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Zusammenfassung 

 

Die Europäische Sprotte (Sprattus sprattus L.) ist ein kleiner pelagischer Schwarmfisch, der im 

Schelfgebiet des Nordostatlantiks weit verbreitet ist. Eine besondere Stellung nimmt diese Art im 

pelagischen Ökosystem der Ostsee ein, da sie einerseits dem Ostseedorsch als Hauptnahrung 

dient und andererseits als abundanteste planktivore Fischart in diesem System einen erheblichen 

Prädationsdruck auf Zooplankton und Ichthyoplankton ausüben kann. In der vorliegenden Arbeit 

wurden einige wichtige Reproduktionsmerkmale der Sprotte untersucht, die nicht nur für die 

Bestandskunde, sondern auch für zukünftige Studien zur Populationsdynamik und Ökologie 

dieser Art wichtig sind. Bei der Sprotte handelt es sich um einen Portionslaicher, der mehrere 

Eiportionen über eine längere Laichsaison abgibt. Dabei ist der Gesamtumfang der saisonalen 

Eiproduktion nicht vor der Laichzeit determiniert. Aus einem Reservepool werden ständig neue 

Oozyten rekrutiert, die heranreifen und schließlich abgelaicht werden. Aus dieser Eigenschaft 

heraus ergeben sich einige Besonderheiten in Bezug auf Untersuchungen zur 

Reproduktionsbiologie dieser Art. In der vorliegenden Arbeit konnte sowohl die beobachtete 

jährliche als auch die saisonale Variabilität in den untersuchten Reproduktionsmerkmalen mit 

der vorherrschenden Hydrographie und der Größe des Laicherbestandes in Zusammenhang 

gebracht werden. Die Fruchtbarkeit, d.h. die Anzahl abgegebener Eier pro Laichportion, zeigte 

sowohl Schwankungen zwischen den untersuchten Jahren als auch zwischen verschiedenen 

Gebieten in der Ostsee, und ein großer Teil dieser Variabilität konnte mit der vorangegangenen 

Wintertemperatur und der Gesamtgröße des Laicherbestandes erklärt werden. Das 

Geschlechterverhältnis und der Anteil an reifen Individuen im Gesamtbestand wurden für 

verschiedene Gebiete in der südlichen und zentralen Ostsee anhand von logistischen Modellen 

berechnet. Der Anteil an kleinen Sprotten, die bereits zum Laichgeschehen in einer Laichsaison 

beitragen, zeigte ebenfalls einen Zusammenhang mit der Wintertemperatur und der 

Bestandsgröße. Saisonale Schwankungen in der Fruchtbarkeit, dem Anteil laichender Weibchen 

am Laicherbestand, der Follikelatresie im Ovar sowie dem Eidurchmesser und Eitrockengewicht 

wurden untersucht. Eine weitere wichtige Beobachtung konnte im Zusammenhang mit der 

Ovarentwicklung und der Follikelzersetzung nach der Ovulation (postovulatory follicles, POFs) 

gemacht werden. Zum ersten Mal werden in der vorliegenden Studie histologische Details von 

POFs im Ovar der Sprotte dargestellt. Dabei konnte gezeigt werden, dass die komplette 

Zersetzung dieser Strukturen nach der Ovulation etwa solange dauert wie das Intervall zwischen 

zwei Laichzeitpunkten. Dies sind wichtige Ergebnisse für zukünftige Studien, um die 

Laichfrequenz der Sprotte abschätzen zu können. Desweiteren wurde anhand experimenteller 

Daten ein Modell zur Sprotteientwicklung in Abhängigkeit der umgebenden Wassertemperatur 

entwickelt. Alle Ergebnisse wurden abschließend dazu benutzt, um die Sprottbestandsgröße im 

Bornholm Becken mittels einer Eiproduktionsmethode, der „Daily Egg Production Method 

(DEPM)“, abzuschätzen. Die Ergebnisse zeigen, dass dies ein vielversprechender Ansatz zur 

Bestandsabschätzung dieser Art ist. Die Vorteile dieser Methode liegen in der Unabhängigkeit 

von Fischereidaten und darin, dass alle wichtigen Eingangsdaten direkt aus Feldbeobachtungen 

gewonnen werden können. Außerdem bezieht diese Methode die natürliche Variabilität der 

