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passive  scatterers

deduce
velocity  from
Doppler-
shifted  echo

Acoustic imaging of internal wave shear  —  a proxy for turbulent mixing

Shear quantification from a moving ship  —  2 main issues

Processing:  From acoustic pings to shear level to diapycnal diffusivity

Application at Tropical North Atlantic Oxygen Minimum Zone :
Inferring diapycnal mixing and diapycnal oxygen transport
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speed-dependent horizontal smoothing patchy distribution of acoustic scatterers

minute

d
ep

th
 m

 

 

0 30 60 90 120 150 180 210 240 270

50

100

150

200

250

300

350

400

450

500

log10 (S2)

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

across-ship vertical shear
(uncorrected)

average and filter ADCP velocities across-ship corrected shear spectra:
determine shear spectral level G

 relative to Garrett-Munk background

parametrize dissipation rate ε
from shear spectral level and

internal wave slope

ε estimates allow estimation 
of diapycnal diffusivity
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bathymetry and oxygen minimum concentration
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When moving, any observed periodic quantity will be 
reduced in variability by smoothing - as a function of 
shipspeed and distribution of involved horizontal 
wavelengths. Some degree of smoothing is unavoida-
ble, because of needed noise reduction and because 
of the size of the acoustic footprint.

slow fast

remaining shear variability in percent -
dependence on vertical wavelength and amount of averaging
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Consequences:
• Reduce averaging time to 1 minute
• Obtain needed data precision by 2-D-filtering of
   velocity data. Filter adapted to IW spectral shape.
• Apply speed-dependent corrections to shear spectra

Acoustic scatterers like 
plankton distribute 
inhomogeneously.

Geometric acoustic 
beam spreading 
causes related
spurious velocities.

This bias affects
velocity component in
direction of movement.

Across-ship
velocity component
is unaffected.

Spurious internal wave shear
in along-ship component when moving:

Consequence:
• Discard along-ship component unless on station

shear spectral level relative to Garrett-Munk background :
distribution during 2 ship cruises

< 1 kt

> 9 kt

across

across
along

along

single ping 
across-ship 

velocity 
component

after 1-minute
averaging and

adapted 2-D filter:
   

∆v = 0.5 cm/s

velocity first-difference squared
vertical shear power spectrum

G = ΦS/ΦS,GM = E/EGM

From ε calculate diapycnal diffusivity 
using Osborn‘s relation

K = 0.2 ε / N2

                 Ansatz    ε = c 1
a 2

b
   

    with  1 =  f/N    prop. to wave slope
      and  2 = N2G    prop. to shear spectral level

ε = 1/24 1
3/4 2

7/5    
   

This parametrization for ε turns out to be 
a condensed version of the state-of-the-art 
parametrization [Polzin et al. 1995, Gregg 
et al. 2003] and is particularly appropriate 
for cruise work with short stations.
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          [Polzin et al 1995]

Tropical Atlantic Oxygen Minimum Zone

typical / average profiles of oxygen, density and dissipation rate

Diapycnal diffusivity K
estimated from microstructure measurements

( during 3 cruises 2008-2010 )

Topographic patterns in diapycnal 
mixing and diapycnal oxygen downflux

Diapycnal diffusivity K
estimated from underway acoustics

( during 3 cruises 2008-2010 )

55 independent K values

time investment: 80 ship hours

600 independent K values
 

no extra ship time needed
  

CTDs are helpful for N2 input to the parametrization,
 but climatological N2 data would be sufficiently precise.
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Dissipation rate ε
at locations of oxygen
profiles.
Mean K = 1.2•10-5 m2/s
In agreement with simul-
taneous Tracer Release 
Experiment
[Banyte et al 2011]).

  

Oxygen gradient c at 
upper boundary of deep 
oxygen minimum

Diapycnal oxygen
downflux
  

        ε  c
   

Mean  = 6 nmol/m2/s
accounting for about
30 % of total supply.
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Underway ADCP

Acoustic Doppler Current Profilers 
(vessel mounted RDI Ocean Surve-
yor) allow recording of finescale 
velocity fluctuations associated 
with internal wave shear. We use a 
75 kHz broadband configuration at 
maximum pingrate for optimum 
results. Nonetheless, neighbouring 
frequencies and/or narrowband 
mode do also work.

Microstructure profiles

serve as „ground-truthing“ for 
mixing estimates from internal 
wave shear. Airfoil shear sensors 
on a tethered profiling probe (Sea & 
Sun Technology) sense microstruc-
ture velocity fluctuations. These 
define , the dissipation rate of tur-
bulent kinetic energy, as an indica-
tor for mixing intensity. Instrument 
noise level is  = 7e-10 for single 
bins and = 1e-10 for 300m-depth-
range-averages.  

Mixing, oxygen gradient and flux - all three peak at 
Sierra Leone Rise and become weak above the adjacent 
abyssal plains to the North and to the Southeast.
 

finescale shear and turbulence linked
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