-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by OceanRep

Available online at www.sciencedirect.com

. . Geochimicaet
ScienceDirect Cosmochimica
45 e Acta
ELSEVIER Geochimica et Cosmochimica Acta 75 (2011) 427-443

www.elsevier.com/locate/gca

Controls on calcium isotope fractionation in cultured
planktic foraminifera, Globigerinoides ruber and
Globigerinella siphonifera

B. Kisakiirek ®*, A. Eisenhauer?®, F. Bohm?, E.C. Hathorne ®°, J. Erez®

& Leibniz-Institut fiir Meereswissenschaften, IFM-GEOMAR, Wischhofstr. 1-3, D 24148 Kiel, Germany
> MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Str., D 28359 Bremen, Germany
¢ Department of Earth Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Received 12 August 2009; accepted in revised form 18 October 2010; available online 27 October 2010

Abstract

Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under
controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (3244 psu) and pH levels (7.9-8.4). The
shells were examined for their calcium isotope compositions (8% 40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal
Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in §*/40Ca
(~0.3%,) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent
trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship
between §**4°Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite indepen-
dent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation
and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with
a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively corre-
lated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated
to be on the order of 2000 and 3000 pmol/m?/h, respectively. The lower §*49Ca observed at >29 °C in both species is con-
sistent with increased precipitation rates at high water temperatures. Salinity response of §*/40Ca (and Sr/Ca) in G. siphonif-
era implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities
appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in plank-
tic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biominer-
alization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport,
supplying light Ca for calcification, the §*49Ca of the reservoir is constrained as —0.29, relative to seawater. Using a Ray-
leigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by
vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on 3*49Ca and
Sr/Ca in foraminifera as well as understanding their biomineralization processes.
© 2010 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Early investigations by Zhu and MacDougall (1998) sug-
gested that variations in calcium (Ca) isotope composition of
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certain foraminifera may be controlled by temperature. This
was confirmed by 34/ 40Ca-temperature calibrations of cul-
tured and field-collected specimens of one species of planktic
foraminifera, Globigerinoides sacculifer, which demonstrated
a temperature sensitivity on the order of 0.2%,/°C (Négler
et al., 2000; Hippler et al., 2006). This temperature relation-
ship was applied to down-core records coupled with other
proxies (Mg/Ca and 8'80) to extract past sea surface
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temperatures (Négler et al., 2000; Hippler et al., 2006) and
salinities (Gussone et al., 2004).

Other studies on core-tops and laboratory cultures dem-
onstrated that Ca isotope fractionation in planktic forami-
nifera is species-dependent, wherein the temperature
sensitivity for most planktic species is an order of magni-
tude lower than that for G. sacculifer (Gussone et al.,
2003, 2009; Griffith et al., 2008). This temperature sensitiv-
ity on the order of 0.02%,/°C was confirmed for other cal-
cifying organisms such as corals (B6hm et al., 2006) and
coccolithophores (Gussone et al., 2006, 2007) as well as
for inorganic aragonite and calcite (Gussone et al., 2003;
Marriott et al., 2004). Ca isotope records of those species
of foraminifera with less temperature sensitivity were used
to investigate secular §*/49Ca variations in seawater (De
La Rocha and DePaolo, 2000; Heuser et al., 2005; Sime
et al., 2007).

A study by Sime et al. (2005) and a recent compilation
by Kasemann et al. (2008) found no significant correlation
between temperature and the Ca isotope composition of
more than twelve species of planktic foraminifera (includ-
ing G. sacculifer) from core-top sediments. A record of
Ca isotope composition of G. sacculifer from ODP site
925 in the Atlantic has been shown to closely follow that
of several other species of planktic foraminifera and lacks
the large variability expected if temperature was a signifi-
cant driver (Sime et al., 2007). Ca isotope data on G. saccu-
lifer from core-tops (Chang et al., 2004; Griffith et al., 2008)
and culture experiments (Gussone et al., 2009) failed to
reproduce the large temperature-dependent fractionation
established by samples from plankton tows and previous
culturing experiments (Négler et al., 2000; Hippler et al.,
2006). Gussone et al. (2009) examined the causes of the con-
trasting Ca isotope fractionation behaviour in G. sacculifer
from culturing experiments conducted by Hemleben et al.
(1987, 1989) in different seasons in Barbados. Specimens
with a weak temperature dependence of Ca-isotope ratios
(Gussone et al., 2009) were grown under low salinity condi-
tions (33-34.5) and displayed growth limitations such as
smaller test diameter, shorter survival time and reduced
prey acceptance prior to gametogenesis. In contrast, speci-
mens with a strong temperature response (Négler et al.,
2000) were cultured at high salinities (34.5-36), where they
grew to bigger sizes, accepted more food and had a higher
frequency of gametogenesis. The bimodal temperature sen-
sitivity within a single species was also observed in Neogl-
oboquadrina pachyderma (sin.) from plankton tows and
core-top sediments (Gussone et al., 2009; Hippler et al.,
2009; Kozdon et al., 2009). The strong temperature sensitiv-
ity of Ca isotope fractionation in N. pachyderma (on the or-
der of 0.2%,/°C) was observed to have an offset between
different water masses (Gussone et al., 2009) or to break
down below a critical threshold temperature of ~2-3°C
and salinity of ~33-34 (Hippler et al., 2009; Kozdon
et al., 2009). This shift in behaviour was observed to be
independent of genetic variations (Hippler et al., 2009).
Kozdon et al. (2009) observed that Ca-isotope ratios and
Mg/Ca ratios in N. pachyderma (sin.) reflect water temper-
atures (>2.5 °C) along isopycnal layers in the Norwegian
Sea, whereas an impaired temperature response of both

proxies in the polar regions was hypothesized to be associ-
ated with high calcification rates in N. pachyderma (sin.) in
cold waters (<2.5 °C). Griffith et al. (2008) observed that
sediment trap samples of Globigerinoides ruber and Globige-
rinoides sacculifer show a large degree of Ca isotope frac-
tionation at high temperatures (>27 °C), deviating from
the temperature-dependent fractionation trend followed
by core-top samples. Thus it is now apparent that there
are additional controls other than temperature on Ca iso-
tope fractionation in planktic foraminifera and that growth
effects might be important.

High spatial resolution in situ Ca isotope measurements
on planktic foraminifera using ion microprobe revealed in-
tra-test 8*¥4°Ca variations of 1.7%, in Globorotalia inflata
(Rollion-Bard et al., 2007), 1.6%, in Globorotalia truncatuli-
noides and 3.79%,, in Globorotalia tumida (Kasemann et al.,
2008), as compared to the total glacial-interglacial varia-
tion in planktic foraminiferal §*40Ca of ~1.89, (Kase-
mann et al., 2008 and references therein). The intra-test
variability in G. truncatulinoides and G. tumida was ob-
served to be associated with ontogenic versus gametogenet-
ic layers. The gametogenetic layer was found to be
isotopically lighter than the ontogenic calcite in G. tumi-
da, supporting a temperature influence during precipitation
of gametogenetic calcite in deeper and colder waters. In
contrast, the gametogenetic layer was shown to be isotopi-
cally heavier than the ontogenic calcite in G. truncatulino-
ides. This was hypothesized to result from a kinetic effect
or Rayleigh-type fractionation from an internal reservoir
(Kasemann et al., 2008).

To better constrain these controls we analyzed Ca iso-
topes and strontium to calcium ratios (Sr/Ca) in the shells
of planktic foraminifera G. ruber (white) and G. siphonifera
collected from the Gulf of Eilat (Red Sea) and cultured un-
der different salinity, temperature and carbonate chemistry
conditions. We find a significant correlation between
§*4°Ca and Sr/Ca in the samples from all experiments,
suggesting that these ratios are controlled by similar pro-
cesses. Results from a series of recent inorganic precipita-
tion experiments (Tang et al., 2008a,b,c) display a similar
relationship suggesting precipitation kinetics mainly control
Ca isotope fractionation in foraminifera.

2. METHODS
2.1. Experimental setup

Foramifera culturing experiments were carried out un-
der controlled laboratory conditions at the Interuniversity
Institute for Marine Sciences in Eilat (IUI), Israel. The cul-
turing setup and sample treatment are explained in detail in
a related article (Kisakiirek et al., 2008). G. ruber (white)
and G. siphonifera were collected from the surface waters
(top 20 meters) of the northern Gulf of Eilat via plankton
net (102 pm mesh size) between April and July 2006 and be-
tween April and May 2007. A wide range of physiological,
morphological and genetic lines of evidence indicate that
there are two main phenotypes of G. siphonifera (Type 1
and II) and that these two types can be considered as dis-
tinct cryptic species (Faber et al., 1988, 1989; Darling
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et al., 1997; Huber et al., 1997; de Vargas et al., 2002; Dar-
ling and Wade, 2008). According to the genetic sequencing
study of de Vargas et al. (2002), G. siphonifera specimens
collected from the surface waters (between 175 m depth
and the sea surface) of the northern Gulf of Eilat in May
1999 belong to Genotype II (i.e., Type Ila according to
the revised system of Darling and Wade, 2008). Our study
does not involve genetic investigations on G. siphonifera
from the Gulf of Eilat, mainly because of the difficulties
associated with performing coupled analysis on shell chem-
istry and DNA sequencing.