Reproduktionsmerkmale mit ein, was im Standardassessment nicht der Fall ist. Allerdings 

wurden in Bezug auf die Laichfrequenz und die tägliche Eiproduktion, zwei essentielle 

Eingangsparameter der DEPM, verbliebene Unsicherheiten aufgezeigt, die in zukünftigen 

Studien beseitigt werden sollten. Die in der vorliegenden Arbeit gesammelten Erkenntnisse und 

Daten können eine Grundlage für weitere Studien zur Verbesserung der Bestandsabschätzung 

sein und dazu dienen, alternative Indizes für die Bewertung des Reproduktionspotentials des 

Sprottbestandes in der Ostsee zu entwickeln (z.B. Laicherbestand der Weibchen, oder gesamte 

Eiproduktion des Bestandes einer Laichsaison), die DEPM weiterzuentwickeln und zu 

implementieren, und die Populationsdynamik und Ökologie dieser Art weiter zu erforschen. 
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Summary 

 

The European sprat (Sprattus sprattus L.) is a small planktivorous marine pelagic clupeoid 

species with a wide distribution in shelf areas of the Northeast Atlantic. Sprat is an ecological 

key species in the Baltic pelagic ecosystem. On the one hand, sprat serves as main prey for the 

Baltic cod stock and on the other hand, it is the most abundant planktivorous fish species in the 

Baltic Sea. Thus, sprat has the potential to exert predation pressure on both ichthyoplankton and 

zooplankton. Sprat is an indeterminate batch spawner, releasing several egg batches over a 

protracted spawning season. Oocytes recruit from a reserve pool throughout the spawning 

season. Due to this feature, some peculiarities challenge the investigation of the reproductive 

biology of this species. In the present study, a number of reproductive traits of Baltic sprat were 

investigated, all of which are essential with respect to the assessment and further studies of the 

population dynamics of this species of the Baltic Sea. Interannual, seasonal and spatial 

variability in the investigated reproductive traits of Baltic sprat was revealed and could partly be 

attributed to hydrographic conditions and sprat stock size. Absolute and relative batch fecundity 

was found to differ among areas and between years in the southern-central Baltic. The 

seasonality of some important spawning traits, i.e. batch fecundity, spawning fraction, atresia, 

oocyte dry weight and oocyte diameter were analysed combining histology and modern image 

analysis methods. Models of sex ratio and maturity at length were established for different areas 

in the Baltic. The proportion of small sprat contributing to spawning, and thus forming a part of 

the spawning stock, was found to be related to ambient winter temperatures and spawning stock 

size in the Bornholm Basin. In the present investigation histological details of sprat ovary 

development and postovulatory follicles are presented for the first time. Important results on the 

ovarian dynamics in relation to postovulatory follicles (POF) were described with the major 

finding that the degeneration of POF equals the spawning interval. This is an important result for 

future studies to estimate the spawning frequency of sprat. A temperature dependent model on 

Baltic sprat egg development was established using an experimental approach. All obtained 

results and data were finally used to implement the Daily Egg Production Method (DEPM) to the 

Baltic sprat stock in the Bornholm Basin. Results clearly demonstrated that the DEPM is a 

promising approach to assess this important pelagic fish stock in the Baltic Sea. In contrast to the 

standard procedure in sprat stock assessment, this approach takes into account observed 

variability in sprat reproductive traits. The main advantage of this method is that it is 

independent from fishery data and all input parameters can be achieved by field observations. 

However, some uncertainties concerning the spawning frequency and the daily egg production, 

two crucial input parameters for this method, were identified which require improvement. The 

knowledge and data obtained by the present work may further serve as basis to (i) enhance 

existing assessment methods and to test alternative indices for sprat stock reproductive potential 

(e.g. female spawning stock biomass or potential egg production), (ii) implement alternative 

assessment methods (e.g. DEPM) and (iii) further investigate the population dynamics and 

ecology of Baltic sprat. 
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Introduction 

Baltic Sprat 

The European sprat (Sprattus sprattus L.) is a small planktivorous pelagic clupeoid species with 

a wide distribution in shelf areas of the Northeast Atlantic, covering the coasts of Norway, the 

