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ABSTRACT

In this study, the impact of oceanic data assimilation on ENSO simulations and predictions is investigated.
The authors’ main objective is to compare the impact of the assimilation of sea level observations and three-
dimensional temperature measurements relative to each other. Three experiments were performed. In a control
run the ocean model was forced with observed winds only, and in two assimilation runs three-dimensional
temperatures and sea levels were assimilated one by one. The root-mean-square differences between the model
solution and observations were computed and heat content anomalies of the upper 275 m compared to each
other. Three ensembles of ENSO forecasts were performed additionally to investigate the impact of data assim-
ilation on ENSO predictions. In a control ensemble a hybrid coupled ocean–atmosphere model was initialized
with observed winds only, while either three-dimensional temperatures or sea level data were assimilated during
the initialization phase in two additional forecast ensembles. The predicted sea surface temperature anomalies
were averaged over the eastern equatorial Pacific and compared to observations. Two different objective skill
measures were computed to evaluate the impact of data assimilation on ENSO forecasts.

The authors’ experiments indicate that sea level observations contain useful information and that this infor-
mation can be inserted successfully into an oceanic general circulation model. It is inferred from the forecast
ensembles that the benefit of sea level and temperature assimilation is comparable. However, the positive impact
of sea level assimilation could be shown more clearly when the forecasted temperature differences rather than
the temperature anomalies themselves were compared with observations.

1. Introduction

The strongest signal on the short-range climatic
timescale is the El Niño–Southern Oscillation phenom-
enon (ENSO). It is characterized by a weakening of the
trade winds along the equator and a huge redistribution
of heat from the western to the eastern tropical Pacific.
The impacts of ENSO are felt worldwide through a
disruption of the atmospheric general circulation pattern
(Ropelewski and Halpert 1987), which leads, for in-
stance, to severe droughts in northwest Australia and
southeast Asia during an El Niño event. The northeast
region of Brazil and Zimbabwe are other regions where
rainfall variations are highly correlated with ENSO in-
dices and there are many other examples. Off the Pe-
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ruvian coast, the marine ecosystem is directly affected
by the oceanic variations in upwelling, which has a large
impact on fishing. For all these regions, reliable ENSO
forecasts would offer decision-makers an opportunity to
take account of anticipated climate variations, in order
to reduce impacts of ENSO on the economy. Thus, it
is a logical consequence that the study of ENSO pre-
dictability has become a field of major research. ENSO
can be regarded as a slow oscillation of the coupled
ocean–atmosphere system. However, it is commonly be-
lieved that the memory (or inertia) of the system resides
entirely in the upper few hundred meters of the ocean
(e.g., Wyrtki 1985). According to the theory of the de-
layed action oscillator (Schopf and Suarez 1988) the
evolution of warm and cold events is determined by the
propagation of equatorial waves and their reflection at
the meridional boundaries, which implies that ENSO is
inherently predictable on timescales up to a few years.

Since ENSO is a phenomenon of the coupled system,
coupled ocean–atmosphere models are required for its
prediction. Such models have been developed over the
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last 10 years by different groups and applied to ENSO
forecasts (e.g., Cane et al. 1986; Barnett et al. 1988;
Leetmaa and Ji 1989; Latif et al. 1994). ENSO fore-
casting is an initial value problem, that is, the further
evolution of the system depends highly on the initial
state from which it started. This is at least valid over a
certain time, which is called the predictability time. Al-
though ENSO is a phenomenon of the coupled system,
its evolution is determined mainly by the ocean. There-
fore, the initialization can be considered as an initial
value problem for the ocean. Thus, a very important
task in carrying out an ENSO forecast is to determine
the oceanic initial state as accurately as possible.

One very common way to initialize an ENSO forecast
with a coupled ocean–atmosphere model is as follows.
The oceanic model is integrated in an uncoupled mode
and forced by observed wind stresses and heat fluxes,
which yield the initial state from which the coupled
model prediction is started. Errors in the initial state are
due to forcing errors, in particular wind stress forcing,
and errors in the model formulation. This can be com-
pensated for partly by inserting additional, independent
information into the model during the initialization
phase. The most promising approach is to assimilate
oceanic subsurface information, to get a more realistic
initial state. Recently, different groups have shown that
assimilation of subsurface temperature observations
may lead to improved forecasts (Ji and Leetmaa 1997;
Kleeman et al. 1995). However, the distribution of these
data in space and time is quite irregular and sometimes
very sparse. Especially in the central Pacific, only very
few observations are available (Levitus and Gelfeld
1992). An alternative data type is given by sea level
observations. Variations of the subsurface density struc-
ture, which are crucial for the evolution of El Niño
events, lead to corresponding changes in sea level. It is
a good approximation for the tropical oceans to assume
that the relation between density and sea level variations
is linear. Further, we may neglect salinity variations,
which leads to a linear relation between changes in the
vertical temperature structure and sea level. From this
we may infer that sea level observations in the Tropics
contain important information about the vertical tem-
perature structure of the tropical oceans.