Foraminifera were picked from the tow sample using a
binocular microscope. A small fraction was kept as a con-
trol group, whereas the recovered specimens were cultured
individually in 100 ml Erlenmeyer flasks filled with Gulf
of Eilat seawater filtered to 0.45 pm and fed one newly
hatched brine shrimp (Artemia sp.) every day. The flasks
were kept tightly capped and placed in temperature con-
trolled water baths with +0.2 °C precision. Light was pro-
vided artificially for 14 h a day (followed by dark phase
of 10 h) by a metal halide type lamp (420 W, Osram™) at
a constant irradiance of 200 pmol photons m~2s~!. Upon
gametogenesis the shell was rinsed five times in distilled
water and dried before its diameter and weight were mea-
sured. The culturing fluids were sampled using a plastic syr-
inge, filtered to 0.2 pm and stored below 10 °C in the dark
for chemical analysis.

Each experimental setup simulated variations in a single
environmental parameter (i.e., temperature, salinity or car-
bonate chemistry of seawater) while keeping others con-
stant. The range of these environmental parameters was
designed to cover the variability in the natural habitat of
G. ruber and G. siphonifera. Two to six foraminifera of a
single species were cultured in each experimental setup
(Table 1).

Temperature and salinity experiments (BK1, BK2 and
BK4 experiments in Table 1) were conducted on both spe-
cies and covered a range from 18 to 31 °C and from 32 to
44 psu, respectively. Salinity was altered either by adding
distilled water to seawater for lower salinities or by evapo-
rating for higher salinities. Carbonate system parameters of
these experiments were estimated using the computer pro-
gram written by Lewis and Wallace (1998) by assuming that
total alkalinity and total inorganic carbon (2490 peq/1 and
2060 pmol/kg, respectively, at a salinity of 40.7 psu in the
northern part of the Gulf of Eilat; Silverman et al., 2007)
behave conservatively with changing salinity (Table 1).

In an additional set of experiments on G. ruber (BK3
experiments in Table 1), the carbonate system was manipu-
lated so that total inorganic carbon (Cr) was kept constant
by allowing no exchange with the atmosphere while pH and
carbonate ion concentration ([CO;>~]) were altered through
the addition of dilute (0.05M, reagent grade) HCl or
NaOH. Before the adjustment of pH, the Gulf of Eilat sea-
water was bubbled with ambient air overnight to equili-
brate with atmospheric CO, and its salinity was adjusted
to 35 psu by addition of distilled water, which contains
no alkalinity and a negligible amount of inorganic carbon.
The culturing fluids from the carbonate chemistry experi-

ments were analyzed for total alkalinity and total inorganic
carbon (Kisakiirek et al., 2008), allowing the other carbon-
ate system parameters (e.g., [CO;*~], pH) to be accurately
calculated using the computer program written by Lewis
and Wallace (1998), using K1 and K2 constants from
Mehrbach et al. (1973) refitted by Dickson and Millero
(1987) and Kgp4 constant from Dickson (1990). Accord-
ingly, the carbonate chemistry experiments encompassed a
[CO,*7] range of 140-380 pmol/l and a pH range of 7.9-
8.4 (Table 1).

One specimen of G. ruber (cultured at 30 °C) and two
specimens of G. siphonifera (one cultured at the Gulf of Ei-
lat salinity of 40.7 psu and the other one at 32.1 psu) were
embedded in epoxy resin, polished to expose a cross-section
through the test, coated with carbon and examined for
semi-quantitative distribution patterns of Sr/Ca (elemental
map) on a JEOL JXA 8200 electron microprobe at the
Leibniz Institute of Marine Sciences (IFM-GEOMAR).

Shells from repeat experiments were grouped together
and transferred into a pre-cleaned micro centrifuge tube
for sample cleaning. Given that organics might cause iso-
baric interferences during Ca isotope analysis (Heuser
et al., 2005), the foraminifera tests were cleaned of residual
organic matter by oxidation in dilute sodium hypochlorite
solution (reagent grade, Sigma Aldrich, diluted 1:20 or
<1% active reagent). The vials were repeatedly shaken by
a vortex shaker. After employing several washes with ultra-
pure water, the samples were dissolved in 10 pL of ultra-
pure 2.5 N HCI, transferred at once to Savillex beakers,
evaporated and redissolved in ultrapure 2.5 N HCI with a
concentration of ~160 pug of Ca per ml of sample solution.

Our approach was to group all cultured specimens in an
experiment together in order to minimize intra-specific var-
iability. In this manner, growth rates were calculated as an
average for each experiment (Table 1). To do this, we calcu-
lated first the growth rate (GR) of each cultured specimen
(Egs. (1) and (2)) and then the average growth rate (pg/
day/ind and %/day/ind) by taking the arithmetic mean of
all GR in an experimental setup. The errors on average
growth rates are given in two standard errors of the mean
(20,,) calculated for the number of cultured specimens
grouped together in an experiment (Table 1).

GR (ug/day) = [m, (ng) —m; (ug)]/Ar (day), (1)

where the growth of a foraminifera is assumed to be linear
across the duration of an experiment, m, and m; stand for
final and initial shell masses, consecutively.

GR (%/day) = Infm, (ng)/m; (ng)l/At (day) » 100,  (2)

where the growth is assumed to be exponential across the
duration of an experiment.

Final shell mass was measured using a Kahn microbal-
ance, whereas initial shell mass was estimated from the size
versus mass relationship given in Fig. 1. The duration of the
experiment (Atz) denotes the number of days from when the
foraminifera was first fed until gametogenesis. The first
feeding was carried out 1-4 days after the collection date,
depending on the recovery of specimens.
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Fig. 1. Species specific correlation between shell diameter (D) and
mass (m) for (1) G. ruber [m = 0.00008 % D>, R = 0.89)], (2) 2006
cultures of G. siphonifera [m = 2.34 % exp(0.0038 * D), R>=0.71)],
and (3) 2007 cultures of G. siphonifera [m = 0.93 % exp(0.0055 D),
R*=0.83)]. The final mass of the shell of each cultured specimen
was determined using a Kahn microbalance with a precision of
+0.1 pg, whereas the final diameter (>300 pm) was assessed under
an inverted microscope. The lower end of the correlations rely on
control specimens (having diameter <300 pm). These correlations
allow for the estimation of the mass of each specimen at the start of
the experiment (i.e., initial mass) given that its initial diameter was
determined on a binocular microscope. A power-type regression
was preferred over an exponential one in G. ruber because the fit
better approximates for low shell mass. The higher exponent of G.
siphonifera cultured in 2007 compared to 2006 appears to be due to
the better adaptation of this species to the natural salinity of the
Gulf of Eilat (~41 psu; see Table 1 and Section 3.2).

2.2. Calcium isotope measurements

Ca isotopes were measured on a Finnigan TRITON
Thermal Ionization Mass Spectrometer (TIMS) at the
IFM-GEOMAR, following the method described in Heuser
et al. (2002). Briefly, an aliquot of the sample HCI dissolu-
tion comprising ~300ng Ca was spiked with a known
amount of **Ca/*®Ca double spike solution, evaporated to
dryness and then loaded with 2 N HCI and TaCls activator
onto a zone-refined Re single filament. Samples were heated
to a temperature of approximately 1500 °C, corresponding
to a signal intensity of 4-5 V on *°Ca. Measurements were
made in dynamic mode with *°Ca/**Ca, **Ca/**Ca, and
4Ca/*Ca measured in the main cycle and **Ca/**Ca in
the second cycle. The procedural blank of this technique
yields less than 4.5 ng Ca (<1.5% of the sample size).

The Ca isotope data are expressed relative to NIST
SRM915a standard as &**Ca= [(44Ca/40Ca)Sample/
(**Ca/**Ca)srmorsa — 1] x 1000 (Eisenhauer et al., 2004).
The §***°Ca values for each analytical session were calcu-
lated relative to the mean of the SRMO9I15 standards run
in that session. The average precision of SRM915a stan-
dards (n=4) run during a session was 0.1-0.2%, (25,,).
An in-house CaF, standard was run in every session. The
long term reproducibility of this CaF, standard run over
27 sessions over 13 months is +1.47+0.24%, (20,

n=27), which is in agreement with previously published
values of +1.45+0.26%, (2o, n=105; Gussone et al.,
2003) and +1.47 £0.19%, (20, n=30; Hippler et al.,
2003, 2006). The §*4°Ca value of each sample reported
in this study is the mean of 3-12 repeats (Table 2). These
repeats were not analyzed one after another in a single
batch, but run in several sessions over the long term (3—
4 months). We report the error on each sample in 2G,,.

