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ABSTRACT

Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the

Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature

increase on time scales of a few days and a strongly disturbed stratospheric vortex. This work investigates

a wide class of supervised learning methods with respect to their ability to classify stratospheric warmings,

using temperature anomalies from the Arctic stratosphere and atmospheric forcings such as ENSO, the quasi-

biennial oscillation (QBO), and the solar cycle. It is demonstrated that one representative of the supervised

learning methods family, namely nonlinear neural networks, is able to reliably classify stratospheric warm-

ings. Within this framework, one can estimate temporal onset, duration, and intensity of stratospheric

warming events independently of a particular pressure level. In contrast to classification methods based on

the zonal-mean zonal wind, the approach herein distinguishes major, minor, and final warmings. Instead of

a binary measure, it provides continuous conditional probabilities for each warming event representing the

amount of deviation from an undisturbed polar vortex. Additionally, the statistical importance of the at-

mospheric factors is estimated. It is shown how marginalized probability distributions can give insights into

the interrelationships between external factors. This approach is applied to 40-yr and interim ECMWF

(ERA-40/ERA-Interim) and NCEP–NCAR reanalysis data for the period from 1958 through 2010.

1. Introduction

The variability of the north polar stratospheric vor-

tex is a key dynamical feature of the middle atmo-

sphere (Labitzke and van Loon 1999; Andrews et al.

1987)—specifically, its breakdown during winter result-

ing in a sudden stratospheric warming (SSW) (Scherhag

1952) taking place every 2 yr on average (Labitzke and

Naujokat 2000). Obtaining insight into the dynamics,

frequencies, and climatologies of stratospheric warming

events is crucial to understand the underlying physical

processes (Matsuno 1971; McIntyre 1982; Baldwin and

Holton 1988) and relationships to atmospheric vari-

ability factors.

There have been several methods proposed in the past

that can classify stratospheric warmings and measure the

variability of the stratospheric vortex. Very common is

the method based on the zonal-mean zonal wind at 608N

and 10 hPa originally introduced by the Stratospheric

Group Berlin (Labitzke and Naujokat 2000) and in-

corporated by the World Meteorological Organization

(WMO). It was used by Charlton and Polvani (2007) to

compile climatologies of sudden stratospheric warmings

derived from reanalyses data. It is a simple and effective

method for measuring if and when a sudden strato-

spheric warming takes place leading to a vortex break-

down. Another method is based on the northern annular

mode (NAM) (Baldwin and Dunkerton 2001) computed

from geopotential anomalies in the middle stratosphere.

The NAM measures the deviation from the climato-

logical mean state of the polar middle atmosphere. It
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measures the amount of disturbance but cannot alone be

used to detect the occurrence of a vortex breakdown. It

is widely used to detect downward propagation into the

troposphere. The method based on 2D moments (e.g.,

Mitchell et al. 2011a) is a different way of measuring

vortex variability. In contrast to the zonal wind measure

and the NAM, it directly examines the geometrical struc-

ture of the vortex, such as position and size. In addition,

it is used to measure the vortex strength.

In this work, a method is proposed that extends and

combines the zonal wind measure and the NAM ap-

proach but does not examine the vortex structure. It

incorporates significant atmospheric forcings, called

external factors, that play an important role in the win-

tertime evolution of the polar stratosphere. These ex-

ternals factors are the quasi-biennial oscillation (QBO;

e.g., Holton and Tan 1980, 1982), the El Niño–Southern

Oscillation (ENSO; e.g., Manzini et al. 2006), and the

11-yr solar cycle (SC; e.g., Gray et al. 2010). These

forcings interact and create a complex and nonlinear

dynamical response (e.g., Calvo et al. 2009; Richter et al.

2011). There are previous efforts, such as those of

Labitzke and Kunze (2009a), Camp and Tung (2007a,b),

and Mitchell et al. (2011b), that statistically investigated

the impact of these forcings on the evolution of the polar

vortex. Their analysis methods are linear, incorporating

only a few factors at the same time. In this work, we

use a nonlinear method with three external factors si-

multaneously to classify not only sudden stratospheric

warmings but also minor and major final warmings

as well as undisturbed vortex states at the same time.

The classification procedure is a continuous analysis of

stratospheric warming events for 52 consecutive winters

in the period from 1958 through 2010.

In contrast to previous methods, the proposed classi-

fication method does not lead to a yes/no criterion but a

continuous probability measure, which has the advan-

tage of detecting the amount of deviation from the cli-

matological mean state of the Arctic stratosphere. This

disturbance of the polar vortex can then end up in one of

the aforementioned stratospheric warming events.

Dealing in terms of probabilities has the advantage of

obtaining a temporal evolution of the likelihood of oc-

currence of a stratospheric warming state (e.g., major

warming state), given the remaining states. In addition,

the temporal onset, duration, and intensity of strato-

spheric warming events are calculated independently of

a particular pressure level.

In this work, a wide class of supervised learning

methods is considered and a classification method for

stratospheric warmings based on a nonlinear statistical

model, a neural network, is proposed. A supervised

statistical method needs fixed pairs of input and output

objects presented to it during training, meaning that the

true outcome is known a priori. We show that a non-

linear model is suited better to recognize the complex

nonlinear response between atmospheric forcings and

polar vortex variability. Moreover, it is demonstrated

that the approach based on a neural network can classify

not only major midwinter stratospheric warmings (re-

ferred to hereafter as major warmings), but also minor

stratospheric warmings (referred to hereafter as minor

warmings), as well as major final stratospheric warmings

(referred to hereafter as final warmings). So-called Ca-

nadian warmings will be grouped into the class of minor

warming events.

Major and final warmings are characterized by a strong

anomalous temperature increase at most pressure lev-

els of the Arctic middle stratosphere, accompanied by

a breakdown of the polar vortex and a reversal of the

zonal stratospheric flow in midlatitudes from westerlies to

easterlies. Major warmings are often preceded by block-

ing situations in the troposphere over the Atlantic and/or

Pacific sector (Martius et al. 2009). Major warmings hap-

pen on average every other year during midwinter; hence

there is enough time for the polar vortex to recover after

a major warming. The polar vortex does not recover after

a final warming as they take place at the transition be-

tween winter and summer circulation. Please note that

final warmings naturally happen every year whereas

final warmings (Labitzke and Naujokat 2000) in this

work have to be accompanied by an anomalous tem-

perature increase with respect to a climatology (major

final warming). Minor warmings are characterized by an

anomalous temperature increase and do not lead to

a reversal of the zonal stratospheric flow in midlatitudes

but rather to a disturbed polar vortex. Minor warmings

often take place more than once in a given winter and

are typically more upper-stratospheric events. Canadian

warmings are minor warmings with the difference that

anomalous temperatures are observed mainly in lower

levels of the polar stratosphere. They are characterized

by an enhancement of the Aleutian high (Labitzke and

van Loon 1999).

This work is arranged as follows: Section 2 gives an

overview of the data and input factors and introduces

the calculation of the training sample. Section 3 reviews

the supervised learning approaches and compares them

with respect to their ability of classifying stratospheric

warmings. Section 4 introduces the multilayer percep-

tron and estimates an optimal model architecture. Sec-

tion 5 presents resulting warming probabilities and

corresponding postprocessing in the 40-yr and interim

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Re-Analysis (ERA-40/ERA-Interim)

and National Centers for Environmental Prediction
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(NCEP)–National Center for Atmospheric Research

(NCAR) reanalyses. The classification performance is

evaluated and the impact of external factors computed.