North Sea, Irish Sea, Bay of Biscay, the western coast of the Iberian peninsula down to Morocco 

(Sprattus sprattus sprattus; Linnaeus, 1758), the northern parts of the Mediterranean, the Black 

Sea (Sprattus sprattus phalericus; Risso, 1826), and the Baltic Sea (Sprattus sprattus balticus; 

Schneider, 1908) (Fig. 1). Sprat is able to tolerate salinities as low as 4 psu and especially 

juveniles are known to enter estuaries (Whitehead, 1985). In the Baltic Sea, sprat is located at its 

northern limit of geographic distribution (Muus & Nielsen, 1999). It is distributed throughout the 

western and eastern parts of the Baltic, up to the Gulf of Finland in the north. Within its range of 

distribution in this brackish sea, different sprat stock components experience different 

hydrographic conditions with decreasing water temperatures and salinities from West to East. 

Morphology, growth rates and other life history traits were reported to differ among different 

areas in the Baltic (Ojaveer and Kalejs, 2010; Lindquist, 1971). The question if these observed 

differences justify a separation of the Baltic sprat population into distinct stock units has until 

today not been answered satisfactorily, which is partly due to mixing of sprat in spawning and 

wintering areas (Ojaveer and Kalejs, 2010). 

Sprat is an ecological key species in the Baltic pelagic ecosystem. On the one hand, sprat serves 

as main prey for the Baltic cod stock (Rudstaam et al., 1994); on the other hand it is the most 

abundant planktivorous fish species in the Baltic. By predation on ichthyoplankton, sprat is able 

to affect the recruitment of cod and through cannibalism also that of sprat (Köster & Möllmann, 

2000a; Köster & Möllmann, 2000b; Köster & Schnack, 1994). Via predation on zooplankton it 

acts as a key player for top down control in the Baltic pelagic ecosystem, with the copepods 

Pseudocalanus sp., Acartia spp., and Temora longicornis being the main prey organisms 

(Möllmann et al. 2004). 

Data on the development of the Baltic sprat stock inhabiting the ICES sub-divisions 22-32 

(Baltic proper) is available since 1974 (Fig. 3a). In the 1980s the sprat stock was at low levels, 

with a minimum of 527.000t in 1980. The sprat stock reached maximum values in the 1990s, 

with a maximum value of 2.950.000t in 1995. These observed high stock levels can be explained 

by a combination of declining predation pressure by the collapsed cod stock and some years of 

strong recruitment. In recent years the sprat stock has decreased again, with a total stock biomass 

of 1.781.000t in 2009 (ICES, 2010). The estimated spawning stock biomass follows in general 

the trend of the total stock biomass. Since the year 2000 the sprat spawning stock is fluctuating 

around 1 mio. t (Fig. 3c). 
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Fig. 1: Distribution of the three different sub-species of European Sprat. Green: Sprattus sprattus 

balticus (Schneider, 1908). Yellow: Sprattus sprattus sprattus (Linnaeus, 1758). Blue: Sprattus 

sprattus phalericus (Risso, 1826). Distribution chart redrawn after Whitehead (1985). 

 

 
Fig. 2: The central Baltic Sea with the deep Basins serving as major spawning grounds for the 

Baltic sprat stock. 
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Fig. 3: Baltic sprat XSA output for the Baltic Sea ICES SD 22-32. a) total landings; b) total 

biomass; c) spawning stock biomass; d) recruits at age 1. 

 

The recruitment of Baltic sprat is highly variable throughout the observed time period, but more 

years with strong recruitment occurred since the 1990s (Fig. 3d). Processes controlling this 

variability are not fully understood yet. As one important environmental factor influencing sprat 

recruitment success, water temperature is discussed in the literature. Nissling (2004) reported a 

low survival of sprat eggs when ambient temperatures fall below a threshold of 4 °C. Further, 

low ambient temperatures will slow down the egg development rate and growth rate of larvae 

(Nissling, 2004; Petereit et al., 2008), which may increase the mortality of sprat eggs by 

predation. Increasing temperatures will in turn accelerate the developmental rates of sprat eggs 

and larvae. Further, food availability for larval sprat is mainly driven by the abundance of 

Acartia spp., the main food organism of larval sprat, mediated by increasing water temperatures 

(MacKenzie and Köster, 2004; Dickmann et al., 2007). Besides temperature also a number of 

other climatic processes will affect larval survival and hence might play a role for recruitment 

processes. The feeding success of sprat larvae was not only found to be linked to prey density, 

but also to small-scale turbulence rates and light condition (Voss et al., 2008). Baumann et al. 