Samples of the Gulf of Eilat seawater used for culturing
and TAPSO seawater standard were spiked prior to separa-
tion of Ca through cation exchange chemistry following
the procedure given in Amini et al. (2008). The blank for col-
umn chemistry was less than 6 ng Ca (<2% of the sample
size). The 8**°Ca of seawater from the Gulf of Eilat (i.e.,
the culturing solutions) was determined as +1.84 + 0.08%,
(20,,, n=13), which is identical within analytical uncer-
tainty to 8***°Ca of IAPSO measured in this study
(+1.78 £ 0.06%,, n =16) and in previous studies (+1.88 +
0.04%,, Hippler et al., 2003; +1.86 4+ 0.049,,, Amini et al.,
2008). The fractionation of Ca isotopes in calcite relative to
the fluid from which it precipitated is expressed as
AMH0Cy = 54/ OCacarcite — 54/ “0Cagqyiq. The estimated error
on A**°Ca is on the order of +0.15%, (25,,) as propagated
from the errors of calcite (£0.19, on average; Table 2) and
fluid (£0.089,,) composition determinations.

2.3. Sr/Ca analysis

Sr/Ca ratios in G. ruber were measured on an Agilent
7500cs series Quadrupole Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) at the Institute of Geosciences at the
University of Kiel (Kisakiirek et al., 2008). Sr/Ca ratios in G.
siphonifera were measured on a Thermo Scientific Element 2
Sector Field ICP-MS at the University of Bremen. Proce-
dural blanks for Ca and Sr were <0.2% for all samples.
Repeat analyses of an in-house standard solution on the Agi-
lent 7500cs and Element 2 gave a precision of 4-0.04 mmol/
mol (2o, n = 8) and #0.02 mmol/mol (26, n = 11), respec-
tively. Cross-calibration of two samples provided an inter-
instrumental Sr/Ca precision of #£0.05 mmol/mol (20)
(Kisakiirek et al., 2008). Mixed standard solutions prepared
by Greaves et al. (2005) were measured on the Element 2 to
check the accuracy. Sr/Ca ratios determined in solutions
CL1 and CL7 (2.14 and 1.66 mmol/mol, respectively) are
within the inter-instrumental precision (£0.05; 25) of the
published values (Greaves et al., 2005).

Sr/Ca of the culturing fluids was measured on Jobin
Yvon JY 170 Ultratrace series ICP-OES at the IFM-
GEOMAR. Sr/Ca of the culturing solutions from the Gulf
of Eilat (covering the entire range in salinity and carbonate
chemistry experiments) were determined as 8.87+
0.11 mmol/mol (26; n = 19). This is in good agreement with
the Sr/Ca ratio of IAPSO measured during the same
analytical session (8.79 £ 0.07 mmol/mol; n = 6).

3. RESULTS
Shell chemistry data are given in Table 2, where 3*40Cq

(and Sr/Ca) values of repeat experiments (i.e., BK1-35R
vs. BK2-24R; BKI1-35S vs. BK2-24S, BK1-44S 1 vs.
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BK1-44S 2) are shown to be within error of each other. In
a previous study dealing with Mg/Ca ratios in the same
samples of G. ruber, it was observed that employing a cor-
rection on Mg/Ca for the initial mass of foraminifera, cal-
cified in nature, improved the temperature calibration
significantly (Kisakiirek et al., 2008). However, applying
such a correction on **/4°Ca and Sr/Ca produces values
that are identical within analytical uncertainty to the uncor-
rected values. This is because (i) there is very little variabil-
ity in both §*4°Ca and Sr/Ca between the initial mass (as
given by the control group of respective species) and the
whole test value (Table 2), (ii) the initial mass of the cul-
tured samples constitutes a relatively small portion of the
final mass (average proportion of 19% for G. ruber and
8% for G. siphonifera; Table 1), and (iii) the variability in
the dataset is small compared with the external reproduc-
ibility of both proxies (Sections 2.2 and 2.3). Thus, in this
study we have not employed a correction on 3*/4Ca and
Sr/Ca for the initial mass.

3.1. Calcium isotope fractionation

The range of 5*/*°Ca in cultured G. ruber and G. sipho-
nifera (~0.6 to 0.99%,) is in good agreement with previous
studies of these species from core-tops and net catches (Sime
et al., 2005; Griffith et al., 2008; Kasemann et al., 2008). The
total variation in 8**/4°Ca is ~0.39,, which is remarkable
considering the large modifications in environmental condi-
tions used in these experiments. Even though this variability
is on the same order as the external reproducibility, there are
some apparent trends in the data set (Fig. 2a—c).

Our results reveal no linear correlation between temper-
ature and 8*%°Ca in the studied planktic foraminifera
(Fig. 2a). The Ca isotope composition is nearly constant
at intermediate water temperatures (8**°Ca of ~0.7%, in
G. ruber; ~0.89, in G. siphonifera, excluding the outlier at
24 °C), whereas §*4Ca decreases (to as low as ~0.6%,)
at extremely low and high temperatures. Below 24 °C
(Fig. 2a), the positive temperature dependence of 3*/40Ca
in G. ruber (0.02 4 0.04%,/°C at 95% confidence level) is
essentially consistent with the previously observed temper-
ature sensitivity of ~0.02%,/°C in cultured Orbulina univer-
sa and inorganic calcite (Gussone et al., 2003; Marriott
et al., 2004). At 30-31 °C, the highest temperature at which
G. ruber and G. siphonifera can survive, the lower §*/40Cq
corresponds to a high growth rate in each species (experi-
ments BK2-30R and BK4-31S; Tables 1 and 2).

Temperature calibration of §*40Ca in G. siphonifera
portrays lower values at the salinity of the Gulf of Eilat
(41 psu) than at 35 psu (Fig. 2a). This effect can be tracked
in the salinity response of §*40Ca in G. siphonifera, where
culturing at 41 psu produced the lowest §*4Ca value
(Fig. 2b). We observe no significant response of 3*40Cq
in G. siphonifera to changes in salinity including all data
points (R*>=0.21; p =0.36; Fig. 2b). Excluding the data
point at 41 psu, the correlation between §*49Ca and salin-
ity in G- siphonifera improves (R*> = 0.85; p = 0.03), but we
have no valid reason to exclude this data point.

8*49Ca in G. ruber decreases with increasing salinity
(—0.013 4 0.009%,/psu; R*=0.89; p <0.02; Fig. 2b) and

decreasing [CO,>~1(0.0005 4 0.0003%,/(1mol/1); R* = 0.97;
p <0.02; Fig. 2¢). Since increasing salinities are associated
with increasing [CO;>~] in seawater (Table 1), the observed
salinity dependence of §*4Ca in G. ruber can not be ex-
plained by variations of the [CO,*"]. Then again, the change
in 8*/4°Ca with salinity could be larger than actually ob-
served (if corrected for CO,2~ effect).

The dependence of §*4Ca on [CO,* ]in G. ruber has a
significant slope of 0.0005 =+ 0.0003%,/(umol/l) (Fig. 2c),
whereas a study on cultured O. universa found no signifi-
cant correlation (Gussone et al., 2003). Nevertheless, the
range of A**0Cq determined in G. ruber (—1.1 to —1.2%,
for [CO;%"] range of 140-380 umol/l) agrees well with that
in O. universa (A**°Ca = —1.0 to —1.2%,; [CO,>"] = 140-
530 pmol/1).

3.2. Sr/Ca ratios

The total variation in Sr/Ca in G. ruber and G. siphonifera
(0.22 mmol/mol; Fig. 2d-f) from all culture experiments is
about an order of magnitude higher than the external repro-
ducibly of the measurements (Section 2.3). Sr/Ca increases
with increasing temperature (Fig. 2d); calculated slopes
(A(Sr/Ca)/AT) are 0.016 + 0.003 mmol/mol/°C (95% confi-
dence level; R? = 0.99; p < 0.001) for G. siphonifera cultured
at 41 psu, 0.008 & 0.003 mmol/mol/°C (R>=0.95; p=
0.005) for G. siphonifera cultured at 35 psu, and 0.01 +
0.02 mmol/mol/°C (R*=0.71; p =0.16) for G. ruber cul-
tured at 35 psu. Previous field calibrations on foraminiferal
Sr/Ca did not expose such a clear temperature response in
these species (Elderfield et al., 2000; Mortyn et al., 2005).
The temperature response of Sr/Ca in G. siphonifera is signif-
icantly different (calculated for 95% confidence interval) at
different salinities (Fig. 2d). At constant temperature, Sr/
Ca is higher in G. siphonifera cultured at a salinity of
41 psu than at 35 psu (Fig. 2d). This is consistent with the
salinity response of Sr/Ca in G. siphonifera, where the highest
Sr/Ca ratio is observed at 41 psu (Fig. 2e).

Sr/Ca increases with increasing salinity in both G. ruber
and G. siphonifera (Fig. 2¢), but the salinity effect on Sr/Ca
is not resolvable with high statistical significance (R> = 0.82
and p=0.09 in G ruber; R*=0.60 and p=0.07 in G
siphonifera). We observe no significant response of Sr/Ca
in G. ruber to changes in [CO,>] (R* = 0.09 and p = 0.70;

Fig. 2f).
3.3. Average growth rate

Culturing studies allow for constraining average growth
rates in foraminifera. Variations in average growth rate are
shown in Fig. 2g-i along with major trends in shell chemis-
try (Fig. 2a—f). Our calculations have a large uncertainty
(on average +0.9 pg/day/ind or +7%/day/ind, 2c,,) pre-
sumably due to individual variability of specimens in one
sample as well as errors associated with estimating initial
shell mass and duration of the experiment (Section 2.1).
Nevertheless, these data are instructive and present some
apparent trends as described below.