Section 6 classifies stratospheric warmings and presents

a pathway toward understanding nonlinearities between

different atmospheric forcings. Finally, conclusions and

suggestions for further research are given.

2. Data

Three reanalysis datasets are utilized in this study:

ERA-40 (Uppala et al. 2005), available up to 1 hPa from

1957 to 2002; ERA-Interim (Simmons et al. 2006),

available up to 0.1 hPa from 1989 to the present; and the

NCEP–NCAR reanalysis (Kalnay et al. 1996), available

up to 10 hPa from 1948 to the present. The ERA-40 and

ERA-Interim datasets resolve the entire stratosphere

whereas the NCEP–NCAR reanalysis resolves only the

middle and lower stratosphere. We will hereafter refer

to the NCEP–NCAR reanalysis dataset as NCEP.

Time series from ERA-40 and ERA-Interim have

been combined into one dataset that we refer to here-

after as ERA. This combination is justified by a small

approximately Gaussian residual with zero mean calcu-

lated from the overlapping period (1989–2002) between

the time series used in this work, separately calculated

from ERA-40 and ERA-Interim. In this combined set,

ERA-40 data have been used until 1 March 1989 and

ERA-Interim data thereafter. This date has been selected

because stratospheric temperatures and winds are very

similar at and around this date, leading to a smooth

transition between the two datasets. Both datasets, ERA

and NCEP, are utilized for the time from 1 October 1958

through 1 May 2010, which covers 52 winters. ERA is

utilized to train the statistical model. NCEP is utilized for

validation because it is quite different from ERA in the

polar region on account of its sparseness of observations,

especially on the daily scale and for the presatellite era

(Labitzke and Kunze 2005; Charlton and Polvani 2007).

Also, it only reaches up to 10 hPa, leading to potentially

different variability compared to ERA. ERA and NCEP

have many input factors in common but, especially dur-

ing the presatellite era, forcings in sea surface tempera-

ture (e.g., as seen in ENSO) along with equatorial

stratospheric winds (e.g., as seen in the QBO) are sig-

nificantly different.

Except for the zonal wind, all time series are nor-

malized to ensure similar magnitudes according to

x̂t 5 (xt 2 mx)/sx "t, (1)

where xt denotes the time series at time index t, mx is

the mean of x, and sx is its standard deviation. In the

literature this may also be called standardization. By

applying Eq. (1), the normalized time series have zero

mean and a variance of one.

a. The external factors: QBO, ENSO, and the solar
cycle

This analysis makes use of three external factors

that describe large-scale phenomena important for the

stratosphere. It has been shown in previous studies (e.g.,

Labitzke and van Loon 1988; Camp and Tung 2007a,b;

Mitchell et al. 2011b) that there exists a complex link

among the external factors, namely the QBO, ENSO,

SC, and the vortex variability. These studies showed,

for example, that the least-perturbed vortex state is so-

lar minimum and QBO west. It was also shown that

the polar vortex is more likely to break down during

El Niño–like conditions. Other studies have shown that

this link is nonlinear (Calvo et al. 2009; Richter et al.

2011). The idea behind this work is to incorporate these

external factors to classify stratospheric warmings on the

one hand, and on the other to obtain insight into their

statistical importance and interrelationships. In the fol-

lowing, we give a brief description of the corresponding

indices.

The QBO index is the 50-hPa zonal-mean zonal wind

anomaly averaged between 58S and 58N. For a representa-

tion of ENSO, we use the Niño-3.4 index (Trenberth 1997),

which is the area-weighted average in sea surface tem-

perature anomalies in the box from 1708 to 1208E and

from 58S to 58N. As a proxy for the solar irradiance, the

radio flux at a wavelength of 10.7 cm (F10.7; ftp://ftp.

ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/

FLUX/Penticton_Observed/daily/DAILYPLT.OBS) is uti-

lized. There are a few missing values in F10.7 that were

filled by a linear interpolation, computed from the neigh-

boring measurements. To reduce short-term fluctuations,

the daily external factors have been sent through a low-

pass filter calculating the 10-day running mean. This value

was chosen to be more than a few days but much less than

a month. Hence, daily short-term extremes are avoided in

ENSO, QBO, and SC, but an approximately weekly res-

olution is retained.

b. Temperature

The classification procedure uses stratospheric tem-

peratures because warming events have to be detectable

naturally in Arctic temperatures. Temperature time

series are considered at 10-, 20-, and 30-hPa levels where

stratospheric warmings are always observed. They are

also observable in upper and lower parts of the polar

stratosphere depending on whether the event is a vortex

split or displacement event. Vortex-splitting events tend

to be observable near-instantaneously throughout most
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parts of the polar stratosphere (;20–40 km) whereas

vortex displacement off the pole increases with altitude

(Matthewman et al. 2009).

The temperature time series are taken as an area-

weighted average over the north polar cap between 608

and 908N and are anomalies relative to their individual

long-term mean. This treatment makes the time series

equivalent to the northern annual mode in temperature

(not geopotential) at the respective levels. The resulting

temperature time series are highly correlated; however,

the inputs to a classification approach should be dec-

orrelated. A principal component analysis (PCA; von

Storch and Zwiers 2001) of the three time series reveals

that the first principal component (PC1) explains more

than 90% of the overall variance in both ERA and

NCEP (not shown). Therefore, PC1 is solely used as

a robust representation of the temperature anomalies in

the Arctic middle stratosphere, not favoring a particular

pressure level. The normalized PC1 is displayed in Fig. 1

for ERA and NCEP, for a sample period of five winters

from autumn 2005 to spring 2009. Because of the high

degree of explained variance, PC1 is not used for clas-

sification only but also as a measure for the intensity of

a stratospheric warming event (see section 6). Intensity

is therefore a measure not only of strength but also of

vertical expansion. It is taken as the maximum PC1

value during a warming event.

c. Training sample

The main property of a supervised statistical model is

that fixed sets of input and output objects are presented

to it during training. The output is often called the truth,

which has to be obtained externally. In our case, we

make use of, among others, the zonal-mean zonal wind

at 608N and 10 hPa to receive time series of the four

vortex states. We call the training sample the set of data

that is presented to the statistical model during training.

The statistical model will learn from the training sample.

It can then be evaluated without using anything but the

polar-cap temperature and the external factors. Here,

the model learns the patterns between the given inputs

and the vortex variability, making it possible to classify

warming events in frequency, intensity, and duration

and also to learn about impacts and relationships of the

input factors.

Four classification time series have been produced,

representing four different states of the Arctic strato-

sphere. The first three are major Wmajor, minor Wminor,

and final Wfinal stratospheric warmings. The last is the

undisturbed state Wundis in which no stratospheric warm-

ings take place. Please note that Wundis does not denote

that the polar vortex is not perturbed at all. It simply de-

notes the absent of stratospheric warming events. Three

time series are used to calculate the training sample: PC1,

the zonal-mean zonal wind at 608N and 10 hPa U10,60N;

and the long-term mean of the 30-hPa polar-cap temper-

ature T30.