(2006) hypothesized that climate conditions leading to dispersal of sprat larvae out of the central 

basins to coastal areas may have a negative influence on the recruitment, whereas climatic 

conditions resulting in retention in the central basins may support a strong recruitment.  

Besides its ecological importance, Baltic sprat stock is one of the most important commercial 

fish species in the Baltic. The highest catches were recorded concurrently with the highest stock 

level in 1997 with 529.400 t (Fig. 3a). In 2009, sprat catch for the Baltic proper was about 

407.100 t, and for the first time the total allowable catch (TAC) was utilised in 100%.  
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The Assessment of the Baltic Sprat Stock 

Today, the Baltic sprat stock is assessed as a single stock unit for the whole Baltic using a virtual 

population analysis (VPA) with an extended survivors analysis (XSA) (ICES, 2010). This 

approach is age based, and maturity ogives are kept constant over the whole time period. As 

tuning fleet, a clupeid targeting international acoustic survey is in use covering the Baltic proper 

in autumn and spring. As one alternative assessment method, the multi species virtual population 

analysis (MSVPA; ICES 2006) has been applied, which takes the predation mortality caused by 

the Baltic cod stock into account. Further, the latter approach resolves the stock biomass of cod, 

herring, and sprat area disaggregated on ICES sub-division basis. These two assessment 

methods, the XSA and the MSVPA, are strongly dependent on fishery catch data. 

 

Spawning traits of Baltic Sprat 

Important spawning areas of the Baltic sprat stock are located in the three central Basins of the 

Baltic, namely the Bornholm Basin, the Gdansk Deep and the Gotland Basin (Aro, 1989; 

Parmanne et al., 1994; Fig. 2). In the most northern parts of the Baltic, sprat spawning occurs 

and sprat eggs can be found in the plankton, but no larvae (Sjöblom and Parmanne, 1980). The 

main spawning season lasts from March to late June. The spawning stock is migrating into the 

basins (Aro, 1989), and the largest part spawns within the deep basins (>60 m). It remains to be 

resolved which factors drive the onset of maturation and spawning in Baltic sprat. It is likely that 

temperature plays an important role (Karasiova, 2002), but also the availability of suitable prey 

resources to allow for sufficient energy reserves for gamete production might be of importance. 

In 2002, a second spawning event was observed in autumn, which was explained by the inflow 

of unusual warm water masses into the central Baltic (Kraus et al., 2003).  

In general, most individuals contribute to the spawning stock in their second year of life, but for 

some years also a considerable high proportion of the one year old sprat has been observed to be 

mature, thus contributing to spawning (ICES, 2002). Until today, it could not be explained what 

is driving the high variability in the proportion of mature specimens in age one. The last 

comprehensive studies on sprat maturation were conducted by the ICES Study Group on Baltic 

Herring and Sprat Maturity (ICES, 2002). However, the results were not conclusive enough to 

incorporate results into the standard stock assessment. Due to this lack of knowledge, the ICES 

Working Group of Baltic Fisheries Assessment (WGBFAS) is using a long term average of the 

maturity ogive (ICES, 2010a). Given the fact that the young of the year sprat can provide a 

considerable high proportion of the total stock biomass in years with strong recruitment, the 

spawning stock biomass estimate might be biased significantly. Hence, the WGBFAS 

recommends further analysis of this issue (ICES, 2010a). 

As many other clupeoid fish, sprat is a species with indeterminate oocyte recruitment, spawning 

several batches of eggs during a prolonged spawning season (Heidrich, 1925; Alheit, 1988). In 

such species the amount of oocytes which will be spawned is not determined before the 

spawning season, and pre-vitellogenic oocytes can develop and be recruited at any time during 

the spawning season (de novo vitellogenesis, Hunter and Goldberg, 1980). Thus, batch fecundity 

is the only suitable measure of fecundity in indeterminate spawners. Further, in such species the 

annual fecundity, or potential seasonal egg production, can only be estimated when batch 

fecundity, the percentage of females spawning per day, and the duration of the spawning season 

is known.  

