are scored as dominant markers, the presence of a band
implies that the priming sites on either side of the fragment are
present. In contrast, the absence of a band can have several causes
(substitution, deletion, insertion, restriction site absent, etc.). UP-
GMA (unweighted pair-group method using arithmetic averages)
and NJ (neighbour joining) trees were constructed based on genetic
distances in TREECON (Sneath and Sokal 1973). Means of Nei–Li
genetic distances were also calculated for each single site. Analysis
of molecular variance (AMOVA) (Excoffier et al. 1992) was further
employed to test differentiation between localities against differ-
entiation between habitats. From the frequency of RAPD prod-
ucts, patterns of diversity were calculated for a pre-defined group
structure. Data at the first level were grouped according to locali-
ties, and at the second level, according to habitat. Fst-statistics
(analogous to Wright’s Fst) and tests of significance (1023 permu-
tations) were performed in ARLEQUIN version 2.0 (Schneider
et al. 2000). To confirm above results independently, the dataset
was also analysed using a different software, ‘‘Tools for Population
Genetic Analysis’’ (TFPGA) (Miller 1997). To do so, it was con-
verted to pseudohaploid input values, due to the dominant nature
of RAPD. In TFPGA, F-statistics using the methods of Weir and
Cockerham (1984) were calculated with the same two-level hier-
archy structure as in AMOVA, habitats grouped within locality;
95% confidence intervals (CI) for F (analogous to F in AMOVA
and Wright’s Fst) were achieved by bootstrapping across loci with
1000 replications.

However, AMOVA assumes Hardy–Weinberg equilibrium,
which cannot be determined by the dominant RAPD data. For this
reason, an additional frequency measure, Shannon’s index of di-
versity, was determined, since it does not rely on Hardy–Weinberg
equilibrium (Bussell 1999). It was calculated as described in
Engelen et al. (2001) and according to Bussell (1999) following the
equation: H¢j=)Spi · log2·pi, where pi is the frequency of the
presence or absence of an RAPD band (i.e. locus) at site i (alto-
gether six: subtidal and intertidal habitat, each at three locations).
H¢j values were averaged per primer across sites [H¢pop=1/(nrH¢j)]
and per site across primers. Shannon’s index served as estimation
of: (1) diversity components within and between sites, (2) diversity
detected by different primers within sites, (3) site-related differences
in genetic diversity and (4) differences in total genetic diversity
within sites between intertidal and subtidal S. armiger (Shannon
indices compared by t-test using STATISTICA 5.1) (Chalmers
et al. 1992; Engelen et al. 2001).

Genetic diversity among and within Sylt sites was also com-
pared between habitats using Nei–Li genetic distances out of
TREECON. For each individual, the mean of genetic distances (1)
to each of all other individuals from the same site and (2) to each of
the individuals from different sites of the same habitat type were
calculated. These means (35 within sites for each habitat and 70
between sites for each habitat) were compared between habitats
using ANOVA from STATISTICA 5.1.

AFLP analysis

The AFLP technique (Vos et al. 1995) was performed with selected
samples of the same DNA extracts used in RAPD, to test for con-
sistency of results by both methods. AFLP is considered a reliable
andpowerful tool for the evaluation of genetic variability, with better
reproducibility thanRAPD (Jones et al. 1997). TheAFLP procedure
involved threemain steps. (1) Restriction of theDNAand ligation of
adapters was carried out. For each sample, approximately 250 ng of
DNA was digested with 4 U of Mse/EcoRI restriction enzyme in a
reaction volumeof 20 ll. In the same reaction, ligationwas donewith
6 U of DNA ligase and 100 ng ll)1 adapters. After incubation at
37�C for 2 h, samples were transferred to a 65�C water bath for
5 min, in order to inactivate theDNA ligase. Incomplete digestion of
genomic DNA can lead to false polymorphism signals in AFLP
profiles. Therefore, complete digestion was confirmed by running