The training sample is computed from ERA as fol-

lows. First, we define the disturbed state Wdis at time t as

Wdis
t :5

1 PC1t . 1

0 otherwise
,

�
(2)

which means that PC1 needs to exceed one standard

deviation. This only happens during wintertime. The value

of one sigma is relatively robust toward the number

of derived major warmings and leads to just the right

amount of average minor and final warmings per winter

compared to observations. The undisturbed state Wundis

is now given by

Wundis
t :5 1 2 Wdis

t , (3)

which denotes the state that is least disturbed. Please

note that the polar stratosphere is constantly perturbed

by the dissipation of planetary waves (Labitzke and van

Loon 1999). The next task is to extract major, minor, and

final warmings from Wdis. We start with final warmings.

The term T30
t denotes a temporal measure so that

T30
t , 0 represents the winter and T30

t . 0 the summer

period (T30
t is normalized). Therefore, values close to

zero represent the transition between winter and sum-

mer or vice versa.

To classify major final warmings (referred to simply as

final warmings), we have found the following definition

to be appropriate:

Wfinal
t :5

1 Wdis
t 5 1 ^ T30

t $ 0

0 otherwise
,

(
(4)

FIG. 1. Normalized first principal component for ERA-40 (black)

and NCEP (gray) for a sample period from summer 2005 to sum-

mer 2010 covering five winters. Labeled is 1 Jan of the particular

year.
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which implies that disturbed states that happen in the

transition phase from winter to summer are counted as

final warming events. There are no disturbed states at

the transition from summer to winter.

To determine major warmings, U10,60N needs to be in-

corporated. According to, for example, Charlton and

Polvani (2007), a major warming event takes place if

U10,60N , 0 (easterlies) during the wintertime. There-

fore, we define the major warming state as

W
major
t :5

1 Wdis
t 5 1 ^Wfinal

t 5 0 ^U10,60N
t , 0

0 otherwise
.

(

(5)

We added a neighborhood of 5 days in which the zonal-

mean zonal wind can become easterly. The peak in

temperature in the middle stratosphere during a major

warming is usually a few days earlier than the wind re-

versal in 608N. The minor warming state is now simply

given by

Wminor
t :5

1 Wdis
t 5 1 ^Wfinal

t 5 0 ^W
major
t 5 0

0 otherwise
.

(

(6)

During the procedure of computing an appropriate train-

ing sample, it was ensured that contiguous events in Wdis

were assigned to only one type of warming state. The

warming states fulfill the condition

W
major
t 1 Wminor

t 1 Wfinal
t 1 Wundis

t 5 1 "t. (7)

For instance, the results for the winter 1987/88 are dis-

played in Fig. 2. The minor, major, and final warming

events are observed clearly. The time axis labels indicate

the first day of the particular month in a given year.

d. Memory

Since there might be certain memory in the system, we

need to get an estimate of the temporal lags of the ex-

ternal factors (QBO, ENSO, SC) that minimize the

classification error. For reasons of simplicity and to re-

duce computational efforts, we restricted this calculation

to a linear classification procedure (see next section) and

only one target. This target has been chosen to be Wmajor

as major warmings are of greatest interest.

A temporal lag larger than zero for SC does not seem

to reduce the classification error at all. Therefore, the SC

lag has been fixed to zero, and only the lags for QBO and

ENSO have been varied between 0 and 180 days. An

analysis with a step size of 1 day has been performed to

find the optimal lags of 93 days for the QBO and 140

days for ENSO. These lags minimize the classification

error and are used in all further analysis steps.

After estimating a set of lags for the external factors,

it is interesting to calculate linear correlations between

all input time series. It is generally favorable to use

uncorrelated input variables when facing classification

problems. The correlation matrix (not shown) reveals

that there is no correlation apparent between any of the

input variables. This also holds when keeping all time

series at zero lag.

3. Statistical methods for classification

This section shortly reviews the three statistical methods

that are later compared with respect to their classification

performance to find the optimal method. Supervised

learning (Theodoridis and Koutroumbas 2006; Marques

de Sá 2001) is the task of deriving a function from a

known training dataset consisting of pairs of input and

output objects. For classification tasks the derived func-

tion is called a classifier.

Linear discriminant analysis (LDA) and linear sup-

port vector machines (LSVMs) represent the group of

linear classifiers in our analysis, whereas multilayer per-

ceptrons (MLPs) are generally nonlinear classifiers. In

the following, it is assumed that there is a feature vector

x 2 Rm and n training events. For reasons of simplicity,

only two target classes (0, 1) are considered in the com-

parison of the three methods.

a. Linear discriminant analysis

Linear discriminant analysis (Wilks 1995; Montgomery

et al. 2006) classifies data using a linear model. The dis-

criminant function

y(x) 5 xTb 1 b0 (8)

FIG. 2. Normalized PC1 for the winter 1987/88. The long-term

mean of the 30-hPa temperature T30, the standard deviation s 5 1,

and the estimated stratospheric warming events are displayed.

Labeled is the first day of the particular month in a given year

(MM/YYYY).
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is linear in its parameters b 2 Rm, where b0 2 R denotes

a bias term that is usually selected so that y , 0 for

class 0 and y $ 0 for class 1. The equation for estimating

b 2 Rm11 is

Y 5 Xb, (9)

where Y 2 f0, 1gn and X 2 Rn3(m11). Applying the

method of least squares, the normal equations of the

classification problem are given by

XTXb 5 XTY 5 b 5 (XTX)21XTY, (10)

where (XTX)21XT denotes the Moore–Penrose pseudo

inverse of X, which requires X to have full rank. LDA

also assumes that the resulting residual is Gaussian dis-

tributed.

Let x1 and x2 be two events on the decision boundary.

It follows that y(x1) 5 y(x2) 5 0 and hence (x1 2 x2)Tb 5

0. Geometrically speaking, LDA is the task of finding a

vector b that is orthogonal to the decision hyperplane.

b. Linear support vector machines

Support vector machines (Vapnik 1995; Burges 1998)

try to find an optimal hyperplane that classifies data

points by separating these points as much as possible. Let

us assume that the data are not perfectly separable, which

means that there will be a certain amount of mis-

classification. Then, a vector w 2 Rm, a parameter b 2 R,

and ji $ 0 can be found so that

yi(xT
i w 1 b) 2 1 1 ji $ 0 "i 2 f1, . . . , ng, (11)

where the pair (w, b) defines the separating hyperplane.

In Eq. (11), ji denotes the so-called slack variable that

measures the amount of misclassification of the feature

vector xi. The classification margin m 5 2/jwj is to be

maximized with respect to the constraints given in Eq.

(11). Hence, maximizing the margin is equivalent to

minimizing the cost function

W 5
1

2
jwj2 1 C �

n

i51

ji, (12)

with w subject to Eq. (11). The training events xi that lie

on the margin are called the support vectors (SVs). Also,

C 2 R in Eq. (12) denotes a parameter describing the

trade-off between maximizing the margin and mis-

classification. Introducing slack variables is equivalent

to support vector machines with soft margins.

Equation (12) is a constrained quadratic optimization

problem that has a unique solution. It is solved by

translating into Lagrangian formalism. The resulting

nonzero Lagrangian multipliers define the support

vectors.

In practice, there are only rare cases in which ji 5 0 "i.