On the whole, average growth rate varies between 2.0
and 3.5 pg/day/ind (25-35%/day/ind) in the studied species
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Fig. 2. Variations in shell chemistry (8*4°Caq and Sr/Ca) and average growth rate of G. ruber (diamonds) and G. siphonifera (triangles) with
temperature, salinity and [CO,>"]. Temperature experiments were carried out at 35 psu in year 2006, but at the salinity of the Gulf of Eilat
(41 psu) in year 2007. All salinity experiments were carried out at 24 °C, whereas carbonate chemistry experiments were carried out at 27 °C
and 35 psu. 3*4°Ca of G. siphonifera cultured at 24 °C gave an inconsistently low value and has been shown by a small triangle (Fig. 2a). The
precision on §4/40Cy (205,,) is indicated by an average error bar (£0.1%,), whereas individual errors calculated from repeat analysis on each
sample are given in Table 2. The error on Sr/Ca is estimated as 2c from the repeats of an internal standard in two separate sessions for G.
ruber (£0.04 mmol/mol) and G. siphonifera (£0.02 mmol/mol; Section 2.3). The precision on average growth rate (26,,) is calculated for the

number of specimens (2-6) grouped together for each sample (Table 1).

at moderate water temperatures (20-27 °C) and moderate
salinities (35-41 psu) as well as a wide range of [CO,>"]
(140-380 umol/l). At a water temperature of 18 °C, average
growth rate is considerably low in both G. ruber (0.6 pg/
day/ind or 17%/day/ind) and G. siphonifera (1.4 pg/day/
ind or 20%/day/ind). At temperatures >29 °C, average
growth rate reaches a plateau with ~3.5 pg/day/ind in G.
ruber and ~4.5 pg/day/ind in G. siphonifera (mainly corre-
sponding to >30%/day/ind for both species). Extreme salin-
ities (32 and 44 psu) induce a lower growth rate in G. ruber
(~1 pg/day/ind or 20%/day/ind). On the other hand, G.
siphonifera is well adapted to high salinities (with an aver-
age growth rate of ~4.5 pg/day/ind. or ~30%/day/ind at
44 psu), but growth is impaired at low salinities (~2.3 pg/
day/ind. or ~20%/day/ind at 32 psu).

Sr/Ca shows a positive correlation with average growth
rate (Fig. 3). Results of the carbonate chemistry experi-

ments were excluded from the computation of the regres-
sion for G. ruber since growth was impaired in this set of
experiments, revealing irregular chambers, multiple aper-
tures and unusual patterns of arrangement that do not fol-
low the axis of coiling (Kisakiirek et al., 2008).

Plotting Sr/Ca ratios against 3*/4Ca for all samples
(Fig. 4) reveals a significant inverse correlation (with a slope
of —0.8 +0.3%,/(mmol/mol) at 95% confidence level,
R?=0.55, p <0.01). If each species is examined separately,
the correlation between Sr/Ca and 8*/4°Ca is still valid
(» <0.02), but obscured due to a smaller number of data
points as well as a narrower range of values for a given spe-
cies (i.e., Sr/Ca = 1.38 4= 0.08 and 1.30 = 0.13 mmol/mol in
G. ruber and G. siphonifera, respectively; 26) compared to
all (Sr/Ca =1.33 4+ 0.14; 2c. Since there is an overlap in
data points between the two species, we believe it is justified
to combine the data sets.



Table 1

Shell growth and seawater chemistry parameters in each experimental setup.

Sample No. of Total mass Avg. growth rate +20,, Seawater
shells () Initial Final  (ug/day/ind) (%/day/ind) Salinity ~ Tem. Alkalinity 26 Cp +2c pH 20 [CO ] 26

(ng) (ng) (psw) (°C) (req/1) (mmol/1) (NBS) (umol/1)
Globigerinoides ruber experiments 2006
BK1-32R 2 6.0 41 13403 18+9 32.1 24 1964° 1.63° 8.4° 228
BK1-35R 5 12.0 106 22403° 28 +2° 35.0 24 2141° 1.77° 8.3° 251°
BK1-38R 5 17.8 73 22406 27+4 38.0 24 2325 1.92° 8.3° 276°
BK1-41R 3 7.9 55 23404 32+4 40.7 24 2490° 2.06° 8.3° 297°
BK1-44R 2 5.7 18 1.0+ 0.4 2147 443 24 2710° 2.24° 8.3° 327°
BK2-18R 3 5.5 20 0.61 +0.07 17+3 35.0 18 2141° 1.77° 8.4° 249°
BK2-21R 4 10.7 40 1.1+04 2+6 35.0 21 2141° 1.77° 8.4° 250°
BK2-24R 3 10.4 61 27+14 31 + 10 35.0 24 2141° 1.77° 8.3° 251°
BK2-27R 5 14.8 118 2.9+ 0.6° 2+7? 35.0 27 2141° 1.77° 8.3° 252°
BK2-30R 6 25.1 168 3.64+0.7 30+ 3 35.0 30 2141° 1.77° 8.3° 253°
BK3-7.9R 2 5.3 29 19403 28 42 35.0 27 2040 & 5 1.85 4 0.02 7.91 & 0.06 140 & 24
BK3-8.1R 3 7.8 88 28406 2743 35.0 27 2133 + 14 1.8540.03 8.09 =+ 0.08 197 £ 21
BK3-8.3R 3 7.0 76 28412 3242 35.0 27 2259 47 1.86 4 0.02 8.27 £ 0.07 276 + 28
BK3-8.4R 2 43 59 3.1+14 33+16 35.0 27 2423+ 4 1.87 +0.03 8.43 £ 0.08 384 +25
Control 9 ~43 — — — 40.7 22 — — — —
Globigerinella siphonifera experiments 2006
BK1-32S 2 5.4 60 23405 20+ 4 32.1 24 1964° 1.63° 8.4° 228
BK1-35S 2 5.2 70 32402 32+18 35.0 24 2141° 1.77° 8.3° 251°
BK1-38S 3 5.7 121 3.6+1.1 35+ 12 38.0 24 23250 1.92° 8.3° 276°
BK1-41S 2 5.6 63 35+1.2 34+7 40.7 24 2490° 2.06° 8.3° 297°
BK1-44S 1 3 4.7 156 43409 3243 443 24 2710° 2.24° 8.3° 327°
BK1-44S 2 3 8.2 141 46+12 32+7 44.3 24 2710° 2.24° 8.3° 327°
BK2-18S 3 5.0 61 14403 20+3 35.0 18 2141° 1.77° 8.4° 249°
BK2-21S 3 7.2 72 23406 25+8 35.0 21 2141° 1.77° 8.4° 250°
BK2-24S 2 5.9 82 29+0.1 20+3 35.0 24 2141° 1.77° 8.3° 251°
BK2-27S 2 2.6 78 34405 32+10 35.0 27 2141° 1.77° 8.3° 252°
BK2-30S 2 6.9 70 45+18 34+ 12 35.0 30 2141° 1.77° 8.3° 253°
Globigerinella siphonifera experiments 2007
BK4-20S 5 18.0 164 26+1.1 20+8 40.7 20 2490° 2.06° 8.3° 296°
BK4-23S 4 15.2 155 37+14 28 +4 40.7 23 2490° 2.06° 8.3° 297°
BK4-26S 3 8.5 73 32409 36+5 40.7 26 2490° 2.06° 8.3" 208
BK4-29S 3 10.4 151 42422 25+4 40.7 29 2490° 2.06° 8.2° 299°
BK4-31S 2 8.9 58 59429 43+ 12 40.7 31 2490° 2.06° 8.2° 299°
Control 7 ~69 — — — 40.7 21.5 — — — —

Total initial mass and total final mass are given for the total number of specimens (n) grouped for each sample. Calcification temperature, salinity and carbonate chemistry parameters are assigned
to the control groups using oceanographic data (Shaked and Genin, 2007). B1-B3 experiments were carried out between April and July 2006, whereas B4 experiments were performed between

April and May 2007. A detailed explanation of how the average growth rates were calculated is given in Section 2.1.
% The average growth rates for these samples were calculated from 6 cultured specimens. One specimen was lost during sample cleaning.

® Carbonate system parameters were estimated using the computer program written by Lewis and Wallace (1998) by assuming that total alkalinity (TA) and total inorganic carbon (Cr) are

2490 peq/l and 2060 umol/kg, respectively, at a salinity of 40.7 psu in the northern part of the Gulf of Eilat and that TA and Cr behave conservatively with changing salinity.
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Table 2
Measured 5*/4°Ca and Sr/Ca in cultured G. ruber (white) and
cultured G. siphonifera.

