Deutsche Forschungsgemeinschaft DFG

Climate - Biogeochemistry Interactions in the Tropical Ocean SFB- 754

Research Kie

tic

pers at <u>core.ac.uk</u>

brought to you by 🔟

Vertical Mixing in the Tropical North Atla Ocean; Results from a large scale Tracer Relea Experiment

Toste Tanhua

Donata Banyte, Doug W.R. Wallace, Johannes Karstensen, Gerd Krahmann, Anke Schneider, Lothar Stramma, Martin Visbeck

Helmholtz Centre for Ocean Research | GEOMAR, Kiel, Germany

The Oxygen Minimum Zone in the Tropical North Atlantic Ocean – The Guinea Dome.

The "SFB 754" Climate – Biogeochemistry Interactions in the Tropical Ocean

Guinea Upwelling Tracer Release Experiment (GUTRE) How does subsurface dissolved oxygen in the tropical ocean respond to variability in ocean circulation and ventilation?

Circulation and Oxygen Concentration:

• Dissolved Oxygen can be supplied by:

1) Lateral Pathways by mean and variable currents along isopycnals

2) Vertical Pathways by mixing across isopycnals

Objective:

- Constrain estimates of diapycnal and isopycnal mixing in the ocean
- Observe advection of "labeled" water masses
- Study biogeochemical processes within the labeled water mass

Advantage:

- Integrated value of all processes over a certain time period over a larger area
- Estimates to high accuracy is possible

Challenges:

- Only limited process understanding

The Tracer Injection:

92 kg (470 mole) of CF_3SF_5 was Injected on the density surface σ_{Θ} = 26.88 kg m⁻³ and 8°N, 23°W - In the upper oxygen gradient of the Tropical North Atlantic OMZ

 CF_3SF_5 is an inert gas that does not vave any measurable background concentration in the ocean.

The Scene:

Topography

•Seamount chain in the SE •Abyssal plain in the NW

High stratification in SELow stratification in NW

Assuming Gaussian distribution

Normalized vertical profiles closely resembles Gaussian distribution, so that the diffusivity can be calculated by the second moment of the Gaussian fit.

 $K_z = S^2(t2) - S^2(t1) / 2(t2 - t1)$

Vertical advection diffusion model

$$\frac{\partial \bar{c}}{\partial t} + (\bar{w}_z - \frac{\partial D_z}{\partial z})\frac{\partial \bar{c}}{\partial z} = D_z \frac{\partial^2 \bar{c}}{\partial z^2},$$

$$\frac{\partial \bar{c}}{\partial t} + (\bar{w_{\rho}} - \frac{\partial D_{\rho}}{\partial \rho}) \frac{\partial \bar{c}}{\partial \rho} = |D_{\rho} \frac{\partial^2 \bar{c}}{\partial \rho^2}$$

We did these calculations in:

depth (D_z in m² s⁻¹)

and $D_z = \frac{D_{
ho}}{(\partial
ho / \partial z)^2}$

density (D_{ρ} in (kg m⁻³)² s⁻¹)

Results:

A significant upward velocity for the time between survey1 and 2/3 $1.6 \pm 0.6 \times 10^{-7} \text{ m s}^{-1}$ (i.e. ~5 m y⁻¹) Vertical diffusivity: $D_{z} = 1.18 \pm 0.13 \times 10^{-5} \text{ m}^{2} \text{ s}^{-1}$ $D_0 = 3.10 \pm 0.28 \text{ x } 10^{-11} \text{ (kg m}^{-3})^2 \text{ s}^{-1}$

diffusion ($\delta D/\delta z$)

The GUTRE experiment (Latitude 4° - 12° N) has somewhat higher diffusivity (dissipation rates) than predicted by Gregg et al., (2003) compared to the NATRE experiment (Latitude 10° - 26° N) (Ledwell et al., 1998).

Enhanced mixing over rough topography might be an explanation for this.

We have introduced the diapycnal diffusivity in density space (D $_{\rho})$ with the units of (kg m^-3)^2 s^-1.

 D_{ρ} is a useful property; in our experiment we see higher mixing over rough Topography only in D_{ρ} space, not in D_{z} (where we see the opposite pattern).

$$\langle w_{\rho}C_{O2}'\rangle = -D_z \frac{d\rho}{dz} \frac{dO_2}{dz} = -D_{\rho} \frac{dO_2}{d\rho},$$

D_o thus defines the concentration changes over time for parameters like oxygen.

A "tropical" TRE over the Oxygen Minimum Zone in the Atlantic Ocean

• We find diapycnal diffusivities that are slightly lower than for NATRE roughly 10° further north

 $D_z = 1.18 \pm 0.13 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$ $D_\rho = 3.10 \pm 0.28 \times 10^{-11} \text{ (kg m}^{-3})^2 \text{ s}^{-1}$

- We find significant regional differences in D_{ρ} probably associated with topographic "roughness"