each sample onan agarose gel.Wealso checkedwhether each enzyme
in the absence of the other led to complete digestion. (2) Pre-ampli-
fication was performed for PCR; 2.5 ll of the restriction–ligation
product was combined with 17.5 ll of the pre-amplification primer
solution, using the AFLP core mix (Perkin Elmer). The primers used
were Eco+A and Mse+C. PCR consisted of 20 cycles of 94�C for
1 s, 56�C for 30 s and 72�C for 2 min, terminated by a single step of
60�C for 30 min using an PCR thermocycler (MJ Research, Wal-
tham, Mass.). After checking for the presence of a smear by agarose
electrophoresis, the pre-amplification mixture was diluted 1:19 with
TE buffer. (3) Selective amplification was then carried out; primers
that match the known adapter sequence plus three selective nucleo-
tides were used to reduce the number of amplified fragments. Two
primer combinations were identified to yield many polymorphic
fragments, Mse-CAC and the fluorescently labelled EcoRI primers
Ned-CAT and Joe-AGG.A touchdown PCR reaction was used with
one cycle of 94�C for 2 min, 65�C for 30 s and 72�C for 2 min; fol-
lowed by 23 cycles in which the annealing temperature was reduced
in 1�C steps to 56�C; and again followed by a single step of 60�C for
30 min.

For gel electrophoresis 2 ll of the selective amplification
product was added to a 3 ll mixture of formamide, loading buffer
and a size standard (GeneScan 1000 Rox, Perkin Elmer). The
amplified, labelled fragments were analysed on 5% Long Ranger
polyacrylamide gels, using an ABI Prism 377 automated genetic
analysis system (Perkin Elmer). Data were processed using ABI
GeneScan Analysis 3.1 software (Perkin Elmer). Each sample was
manually checked for correct alignment of the size standard and,
when necessary, aligned by hand. Data were subsequently imported
into Genographer (http://hordeum.oscs.montana.edu/genogra-
pher), and AFLP profiles were scored for the presence/absence of
fragments between 50 and 500 bp. Reproducibility was tested for
one individual by repeating the DNA extraction and AFLP pro-
cedure, and was found to be high (98%). In Genographer we used
the Thumbnail option to visually score the presence and absence of
bands and obtain 0/1 matrices. As described for RAPD analysis, a
UPGMA tree was constructed in TREECON.

Results

Origin of pelagic larvae

The culturing experiment revealed that pelagic larvae
were only produced by Scoloplos armiger of subtidal
origin. From the 15 intertidal females, placed in three
aquaria, 14 egg cocoons were formed, while this was the
case in only 2 of the 15 subtidal females. In all three
aquaria with subtidal specimens, free-floating eggs ap-
peared first in the water column, and several days later
trochophora and pelagic larvae as described by Plate
and Husemann (1991) were found. These larvae
emerged in calculated total maximum numbers of 255,
493 and 1540, respectively, per five females and aquar-
ium. Specimens from both habitats spawned during a
period of 2 weeks in 1998: intertidals from 21 February
to 7 March and subtidals from 25 February to 10
March. In conclusion, habitat affiliation of adult indi-
viduals (subtidal/intertidal) was a good predictor of the
two modes of development. Thus, in the genetic study,
habitats are operationally defined to differentiate be-
tween the two population types of S. armiger. This was
done in awareness that some females producing egg
cocoons are obviously mixed up with the subtidal ma-
terial, representing a mistake transmitted into further
results.
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Genetic structure using RAPD

With four decamer primers, 116 polymorphic bands
were scored in total, none were monomorphic. An ex-
ample of RAPD patterns is given in Fig. 2.

Between 28 and 32 bands, ranging from 300 to
2300 bp, were amplified by each primer (Table 2). Each
of the 91 individuals showed a unique RAPD band
profile. There were 48 bands specific for the subtidal
habitat, and none, for the intertidal. Due to PCR failure,
for each primer some samples (individuals) had to be
omitted; thus, 9.6% of the data was missing.

AMOVA and Shannon’s index analyses showed
consistent results in that most of the variation occurred
within sites (81% respectively 89%) and less between
sites (22% respectively 11%). Primers varied in their
power to detect variation within and between sites, as
indicated by Shannon’s index for diversity (H¢pop) cal-
culated per primer per site and per primer across all sites

(Table 3). Average multi-locus diversity per site was
0.889, ranging from 0.37 to 1.59. Only primer OPA-3
detected more diversity between than within sites.

Population structure was analysed by several statis-
tical methods. Distance values obtained according to
Nei and Li (1979) are illustrated by the tree based on
cluster analyses with the UPGMA method (Fig. 3),
where each sample is clustered individually.

The tree shows that intertidal and subtidal S. armiger
each cluster together, indicating that the genetic dis-
tances are smaller within the same type of habitat (in-
tertidal, subtidal) than within localities (Odde, Morsum,
Rømø) across habitats. As an exception, five subtidal
individuals from Morsum are among the intertidal
group. Helgoland specimens group closer together with
the subtidals than with the intertidals from Sylt, and also
closer together than Sylt subtidals with their neigh-
bouring intertidals. Within habitats a slight grouping
according to locality is shown (Fig. 3). Cluster analysis
of the same dataset by the NJ method gave similar re-
sults. In trees of both clustering methods bootstrap
values are quite low, but are counterbalanced by the
clear pattern resolved. In conclusion, Nei–Li distances
show a clear grouping of individuals according to hab-
itat (subtidal, intertidal) and none according to geo-
graphic origin.