Therefore, we are usually confronted with selecting

parameter C. This is usually done empirically by trial

and error, choosing the value of C that leads to the best

generalization performance.

c. Multilayer perceptrons

Multilayer perceptrons (Bishop 1995; Ripley 1996)

are fully connected feed-forward neural networks with

one or more hidden layers located between input and

output layer. Each layer consists of a certain number of

neurons in parallel. Each neuron calculates a weighted

linear combination of its N inputs so that its output y is

given by

y 5 f �
N

i51

wixi 1 u

 !
, (13)

where wi 2 R and u 2 R denote weights and biases,

respectively. Therefore, the weights are given at each

synapse (connection between two neurons) and the

biases at each neuron. The scalar function f in Eq. (13) is

called the transfer function and is mostly (and also here)

chosen to be a sigmoid of the form f(x) 5 (1 1 e2x)21.

The transfer functions at the output layer are chosen to

be linear in our analysis.

Classification and generalization performance of an

MLP stem from the nonlinear transfer functions and

the numerous connections within the hidden layer(s).

An MLP with a single hidden layer implements a single

hyperplane. An MLP with two hidden layers imple-

ments arbitrary convex regions containing intersections

of hyperplanes. It has been shown that an MLP with

sigmoidal transfer functions and two hidden layers can

approximate any continuous function (Kurkova 1992).

For this reason, we will restrict our analysis to an MLP

with a maximum of two hidden layers.

The learning algorithm used to determine the free

parameters of the network is the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm (Avriel 2003),

which is a faster variation of the standard back propa-

gation. In our analysis, 1000 training iterations (epochs)

are performed where it is made sure that the BFGS al-

gorithm converges.

BFGS uses a gradient search technique to iteratively

adjust weights and biases via minimizing a cost function

given by

E 5
1

2
�
n

i51
�
q

j51

(yij 2 yij*)2, (14)
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where q denotes the number of classes. In Eq. (14), y 2
f0, 1gq denotes the desired output and y* 2Rq the actual

MLP response.

The minimization problem is unconstrained and

generally nonconvex. The effect of resulting local min-

ima can be reduced by performing several training re-

alizations with different initial values for weights and

biases. It should be noted that the performance of an

MLP may decrease significantly if the number of input

dimensions becomes too large whereas methods such as

SVM or LDA do not suffer from this problem to that

extend. Here, however, the number of input dimensions

is five and is therefore very small with respect to the

number of training events.

d. Comparing the classification methods

The goal here is to compare the previously introduced

statistical methods with respect to their classification

performance for stratospheric warmings. For reasons

of simplicity, only two classes are considered at a time.

To compare the classification results, we briefly review

three performance measures. Let yS and yB be the area-

normalized response distributions for signal (class 1)

and background (class 0), respectively.

1) The separation S between signal and background is

given by

S 5
1

2

ð‘

2‘

[yS(x) 2 yB(x)]2

yS(x) 1 yB(x)
dx. (15)

2) The signal efficiency «S at a given background effi-

ciency «B is defined by

«S 5

ð‘

a
yS(x) dx, (16)

where a is given by «B 5
Ð ‘

a yB(x) dx. A representative

background efficiency of 0.01 has been selected.

3) The integral of the receiver operating characteristic

(ROC) curve is given by

IROC 5

ð1

0
(1 2 «B) d«S, (17)

where 1 2 «B is called the background rejection.

The three performance measures S, «S, and IROC are

bounded between 0 and 1, where 0 means the worst and

1 the best performance achievable. Overviews of signal

analysis can be found in Fawcett (2006) and Spackman

(1989).

The tuning parameters for LSVM and MLP have been

chosen somewhat intuitively for this comparison (LDA

does not have tuning parameters). For LSVM, the cost

parameter C was varied between 0.1 and 10 and the

value with the best performance (C 5 1) was selected for

further analysis. For the MLP, we chose 10 neurons in

the first and 5 neurons in the second hidden layer. These

values are of the same order as the number of inputs to

avoid overfitting. The MLP was trained 10 times with

different, randomly chosen initial parameters and the

realization with the best performance was kept. The

training for each method was performed in such a way

that events where assigned alternating to train and test

datasets.

The classification results are presented with respect to

the aforementioned performance measures in Table 1

for LDA, LSVM, and MLP. The largest value (best

performance) is underlined for the particular class and

performance measure. First, the MLP clearly out-

performs the linear models in all performance measures

when classifying stratospheric warmings. Out of the

linear models, LSVM performs better than LDA for the

warming classes with respect to «S but worse with re-

spect to S and IROC. If the goal is to only discriminate

between undisturbed and disturbed states, LSVM is

even slightly better than MLP. This is not unexpected

since the only difference between a disturbed and un-

disturbed Arctic stratosphere is a simple linear cut on

PC1 [see Eq. (2)]. In this work, we are particularly in-

terested in the correct classification of stratospheric

warmings. Hence, MLP clearly wins this method com-

parison with respect to the given performance measures.

MLP seems to be able to classify stratospheric warmings

rather well as all performance measures are close to one.

Hence, MLP is our method of choice for the following

TABLE 1. Performance measures for LDA, LSVM, and MLP. The largest value (best performance) for the particular class and the

particular performance measure in boldface.

Class

S «S IROC

LDA LSVM MLP LDA LSVM MLP LDA LSVM MLP

Major 0.857 0.814 0.864 0.490 0.542 0.945 0.984 0.981 0.987

Minor 0.831 0.733 0.851 0.080 0.107 0.935 0.963 0.941 0.983
Final 0.822 0.527 0.862 0.044 0.095 0.950 0.953 0.801 0.997

Undisturbed 0.898 0.909 0.882 0.869 0.985 0.981 0.995 0.998 0.999
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analysis. In the next section, the MLP analysis is ex-

plained in greater detail and a pathway toward an op-

timal MLP architecture is presented.

4. Multilayer perceptrons and model architecture

Neural networks are widely used methods for efficient

pattern recognition (Ripley 1996). Here, an artificial

neural network recognizes patterns in temperature

anomalies and external factors to classify stratospheric

warming events as major, minor, and final warmings.

More specifically, the neural network here is an MLP in

which all neurons of a certain layer are connected via

synapses to all neurons in the neighboring layers (see

section 3). An MLP is one of the most general and best

understood neural network types (Bishop 1995). As in

section 3, we use the BFGS learning algorithm to de-

termine weights and biases. The training is performed in

such a way that events are assigned in alternation to

train and test datasets.

The input layer consists of five input neurons, which

are T30, PC1, QBO, ENSO, and SC. The output layer

consists of four neurons representing four different

states of the polar stratosphere. The first three are ma-

jor, minor, and final stratospheric warmings. The last is

the undisturbed state, in which no stratospheric warm-

ings take place.

The optimal model architecture of the MLP is esti-

mated. The number of hidden layers as well as the

number of hidden neurons within these layers needs to

be determined. The dimensions of input and output

layers have been specified in section 2. Each MLP set-

ting is considered to be a separate statistical model.

We are making use of methods from information

theory that were shown to have remarkable ability to

discriminate between statistical models (Burnham and

Anderson 2002). In comparison with cross-validation

(Kohavi 1995), this approach is computationally much less

expensive and leads to the model setting with the best

descriptive power whereas cross-validation focuses more

on forecasting. As mentioned above, events are assigned

alternating to train and test dataset, thereby incorporating

a simple cross-validation with neighboring events that

helps to avoid overfitting.

We start by reviewing an important information cri-

terion. The Bayesian information criterion (BIC; Schwarz

1978; Priestley 1981) is given by

BIC 5 NT � ln(s2
e) 1 NP � ln(NT), (18)

where NT denotes the overall sample size, NP the number

of free parameters in the model, and s2
e the variance of

the residual distribution. This version of the BIC given

in Eq. (18) is applicable under the assumption that

the errors are independent and identically distributed

according to a Gaussian distribution (Priestley 1981).