In contrast to numerous studies about the assimilation
of sea level data for oceanic circulation studies, this is
an attempt to explore the impact of sea level assimilation
on coupled model ENSO predictions. In a control pre-
diction ensemble, the model is initialized by observed
wind forcing only. In the other two ensembles, obser-
vations are assimilated additionally. In one case, we
assimilate subsurface temperature data, and in the other
case sea level anomalies. The predictive skills obtained
from the three ensembles are compared to each other.
Our main focus is the question to which extent sea level
data contain sufficient information about the vertical
density structure to replace the subsurface in situ mea-
surements. This is an important issue, since altimetric

sea levels from recently launched satellites appear to be
rather reliable (Busalacchi et al. 1994), and the satellites
provide information with very high spatial and temporal
resolution. The paper is organized as follows. In section
2, we present our forecast system and in section 3 a
short description of the data we used is given. In section
4, we describe the ocean model integrations that were
conducted with and without data assimilation. In section
5, we describe the results of the ENSO forecasts that
were performed from different initial ocean states. The
conclusions are stated in section 6.

2. The forecast system

Our forecast system consists of two major parts: a
coupled ocean–atmosphere model and an ocean assim-
ilation system. In the following subsections, brief de-
scriptions of the coupled model and the data insertion
method are given. Special emphasis is put on the em-
pirical scheme used to assimilate sea level anomalies
into our oceanic primitive equation model.

a. The coupled model

The coupled model consists of an oceanic general
circulation model coupled to a statistical atmospheric
feedback model. The ocean model was primarily de-
veloped to investigate the El Niño–Southern Oscillation
phenomenon in the tropical Pacific and is a further de-
velopment of the model described by Latif (1987). It is
a limited domain, primitive equation model extending
from 1308E to 808W in the zonal direction and from
308S to 308N in the meridional direction. The eastern
and western coast lines are realistic, while the northern
and southern boundaries are closed. The bottom is as-
sumed to be flat at a constant depth of 4000 m. The
hydrostatic and the Boussinesq approximations are used
but no rigid lid is assumed; that is, the sea level height
is a prognostic variable in our model. In this model,
salinity is not considered, which is a reasonable ap-
proximation for the Tropics. The zonal resolution is
about 68. In the meridional direction, the resolution de-
creases from 0.58 at the equator to about 48 at the north-
ern and southern boundaries. The model has 13 levels
in the vertical, with 10 levels placed in the upper 300
m. The horizontal eddy viscosity is assumed to be con-
stant at a value of 108 cm2 s21, while no explicit hori-
zontal heat diffusion is included. The vertical mixing
coefficients are Richardson number dependent (Paca-
nowski and Philander 1981). A time step of 2.25 h is
used. The model is forced by observed monthly mean
wind stress fields (FSU product; Goldenberg and
O’Brien 1981; Legler and O’Brien 1984), and a New-
tonian cooling type heat flux formulation (Haney 1971)
with a relaxation time of 30 days toward an equivalent
observed climatological temperature is applied. A de-
tailed description of the model performance is given in
Latif (1987) and Barnett et al. (1993). We assume that
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the memory of the coupled ocean–atmosphere system
resides entirely in the tropical Pacific. It is therefore
possible to use a minimum atmospheric model with no
internal dynamics, which passively responds to the
anomalous boundary conditions provided by the ocean.
Further, we assume a linear relation between the dom-
inant anomaly patterns of sea surface temperature and
wind stress. In the following, we explain how the at-
mosphere model was constructed (see also Barnett et
al. 1993). We decompose observed sea surface temper-
ature T9(x, t) and wind stress anomalies t9(x, t) into
empirical orthogonal functions (EOF):

N

T9(x, t) 5 a (t)E (x) (1)O n n
n51

N

t9(x, t) 5 b (t)F (x). (2)O n n
n51

Here, an and bn are the principal components and En

and Fn are the spatial patterns, respectively. A matrix
of regression coefficients C relating the two vectors of
principal components is obtained by minimizing the
function

2^(Ca 2 b) &, (3)

where angle brackets denote the time expectation op-
erator. During a coupled model run the actual wind stress
anomaly field is computed as follows. From the SST
anomalies, the corresponding principal components are
computed by projection onto the corresponding EOFs,

a (t) 5 T9(x, t)E (x), (4)On n
x

from which the principal components for the EOF expan-
sion of the wind stress anomaly fields are determined as