F-statistics from AMOVA also revealed significant
difference between subtidal and intertidal habitat and no
differentiation between localities (Table 4); 81% of the
variance was attributable to individual variation
(P<0.00001), 22% was attributable to habitats (Fbetween

habitats=0.21225, P<0.00001), and no variance was due
to geographic site, i.e. locality (Fbetween sites=)0.03068).
The negative variance between sites (Table 4) can be
taken as zero (Weir 1996). Analysis with the software
TFPGA confirmed these results with the same parti-
tioning of variance: Fbetween habitats=0.1961 (CI =
0.2395–0.1560) and Fbetween sites=0.0166 (CI = 0.0288–
0.0624).

Shannon’s index of diversity reflected higher genetic
diversity within subtidal sites than within intertidal ones
(Table 5; t-test of H¢j values of Sylt sites for all four
primers, P<0.05). Nei–Li genetic distances confirmed
these results (AMOVA of mean distances for individual
S. armiger, P<0.01).

Genetic diversity among sites, reflected in Nei–Li
genetic distances as well, was also higher in the

Fig. 2 Scoloplos armiger. RAPD marker pattern of eight individual
S. armiger using primer OPA-2 from location Rømø (S subtidal
specimen; E intertidal specimen; M molecular weight marker,
100 bp)

Table 2 RAPD primers used

Primer Sequence 5¢–3¢ Total no. of bands

OPA-2 TGC CGA GCT G 28
OPA-3 AGT CAG CCA C 32
OPA-9 GGG TAA CGC C 29
OPA-10 GTG ATC GCA G 27
Avg. bands per primer 29
Total bands 116

Table 3 Scoloplos armiger. Shannon’s indices for genetic diversity
between and within sites for four random oligonucleotide primers

Primer H¢pop H¢sp H¢pop/H¢sp
(within sites)

1)(H¢pop/H¢sp)
(between sites)

OPA-2 1.598 1.621 0.986 0.014
OPA-3 0.727 1.936 0.375 0.625
OPA-9 1.018 1.694 0.601 0.399
OPA-10 2.086 1.309 1.594 )0.594
Mean 2.854 1.245 0.889 0.111
Total 19.976 6.559 3.557 0.443
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subtidal: overall mean distance within the subtidal
was 78.1% (SD = 13.1) and within the intertidal was
57.2% (SD = 10.8) (Table 6; AMOVA of mean
distances within sites for individual S. armiger,
P < 0.01).

Fig. 3 Scoloplos armiger. RAPD genetic distances between subtidal
and intertidal S. armiger from four different locations. Unrooted
tree generated by the cluster analysis of UPGMA using Nei–Li
distances. Bootstrap values >50 are indicated at the nodes
(E intertidal, S subtidalhabitat, O, M, R Sylt locations Odde,
Morsum, Rømø, respectively; H Helgoland location; numbers
indicate individuals)
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Genetic differentiation using AFLP

UPGMA clustering of AFLP haplotypes revealed the
same genetic divergence among subtidal and intertidal
habitats as did the RAPD analysis. As an example, the
tree generated by the primer Ned-CAT is shown in
Fig. 4. The independent primer combination Mse-CAC
and Joe-AGG run with subsamples yielded the same
pattern. In contrast to the RAPD tree there was a no-
table separated cluster of subtidal individuals from the
locality Odde.

Discussion and conclusions

Our data support a genetic divergence of subtidal and
intertidal Scoloplos armiger. We also confirm our initial
assumption that pelagic larvae of S. armiger originate
from the subtidal habitat. Intertidal specimens produced
egg cocoons only. Thus, in the Wadden Sea area around
Sylt, both holobenthic and pelago-benthic development
exist in close proximity to each other. This is the first

evidence for the occurrence of one dominant reproduc-
tive type associated almost exclusively with either the
intertidal or the subtidal population of this polychaete.