Fecundity of marine fish may vary for the same species between areas and seasons (Alheit, 1988; 

Lambert et al., 2003) and might be influenced by several biotic and abiotic environmental 

parameters. Estimates of Baltic sprat batch fecundity are scarce, and often the sample sizes of the 

investigations were too small to allow conclusive analyses on the dynamics of fecundity. Batch 

fecundity data for Baltic sprat were published first by Heidrich (1925), but only for the Kiel 
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Bight area. Petrova (1960) gives some information on batch fecundity of sprat from the eastern 

parts of the Baltic. Some data on batch fecundity are available for the Gdansk Deep (Alekseev & 

Alekseeva, 2005). The only data available for the Bornholm Basin were published by Müller et 

al. (1990) and are based on a very small sample size.  

For several clupeids it has been shown that spawning frequency is dependent on the age or size 

of the female fish (Parrish et al., 1986; Claramunt et al., 2007). For some species, tank 

experiments were conducted to investigate spawning frequency, which is probably the best way 

to obtain a precise estimation of this parameter (Leong, 1971; Ganias et al., 2003). As it is not in 

all cases feasible to conduct tank experiments, other methods were developed in order to assess 

the spawning frequency by means of field sampling:  (i) the hydrated oocyte method and (ii) the 

postovulatory follicle method (Hunter and Macewicz, 1985). The first method takes into account 

all females with hydrated oocytes in their ovaries assuming that these individuals will spawn 

within the next few hours. The second method makes use of the postovulatory follicles in order 

to estimate the fraction of spawning females per day. A prerequisite for this approach is the 

detailed knowledge of the histological features of postovulatory follicles with respect to their 

deterioration and duration. The postovulatory follicle method is often preferred as hydrated 

females might be oversampled due to higher vulnerability to the fishing gear in use or due to the 

forming of spawning aggregations (Alheit, 1985). The spawning frequency of Baltic sprat has 

never been studied in detail so far. Alekseev & Alekseeva (2005) provided a rough estimate of 

four days, obtained by the proportion females in spawning condition. The same approach was 

used by Kraus and Köster (2004) leading to similar results. However, histological features of 

ovarian maturation or postovulatory follicles have never been published for Baltic sprat so far.  

A sound knowledge of the reproduction parameters described above would be valuable to build 

up models to calculate the total daily or even annual egg production of the spawning stock. This 

knowledge could be used to enhance existing stock-recruitment models and the stock assessment 

methods in use. Further, alternative assessment methods, like the Daily Egg Production Method 

(Parker, 1980; Lasker, 1985; Stratoudakis et al., 2006) could be applied. 

 

The Daily Egg Production Method 

Several applications have been developed to estimate the size of fish stocks by means of the 

abundance of their early life stages (Lockwood et al., 1981; Parker, 1980), either eggs or larvae. 

Combining the results of ichthyoplankton surveys with data of the adult stock regarding length 

frequency, weight at age, sex ratio, maturity and fecundity, enables the estimation of the adult 

stock size or biomass. The main advantage to standard assessment methods is that these methods 

are independent from fishery data and theoretically all parameters can be observed in the field, 

so that the use of uncertain assumptions can be reduced to a minimum. 

The choice for an adequate ichthyoplankton method to assess a fish stock is species specific and 

depends strongly on the species spawning strategy. E.g. for Atlantic herring (Clupea harengus), 

which spawns benthic eggs during a single spawning event, a larvae survey has been applied for 

the North Sea herring stocks to get an additional, fishery independent index of stock 

development. For species with pelagic eggs it is important whether the annual fecundity of the 

targeted fish species is determinate or indeterminate. 

For species with determinate fecundity the egg production is determined prior to the onset of 

spawning and the Annual Egg Production Method is used (e.g. mackerel, Scomber scombrus, 

Lockwood et al., 1981). In indeterminate species the fecundity is not determined prior to 

spawning. For such species it is difficult, or even impossible, to estimate the annual fecundity 

and the Daily Egg Production Method (DEPM) has been developed (Parker, 1980).  