This assumption holds for our problem (not shown).

The number of free parameters of the MLP is given by

Np 5 �
M21

i51

mi(mi11 1 1) 1 mM, (19)

where mi denotes the number of neurons in layer i and

M the total number of layers in the MLP.

The BIC can be understood as an estimator for the

balance between explained variance and the number of

free model parameters. The model with the smallest

information criterion of all tested models is the pre-

ferred model. Hence, the BIC differences can be defined

as

Di 5 BICi 2 BICmin, (20)

where BICmin denotes the minimal BIC value within the

sample of tested models and i one model out of this

sample (D 5 0 for the best model).

To determine the optimal model architecture, the

MLP needs to be trained many times with different

model configurations. The MLP training has been re-

peated 10 times with different, randomly chosen initial

parameters for each model configuration. To reduce

the effect of local minima, the resulting s2
e used to

calculate the BIC is taken as the mean of those 10 op-

timizations.

The number of hidden neurons is varied in the hidden

layers. The results of Eq. (20) are displayed in Fig. 3

where the white square indicates D 5 0. This procedure

was repeated using the Akaike information criterion

(Akaike 1974), which led to a more complicated model

architecture with significantly more free parameters and

was therefore rejected. The resulting optimal model

setting has two hidden layers with 23 neurons in the first

and 4 neurons in the second layer. The MLP has now

been trained 100 times with this specific architecture.

The run with the smallest error is chosen. The classifi-

cation results of this run are presented in the following

sections.

5. Probabilities of stratospheric warmings

In this section first classification results based on con-

ditional probabilities for each of the classes are presented.

Additionally, the statistical method is validated. The

following results are based on the multilayer perceptron

as described in the previous section.
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To ensure that the MLP response values can be inter-

preted as conditional probabilities, the value yi of output

neuron i needs to be transferred via

pi 5
exp(yi)

�
n

j51

exp(yj)

, (21)

which is known as the softmax function (Ripley 1996),

and has the useful property

pi 2 [0, 1] "i and �
n

i51

pi 5 1: (22)

Having computed conditional probabilities, we are

interested in determining a threshold value for each

class above which a certain probability is significantly

different from the background. We will call this the cuti

at class i. To do so we integrate over the area-normalized

background probability distribution PB,i for each class i

such that

a 5

ðcut
i

0
PB,i(x) dx, (23)

where a 5 0.999, so that a probability pi greater than cuti

is significantly different from the background at a confi-

dence level of 99.9%. We obtain 0.32, 0.34, and 0.25 for

the major, minor, and final warming class, respectively.

The cuts are relatively small, which indicates a good

classification performance.

a. Three sample winters

We now want to obtain further insights into the MLP

response. Three adjacent sample winters are selected

that include all three types of warming events. Figure 4

shows the evolution of the probabilities for major, mi-

nor, and final warmings for the period from summer

1986 to summer 1989. Results for ERA (training data-

set) and NCEP (validation dataset; not shown) are very

similar. The winter 1987/88 appears to be the most var-

iable on this period. A minor warming in November 1987,

lasting about 5 days, is observed. A major warming

(Baldwin and Dunkerton 1989; Naujokat et al. 1988) takes

place in the beginning of December 1987, lasting about 20

days. A short minor warming appears as a precursor to this

major warming. Ultimately, a final warming lasting about

15 days takes place in March (Labitzke and Naujokat

2000). The probabilities shown in Fig. 4 give a good rep-

resentation of what was observed (cf. Fig. 2). The classi-

fication performance is now assessed in greater detail.

b. Classification performance

In addition to the performance measures introduced

in section 3d, we compute the classification performance

with respect to the mean difference MDi for class i given

by

MDi 5
1

NT

�
N

T

j51

jpij 2 pij
*j, (24)

where pij denotes the training value at output neuron i

and sample index j and pij
* the corresponding MLP re-

sponse. Also, NT denotes the overall sample size rep-

resenting the total number of steps in time. For a perfect

classification it is expected that MDi 5 0 for all i.

Table 2 presents the performance measures for each

class as calculated from the ERA classification results. A

very high classification performance is obtained. The sep-

aration, the signal efficiency, and the integral of the ROC

curve are very close to one for all classes. This represents

a very good ability of discriminating signal from back-

ground events.

FIG. 3. The BIC differences according to Eq. (20) for varying

number of hidden neurons. The white square (D 5 0) denotes the

optimal model architecture with 23 neurons in the first and 4

neurons in the second hidden layer. Note the valley of small BIC

values around the optimum.

FIG. 4. Evolution of the probabilities in ERA for major, minor,

and final warmings for the three winters in the period from summer

1986 to summer 1989. Labeled is the first day of the particular

month in a given year (MM/YYYY).
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MD is very close to zero for all classes, which implies

that only in rare cases the MLP response is not close to

the data that the MLP has been trained with (the

training sample; see section 2). Therefore, the MLP is

able to reliably detect major, minor, and final warming

states and, of course, the undisturbed state.

c. Impact of the input neurons

It is of great interest to estimate the individual impact

of the five input neurons on the MLP response. This

gives an insight into the statistical importance of each of

the input factors. The impact Ii,k of input factor i on

output class k is simply chosen to be the variance of MLP

response differences given by

Ii,k 5 Var(y
(i)
k 2 yk), (25)

where yk denotes the MLP response at output neuron k

and y
(i)
k the corresponding MLP response where the in-

put factor i was set to zero. If an input neuron had no

impact on the MLP, Eq. (25) would give zero. Table 3

presents the relative impact in percent on the MLP re-

sponse according to Eq. (25) for each input neuron and

output class.

It is observed that the impacts are quite different for

different output classes. For the undisturbed case only

PC1 plays an important role. This is expected as the

undisturbed state is simply defined by a linear cut on

PC1 (see section 2c). The final warming state is mostly

governed by PC1 and T30 since the definition of the final

warming state was only based on these two factors (see

section 2c).

When looking at major and minor warming states, the

external factors become more important and necessary

to discriminate major from minor warmings. The QBO

shows the largest impact, followed by ENSO and the

solar cycle, in agreement with previous studies (e.g.,

Labitzke and Kunze 2009b; Camp and Tung 2007a,b;

Mitchell et al. 2011b) that also investigated the impact

of these forcings and found a similar ranking. Hence,

the neural network combines QBO, ENSO, and SC

in a nonlinear fashion to distinguish between major and

minor stratospheric warmings. Therefore, the external

factors, namely QBO, ENSO, and SC, should be incor-

porated in order to classify stratospheric warmings suc-

cessfully. It was mentioned earlier that there is practically

no linear correlation between any of the input time series.

However, as Table 3 shows, there exist nonlinear com-

binations of input factors that lead to different strato-

spheric warming states.

6. Stratospheric warming climatologies

This section presents stratospheric warming clima-

tologies extracted from resulting probabilities for 52

winters from 1958 through 2010. To identify strato-

spheric warmings, we need to define a threshold above

which a signal in one of the output neurons is counted as

an event signal. An event signal has to be significant;

hence, it needs to exceed the cut values (see section 5).