N

b 5 C a , (5)On nm m
m51

which are finally inserted into Eq. (2). The leading five
EOFs were retained for the prediction experiments. To
obtain self-sustained oscillations in a coupled control
run, the wind stress anomalies computed with the sta-
tistical model were scaled by a factor of 1.4, and this
factor is applied to all coupled experiments described
below. The performance of the ocean model as measured
by its ability to reproduce the observed SST in response
to prescribed observed wind stresses is good but not
perfect. This means that the ocean model SSTs passed
to the statistical atmosphere differ in some respect from
those that were used to develop the atmosphere. This
error was corrected by constructing an interface between
the ocean and the atmosphere model (Barnett et al.
1993). Again, a regression approach was used, by which
the relation between the simulated and observed SST
patterns was approximated. The leading five EOFs of
the observed and simulated SST anomalies (obtained
from a run forced with observed wind stress fields) were

used to derive the correction matrix. The interface or
correction matrix was constructed similarly to the re-
gression matrix C, described above. The simulated SST
anomalies are corrected by this interface before they are
passed to the statistical atmosphere model.

The coupled model simulates a regular ENSO cycle
with a period of approximately five years, which was
inferred from a multidecadal control run.

b. The assimilation scheme

1) THE INSERTION TECHNIQUE

We use a continuous data assimilation scheme, that
is, the model solution is updated every time step. Two
components are required, a spatial analysis system and
a method to spread information in time. The spatial
objective analysis technique is based on the successive
correction method (Daley 1991). The analyzed field is
obtained from a background or first guess field by add-
ing a linear combination of all deviations between the
observations and first guess:

22E W [ f 2 f ] WO O ik O B k t
k[ f ] 5 [ f ] 1 F (6)A i B i 22 22E 1 E W WOB O ik t

k

with

2 2(x 2 x ) (y 2 y )i k i kW 5 exp 2 2 (7)ik 2 2[ ]L Lx y

and

z t 2 t z01 2 , z t 2 t z , dt0dt
W 5 . (8)t

0, z t 2 t z $ dt5 0

Model grid points are indexed by an i, observational
points by a k. Here, [fA] are the analyzed values of a
field, [fB] the corresponding background or first guess
field, and [fO] the observations. When assimilating data
into a model, the first guess is provided by the model
itself. Here, are the estimated error variances of the2EO/B

observations and the background, respectively. Every
increment between first guess and observed value is
multiplied by a time weight Wt, which increases linearly
from zero to one and back to zero, as the difference
between model time and observational time goes from
t0 2 dt to zero and to t0 1 dt. The time weight acts as
a temporal filter reducing the effects of high-frequency
variability in the data, which are not resolved by our
model. Further, the observational increments are weight-
ed with the background error correlation. Because these
correlations are not exactly known, they must be esti-
mated. Here, we assume that the correlations are only
a function of the distance between points and not of
their absolute position. We chose a Gaussian shape func-
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tion with different characteristic e-folding scales Lx and
Ly in the zonal and meridional direction [Eq. (7)]. Fi-
nally, the obtained correction is multiplied by a constant
factor F. This factor determines how fast the data are
inserted into the model. If we assume that the spatial
weights and the error variances are equal to one, and
that / is an order of magnitude larger than Wt,22 22E EB O

then Eq. (6) is the discretized version of the differential
equation ]f/]t 5 F9Wt(fo 2 f), where F9 5 F/Dt and Dt
is the time step. If Wt increases linearly from zero to
one over a time interval dt, then the characteristic e-
folding time of this equation is t1/e 5 (2dtDt/F)1/2. With
a time step of 2.25 h, a time window of 15 days, and
F 5 0.1, we obtain a relaxation time of about 4 days.
Good results were obtained with relaxation times be-
tween 4 and 16 days, which corresponds to a range of
F between 0.1 and 0.005. In all experiments described
here, a factor of F 5 0.1 was chosen.

The correction of the model solution is applied every
time step to ensure that the corrections remain small,
so that the balance between the velocity and mass fields
is disturbed only slightly. This is important to avoid the
generation of high-frequency gravity waves. Thus, no
normal mode initialization is necessary. After each cor-
rection step a convective adjustment routine is applied
to remove unstable stratification.

In all assimilation experiments presented below, the
e-folding scales for the spatial weights were set to 1000
km in the zonal and 200 km in the meridional direction.
The half-width of the time window was 7.5 days, so
that data within 15 days, centered on the actual model
time step, were used. These parameters are the same for
all depths. We assumed further that the error variance
of the background field—that is, the model solution—
is twice as large as that of the observations, so that more
weight is given to the observations.