Our laboratory experiments were rather character-
istic of subtidal conditions. Nevertheless, intertidal fe-
males produced egg cocoons. This is at odds with a
phenotypic switch in reproductive mode induced by
tidal exposure. Moreover, we found no intermediate or
individually flexible developmental mode in S. armiger
to support the existence of poecilogony (Hoagland and
Robertson 1988). S. armiger individuals either were
shedding their eggs into the water column, or, alter-
natively, were packing them into a jelly mass, the egg
cocoon. In contrast, intermediate types of development
have been found in Boccardia proboscidea, one of the
rare, truly poecilogonous polychaetes (Gibson et al.
1999; Schulze et al. 2000). In B. proboscidea the de-
velopmental mode varies within one single brood of
one female. For this species interfertility between dif-
ferent developmental modes and also molecular data
provided support for a single species (Gibson et al.
1999; Schulze et al. 2000).

Table 4 Scoloplos armiger. Analysis of molecular variance for population structure at six sites around Sylt, grouped first according to
location (Odde, Morsum, Rømø) and second according to habitat (subtidal, intertidal)

Source of
variation

df Sum of
squares

Variance
components

Percentage
of variation

P-value Fixation
indices

Interpretation

Between locations 2 52.878 )0.30591 )3.07 0.52297 Fct=)0.03068 No differentiation
between locations

Between habitats 3 100.552 2.18160 21.88 <0.00001 Fsc=0.21225 Significant difference
between habitats (subtidal, intertidal)

Within all sites 64 518.212 8.09706 81.19 <0.00001 Fst=0.18808

Table 5 Scoloplos armiger. Shannon’s index (H¢j) as estimates of genetic diversity within sites, modified after Bussell (1999) (site ab-
breviations, see Table 1)

Primer Intertidal sites Subtidal sites Average H¢j per
primer across

EM EO ER SH SM SO SR sites or H¢pop

OPA-2 1.460 1.603 0.669 1.840 1.758 2.032 1.823 1.598
OPA-3 0.292 0.335 0.694 1.312 0.825 0.816 0.814 0.727
OPA-9 0.850 1.314 0.809 1.216 0.921 1.201 0.818 1.018
OPA -0 1.742 1.554 1.143 3.030 2.387 2.595 2.154 2.086
Multi-locus H¢per site 3.232 3.480 2.696 2.739 2.772 2.419 2.638 2.854
Sum H¢j 4.344 4.806 3.315 7.397 5.890 6.644 5.608 5.610

Table 6 Scoloplos armiger.
Genetic distances after Nei and
Li (1979) between sites in
percent; mean values and
standard deviation
(parentheses) (site
abbreviations, see Table 1)

Intertidal sites Subtidal sites

EM EO ER SM SO SR

EO 53.7 (13.2)
ER 58.1 (8.3) 59.7 (9.6)
SM 67.8 (17.0) 69.8 (14.7) 67.8 (17.0)
SO 84.2 (10.4) 81.9 (10.6) 84.2 (10.4) 80.8 (12.4)
SR 69.6 (10.0) 72.1 (8.3) 65.6 (8.1) 70.4 (10.8) 72.9 (12.7)
SH 81.6 (11.8) 84.6 (11.9) 79.4 (12.8) 82.3 (10.6) 83.5 (9.9) 76.9 (12.3)
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Genetic differences between habitats versus
differentiation by distance

The existence of two distinct and spatially separated
reproductive modes in S. armiger can be explained by
two different scenarios. (1) The developmental mode is a
plastic response to different environmental cues corre-
lated with the division between intertidal and subtidal
habitat. Depending on the conditions, individuals
change their egg spawning behaviour. Individuals may
migrate or drift between these habitats, and together
form genetically coherent local or regional populations.
(2) The different modes of reproduction are genetically
fixed. Individuals perform few or no migrations, and
rarely interbreed between habitats. Pelagic larvae of
subtidal origin either find their way back to this habitat,
or post-settlement mortality in the intertidal is strong.
Juveniles hatched from cocoons in the intertidal are
rarely entrained in bedload transport towards the sub-
tidal, or their mortality is high once translocated from
the intertidal. Due to partial or total reproductive iso-
lation between S. armiger from intertidal and subtidal
habitats, genetically distinct populations or even species
are present.