To get an estimate for the training dataset ERA, we

calculated the first derivative dQ/dp of the cumulative

density function of the response distribution of each

warming class. As an increasing derivative denotes a re-

gime change, we define the thresholds where dQ/dp starts

rising from its constant level with increasing quantiles.

The resulting thresholds for ERA are 0.41, 0.41, and 0.45

for major, minor, and final warming events, respectively.

We have found that the resulting ERA warming event

numbers and distributions are not sensitive with respect

to slightly different thresholds.

As the validation set NCEP is a priori unknown, and

to avoid counting events caused by a possible overfitting,

we need to find a reasonable NCEP threshold that is

larger than any of the ERA thresholds but smaller than the

theoretical limit given by Eq. (22). An NCEP threshold of

0.47 for all warming classes was selected leading to

reasonable distributions and event numbers as pre-

sented in the following. The resulting NCEP events are

more sensitive with respect to this threshold than the

ERA events but can still be changed in the percentage

range and the event numbers and monthly distributions

would not change significantly.

a. Warming events

To obtain stratospheric warming events, we need to

group contiguous warming days. To do so, minimal

TABLE 2. The performance measures for the optimal MLP setting

for each class.

Class S «S («B 5 0.01) IROC MD

Major 0.992 0.969 0.996 0.0023

Minor 0.985 0.929 0.990 0.0026

Final 0.962 0.968 0.987 0.0015

Undisturbed 0.990 0.991 0.995 0.0010

TABLE 3. Relative impact (%) on the MLP response according to

Eq. (25) for each input neuron and output class.

Input Major Minor Final Undisturbed

T30 22.2 22.4 54.0 0.8

PC1 26.9 23.7 31.2 97.5

QBO 19.3 19.9 4.6 0.7

ENSO 17.4 17.9 4.9 0.6

SC 14.3 15.9 5.3 0.4
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temporal distances between adjacent warming events

need to be defined. If this distance is exceeded without

output neuron i above the given probability threshold,

then warming event i is finished and a new warming

event may eventually take place. For these distances we

choose 30 days for major warmings, 5 days for minor

warmings, and 100 days for final warmings. The number

for final warmings is rather arbitrary as they may only take

place once a year during the transition from winter to

summer circulation. We selected 30 days for major warm-

ings because it is known from observations (Labitzke and

van Loon 1999) that major warmings may last 20 days

but that neighboring major warmings in the same winter

are at least one month apart. The relatively short period

of 5 days for minor warmings was chosen since minor

warmings are usually not preceded by a great cooling in the

Arctic stratosphere, as major warmings are (Labitzke and

van Loon 1999; Charney and Drazin 1961). Therefore,

adjacent minor warming events can be closer than major

warming events.

First results of this procedure are shown in Table 4 for

ERA and the validation dataset NCEP. The absolute

number (upper part) and relative number (lower part)

of warming events are presented. It is observed that

values for ERA and NCEP are very similar for all

warming classes. This indicates a successful validation of

the classification procedure using NCEP. Only the ma-

jor warming case shows slightly fewer events in NCEP

than in ERA. This discrepancy for major warmings has

also been reported by Charlton and Polvani (2007).

To summarize, there is a major warming event ap-

proximately every other year whereas minor warmings

happen at least once a year on average. Major final

warmings take place every second year, too. These results

are in good agreement with Charlton and Polvani (2007),

who find approximately 0.6 SSWs per winter. Labitzke

and Naujokat (2000) find approximately 0.5 major mid-

winter warmings, approximately 1 minor warming (half

of which are Canadian warmings), and 0.25 major final

warmings per winter. The differences between ERA and

NCEP found in our work are due to differences in the

two datasets, particularly in PC1 and ENSO during the

presatellite era before 1979.

b. Change in circulation

The question remains whether the detected major and

final warming events lead to a vortex breakdown and

therefore a change in circulation (easterly zonal winds) in

the stratosphere in midlatitudes. Minor warmings should

only slow down the circulation but not reverse it. To tackle

this question, the zonal-mean zonal wind at 608N and

10 hPa is incorporated. If the zonal wind is negative

(easterlies), then a change in circulation took place and the

polar vortex broke down. An interval of 20 days around

the central warming date of major and final warmings was

considered to find the minimum zonal wind.

The result of this analysis is shown in Fig. 5 for all

warming classes and both datasets. Values for minor

warmings temporally very close to major or final warm-

ings are not shown as they lead to ambiguous wind results.

The numbers represent the winter in which a major

warming took place (e.g., 98 denotes the winter 1998/99).

The zonal wind reversed for almost all major and final

warming events in ERA and NCEP, which confirms the

classification procedure.

TABLE 4. Total number of stratospheric warming events and

relative number of events per year for the different warming classes

and the two datasets. The uncertainties are given in parentheses

(standard error of mean).

Data Major Minor Final Total

Total

ERA 31 74 27 132

NCEP 26 76 28 130

Relative

ERA 0.6 (0.1) 1.4 (0.2) 0.5 (0.1) 2.5 (0.3)

NCEP 0.5 (0.1) 1.5 (0.2) 0.5 (0.1) 2.5 (0.3)

FIG. 5. Scatter diagram of stratospheric warming intensity against

the zonal-mean zonal wind at 608N and 10 hPa. Numbers represent

winters (e.g., 98 denotes the winter 1998/99) in which major

warming(s) took place. The results are shown for (top) ERA and

(bottom) NCEP. Values for minor warmings temporally very close

to major or final warmings are not shown as they lead to ambiguous

wind results.
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There are only a few clear falsely detected major

warming events for which the vortex was disturbed and

the circulation slowed down but did not reverse. In ERA

these are the winters 1981/82 and 2004/05. In NCEP

these are the winters 1963/64, 1984/85, and 2003/04. It is

the nature of a statistical method that it is never 100%

effective. However, all final warming events were classi-

fied correctly. Despite a few differences, the classified

stratospheric warmings are in good agreement with

previous studies (Charlton and Polvani 2007; Labitzke

and Naujokat 2000). None of the detected minor warm-

ing events led to a change in circulation.

c. Stratospheric warming frequencies

The classification results are now analyzed and pre-

sented in more detail with respect to their occurrences

and intensities. Monthly climatologies of major, minor,

and final warmings are shown in Fig. 6. The uncertainties

are displayed as error bars. First, the distributions for

ERA and NCEP are similar. Most major warmings take

place in January. Minor warmings happen all through-

out the winter but most take place in February for ERA

and January for NCEP, whereas final warmings clearly

peak in March and April. There are no major warmings

taking place in November, which is in agreement with

observations (Labitzke and Naujokat 2000).

Major warmings show highest intensities with large

variability followed by minor and final warmings. As

expected, the minor warming intensities peak in January

and decrease toward beginning and end of the winter.

The final warming intensities are also very variable and

peak in March.

Charlton and Polvani (2007) show monthly distribu-

tions for major warmings retrieved from a classifica-

tion method based on the zonal-mean zonal wind at

608N and 10 hPa. These results are similar to the dis-

tribution for major warmings shown in Fig. 6. There

have been a few SSWs found by Charlton and Polvani

(2007) in November that were most likely Canadian

warmings. They found more SSWs in March simply

because some of those are counted as final warmings in

our analysis.

It is of great interest to investigate the temporal evo-

lution of the three warming classes over the 52-yr period.