Our assimilation scheme is relatively simple. How-
ever, for large-scale studies in conjunction with gridded
datasets, as in our case, it seems to be appropriate. For
homogeneous data point distributions, which do not
change with time, the successive correction method is
equivalent to the optimal interpolation scheme that has
been used extensively in operational weather prediction
schemes.

2) HOW TO USE SEA LEVEL OBSERVATIONS

Although sea surface elevation is a prognostic vari-
able in our model, it is not sensible to correct the sea
surface height (SSH) directly. This would affect the
barotropic mode only, and the information would be
lost within a few time steps. Sea surface elevation is an
integral quantity that contains information about the ver-
tical density structure. To assimilate SSH observations,
the information contained in the data must be trans-
formed into a correction of the mass field. For the Trop-
ics, a linear relation between small changes in sea level
and the corresponding changes in the vertical mass

structure is a reasonable assumption. Further, salinity
variations can be neglected, which yields a linear re-
lation between anomalies in the vertical temperature
stratification and sea level. We correct, therefore, the
vertical temperature structure only. The relationship be-
tween changes in sea level and those in the vertical
temperature structure was derived empirically from a
control run in which our ocean model was forced by
observed winds over the period January 1982–Decem-
ber 1992. For every horizontal grid point, an EOF anal-
ysis of the anomalous vertical temperature profile was
performed. Five EOFs were retained, explaining about
95% of the local variance in most of the model domain.
Only very close to the horizontal boundaries (within
one to two grid points) did the explained variances drop
to about 65%, which we attribute to boundary effects.
Regression coefficients An between SSH anomalies and
the principal components g of the EOFs Gn(z) were
computed and stored separately for every horizontal grid
point. To insert the sea level observations into the mod-
el, first a correction field for the sea surface height anom-
alies Dz9 was computed, applying the successive cor-
rection method. The principal components of the EOF
expansion of the vertical temperature corrections are
obtained by multiplying the sea level corrections by the
An [Eq. (9)]. To obtain the desired temperature correc-
tion field, the principal components must be inserted
into the EOF expansion of the anomalous temperature
profile [Eq. (10)]:

n n(g ) 5 (A ) (Dz9) , (9)i i i

5

n n[DT9(z)] 5 (g ) [G(z) ] . (10)Oi i i
n51

Finally, the temperature corrections were added to the
first guess values, and a convective adjustment routine
was applied to remove unstable stratifications. Thus, the
surface height correction was transformed into a cor-
rection of the vertical temperature structure by applying
the empirically derived relationship between anomalous
sea surface height and vertical temperature structure.
This was done separately for every grid point. The above
described method is similar to that used by Mellor and
Ezer (1991), with the exception that they did not project
the sea level anomalies on EOFs but worked directly
with temperature and salinity. In contrast, in our ap-
proach the sea level is indirectly changed. Using the
leading EOFs only for the projection procedure ensures
that the information is smoothed in the vertical and pro-
jected onto the dominant vertical mode of the model.

3. Data

The Florida State University (FSU) wind stress data
(Goldenberg and O’Brien 1981; Legler and O’Brien
1984) were used to force the ocean model, and a re-
laxation of the temperatures in the uppermost ocean
layer toward an equivalent observed climatological tem-
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FIG. 1. Temperature anomalies averaged over the upper 275 m for
Nino-3 and Nino-4, as derived from the NMC reanalysis. These in-
dices are as upper-ocean heat content.

FIG. 2. Correlation between monthly mean heat content anomalies
in Nino-3 and Nino-4 as a function of time lag between the two time
series. A positive time lag means that the signal in Nino-4 is leading
the signal in Nino-3. Data between January 1982 and December 1988
were used.

perature was applied. To validate the forecast experi-
ments, predicted SST anomalies were compared to SST
anomalies as obtained from the Reynolds dataset (Reyn-
olds 1988; Reynolds and Smith 1994).

The assimilated data were obtained from the National
Meteorological Center (NMC, now known as the Na-
tional Centers for Environmental Prediction) reanalysis
dataset. This is the output of an oceanic analysis system
in which surface and subsurface temperature observa-
tions are assimilated into a high-resolution OGCM (Ji
et al. 1995). The reanalysis provides a complete tem-
perature and sea level analysis of the Pacific Ocean. We
use these pseudo data instead of real observations, be-
cause one of the main objectives of this paper is to
investigate the impact of different data types on ENSO
predictions. The NMC reanalysis yields sea levels with
the same resolution and comparable quality as temper-
atures. The temperatures and sea levels are the output
of the same ocean model. Thus, they are dynamically
consistent to each other and should contain the same
information. This is a perfect condition to compare the
impact of these two different data types on ENSO fore-
casts.