The two scenarios lead to different predictions on the
spatial patterns of genetic variability. While we predict
only genetic differentiation through geographic separa-
tion (isolation by distance) in the first scenario (Wright
1946), a large genetic divergence between intertidal and
subtidal sites irrespective of geographic distance must be
present if the second scenario is applied. Clearly, our
data support the second scenario for Wadden Sea pop-
ulations of S. armiger. AMOVA analysis of RAPD
haplotypes of Sylt specimens attributed a significant

proportion of genetic variance to habitat and none
to locality, i.e. geographic origin. This pattern is
confirmed by our AFLP data. In UPGMA trees, from
both AFLP and RAPD data using Nei–Li distances,
subtidal and intertidal individuals each were found in
the same phylogenetic clade, while individuals from the
same locality revealed no phylogenetic proximity. In the
phylogenetic analysis bootstrap values are relatively low,
but the pattern is clear, and there is high consistency
among methods (i.e. AFLP, RAPD).

As the only exception to the overall pattern we
found five individuals of the subtidal site Morsum
grouping with intertidals. Possibly these were in fact
intertidal specimens that had migrated into the sub-
tidal. Since the subtidal site Morsum is surrounded by
large areas of intertidal habitat (Fig. 1), it is likely that
this site can be most affected by immigration of inter-
tidal S. armiger. The laboratory experiment on the
origin of larvae also indicated unidirectional migration
from the intertidal to the subtidal habitat. We observed
two females collected in the subtidal forming egg co-
coons. Intertidal S. armiger were found to be highly
erodible (Armonies 1999), lending support to the no-
tion that the subtidal population occasionally receives
migrants from the intertidal.

RAPD and AFLP have been found to be reliable
methods in systematics (Harris 1999). Reproducibility of
RAPD between laboratories has been doubted by some
authors (Jones et al. 1997). In the present study we
found high reproducibility. Moreover, the hypothesis
was studied in the same laboratory (for each method
AFLP or RAPD) during one distinct period of time. We
further note that any lack of reproducibility is conser-
vative with respect to the hypothesis being tested.
Moreover, AFLP and RAPD methods show essentially
the same results. AFLP is considered to be a highly re-
producible method (Jones et al. 1997). We conclude that
genetic divergence of subtidal and intertidal S. armiger
supports the hypothesis that S. armiger represents two
sibling species. However, further experiments, such as
cross-breeding trials, are necessary for conclusive vali-
dation.

Genetic variability within habitats
and dispersal potential

No matter whether populations of poecilogonous spe-
cies or different species are compared, genetic structure
of marine invertebrates may be strongly influenced by
the mode of larval development and its dispersal po-
tential (Crisp 1978). The latter may be directly correlated
with the effective population size. Populations with
larger effective population size tend to have higher het-
erozygosity (Kijima and Fujio 1984), which corresponds
to within-population diversity. It can be expected that
planktonically dispersed species exhibit low levels of
genetic variation among local populations, but relatively
high genotypic diversity within populations. In contrast,

Fig. 4 Scoloplos armiger. AFLP genetic distances between subtidal
and intertidal S. armiger from four different sites. Unrooted
tree generated by the cluster analysis of UPGMA using Nei–Li
distances. The primer used was Ned-CAT, 10 intertidal and 11
subtidal S. armiger. Bootstrap values >50 are indicated at the
nodes (E intertidal, S subtidalhabitat, O, M, R Sylt locations Odde,
Morsum, Rømø, respectively; H Helgoland location; numbers
indicate individuals; SR3.1, SR3.2 are replicates)
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direct or holobenthic developers should undergo highly
restricted dispersal and, thus, form sets of closed and
relatively inbred local populations, with low diversity
and high levels of genetic variation among local popu-
lations (Burton and Feldman 1982). We found signifi-
cantly higher genetic diversity within subtidal than
within intertidal sites and also numerous bands, which
were unique only to subtidal S. armiger, whereas we
found none for the intertidals. This is consistent with a
higher effective population size in subtidal populations.
Retention time in the water column for pelagic larvae of
S. armiger is estimated to be 2 weeks (Plate and Huse-
mann 1991). In theory, this timespan allows the Sylt
subtidal population to perform genetic exchange even
with the open North Sea. In contrast, poorly dispersing
intertidal S. armiger are limited to the near-shore area.
In the intertidal habitat the effective population size is
supposed to be smaller; thus, many more bands may be
lost over time due to drift.