Their frequency of occurrence and intensity in bins

of 4 yr is presented in Fig. 7. The frequency distribu-

tions resemble observations rather well (Labitzke and

Naujokat 2000). For instance, the clear minimum of major

warming activity observed in the 1990s is obtained. There

are also periods of higher major warming activity in the

1970s. Minor warmings were especially frequent during

the 1980s and 1990s. Final warmings do not show sig-

nificant occurrence variabilities. The results for ERA

and NCEP in Fig. 7 are again qualitatively similar. Dif-

ferences appear mostly during the presatellite era be-

fore 1979. In comparison to Charlton and Polvani (2007),

differences for the major warming case are mainly due to

different methodologies and classification strategies.

The intensities presented in Fig. 7 are also similar in

ERA and NCEP. We see a great decrease in major

FIG. 6. Monthly distributions in (top) events per year and (bottom) intensity of the three warming classes for (left)

ERA and (right) NCEP. The error bars represent (top) the standard error of mean and (bottom) the standard

deviation. Please note the different shading schemes for frequency (histograms) and intensity (graphs).

JUNE 2012 B L U M E E T A L . 1835



warming intensity during the 1970s and large intensities

in the past 30 yr. The mean minor warming intensities

seem to be rather constant throughout the whole period

whereas the final warming intensities show a peak in the

1980s and then decrease to minor warming levels.

Mean intensity and the corresponding standard de-

viation of the three warming events and their duration in

days for ERA and NCEP are presented in Table 5. The

results for ERA and NCEP agree rather well. On av-

erage, major and final warmings last about 20 days and

minor warmings only 8 days. There is a large variability

in duration as the standard deviation takes values of

about 10 days for each warming class. On average, major

warmings are twice as intense as minor and final warm-

ings with medium variability.

Table 5 also shows the linear correlation between in-

tensity and duration for each warming class. All corre-

lation factors are significant (t test) at the 95% confidence

level. For ERA, all correlation factors are greater than

0.6, which leads us to the expected conclusion that

warmings with larger intensities generally last longer,

and vice versa. For NCEP, the correlation factors are

slightly smaller.

d. Marginalized probability distributions

The neural network can be considered as a function

(classifier) mapping from a five-dimensional input space

to a four-dimensional probability space. To retain an un-

derstanding of the relationships between the input factors

despite the high dimensionality, we are marginalizing the

resulting probability distributions. Motivated by previous

studies, we are particularly interested in the relationships

among QBO, ENSO, and SC. Therefore, these factors

have been varied and the resulting MLP response in-

vestigated.

PC1 has been fixed and the responses have been av-

eraged for the midwinter between December and Feb-

ruary. Additionally, the results have been split for solar

maximum and solar minimum conditions where a value

of 120 solar flux units (sfu) of the F10.7 solar radio flux

was used to separate the two regimes. The resulting

marginalized probability distributions are shown in Fig.

8 for the major warming state. The shading denotes the

probability of the occurrence of a major warming and

the black thick line an approximately significant prob-

ability of 0.3. The numbers in Fig. 8 represent the winter

FIG. 7. Distributions in bins of 4 yr of (top) occurrence and (bottom) intensity of the three warming classes for (left)

ERA and (right) NCEP. All bins start at 1 Sep and stop at 31 Aug of the respective years. Error bars represent one

standard deviation around the mean. Note the different shading schemes for frequency (histograms) and intensity

(graphs).

TABLE 5. Mean intensity (standard deviations) of stratospheric

warming events and their mean duration (days) for the different

stratospheric warming events in ERA and NCEP. The corre-

sponding standard deviation is given in parentheses. The correla-

tion between duration and intensity is also given. All correlation

factors are significant (t test) at the 95% confidence level.

Data Class Intensity Duration Correlation

ERA Major 3.7 (1.2) 23.0 (10.7) 0.61

Minor 1.9 (0.9) 8.4 (8.3) 0.75

Final 2.2 (1.0) 20.1 (10.9) 0.67

NCEP Major 3.2 (1.4) 16.7 (12.3) 0.53

Minor 2.1 (1.0) 8.9 (10.5) 0.52

Final 2.2 (0.9) 20.2 (10.5) 0.41
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in which the major warming took place (e.g., 87 denotes

the winter 1987/88).

A moderately high disturbance of PCI 5 3 (cf. Fig. 5)

was selected, implying that the condition for the dis-

turbed state is fulfilled and the MLP discriminates be-

tween two states: major warmings and minor warmings.

Because of the aforementioned averaging, the patterns

in Fig. 8 represent climatological mean states for DJF.

These patterns are highly nonlinear, which emphasizes

the usefulness of a nonlinear statistical method. Pre-

vious studies have shown that the considered forcings

interact and create a complex and nonlinear dynamical

link (e.g., Calvo et al. 2009; Richter et al. 2011).

The superimposed boxes in Fig. 8 represent a sche-

matic frequency distribution of QBO and ENSO: the

larger the box, the greater the population density of

a particular bin (i.e., a large box stands for a high fre-

quency of a particular combination of QBO–ENSO

values and vice versa). Hence, these population densi-

ties are naturally different for solar maxima and min-

ima. Highly populated regions are observed, but also

combinations of QBO and ENSO that have not been

seen in the data at all. The larger the population is, the

more we can trust the MLP response. In regions with

zero population (no boxes), the MLP predicts proba-

bilities. Considering the good validation results for

NCEP, which is an unseen dataset, we believe that these

MLP predictions are trustworthy. Nevertheless, they

need to be confirmed by data from chemistry–climate

model simulations.

There are two main regions that are not populated.

The first is the region of large negative ENSO values

(La Niña) and small absolute QBO values (around zero)

for both solar maximum and minimum. La Niña events

are rather rare and the transition between QBO west and

QBO east and vice versa is very fast (often within a

month), whereas a QBO phase (east or west) can last

about a year. The other underpopulated region is that of

large positive ENSO values (El Niño) during solar max-

imum for almost all values of the QBO. Hence, El Niño

events are only rarely found during solar maximum

conditions.

Figure 8 presents various probability features for

major warmings. Despite the averaging, almost all major

warming events fall into the significant area of p $ 0.3,

indicating a robust classification. Please note the afore-

mentioned averaging over SC regimes and the mid-

winter, implying that probabilities for a specific event

may be different from what is shown in Fig. 8. There are

regions of high probabilities for QBO west and solar

maximum conditions, as also found by Labitzke and

Kunze (2009b) and Camp and Tung (2007a). However,

there is a region for strong QBO west in both solar max-

imum and minimum, in which moderate and La Niña–like

ENSO events show only small probabilities. The high

population density in this region makes the probabilities

particularly trustworthy. This indicates strong nonlinear

relationships between QBO and ENSO as also found by,

for example, Calvo et al. (2009) and Richter et al. (2011).

Linear interrelationships, as emphasized by, for instance,

Camp and Tung (2007a,b) and Labitzke and Kunze

(2009b), are not sufficient to explain this pattern.

The very intense major warming of the winter 2008/09

(solar minimum, QBO west, and slightly negative ENSO

values) is very close to the significant region in Fig. 8.

Hence, this major warming along with the major warming

in 2006/07 is part of the nonlinear rules determined by the

MLP, whereas these events have been previously treated

as exceptions from linear rules (e.g., Labitzke and Kunze

2009a).

Despite the high probabilities, only a few major warm-

ings are found to happen during the transition from QBO

west to QBO east or vice versa (see Fig. 8). This is be-

cause of the aforementioned fast transition between

FIG. 8. Marginalized probability distributions (shading; black

line denotes p 5 0.3) for the major warming state depending on

ENSO and the QBO for (top) solar maximum and (bottom) solar

minimum for PCI 5 3, denoting a moderate vortex disturbance.