4. Ocean-only experiments

Three sets of experiments are presented. Each set con-
sists of an initialization run with our ocean model, in
which it is forced by observed wind stress fields, and
an ensemble of forecast experiments conducted in cou-
pled mode. No data were assimilated in the initialization
run of the first set, which we use as our control exper-
iment. In the second and third set, three-dimensional
temperature and sea level anomalies were assimilated
during the initialization runs, respectively. In the fol-
lowing subsections, we present some results obtained
from the forced ocean model runs. Results from the
forecast ensembles are presented in section 5.

a. Control run without data assimilation

The ocean model was integrated prescribing observed
wind stresses from FSU (Goldenberg and O’Brien 1981;
Legler and O’Brien 1984) for the period January 1982
to December 1992. The model is able to reproduce the
observed temperature and sea level anomalies quite re-
alistically. However, the maximum of the interannual
SST variability is simulated too far in the west and too
much confined to the equator (Fischer and Latif 1995).
Since equatorial heat content variations are crucial to
the ENSO cycle (Ji et al. 1994; Neelin et al. 1994), we
compare in the following the heat content variations
simulated by our model with those obtained from the
NMC ocean reanalysis, which should be quite close to
reality. We use as a measure of upper-ocean heat content
the average of the temperatures over the upper 275 m,
which was computed separately for the Nino-4 (58N–
58S, 1508E–1508W) and Nino-3 (58N–58S, 1508–908W)
regions. As expected, all ENSO extremes observed dur-
ing the period 1982–1993 can be clearly identified in
the reanalysis (Fig. 1). However, it is more important
in view of the ENSO predictability that there is a con-
sistent phase shift between the heat content variations
in the Nino-4 and those in the Nino-3 region. The signal
in the western Pacific is leading by about one year. This
can be seen more clearly in Fig. 2, showing the cor-
relation between monthly mean heat content anomalies
in Nino-3 and Nino-4 as a function of time lag. The
correlations are based on the NMC reanalysis data for
the period January 1982–December 1988, the period
from which we initialized the forecast ensembles pre-
sented in section 5. The correlation function has a max-
imum at a lead time of eleven months, with a correlation
of about 0.75, while the correlation is almost zero at
zero lag. Thus, the heat content variations in the western
Pacific can be regarded as a precursor for those in the
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FIG. 3. Temperature anomalies averaged over the upper 275 m for
Nino-3 and Nino-4 as derived from our ocean model forced by FSU
wind stresses.

FIG. 4. Root-mean-square difference between simulated tempera-
tures and NMC reanalysis Nino-4 temperatures for the period 1982–
92.

FIG. 5. Temperature anomalies averaged over the upper 275 m, as
derived from the temperature assimilation run. The model was forced
by observed wind stresses, and three-dimensional NMC temperatures
were assimilated.

eastern Pacific. The skill of an ENSO forecast system
depends highly on its ability to simulate this precursor
as accurately as possible. In Fig. 3, the same two heat
content indices are shown as simulated in our control
experiment without data assimilation. The main ENSO
extremes are also simulated reasonably well in this con-
trol integration. However, the amplitude of the precursor
is weaker than in the NMC reanalysis, and the phase
lag between the Nino-3 and Nino-4 regions is less pro-
nounced. The computation of the lag correlation yields
a maximum of 0.75 at a lead time of about 5 months.
Thereafter the correlation drops quickly and amounts to
only 0.3 at a lead time of 12 months. The impact of
these differences on the ENSO predictions is presented
in section 5.

b. Assimilation of three-dimensional temperature
anomalies

The model was again forced by observed monthly
mean FSU wind stress fields, but now monthly mean
three-dimensional temperature anomalies were assimi-
lated during the period February 1982–December 1992.
Overall, the model simulation was improved consider-
ably, relative to the run without data assimilation. The
maximum SST variability was shifted farther to the east,
and the off-equatorial variability was enhanced (not
shown). In the Nino-4 region, for example, the root-
mean-square difference between the simulated temper-
ature anomalies and those obtained from the NMC re-
analysis was reduced by a factor of 3–4 relative to the
control run (Fig. 4). Since the model simulations are
compared to the same data that were assimilated, it is
not surprising that a substantial reduction of the differ-
ences was achieved. However, this comparison gives an
indication of the typical differences between model sim-
ulations and reality and the level of potential reduction.
In Fig. 5, we display our measure for the upper-ocean

heat content in the Nino-3 and Nino-4 region. The phase
shift between the two time series is now very similar
to that obtained from the NMC data, and it is more
pronounced than in the control experiment (cf. Figs. 5,
1, and 3). Further, the amplitude of the precursor is
stronger relative to the control run, so that a positive
impact on the forecast skill can be expected. The am-
plitude of the interannual temperature variability was
increased compared to both the control run and NMC
data. This is surprising because the updated solution is
a linear combination of the model solution and the as-
similated data. One would expect, therefore, the am-
plitude of the variability to lie between that of the data
and the control run. Only nonlinearities in the model
can explain that behavior.
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FIG. 6. The rms difference between simulated and NMC reanalysis
Nino-4 sea levels with and without assimilation of sea level anom-
alies.