Sample §*40Ca 426, (%) n Sr/Ca® (mmol/mol)
Globigerinoides ruber experiments 2006

BK1-32R 0.75 £ 0.06 5 1.28
BK1-35R 0.71 £0.08 7 137
BK1-38R 0.62 £0.10 5 1.40
BK1-41R 0.62 + 0.09 6 1.40
BK1-44R 0.59 +0.07 6 -
BK2-18R 0.63 +£0.10 7 -
BK2-21R 0.69 £ 0.11 5 1.35
BK2-24R 0.72 +0.07 8 1.40
BK2-27R 0.74 £0.03 6 1.38
BK2-30R 0.63 £0.11 7 1.44
BK3-7.9R 0.62 +£0.12 4 1.42
BK3-8.1R 0.67 +0.07 5 134
BK3-8.3R 0.70 +0.07 5 1.39
BK3-8.4R 0.74 +0.12 5 1.37
Control 0.61 +0.04 3 1.40
Globigerinella siphonifera experiments 2006
BK1-32S 0.75+0.08 6 122
BK1-35S 0.77 £ 0.14 6 1.24
BK1-38S 0.78 £0.03 6 125
BK1-41S 0.69 + 0.04 5 1.31
BK1-44S _1 0.85 +0.09 4 1.27
BK1-44S 2 0.81 +0.09 5 1.30
BK2-18S 0.82 +0.12 4 1.22
BK2-218 0.86 +0.16 5 1.24
BK2-24S 0.70 +0.10 5 127
BK2-27S 0.86 +0.11 5 1.27
BK2-30S 0.80 +£0.15 5 132
Globigerinella siphonifera experiments 2007
BK4-20S 0.79 £0.08 9 1.27
BK4-23S 0.82 +0.09 10 1.30
BK4-26S 0.80 + 0.09 12 1.36
BK4-29S 0.74 +0.10 7 140
BK4-31S 0.63 +£0.04 7 1.44
Control 0.73+0.18 3 1.36

% 26, error on 3*/4Ca of each sample was calculated from n
number of repeat measurements.

® 26 error on Sr/Ca analysis is estimated as +0.04 mmol/mol for
G. ruber and 4-0.02 mmol/mol for G. siphonifera from the repeats
of an internal standard (Section 2.3).

4. DISCUSSION
4.1. Controls on A***°Ca and Sr/Ca

In situ analyses of 3*%Ca in foraminifera revealed
>1.5%, intra-test variability in species of the globorotaliid
family (Rollion-Bard et al., 2007; Kasemann et al., 2008),
possibly associated with differences between the biomineral-
ization pathways of ontogenic versus gametogenetic calcite
(see Section 1). The deposition of gametogenetic calcite is
negligible in G. ruber (Caron et al., 1990) and appears to
be small in G. siphonifera (Huber et al., 1997). Dissolution
experiments on two species of planktic foraminifera (G. sac-
culifer and N. pachyderma) revealed relatively constant Ca-
isotope ratios (<0.29, change in 3*/40Ca for a weight loss
of up to 70%), suggesting a homogeneous distribution of
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Fig. 3. Growth rate dependence of Sr/Ca in G. ruber and G.
siphonifera. Results of the carbonate chemistry experiments were
excluded from the computation of the regression for G. ruber (see
Section 3.2). The error bars denote average values for 2¢ on Sr/Ca
(£0.03 mmol/mol) and 2c,, on average growth rate (£0.9 ug/day/
ind). Please refer to Tables 1 and 2 for detailed information on
specific errors. 95% confidence intervals have been plotted for
regressions having a better significance level than 5%. The average
Sr/Ca ratios of this dataset are 1.38 4 0.08 mmol/mol (2 for G.
ruber, and 1.26 4 0.07 mmol/mol for G. siphonifera (2006 cultures),
1.36 £ 0.14 for G. siphonifera (2007 cultures).
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Fig. 4. 3*4Ca versus Sr/Ca in G. ruber (diamonds) and G.
siphonifera (triangles) for all experiments and control groups (Table
2). The error bar denotes average values for 26 on Sr/Ca
(4:0.03 mmol/mol) and 2c,, on §*40Cq (£0.1%,). Please refer to
Table 2 for detailed information on specific errors. The error
envelope gives 95% confidence interval for the regression.

Ca-isotope ratios within their tests (Gussone et al., 2009).
Additionally, we observed no intra-test variations in
Sr/Ca of either species on the electron microprobe. Hence,
the relationship observed between Ca isotopes and Sr/Ca is
unlikely to be caused by varying thickness of gametogenetic
calcite.

Our study does not differentiate between the two main
phenotypes (Type I and II) of G. siphonifera reported to
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be distinct cryptic species (Huber et al., 1997; Section 2.1).
Previous genetic sequencing on G. siphonifera collected
from the Gulf of FEilat at the same time of year as in this
study indicates Type II (de Vargas et al., 2002). Higher
5'%0 and 8'3C values as well as lower Mg/Ca ratios in Type
IT compared with Type I have been interpreted as resulting
from a deeper depth habitat or a higher photosynthetic rate
of symbionts (Huber et al., 1997; Bijma et al., 1998). In
addition, biogeographical distribution patterns indicate
that Type II is particularly abundant in more mesotrophic
environments, suggesting that it may preferentially inhabit
the deep chlorophyll maximum layers (de Vargas et al.,
2002). So far, there is no study on Ca isotopes (or Sr/Ca)
in the two different types of G. siphonifera. Overall, we can-
not exclude that the trends for G. siphonifera may comprise
a mixed signal from the two types with potentially different
ecologies. However this is not very critical for the interpre-
tation of our data, which show good intra- and inter-species
consistency in the observed trends (Figs. 2-4).

4.1.1. Comparison with inorganic precipitation results

Recent experimental observations on inorganically pre-
cipitated calcite by Tang et al. (2008a,b,c) revealed that
the isotopic fractionation of Ca is strongly correlated with
the partitioning of Sr. Tang and coauthors used a pH stat
technique with CO,-diffusion for spontaneous precipitation
of calcite in well stirred solutions with Ca and Sr concentra-
tions close to modern seawater (10 and 0.1 mmol/l, respec-
tively). In doing so, the authors showed that the main
controls on **Ca/*’Ca and Sr/Ca during inorganic calcite
formation are intriguingly similar: precipitation rate and
temperature. At constant temperature, the degree of Ca iso-
tope fractionation and the partition coefficient of strontium
(Ds;) were observed to increase linearly with increasing pre-
cipitation rate. Yet, the rate-sensitivity of both A0y
and Dg, were found to decrease with increasing temperature
(5, 25 and 40 °C, respectively). Another important observa-
tion was that there is a well-defined inverse correlation be-
tween A*/*°Ca and Dg;,, the slope and intercept of which
are independent of precipitation rate, temperature, aqueous
Sr/Ca and ionic strength of the solution. The authors ex-
plained their results by the Surface Entrapment Model,
where the isotopic fractionation of Ca is produced under
disequilibrium conditions during precipitation by two
counteracting mechanisms: (1) the entrapment of a **Ca de-
pleted surface layer by crystal growth, and (2) the re-equil-
ibration of Ca isotopes in the surface layer of the growing
crystal by ion diffusion.

The positive rate dependence of Sr partitioning in inor-
ganically precipitated calcite has been shown by various
authors (e.g., Lorens, 1981; Tesoriero and Pankow, 1996;
Nehrke et al., 2007; Tang et al., 2008a). The range of Dg,
is similar in these studies and varies by about an order of
magnitude (approx. from 0.02 to 0.2) with precipitation
rates that vary by >2 orders of magnitude (R ~10 to
10,000 pmol/m?/h). Results of a previous culture experi-
ment on benthic foraminifer Amphistigina lobifera and
planktic foraminifer G. sacculifer at various seawater Sr/
Ca ratios found a negative correlation between Ds, and
growth at rates lower than ~10%/day, whereas the correla-

tion was positive at growth rates between ~15 and 25%/day
(Erez, 2003). The growth rates in our study lie between 17
and 43%/day (Table 1).

The rate dependence of Ca isotope fractionation in inor-
ganic calcite is more controversial. In contrast to Tang et al.
(2008b), the experimental results of Lemarchand et al.
(2004) showed that the degree of Ca isotope fractionation
decreases with increasing precipitation rate at constant tem-
perature. The authors used a pH free drift method for pre-
cipitating calcite crystals in unstirred and stirred solutions
at two different Ca concentrations (15 and 150 mmol/I,
respectively). At constant precipitation rate, larger fraction-
ation was obtained with unstirred solutions compared to
stirred solutions. It should be noted that rate was estimated
from measured [CO;>"] using empirical relationships in
Lemarchand et al. (2004), whereas it was calculated from
the amount of calcite precipitated over the period of growth
and the specific surface area in Tang et al. (2008a,b,c). Lem-
archand et al. (2004) proposed that the largest isotopic frac-
tionation of Ca occurs at equilibrium. With increasing
precipitation rate, the Ca isotope composition of the calcite
was suggested to approach that of the solution due to ki-
netic effects. Stirring was hypothesized to increase precipita-
tion rate via providing more diffusive inflow of CO; ions to
the crystal lattice. The concept of a large equilibrium Ca
isotope fractionation for inorganic calcite was challenged
in a later study by Fantle and DePaolo (2007). They
showed that marine carbonates and pore fluids that were
in chemical equilibrium (2. = 1) over millions of years
have identical Ca isotopic compositions. From this obser-
vation follows that there is no isotopic fractionation be-
tween Ca in calcite and Ca in solution at equilibrium
(A*40Cq = 0). This was further confirmed in a study of
Ca isotopes in a carbonate aquifer by Jacobson and Holm-
den (2008).