The DEPM has been applied for several stocks of pelagic fish species in the past worldwide (Fig. 

4; Stratoudakis et al., 2006). For some stocks it is nowadays used on a routine basis to validate 
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other assessment methods in use, e.g. Northern anchovy (Engraulis mordax; Lasker, 1985), Bay 

of Biscay anchovy (Engraulis encrasicolus; ICES, 2009) and European sardine (Sardina 

pilchardus; ICES, 2009). Although originally developed for clupeoid species it has also been 

successfully applied for other species, such as hake (Merluccius merluccius; Murua et al., 2010), 

recently.  

 

 
 

Fig. 4: Worldwide DEPM applications. 1 Engraulis capensis, 2 Engraulis encrasicolus, 3 

Engraulis japonicus, 4 Engraulis mordax, 5 Engraulis ringens, 6 Encrasicholina sp., 7 Sardina 

pilchardus, 8 Sardinops sagax, 9 Sprattus sprattus, 10 Strangomera bentincki, 11 Pagrus 

auratus, 12 Scomber japonicus, 13 Scomber scombrus, 14 Trachurus symmetricus, 15 Trachurus 

trachurus, 16 Merluccius merluccius. Redrawn after Stratoudakis et al. (2006). 

 

Aim of the present study 

The goal of the present study is to enhance the knowledge of reproductive traits of Baltic sprat, 

which may be utilised in a number of future studies to further enhance the understanding of sprat 

population dynamics. 

Since sprat is a serial batch spawner with indeterminate oocyte recruitment, the DEPM would be 

the adequate choice as an alternative assessment method for this small clupeoid. The obtained 

knowledge and data from the present study will form the basis for an application of the DEPM 

for a wide range of years for which ichthyoplankton and fishery surveys for research purposes 

were conducted in the Bornholm Basin. For the Baltic sprat stock there are considerable 

differences in the output from the area disaggregated MSVPA and the acoustic survey (Köster 

and Möllman, 2000a). Thus, there is a need for a fishery independent assessment tool to validate 

the results of these methods. The DEPM has been applied to Baltic sprat before (Kraus & Köster, 

2004), but not on a regular basis. Essential data were scarce or even not available in the past. In 

the present study, all important data which are needed to apply the DEPM have been investigated 

for the Baltic sprat stock. A consecutive series of sprat batch fecundity data covering important 

sprat spawning areas in the central Baltic Sea has been established (Chapter I). The seasonal 

variability in batch fecundity and spawning frequency has been studied with modern image 

analysis methods using stereology (Chapter II). Stock structure parameters needed for the DEPM 

as length frequency distributions, sex ratios, and maturity ogives have been analysed and updated 

(Chapter III). A study to assess the degeneration time of postovulatory follicles was conducted 
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which enables a more precise estimation of the spawning frequency, a crucial parameter for the 

DEPM (Chapter IV). The egg development of sprat in relation to ambient temperature has been 

analysed in an experimental approach (Chapter V). The latter data are necessary to correct the 

field abundance data of the earliest egg stage with respect to egg stage duration and mortality. 

Finally, the DEPM has been applied to the sprat stock in the Bornholm Basin and results have 

been compared to other stock assessment methods (Chapter VI). Figure 5 gives a schematic 

overview of the work steps which were conducted in the present work to apply the DEPM for 

Baltic sprat. All chapters of the present work relate directly to this scheme with a focus on the 

spawning traits of Baltic sprat. 

 

 

 
 

Fig. 5: Scheme of the applied DEPM equation for estimation of the sprat stock size and 

associated work steps. DEP = total daily egg production for the survey area; R = sex ratio, i.e. 

proportion of females; M = proportion mature females; S = spawning frequency; F = batch 

fecundity. 
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Chapter I: Spatial and interannual variability in Baltic sprat batch fecundity 
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Abstract 

Absolute and relative batch fecundity of Baltic sprat (Sprattus sprattus balticus) during peak 

spawning time was investigated for several years over the last two decades by applying the 

hydrated oocyte method. Batch fecundity was analysed for three important spawning areas of 

sprat in the central Baltic Sea, namely the Bornholm Basin, Gdansk Deep and Southern Gotland 