FIG. 7. Temperature anomalies averaged over the upper 275 m, as
derived from the sea level assimilation run. The model was forced
by observed wind stress data and NMC sea level anomalies were
assimilated: (a) control experiment, (b) temperature experiment, (c)
sea level experiment.

c. Assimilation of sea level anomalies

The experimental setup is exactly the same as de-
scribed in the previous section. The model was forced
by observed monthly mean FSU wind stress fields, but
instead of the temperature monthly mean, NMC sea lev-
el anomalies were assimilated during the period Feb-
ruary 1982–December 1992. This provides an excellent
opportunity to investigate the impact of sea level assim-
ilation on ENSO diagnostics and predictions. Further, it
gives an estimate of the potential benefit that can be
gained from the insertion of altimetric sea levels. Such
data have been available from the Topex/Poseidon and
the ERS-1 missions with good accuracy and high cov-
erage in space and time (Busalacchi et al. 1994; Zou
and Burkert 1994).

The rms differences between the NMC sea level
anomalies and the model simulations with and without
sea level insertion show a reduction in the Nino-4 region
by a factor of more than five relative to the control
experiment (Fig. 6). Since the simulated sea level anom-
aly fields are corrected indirectly, this demonstrates that
our statistical approach by which we project sea level
information onto the vertical temperature structure
works successfully. Similar results were found for the
Nino-3 region and outside 58N–58S. The interannual
temperature variability in the sea level assimilation run
is increased relative to the control run and even slightly
stronger than in the temperature assimilation experiment
(Fig. 7). The warm and cold events during the integra-
tion period are well simulated. However, during the
1986/87 warm event the temperature drops too early in
the Nino-3 region, and too far in the Nino-4 region. The
amplitude of our precursor is higher than in the control
experiment. From 1982 to 1987, the phase lag between
the anomalous heat content in the Nino-3 and Nino-4
regions is clearly seen, and it is more pronounced than
in the control experiment. The correlation between

monthly mean heat content anomalies in Nino-3 and
Nino-4 yields a maximum of 0.75 at a lead time of five
months, which is too short relative to observations.
However, in contrast to the control experiment the cor-
relation remains at a relatively high level for longer lead
times, with a correlation of 0.68 at 12 months lead time.
Beginning with the end of the 1986/87 El Niño, this
phase lag does not exist any longer, which is in strong
contrast to the observations (cf. Fig. 1). The reason for
this failure is not understood. One possibility is that the
relationship between the sea level and corresponding
temperature anomalies changed during that period,
which would be harmful to our statistical procedure.
However, we did not find clear evidence for this. An-
other explanation could be that a decadal mode with a
period of about 20 years is superimposed on the ENSO
cycle, which cannot be simulated by our model. This
mode is described by Latif and Barnett 1994, and their
hypothesis is that the oscillatory nature of this mode
arises from an instability of the coupled ocean–atmo-
sphere system in the North Pacific, which is outside our
model domain. Such a mode would change the rela-
tionship between anomalous sea levels and correspond-
ing temperatures. If such a decadal mode plays an im-
portant role during the late eighties and early nineties,
it is plausible that we cannot expect a proper simulation
of heat content anomalies for that period. To clarify this,
similar experiments will be repeated with a model that
includes the North Pacific.

5. Forecast experiments

Recently, different groups have shown that the assim-
ilation of subsurface temperature data may have a pos-
itive impact on the skill of ENSO forecasting systems
(Ji and Leetmaa 1997; Kleeman et al. 1995). In this
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FIG. 8. Observed and predicted SST anomalies averaged over
the Nino-3 region for the period 1982–89. Each individual fore-
cast was carried out over 1 year.