The contrasting rate-dependence of Ca isotope fraction-
ation reported in Lemarchand et al. (2004) and Tang et al.
(2008b) may be related to the stirring strength of the solu-
tion. Extensive stirring of the growth solution is hypothe-
sized to reduce the effect of aqueous ion diffusion (Tang
et al., 2008b). If so, the results of the experiments with
strong stirring would be expected to be more relevant for
calcite precipitation under non-stagnant marine conditions.

Our observations are compared to those of Lemarchand
et al. (2004) in Fig. 5. The CO,*~ dependence of Ca isotope
fractionation in G. ruber (determined from carbonate
chemistry experiments) has the same slope (0.0005 +
0.0003 pmol/1/9,) within error as that in inorganically
precipitated calcite from stirred solutions (0.0008 +
0.0004 umol/1/%,), whereas for a given [CO,>~]**Ca discrim-
ination is larger in foraminifera than in inorganic calcite. An
important observation is that A*/*°Ca in G. ruber and G.
siphonifera cultured at different temperatures and salinities
has a much larger spread than can be explained by a possible
CO,*" dependence. In addition, considering that an equilib-
rium fractionation between calcite and its growth solution
has been shown to be close to zero by Fantle and DePaolo
(2007) and Jacobson and Holmden (2008), we should inves-
tigate other possibilities than the model of Lemarchand
et al. (2004) for the interpretation of our results.
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Fig. 5. A¥Ca versus [COy> ] in G. ruber and G. siphonifera
compared to that in inorganically precipitated calcite (Lemarchand
et al., 2004). 95% confidence intervals have been plotted for each
regression.

Our foraminiferal results are compared with the obser-
vations of Tang et al. (2008b) in Fig. 6, illustrating that
the slope of the correlation between A**0Ca and Dg, in
planktic foraminifera is in good agreement with the inor-
ganic calcite data. Foraminiferal regression of AM40Cq ver-
sus Ds, has a small but significant positive offset from the
inorganic regression, which will be discussed further in Sec-
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Fig. 6. A*0Ca versus the partition coefficient of Sr (Dg,) in G.
ruber and G. siphonifera (white diamonds) compared to that in
inorganically precipitated calcite (black squares; Tang et al.,
2008b). The error bar denotes 26 on Dg, (as estimated from
repeats on one sample in Tang et al. (2008a,b,c) and from
propagated errors on calcite and the culturing fluid in this study)
and 26,, on A**Ca (as estimated from propagated errors on
calcite and the growth solution). The error envelopes give 95%
confidence interval for the regressions. “n” donates the number of
observations.

tion 4.2. Analogous to the observations of Tang et al.
(2008a,b,c), we postulate that Ca isotope fractionation
(and Sr partitioning) in the studied foraminifera species is
controlled mainly by precipitation kinetics and secondarily
by water temperature, explaining the majority of our data
set as discussed below.

4.1.2. Precipitation rates in planktic foraminifera

There is no direct way of measuring precipitation rates
in foraminifera due to complications related to determining
the surface area and estimating the duration of the stepwise
calcification process. Thus, generally studies report growth
rates (pug/day), providing a measure of the mass increase in
foraminifera due to the addition and thickening of cham-
bers over a day. However, planktic foraminifera do not cal-
cify continuously, but only for a few hours each day (Bé
et al., 1977). Such an averaging of discontinuous calcifica-
tion is expected to introduce a large uncertainty in the
growth rate calculations. On the other hand, precipitation
rate (umol/m?/h) is essentially a measure of the instanta-
neous mass increase over a unit area. Estimates of surface
area normalized precipitation rates in planktic foraminifera
are essentially based on isotope labelling techniques (Erez,
1983; Anderson and Faber, 1984; Lea et al., 1995) and
range from ~40 pmol/m?/h (Erez, 2003) to as high as
10004000 pmol/m?/h (Carpenter and Lohmann, 1992;
Lea et al., 1995). If the sole control on the Ca isotope frac-
tionation in foraminifera is assumed to be inorganic precip-
itation from an open seawater reservoir, the rate
dependence of A*40Cq in inorganic calcite provides us
with a unique tool to calculate precipitation rates. At
25 °C water temperature, precipitation rates in G. siphonif-
era and G. ruber are calculated to be on the order of 2000
and 3000 pmol/m?/h, respectively (Fig. 7). We extend our
calculation to cultured O. universa (Gussone et al., 2003),
having a slightly lower precipitation rate of ~1000 pmol/
m?/h (Fig. 7).

0.0
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Fig. 7. Observed rate dependence of A*%0Ca in inorganic calcite
at 25 °C (Tang et al., 2008b). Plotted on the inorganic regression
line are the observed A***°Ca values of G. ruber and G. siphonifera
(this study) as well as O. universa (Gussone et al., 2003)>
interpolated to 25°C, corresponding to precipitation rates of
~3000, 2000 and 1000 pmol/m?/h, respectively.
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At water temperatures exceeding 29 °C, the increased
degree of Ca isotope fractionation in G. ruber and G.
siphonifera (by ~0.1-0.29,; Fig. 2a) deviates from the po-
sitive temperature-dependent fractionation trend. Findings
of a time-series sediment trap study from the Gulf of Cal-
ifornia confirmed this observation, showing an even stron-
ger **Ca depletion (A44/40Ca <—=1.3%,) in G. ruber w. and
G. sacculifer at temperatures of 30.5-31.1 °C (Griffith
et al., 2008). We propose that increased Ca isotope frac-
tionation in planktic foraminifera at these high water tem-
peratures is controlled primarily by increased precipitation
rates, as inferred from the negative correlation between
precipitation rate and A**Cq in inorganic calcite (Tang
et al., 2008b). This is consistent with the observation that
the average growth rate plateaus at >29 °C in the studied
species and may be an adaptation strategy of the planktic
foraminifera to increased metabolic rates at very high tem-
peratures. Recent O, microelectrode work of Lombard
et al. (2009a) provides support to this end. The authors
showed that both respiration and photosynthesis increase
up to 30 °C, the upper limit of their experimental setup,
in planktic foraminifera collected from the Gulf of Eilat
(G. ruber white, G. siphonifera and O. universa). In con-
trast, a compilation by Lombard et al. (2009b) revealed
a sharp decrease in the growth rates of G. siphonifera,
G. ruber and O. universa above 29 °C, based mainly on
the culturing work of Bijma et al. (1990) at these high
water temperatures. The discrepancy between our observa-
tions and those of Bijma et al. (1990) might be due to
different phenotypes (G. ruber white vs. pink) and habitats
(G. siphonifera collected from Gulf of Eilat vs. the
Caribbean Sea) of the studied foraminifera.

The more pronounced **Ca depletion in G. ruber com-
pared to G. siphonifera suggests higher precipitation rates
in the former (Fig. 7). Even though the average growth rates
are similar for these species (Table 1) differences in precipita-
tion rates might result from their diverse morphologies or
distinct durations of calcification. The hypothesized differ-
ence in precipitation rates of G. siphonifera and G. ruber
can also explain the lower Sr/Ca ratios in the former species
(Fig. 3). A previous study on Sr/Ca in planktic foraminifera
from core-tops in the North Atlantic (Elderfield et al., 2000)
also found an offset in Sr/Ca between G. siphonifera (average:
1.28 £ 0.01 mmol/mol; 16) and G. ruber (1.43 £ 0.02 mmol/
mol). Most other planktic foraminifera species (including
G. sacculifer, G. bulloides, O. universa, N. pachyderma,
G. menardii) show fairly constant Sr/Ca ratios for a range
of water temperatures between 5 and 20 °C and have mean
Sr/Ca values close to that of G. ruber (Delaney et al., 1985;
Elderfield et al., 2000; Mortyn et al., 2005). This suggests that
overall precipitation rates are similar for most species under
moderate conditions.

Increasing water temperatures are correlated with
increasing Sr/Ca (Fig. 2d). This is in contrast to Sr incorpo-
ration into inorganic calcite that decreases with increasing
temperature (Tang et al.,, 2008a and references therein).
Thus, calcification temperature appears to have an indirect
effect on shell Sr/Ca through its control over precipitation
rates (i.e., higher temperatures leading to higher growth
rates in planktic foraminifera; Fig. 2g).

Following the above line of reasoning, increasing salin-
ities (at constant temperature) appear to trigger higher pre-
cipitation rates in G. ruber, resulting in lower §*4%Ca and
higher Sr/Ca (Fig. 2b and e). Although the average growth
rate of G. ruber is low at 44 psu (Fig. 2h), it is not implau-
sible that the foraminifer is precipitating faster to remove
the excess ions at such high salinities while the growth is
limited. The lowest 8*4/4°Ca and highest Sr/Ca in G. sipho-
nifera are observed at the salinity of the Gulf of Eilat
(41 psu), suggesting that the poor adaptation of this species
to lower or higher salinities induces lower precipitation
rates.