Surprisingly, genetic distances among populations
were inconsistent with this model. They were higher
between subtidal localities than between intertidal ones,
although we would expect the opposite pattern; the
reasons for this remain speculative. One possible expla-
nation could be that the subtidal habitat is more heter-
ogenic in selective pressure than the intertidal habitat.
Mobility may be another factor diminishing among-
population differences. In Littorina saxatilis, Wilhelm-
sen (1999) found remarkably low genetic differentiation
within the Wadden Sea around Sylt. She suggests a high
colonisation potential, in spite of the ovoviviparous
development in this snail. Also S. armiger from the in-
tertidal area of the Wadden Sea may be interconnected
to a much higher extent by along-shore dispersal than a
priori assumed. Erosion and migration via mobile sedi-
ments is a common means of transport for marine in-
vertebrates in intertidal soft-sediment communities
(Tamaki 1987; Butman and Grassle 1992; Zühlke and
Reise 1994; Turner et al. 1997; Grant et al. 1997). Ar-
monies (1999) notes that benthic juveniles of S. armiger
are exceptionally susceptible to sediment disturbance
and displacement within the intertidal.

Population genetic structure of four Littorina species
does not reflect predictions as to their dispersal poten-
tial. Instead, the significance of their historical demog-
raphy is emphasised (Kyle and Boulding 2000). Very
similar to findings for S. armiger, in the polychaete
Hediste japonica, one sibling species exhibits planktonic
development, while the other has direct-developing lar-
vae. Genetic marker data revealed that among-popula-
tion differentiation is consistent with dispersal capacity
(higher in the direct-developing form), whereas within-
population diversity was unexpectedly lower within the
open-water planktonic form (Sato 1999). In S. armiger
we find a similar partial discordance between population
genetic prediction and empirical data, yet the situation is
reversed, with concordance based on diversity, while
differentiation is at odds with expectations. Obviously,
genetic patterns cannot be interpreted based on devel-

opmental mode alone; species- and habitat-specific dis-
persal characteristics need to be considered as well.

Developmental switch and reproductive isolation

Transitions in larval developmental strategies may lead to
rapid reproductive isolation, which finally may result in
speciation (Hoagland and Robertson 1988). This is sup-
ported by numerous discoveries of sibling species, which
previously had been regarded as poecilogonous. In par-
ticular, in polychaetes, several studies applying genetic
markers have been published on this subject for Capitella
spp. (Grassle and Grassle 1976; Baoling et al. 1988),
Marenzelleria viridis and M. wireni (Bastrop et al. 1998;
Jürss et al. 1999), Streblospio benedicti and S. gynobran-
chiata (Schulze et al. 2000), and Hediste spp. (Sato and
Masuda 1997; Sato 1999). Scoloplos armiger is a potential
candidate to be added to this list in the future. Thus far,
the only true and undoubted examples of poecilogonous
polychaetes in the literature are Streblospio benedicti,
Boccardia proboscidea andPygospio elegans (Gibson et al.
1999; Morgan et al. 1999; Schulze et al. 2000).

However, reproductive strategies may be derived
from both the phyletic history of the group and envi-
ronmental cues. For S. armiger phyletic causation for
one reproductive mode appears to be weak, since vari-
ability within the family Orbiniidae is high. Four of ten
species exhibit direct development and six are free
spawning (Giangrande 1997). Instead, physical differ-
ences between the intertidal and subtidal environment
must have disrupted modes of development. The egg
cocoon has been considered to retain the larvae in the
intertidal habitat (Gibbs 1968). Thus, the intertidal
seems to feature suitable conditions for S. armiger,
which are absent in the subtidal.

In recent years speciation in the marine habitat has
attracted much attention (Palumbi 1992, 1994). Ac-
cording to a strictly allopatric speciation model, the high
dispersal and large populations typical for marine
macroinvertebrate species suggest a lower speciation
rate than is actually indicated by the high marine bi-
odiversity at all spatial and temporal scales. Given nu-
merous marine sister species, which occur in sympatry, it
has been argued that reproductive isolation may evolve
much faster than expected. Such divergence also applies
to large, semi-isolated populations, driven by both well-
known evolutionary mechanisms and newly discovered
genetic processes. Polychaete species provide an excel-
lent taxonomic group to study the evolution of popu-
lation divergence in marine organisms, given their high
plasticity in developmental modes with probable inde-
pendent evolution (Giangrande 1997). They also exhibit
broad geographic ranges and apparently no strict bar-
riers to gene flow. Many sibling species occur in symp-
atry or parapatry (Knowlton 1993), while allopatric
divergence is seldom apparent, like in Streblospio
spp. (Schulze et al. 2000). As shown in these species
mitochondrial DNA can be used to age a species split
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and to interpret intraspecific variation in larval devel-
opment within a phylogeographic framework. A similar
approach may be useful for Scoloplos armiger, where in
this species the sympatric occurrence of the two devel-
opmental modes correlated with genetic divergence,
suggesting that incipient or concluded sympatric speci-
ation may be involved.
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