section, we present three ensembles of forecast exper-
iments: predictions started from initial states that were
obtained from our control run (no data assimilation),
from the temperature assimilation run, and from the sea
level assimilation run. The forecast integrations were
performed with the hybrid coupled model, described in
section 2. Each forecast was carried out as follows. To
initialize the coupled forecast system, the ocean model
was integrated in an uncoupled mode and forced by
observed wind stresses. This was done for at least one
year, to ensure that the ocean model was properly pre-
conditioned. In a reference ensemble, no additional data
were used during the initialization, whereas in the other
initialization runs, either monthly mean temperature or
sea level anomalies were assimilated. States were stored
from each initialization run and used as initial conditions
for the hybrid coupled model. The individual forecasts
of the SST anomalies in the Nino-3 region and the cor-
responding observations are presented for the period
January 1982–December 1989 in Fig. 8. Beginning in
early 1990, the predictive skill of our model drops sub-
stantially (not shown). As mentioned in the previous
section, the reason for this degradation of the perfor-
mance partly may be caused by interdecadal climate
variability. However, this is not well understood and
other groups (U.S. Department of Commerce 1995) also
suffer from a similar lack in predictive skill during the
1990s. We therefore decided to restrict the discussion
of the forecast results to the period 1982–89. The ob-

served SST anomalies were computed from the Reyn-
olds dataset (Reynolds 1988; Reynolds and Smith 1994)
and were not used in any of the initialization experi-
ments.

An objective measure that is commonly used to eval-
uate the performance of a forecast system is the cor-
relation skill. In our case this measure is based on the
correlation between the observed and predicted sea sur-
face temperature anomalies averaged over the Nino-3
region:

^T9 (t)T9 (t)&pred obsr(t) 5 . (11)
1/2[^T9 (t)T9 (t)&^T9 (t)T9 (t)&]pred pred obs obs

In this equation, (t) and (t) denote the pre-T9 T9pred obs

dicted and observed SST anomalies, respectively, av-
eraged over the Nino-3 region. The lead time is denoted
by t, and angle brackets denote the forecast ensemble
average.

Although the variability of the predicted SST anom-
alies is too small in the control ensemble (Fig. 8a), the
predictive skill is quite good (Fig. 9a). In particular, the
transition from warm to cold conditions is predicted
well, even at long lead times. Further, no event was
erroneously predicted. The forecast skill starts at about
0.75 at lag 0 and remains at a relatively high level even
at a lead time of one year (Fig. 9a). However, the
1986/87 warm event was not predicted, even at short
lead times. The coupled model simulates warm condi-
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FIG. 9. Forecast skill for sea surface temperature anomalies in
Nino-3 averaged over 28 individual forecasts initialized between Feb-
ruary 1982 and December 1989.

tions only after the warm event is fully developed in
early 1987. Further, the coupled model has some dif-
ficulties to simulate the transition from cold or normal
to warm conditions in its present configuration. If sub-
surface temperatures are assimilated during the initial-
ization, the situation improves considerably (Fig. 8b)
and the amplitudes of the predicted temperature varia-
tions are quite realistic representations. The transition
from warm to cold conditions is still well forecasted,
and the agreement between observed and predicted SST
anomalies is much better between January 1985 and July
1986, a period when the temperature increased contin-
uously. However, the onset of the El Niño 1986/87 is
still not very well predicted. Warm conditions are sim-
ulated only after the event is fully developed, and even
during the height of the 1986/87 warm event, the model
is not able to maintain the anomalous conditions and
tends to move too early into a cold state. The correlation
skill (Fig. 9a) shows clearly that the assimilation of the
subsurface temperature anomalies was useful in im-
proving the performance of the forecast system. The

correlation skill amounts to about 0.9 at zero lag and
reaches the same level as in the control experiment after
about one year. This confirms the results of other groups
(Ji and Leetmaa 1997; Kleeman et al. 1995), who also
found that the use of subsurface information may im-
prove the predictive skill.

The individual forecasts started from the initial con-
ditions obtained from the sea level assimilation exper-
iment are presented in Fig. 8c. Again, the predicted SST
variability is more realistic than in the control experi-
ment, although the amplitudes are now bigger than ob-
served. In contrast to the other two forecast ensembles,
the 1986/87 El Niño is clearly predicted at lead times
up to 1 year. Further, the coupled model remains in a
warm state until autumn 1987, which agrees much better
with the observations than the results from the previous
two ensembles. The strong El Niño in 1982/83 is also
predicted better than in the two other ensembles. Weak-
nesses are found in the temperatures predicted in late
1983 and early 1984. Temperatures are much too cold
and the transition from warm to cold conditions is gen-
erally predicted poorly relative to the two other forecast
ensembles. After the warm event 1986/87 the forecast
skill drops substantially, which coincides with the dis-
appearance of the phase lag between the Nino-3 and
Nino-4 heat content signals. However, at least from a
subjective point of view, the forecasts have gained a lot
by assimilating sea level anomalies. Unfortunately, this
impression is not confirmed by the correlation skills.
Figure 9b shows that the correlation starts at a level
slightly higher than in the control ensemble, but it drops
below the skill of the control ensemble at lead times
between 2 and 7 months. At lead times longer than 7
months the skill is again higher than in the control en-
semble.