Basin. Environmental parameters such as hydrography, fish condition and stock density were 

tested in order to investigate the observed variability in sprat fecundity. Absolute batch fecundity 

was found to be positively related to fish length and weight. Significant differences in absolute 

and relative batch fecundity of Baltic sprat among areas and years were detected, and could 

partly be explained by hydrographic features of the investigated areas. A non-linear multiple 

regression model taking into account fish length and ambient temperature explained 70% of 

variability in absolute batch fecundity. Oxygen content and fish condition were not related to 

sprat batch fecundity. Additionally, a negative effect of stock size on sprat batch fecundity in the 

Bornholm Basin was revealed. The obtained data and results are important to assess the stock 

reproductive potential of this important Baltic fish stock. 

 

Key words: batch fecundity, sprat, hydrated oocyte method 

 

I. 1 Introduction 

Knowledge on fecundity is essential to estimate the reproductive potential and egg production of 

a fish stock. Fecundity data allow a fishery independent estimation of the spawning stock size by 

egg production methods, e.g. the Daily Egg Production Method (DEPM; Lasker, 1985; Parker, 

1980). However, fecundity in fish is often highly variable and may be influenced by a number of 

factors such as fish size, nutritional status, food availability, fish density, and other 

environmental parameters, e.g. temperature or salinity (Lambert et al., 2003). Thus, fecundity 

may vary between stocks of the same species, which experience different environmental 

conditions in their specific habitat (Leal et al., 2009). Therefore, spatial and temporal variability 

in fecundity needs consideration when evaluating the reproductive potential of a stock or 

assessing the spawning biomass of certain stock components using egg production methods.  

In the present study, a time series of Baltic sprat Sprattus sprattus balticus (Schneider, 1908) 

batch fecundity was established applying the hydrated oocyte method (Hunter et al. 1985). Baltic 

sprat is a key species in the pelagic ecosystem of the Baltic Sea (Rudstam et al., 1994). It is the 
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most abundant planktivorous fish species in the Baltic, and the main prey of cod (Bagge et al., 

1994) as well as an important predator on early life stages of cod (Köster and Möllmann, 2000; 

Köster and Schnack, 1994). Consequently, the population dynamics of the Baltic sprat stock has 

major impact on the stock dynamics of the commercially important cod stock in the Baltic Sea. 

The Baltic sprat stock itself is heavily exploited with catches of 407.100 t for the year 2009 

(ICES, 2010). Therefore, it is relevant to improve the knowledge and understanding of the 

reproductive biology of this living resource. Main spawning grounds of sprat in the central Baltic 

Sea are the Bornholm Basin, the Gdansk Deep and the Gotland Basin (Aro, 1989; Köster et al., 

2003). 

Hydrographic conditions differ substantially among these three spawning areas as a function of 

the general hydrodynamics of the central Baltic. The salinity and volume of the upper water 

layers of this semi-enclosed brackish sea are mainly influenced by the amount of precipitation 

and fresh water river run off, while the renewal of the deep parts of the basins with oxygenated 

and saline water masses from the adjacent North Sea depends on inflow events. These processes 

lead to a highly stratified water column with a permanent halocline in the mid-water layer, and 

oxygen depleted water layers in the deep parts of the basins. The depth of the halocline as well as 

the oxycline depends on the frequency of inflow events. In general, salinity levels decrease from 

western to eastern parts of the central Baltic, and also temperatures are lower in the eastern parts.  

The Baltic sprat spawning season generally ranges from March to July with a peak in egg 

production in May/June. However, peak spawning time may be delayed by extremely cold 

winter temperatures (Karasiova, 2002). Sprat is a species with indeterminate oocyte recruitment 

releasing a number of successive egg batches over a protracted spawning season (Heidrich, 

1925). Consequently, the annual egg production is seasonally indeterminate and batch fecundity 

is the only appropriate fecundity measurement (Hunter et al., 1985; Murua et al., 2003). Batch 

fecundity and spawning frequency show intra- and interannual variability in sprat and differ 

among areas (e.g. Heidrich, 1925 Kiel Bight; Alheit, 1988 North Sea). Data on Baltic sprat batch 

fecundity are scarce and conclusive investigations on its variability are lacking. The available 

information on Baltic sprat batch fecundity (Heidrich, 1925; Petrova, 1960; Polivaiko, 1980; 

Müller et al. 1990; Kraus and Köster, 2004; Alekseev and Aleksseva, 2005) is scattered over 

years and areas. Furthermore, studies are often based on low sample sizes, and thus do not allow 

for comprehensive spatial and temporal comparisons.  