The darker the shading is, the higher the probability for a major

warming. The numbers denote the winter of a major warming (e.g.,

87 denotes the winter 1987/88). The superimposed boxes represent

a schematic frequency distribution of QBO and ENSO; the larger

the box is, the greater the population density for a particular bin

(i.e., a large box stands for a high frequency of a particular com-

bination of QBO–ENSO values).

JUNE 2012 B L U M E E T A L . 1837



QBO phases (west 4 east). Moreover, it is known

from observations (Baldwin et al. 2001) that the QBO

phase transition takes place mostly during the Northern

Hemisphere summer. By definition, sudden stratospheric

warmings take place only during the wintertime.

During QBO east and solar maximum conditions,

only negative ENSO values show significant probabili-

ties. During QBO west, moderate and El Niño–like

ENSO conditions lead to significant major warming

probabilities. For solar minimum and QBO east, strong

positive ENSO events lead to large probabilities, too. A

probability minimum is observed for ENSO values close to

zero. This minimum appears also for QBO west but for

slightly negative ENSO values and is more dependent on

the strength of the QBO. In general, the probability for a

disturbance to become a major warming leading to a vor-

tex breakdown is greater during solar minimum conditions

(note the large significant area) than during solar maxi-

mum. As also found by Butler and Polvani (2011),

El Niño–like and La Niña–like conditions make the oc-

currence of major stratospheric warmings more likely as

opposed to neutral ENSO conditions. The only exception

is the small major warming probability for El Niño–like

conditions during solar maximum and QBO east.

7. Conclusions

This work classifies stratospheric warmings by con-

sidering Arctic stratospheric temperature anomalies

together with atmospheric forcings (or external factors)

that influence the polar vortex, namely the QBO, ENSO,

and the solar cycle (SC). The classification procedure is

applied to data from the ERA-40/ERA-Interim (jointly

referred to as ERA) and the NCEP–NCAR (herein

simply NCEP) reanalysis for 52 consecutive winters from

1958 to 2010. Optimal lags of the external factors are

determined using linear discriminant analysis.

Three supervised learning approaches (LDA, LSVM,

MLP) are introduced and compared with respect to their

ability to classify stratospheric warmings. It is shown

that the nonlinear MLP outperforms the linear methods

(Table 1). This is in agreement with previous work

showing that the external factors nonlinearly influence

the polar vortex evolution (e.g., Calvo et al. 2009;

Richter et al. 2011). The MLP is therefore used as the

method of choice to classify stratospheric warmings in

major, minor, and major final warming events. This ap-

proach extends and combines the zonal wind measure

and the NAM approach applied in previous studies. It

incorporates the polar-cap temperature and significant

external factors simultaneously leading to a continuous

probability measure, indicating the amount of deviation

from the climatological mean state.

It is shown how an appropriate training sample

(Fig. 2) can be calculated. Using this training sam-

ple, the optimal MLP architecture is determined using

methods from information theory (Fig. 3). Using various

performance measures, the classification procedure is suc-

cessfully validated (Table 2). It is shown how resulting

stratospheric warming probabilities (Fig. 4) are post-

processed.

The statistical impact of the input factors on the indi-

vidual output classes is computed (Table 3). It is shown

that the atmospheric variability factors are an essential

part of the classification procedure as they discriminate

between minor and major stratospheric warmings. They

are less important for final warmings and show only a

small impact on the undisturbed state (Table 3). Despite

the absence of any linear correlations between the ex-

ternal factors, there are nonlinear combinations that

help distinguish between warming classes. The QBO

was found to have the largest impact, followed by ENSO

and the solar cycle. This ranking was also found by

previous work (e.g., Labitzke and Kunze 2009b; Camp

and Tung 2007a,b; Mitchell et al. 2011b) that investigated

the influence of these forcings on the polar vortex.

It is shown that detected major and final warming

events lead to a vortex breakdown and a reversal of the

zonal flow at 608N (Fig. 5) except for a few cases (two

in ERA, three in NCEP). Reasonable distributions of

stratospheric warming events by month and year of oc-

currence and intensity are presented (Figs. 6 and 7), which

are in agreement with previous work made by Charlton

and Polvani (2007) and Labitzke and Naujokat (2000),

who also compiled climatologies of stratospheric warming

events. On average, major warmings show intensities that

are twice as large as those of minor or final warmings.

Final warmings last as long as major warmings but twice as

long as minor warmings. We find largely positive signifi-

cant correlations greater than 0.6 between intensity and

duration of the warming events (Table 5).

Marginalized probability distributions depending on

QBO and ENSO, for both solar maximum and solar

minimum conditions, are presented (Fig. 8). The results

contain the linear QBO–SC relationships presented by

Camp and Tung (2007a) and Labitzke and Kunze

(2009b). However, we show that the interrelationships

between the external factors are nonlinear as previously

suggested. QBO–SC relationships are nonlinearly mod-

ulated by ENSO (Calvo et al. 2009). It appears that

El Niño–like conditions (Camp and Tung 2007b) during

QBO west favor the occurrence of major warmings and

vice versa during QBO east. This pattern is more prom-

inent for solar maxima than for solar minima. For the

solar minima, also El Niño–like conditions and QBO east

point to large major warming probabilities. We find that
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major warmings are generally more likely during solar

minimum conditions. For the solar minima, there are only

two regions that do not favor major warmings, which are

small but positive ENSO values during QBO east and

small but negative ENSO values during QBO west. This

pattern also depends on the strength of the particular

QBO phase. As also found by Butler and Polvani (2011),

major warmings are more likely during El Niño–like and

La Niña–like conditions as opposed to neutral ENSO

conditions. An exception to this is only observed for

El Niño–like conditions during solar maxima and QBO

east. In addition, we show that the extraordinary major

warming of the winter 2008/09 lies close to the significant

climatological area that indicates a possible vortex break-

down. Therefore, this event is part of the nonlinear rules

learned by the MLP. A three-dimensional animation

through the winter of the probabilities indicated in Fig. 8

can be found online (http://nathan.gfz-potsdam.de/doc/

sswanim.gif).

Several improvements of the current statistical frame-

work are possible. The introduction of the geopotential

height into the MLP input layer would further enhance

the classification results, as it provides direct information

about the polar vortex strength. Introducing a memory of

1 or 2 days would also improve the classification but ex-

ponentially increase computation time. Incorporating

volcanic influences may also improve the classification

procedure.

It is shown that a statistical model with the current set

of input factors needs to recognize nonlinear patterns to

reliably classify stratospheric warmings. However, there

are not only neural networks that can cope with this

challenge. One may also think of applying methods such

as support vector machines with nonlinear kernels or

nonlinear functional discriminant analysis.

The current framework will be applied to data from

chemistry–climate model simulations to validate the

current results and to investigate the difference of a data

constrained model, such as reanalyses, to a free-running

CCM. Since the relationships between the external

factors and polar vortex variability are generally different

in reanalyses and CCMs, the MLP has to be trained

separately for each CCM. The generally nonlinear in-

terrelationships along with various measures (frequency,

intensity, duration, etc.) can then be compared among

model simulations. Further application of our framework

to the prediction of stratospheric warmings is also envis-

aged.
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