Comparing the individual forecasts, it is noticeable
that in the sea level ensemble the predicted temperature
trends are quite realistic. They agree well with obser-
vations, even if the forecast itself is quite poor. An ex-
ample is the prediction that starts in July 1985 (Fig. 8c).
The prediction starts at neutral conditions (i.e, SST
anomaly of 08C) and for July 1986 a temperature anom-
aly of about 18C is predicted. The corresponding ob-
servations are a negative temperature anomaly of about
18C in July 1985 and almost neutral conditions one year
later, which means that the forecast failed completely.
However, the observed temperature difference between
July 1985 and July 1986 is about 18C, which also is
predicted quite realistically. In the sea level forecast
ensemble there are many other examples like this. An
objective measure that evaluates the capability to predict
trends is the correlation between differences. In our
case, we define an alternative skill measure by com-
puting the correlation between the observed and fore-
casted temperature differences as a function of lead
time:
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FIG. 10. Forecast skill for differences of sea surface temperature
anomalies in Nino-3, as a function of time lag averaged over 28
individual forecasts initialized between February 1982 and December
1989.

^DT9 (t)DT9 (t)&pred obss(t) 5 , (12)
1/2[^DT9 (t)DT9 (t)&^DT9 (t)DT9 (t)&]pred pred obs obs

where D (t) and D (t) are the differences betweenT9 T9pred obs

the temperature anomaly at a certain lead time t minus
the temperature anomaly at the initialization time t0 as
predicted or observed, respectively, and

DT9(t) 5 T9(t) 2 T9(t0). (13)

Here, (t0) and (t0) denote the predicted (pred)T9 T9pred obs

or observed (obs) temperature anomaly at the initiali-
zation time. At short lead times this measure captures
only the high-frequency SST fluctuations. These are
governed by high-frequency atmospheric noise, and we
cannot expect to predict them successfully. Therefore,
we do not expect high skills at short lead times using
this measure. At medium and long lead times, however,
this alternative skill measure should increase if our fore-
casts capture the low-frequency SST evolution. The al-
ternative skills based on the temperature differences are
shown in Fig. 10. In the upper panel, we compare the
control ensemble with the temperature assimilation en-
semble. They start at about the same level at lag 0. For
lead times longer than 3 months, the temperature assim-
ilation ensemble clearly outperforms the control ensem-
ble. The alternative skill measure for the sea level as-
similation ensemble (lower panel) starts at a rather low
level at lag 0. However, after lead times of about three
months the alternative skill of the sea level assimilation
ensemble reaches the level of the control ensemble and
after 12 months it does even better than the temperature
assimilation ensemble.

We conclude that the prediction of the low-frequency
component of the tropical Pacific SST anomalies can
be improved by assimilating sea level anomalies. Fur-
ther, both skill measures suggest that the benefit of sea
level data is comparable to that of subsurface temper-
ature observations at relatively long lead times of 6–12
months.

6. Conclusions

We have investigated the potential impact of sea level
assimilation on ENSO simulations and forecasts. An
empirical scheme was developed by which the sea level
anomalies can be projected onto the anomalous vertical
density structure of the ocean. It was shown that the
assimilation of both subsurface temperature and sea lev-
el anomalies improves the simulation of the ocean states,
especially in the western equatorial Pacific, which is a
crucial region for ENSO predictions.

The results of the forecast ensembles indicate that the
assimilation of sea level anomalies yields comparable
results to the case in which subsurface temperature
anomalies were assimilated. Thus, we can expect a pos-
itive impact on ENSO forecasting by assimilating al-
timetric sea level anomalies. Such data are currently
available in near real time and have the advantage of

high spatial and temporal resolution. Preliminary fore-
cast results using altimetric height anomalies are also
encouraging (Fischer et al. 1994).

Our study indicates also that the question of forecast
verification needs to be addressed in more detail. We
have shown that the interpretation of the forecast result
critically depends on the definition of the skill measure.
The positive impact of data assimilation on ENSO pre-
dictions could be shown more clearly when the fore-
casted temperature anomaly differences rather than the
temperature anomalies themselves were compared with
observations. Furthermore, based on the subjective im-
pression, the forecasts with sea level data assimilation
looked much more realistic than those without data as-
similation, which was not supported by the traditional
skill measure. However, further work is needed to un-
derstand this in more detail.
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