

Project 1.2

Effects of ocean acidification on the turnover of organic matter in pelagic ecosystems

Günther Nausch¹, Sonja Endres², Anja Engel², Hans Peter Grossart³, Monika Nausch¹, Juliane Unger¹, Maren Voss¹, Nicola Wannicke^{1,3}

¹Leibniz Institute for Baltic Sea Research (IOW), Department of Biological Oceanography, Seestrasse 15, D-18119 Rostock, Germany

³Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Limnology of Stratified Lakes, Alte Fischerhütte 2, OT Neuglobsow, D-16775 Stechlin, Germany

Project 1.2

DOM production:

- production by phytoplankton (exudation, viral lysis, release by cell death)
- viral lysis of bacteria
- grazer mediated release & excretion (protozoan and zooplankton)
- bacterial transformation & release
- solubilization of particles (detritus)

DOM sink:

- uptake by bacteria transport
- mineralization
- UV oxidation
- Sedimentation: sorption onto sinking particles

BBL

Objectives

- Quantification and characterization of the production, exudation and microbial processing of organic matter in response to ocean acidification
- Differentation between functional and structural changes of planktonic communities
- Turnover of biological key elements and resulting changes in the C: N: P stoichiometry
- Changes in remineralisation and final deposition of organic matter

Combination of laboratory and field studies

Experimental design

Project 1.2 **Experiment 1: Production**

Experimental design

Experiments 2 & 3: Decomposition

Experiment 1: Production

Phosphatase activity at the beginning of the experiment and after DIP depletion (Part I)

Summary 1

Experiment 1: Production

- Significant stimulation of growth of *Nodularia* (abundances and Chl a) at 780 ppm compared to present and glacial pCO₂ (380 and 180 ppm) suggesting a possible CO₂ limitation of nitrogen fixers
- Total TEP production was significantly enhanced at 780 ppm, but cell growth was more stimulated than TEP production
- Phosphate is the preferred P source until it is exhausted after 3 days
- Thereafter DOP utilization increased with highest rate at 780 ppm confirmed by highest phosphatase activity
- Significant increase of N₂ and C fixation under higher pCO₂, additionally stimulated by P addition

Project 1.2

55 - 75% [³³P]-DIP 25 -45% [³³P]-DOP

Exp. 3

Summary 2

Experiment 2: Decomposition

- Bacterial protein production is significantly elevated at higher pCO₂ whereas respiration decreased. Bacteria growth was higher at 780 ppm but without any significance
- Degradation of TEP was low in all treatments but with highest decline at 780 ppm
- More phosphorus is incorporated into bacterial biomass at 780 ppm. This
 is seen more clearly in radiotracer experiments than in P pool changes.
 Bacteria transfer DIP to DOP if DIP is utilized in a high proportion. If low
 amounts of DIP are used, bacterial P originates predominantely from DOP

Preliminary conclusion

Ocean acidification may increase phosphorus recycling and therewith support algal growth

Poster presentations

Wannicke et al. (1)
Growth and production by *Nodularia* under different CO₂
concentrations – first results from a joint laboratory study

Wannicke et al. (2) How DOM derived from Nodularia spumigena grown at different pCO₂ level modify bacterial growth and activity – first results from a joint laboratory study

Unger et al.
Phosphorus transformation by *Nodularia spumigena* and by heterotrophic bacteria under different pCO₂ levels – first results

Endres et al.

Effect of ocean acidification in production and decomposition of exudates – first results from a joint batch experiment