The positive [CO,>~] dependence of §*49Ca in cultured
G. ruber (Fig. 2c; having a subtle but significant slope of
0.0005 =+ 0.0003%,/umol/I", p <0.02) cannot be explained
by a rate effect according to Tang et al. (2008b). Precipita-
tion rates in calcite are expected to decrease with decreasing
[CO,* ] (Zuddas and Mucci, 1994); this is supported by the
low growth rate of G. ruber at [CO;*"] of 140 umol/l
(Fig. 1i). Alternatively, the response of §*40Ca to changing
seawater [CO,?"]in G. ruber can be explained by the mech-
anism of pH regulation and cross-membrane transport of
Ca ions in the calcification reservoir (Section 4.2.1.1).

Our findings show that coupled A**0Cq and Sr/Ca pro-
vide a useful tool for investigating precipitation rates in
foraminifera. In addition, our results give evidence that cal-
cification rate is the prime control on Sr partitioning in
planktic foraminifera and that temperature and salinity
have an indirect effect on shell Sr/Ca through their control
over calcification rates (Elderfield et al., 2002; Kisakiirek
et al., 2008). Thus, our results support the view that Sr/
Ca records of planktic foraminifera partly reflect changes
in paleoproductivity (Billups et al., 2004). Future work
should focus on obtaining coupled A**0Cq and Sr/Ca data
for other species of planktic foraminifera, as well as benthic
foraminifera, and producing such results for down-core
records.

4.2. The vital effect

The small but constant offset between the inorganic and
foraminiferal regressions of A*40Ca versus Ds, (as shown
by the error envelopes in Fig. 6) has some interesting impli-
cations. We exclude an analytical bias in Ca isotope data
between this study and Tang et al. (2008b) since all analyses
were done in the same laboratory. The error introduced to
A**Ca due to different fluid compositions in this study
and Tang et al. (2008b) is on the order of +0.08%, (25,,),
which is less than the offset between the two regressions
(~0.29%, at constant Dg,) in Fig. 6. On the other hand, we
can not completely rule out a consistent analytical bias in
Sr/Ca measurements between this study and Tang et al.
(2008a) since the analyses were done in different laborato-
ries using different methods (ICP-MS vs. ICP-OES). For
a given A44/40Ca, Dg, in foraminiferal calcite is ~0.03 higher
than that in inorganic calcite. This corresponds to an offset
of ~0.25 mmol/mol in Sr/Ca, which is well beyond the typ-
ical precision (20 = £0.05; Kisakiirek et al., 2008). There-
fore, we consider the observed offset a vital effect rather
than an analytical artefact. Below we will consider two
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possible mechanisms for this vital effect: pH modification of
vacuolated seawater in planktic foraminifera and/or Ray-
leigh fractionation from an internal biomineralization
reservoir.

4.2.1. pH modification of vacuolated seawater

The concentration of Ca is maintained very low within
the cytoplasm (<0.1 pmol/l compared to ~10 mmol/l in
seawater) because Ca is an important component of intra-
cellular signalling system (e.g., Hepler and Wayne, 1985).
Pulse-chase experiments using fluorescent tracers have
shown that foraminifera vacuolate seawater to supply ions
(Ca and possibly carbonate) for the bulk of the calcification
process (Erez, 2003; Toyofuku et al., 2008) and that the pH
of seawater in these vacuoles is elevated to >8.7 against a
cytosolic pH of ~7.2 (Erez, 2003; de Nooijer et al., 2008,
2009; Bentov et al., 2009). Since these tracer techniques
are limited to a pH range of 6.0 to ~8.5-9.0, the actual
pH of the vacuoles might be even higher.

The concentration of Ca in seawater is 10.4 mmol/l
while [CO,>"] is much lower (~0.3 mmol/l); hence,
[CO,*] is the limiting factor for the precipitation of
CaCOs. Elevating the pH in the vacuoles would cause an
increase in [CO,>"], but [CO,?>"] cannot match [Ca®'] at
the total inorganic carbon concentration of seawater
(~2 mmol/1). However, the high pH level inside the vacu-
oles is considered to enable metabolic CO,(aq) to diffuse
into the vacuole, forming a carbon pool for the continued
calcification process (ter Kuile and Erez, 1987, 1988). Addi-
tionally, the increased pH of seawater has been shown to
overcome magnesium (Mg) inhibition of calcite precipita-
tion (Zeebe and Sanyal, 2002). Still, the calcite shells of
planktic foraminifera have Mg concentrations about a fac-
tor of 10 smaller than in inorganic calcite. Thus, these
organisms must be actively reducing the Mg concentration
at the site of calcification, making their shells less soluble
(Bentov and Erez, 2006).

Comparing their results with Lorens (1981) and Tesori-
ero and Pankow (1996), Tang et al. (2008a) observed that at
a constant rate of ~1000 pmol/m?/h and temperature of
25 °C, Dg, increases by ~0.06 when pH is increased from
6.1 to 8.3. The higher Dg, in foraminifera compared to inor-
ganic calcite (Fig. 6) appears to be consistent with elevated
pH of >8.5 in the calcifying vacuoles. Alternatively, the
difference between Dg, in foraminiferal and inorganic cal-
cite can be explained via Rayleigh fractionation from a
semi-closed seawater reservoir (Section 4.2.2).

4.2.1.1. Cross-membrane transport. The observation that
*Ca discrimination decreases with increasing [CO,* ] in
cultured G. ruber (Fig. 2c) is consistent with the mechanism
of vacuolar pH regulation. If vacuolization of seawater is
assumed to be the main pathway of calcification, then the
foraminiferan has to spend more energy at lower pH (or
[CO,*)) of the parent solution in order to elevate the pH
of its vacuole. Assuming that pH is at least partly raised
by a Ca-ATPase (Erez, 2003), cross-membrane transport
of Ca and associated dehydration process are expected to
supply more isotopically light Ca into the vacuole at lower
seawater pH (Gussone et al., 2006). Thus, a secondary

pathway for the transport of Ca ions to the reservoir via ac-
tive transport through channels and pumps may play an
additional role for the observed Ca-isotope ratios of the
foraminifer shells. Extrapolating the carbonate chemistry
trend of 8**Ca in G. ruber (using the correlation in
Fig. 2¢) from ambient seawater pH (~8.2) to a vacuolar
pH of ~9 suggests that the fractionation associated with
the cross-membrane transport is on the order of —0.29,.
The presence of a pre-fractionated Ca reservoir (with
§*4Ca of approximately —0.2%, to —0.49,, relative to sea-
water) in foraminifera can resolve the difference in A*/4°Ca
between foraminiferal calcite and other biogenic calcite
materials (Gussone et al., 2005) as well as inorganic calcite
precipitated over a temperature range of 5-30 °C (Marriott
et al., 2004). Alternatively, the difference in A¥40Cq of
these different calcite materials can be attributed to different
rates of precipitation. Although precipitation rate was kept
constant, its actual value was not determined by Marriott
et al. (2004). Recently, the steep slope of e “OCa-tempera-
ture calibration in G. sacculifer has been explained via tem-
perature-dependent mixing of the two proposed reservoirs
described above; (i) Ca supplied via seawater vacuolization
and (ii) Ca supplied across channels and pumps (Gussone
et al., 2009). In this model, the trans-membrane contribu-
tion of Ca in G. sacculifer was calculated to increase from
10% at 29 °C to 50% at 23 °C, suggesting more energy con-
sumption by the organism at lower temperatures for sup-
plying Ca. If such a trans-membrane pathway is valid for
the supply of ions into the calcification reservoir, the Sr
content of this reservoir might also be modified due to leak-
age of Sr through the Ca-pump (i.e., ion selectivity; Aidley
and Stanfield, 1996). Moreover, if the internal Ca reservoir
of foraminifera is fractionated in its isotopic composition
relative to seawater, the true offset between the inorganic
and foraminiferal regressions should be even larger than
that shown in Fig. 6. However, the proposed fractionation
of Ca isotopes across membranes, the existence of Ca-ATP-
ase in foraminifera and an associated modification of Sr/Ca
in the reservoir remain to be confirmed.

4.2.2. Rayleigh fractionation

An important consideration regarding biomineralization
from an internal vacuole system is the effect of Rayleigh dis-
tillation. The chemistry of this reservoir is expected to be
similar to seawater given that seawater vacuolization is
the main supply of ions. If all of the Ca in the vacuole sys-
tem is used up for calcification, then the average Sr/Ca and
44Ca/*Ca of the calcite is expected to be the same as that of
the vacuolated seawater. Alternatively, if very little of the
Ca is utilized from the vacuole system, Sr/Ca and **Ca/*’Ca
of the calcite is expected to be very close to the open system
inorganic values, as observed in this study (Fig. 6).

Elderfield et al. (1996) used a Rayleigh distillation model
to explain trace element incorporation into the calcite of
benthic foraminifera. Using a constant value for Dg,
(0.044), the authors calculated that >90% of the Ca in the
reservoir must be incorporated into the calcite shell. How-
ever, the inorganic Ds, value adopted by Elderfield and
coauthors is on the low end of the published range (~0.02
to 0.2; Section 4.1.1) and does not account for the rate
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and temperature dependence of Dg,. Griffith et al. (2008)
adopted the Rayleigh distillation model to explain Ca iso-
tope fractionation in planktic foraminifera. The inorganic
fractionation factor, ot(44Ca/40Ca), was assumed to be
dependent only on temperature, disregarding a rate depen-
dence. By adapting a high percentage of Ca utilization
(~85%) from the calcification reservoir, Griffith et al.
(2008) constrained the 8***°Ca value of the foraminiferal
reservoir to be —0.85%, relative to seawater. Our estimate
for a potential fractionated Ca reservoir is more moderate;
i.e., in the order of —0.29, relative to seawater as explained
in detail in Section 4.2.1.1.

We apply the Rayleigh distillation model to coupled
§*40Ca and Sr/Ca (Eqs. (3) and (4)). The inorganic parti-
tion coefficient of strontium, Dj,, and the inorganic frac-
tionation factor of Ca isotopes, u(44Ca/4°Ca), are
assumed to be correlated as shown in Eq. (5) (Tang et al.,
2008b), accounting for the rate and temperature
dependence on both proxies. This approach allows us to
solve for the fraction of Ca remaining (f) in the reservoir.

[44ca/4oca]forum/[Mca/mca} reservoir

= (1= ) /(1 - f) (3)
[Sr/ca]t\oram/[Sr/ca]reservoir = (1 _fDér)/(l _f) (4)
[2(**Ca/*Ca) — 1] * 1000 = —1.90 * log D, — 2.83 (5)

If the Ca isotope composition of the reservoir is assumed
to be the same as that of seawater (844/ OCaeservoir =
644/4°Caswwater), the calculated range of f values is 0.81-
0.92 for G. ruber and 0.76-0.92 for G. siphonifera, indicating
less than 25% of the Ca supplied by the vacuolization system
is utilized for calcite precipitation. If the Ca isotope composi-
tion of the reservoir is assumed to be somewhat fractionated
relative to seawater (844/ OCa,eservoir = 54/ OCagenwater —
0.2%,), the calculated range of f values is 0.64-0.74 for
G. ruber and 0.58-0.72 for G. siphonifera. Our calculations
suggest that even with a pre-fractionated reservoir, less than
half of the Ca supplied by the vacuolization system is utilized
for calcite precipitation.

On the whole, it appears that the vacuole system behaves
as a semi-open system in planktic foraminifera. This is in
line with the observations that the site of biomineralization
is not completely separated from the ambient seawater, but
rather confined by reticulated pseudopodia, i.e., extrusions
of the cell (Erez, 2003). It follows that the vacuoles, modi-
fied in their chemistry by the organism, are eventually exo-
cytosed into the site of biomineralization, which has
exchange with seawater (Erez, 2003).

4.3. Comparison with other low-Mg calcifiers

Fig. 8 illustrates the correlation between A*/*°Ca and
Ds; in inorganic calcite as well as in the skeletons of various
marine organisms secreting low-Mg calcite. Even though
the skeletal A**°Ca values of marine organisms are within
the inorganic range, the biogenic spread in Dg, appears
wider than the inorganic variability.

Data on brachiopods (Steuber and Buhl, 2006; Farkas
et al., 2007), blue mussels (Heinemann et al., 2008) and

-0.4 inorganic calcite (Tang et al., 2008b)
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Fig. 8. Calcium isotope fractionation versus partition coefficient of
Sr in low-Mg calcite (with Mg/Ca ratios of <10 mmol/mol):
inorganic calcite (gray squares; Tang et al., 2008b), low-Mg calcite
of brachiopods (white triangles; Steuber and Buhl, 2006; Farkas
et al., 2007), blue mussel Mytilus edulis (gray diamond, where
A**Cqa and Dg, are plotted relative to the extrapallial fluid;
Heinemann et al., 2008), average planktic foraminifer (white
diamond; this study) and coccolithophore Emiliania huxleyi (gray
triangle; Langer et al., 2006, 2007).

planktic foraminifera (this study) plot close to the inorganic
regression line (Tang et al., 2008b), with a small positive off-
set in Dg,. It must be noted that A**0Cq and Dg, of bra-
chiopods and planktic foraminifera are reported relative
to seawater, whereas those of the blue mussel, Mytilus edu-
lis, are reported relative to the extrapallial fluid. In addi-
tion, the data on brachiopods coincide with the average
of foraminifera if a pre-fractionated Ca reservoir with
§*/40Ca of approximately —0.29, to —0.49, relative to sea-
water is assumed for the latter. In line with our preceding
discussion, these data suggest a semi-open calcification sys-
tem with a primarily kinetic control with regards to Ca and
Sr incorporation in these organisms. Thus, in this first
group of calcifiers, paired A¥*¥Ca and Ds, might be
utilized to determine biogenic precipitation rates, a param-
eter that cannot be measured directly.

In contrast, data on coccolithophores (Langer et al.,
2006, 2007) show a relatively large offset from the inorganic
regression line. Intriguingly, coccolith A*40Cq is within the
range of inorganic values and other biogenic data, whereas
Dg, is much higher than the inorganic spread. Thus, the
controls on Sr incorporation appear to be uncoupled from
those on Ca isotope fractionation in coccolithophores. The
calcification process in coccolithophores takes place within
a confined vesicle similar in volume to a single coccolith
(e.g., Young and Henriksen, 2003) and the Ca uptake into
this vesicle is thought to be accomplished via trans-mem-
brane transport using Ca channels and ATPases (Brownlee
and Taylor, 2004). Enrichment of Sr/Ca in the coccolith
calcite compared to inorganic calcite has been explained
using a simple conceptual model based on the channel-med-
iated transport of Ca and Sr to the coccolith vesicle (Langer
et al., 2006, 2009). In addition, the positive correlation
between Dg, and calcification rates in coccolithophores
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(Stoll and Schrag, 2000) has been explained by a rate-
dependent discrimination between the biological transport
of Sr and Ca ions (Rickaby et al., 2002).

Overall, it appears that Ca isotope composition and
Sr/Ca ratios in the calcite of marine organisms are useful
tools for examining the pathways of Ca transport (i.e., vac-
uolization from seawater and/or active transport through
channels and pumps) to the site of calcification. Future
work should aim at investigating other trace elements and
their isotopic compositions (e.g., Mg and its isotopes) in
both low-Mg and high-Mg secreting marine calcifiers as a
means to study distinct pathways of biomineralization.

5. SUMMARY AND CONCLUSIONS

We analyzed Ca isotopes and Sr/Ca ratios in planktic
foraminifera Globigerinoides ruber (white) and Globigerinella
siphonifera grown under controlled laboratory conditions at
different salinity, temperature and [CO;>"] values. Overall,
the total variations in &*/*Ca (~0.3%,) and Sr/Ca
(0.22 mmol/mol) are small revealing a tight control of the
organism on its shell chemistry. On the other hand, the vari-
ations in the data show distinct trends and are controlled by
more than one environmental parameter. There is a signifi-
cant inverse correlation between Sr/Ca and */*°Ca in G.
ruber and G. siphonifera, in line with recent observations
from inorganically precipitated calcite (Tang et al.,
2008a,b,c). Indeed the regressions of A*40Ca versus Dg,
are very similar for foraminiferal and inorganic calcite, with
a small but significant positive offset in the former. These
results indicate that Ca isotope fractionation (and Sr parti-
tioning) in planktic foraminifera has similar controls as in
inorganic calcite; namely kinetics and temperature (Tang
et al., 2008a,b). This postulation is further supported by
our observation that Sr/Ca is strongly correlated with aver-
age growth rate in the studied foraminifera species. We con-
clude that:

e Higher Sr/Ca and lower §*%Ca in G. ruber compared
to G. siphonifera are consistent with higher precipitation
rates in the former. At a water temperature of 25 °C,
precipitation rates in G. ruber and G. siphonifera are esti-
mated as ~3000 and 2000 pmol/m*/h, respectively.
Below 27 °C, Ca isotope fractionation in G. ruber is tem-
perature dependent, showing a sensitivity of ~0.02%,/
°C. Water temperatures exceeding 29 °C appear to
induce high precipitation rates in G. ruber and G. sipho-
nifera, causing a high degree of fractionation in Ca
isotopes.

e G. siphonifera appears to be well adapted to the salinity
of Gulf of Eilat (41 psu) and has higher §*4Ca (and
lower Sr/Ca) at lower or higher salinities presumably
due to decreased precipitation rates. Increasing salinities
seem to trigger higher precipitation rates in G. ruber,
resulting in decreasing 3*/40Ca (and increasing Sr/Ca).

e The offset between foraminiferal and inorganic regres-
sions of A*/*°Ca versus Dg, is consistent with one or
both of two scenarios: (i) elevated pH of ~9 in the cal-
cifying vacuoles of foraminifera leading to an increase
of Dg, in the shell; and/or (ii) Rayleigh-type fraction-

ation from a semi-open biomineralization system, lead-
ing to an increase in both A**Ca  and Dg,
simultaneously, where less than half of the Ca supplied
by the wvacuolization system is used for calcite
precipitation.

e The positive [CO,>~] dependence of §*40Ca in cultured
G. ruber cannot be explained by a rate effect, but it is
compatible with the mechanism of vacoular pH regula-
tion during biomineralization.
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