The understanding of the observed variations in fecundity is essential for the establishment of 

reliable predictions of sprat Stock Reproductive Potential (SRP). In addition, a model on sprat 

fecundity including historical data on stock structure and egg abundance data would allow 

reconstruction of the spawning stock biomass of Baltic sprat for a wide range of years using egg 

production methods. 

In the present study, we quantified sprat fecundity on the aforementioned three spawning areas 

(Bornholm Basin, Gdansk Deep, and Southern Gotland Basin) during the reproductive season 

over a period of several years and analysed individual batch fecundity. The data obtained were 

used to build predictive models explaining spatial and temporal variability in sprat batch 

fecundity in relation to environmental parameters. 

 

I. 2 Methods 

Female sprat were caught by trawling during peak spawning time in different years in three areas 

of the central Baltic Sea: Bornholm Basin (1991, 1995-1996, 1998-2008), Gdansk Deep (2000-

2004, 2006, 2008) and the Southern Gotland Basin (2000-2006, 2008) (Fig. 1; Tab. 1). Only 

females with fully hydrated oocytes were sampled for fecundity analyses. The body cavity was 

opened, maturity stage determined by macroscopic inspection of the ovaries. In order to exclude 

actively spawning females from the analyses which might have released part of the egg batch, 
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running ripe females were not sampled. The entire fish was preserved in a buffered 4% 

formaldehyde seawater solution for the later fecundity analyses in the laboratory. Obtained data 

of fish lengths and weights were not corrected for possible preservation effects, since no data 

were available for sprat. 

 

 
 

Fig. 1: Sampling locations of sprat in the central Baltic. Dots denote stations sampled within the 

present study. Shaded areas indicate the three defined sampling areas: BB = Bornholm Basin, 

GD = Gdansk Deep, SGB = Southern Gotland Basin. 

 

The batch fecundity (BF), i.e. the number of oocytes released per single spawning event, was 

estimated gravimetrically applying the hydrated oocyte method (Hunter et al., 1985). For each 

sampled ovary, the number of eggs per batch (i.e. the absolute batch fecundity) was estimated by 

weighing the entire ovary (OW) and by counting the hydrated oocytes (NOS) in a subsample of 

approximately 10% of the ovary (SW). The NOS was determined using a stereo microscope, and 

raising the counted numbers to total numbers in the ovary by the weight proportion: 

 

    
  

  
                      (1) 

 

In addition, total body weight (W), gutted weight (GW) and total length (LT) were recorded for 

every analysed female sprat. The relative batch fecundity (RBF) was calculated for each fish by 

dividing the absolute batch fecundity by the ovary free body weight (OFBW) (Alheit, 1988): 

 

     
  

    
                         (2) 
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To obtain a measure of the female sprat condition the Fulton‟s Condition Index (K) was 

calculated for each fish: 

 

   
  

   
                      (3) 

 

In order to assess variability in absolute batch fecundity, analyses of covariance (ANCOVA) 

were performed with total fish length as continuous covariable, and year and area as category 

variables. Cases with no significant linear relationship between length and batch size were 

excluded from these analyses. All data were square root transformed to meet assumptions of 

normal distribution and homoscedasticity. K-S tests indicated minor deviations from normal 

distribution in some cases. However, as ANOVA analyses are quite robust against deviations 

from normal distribution, deviations from normality were not given much emphasis in the 

subsequent analyses. The year effect was tested separately for each of the sampling areas. The 

area effect could only be tested for years, in which two or more significant linear regressions 

were found. A regression model to predict absolute batch fecundity was established, including 

fish length and mean temperature as independent variables.  

Differences in relative batch fecundity were tested applying a two factorial analysis of variance 

(ANOVA) with years and areas as independent variables. For this analysis, only years in which 

the sampling covered all three areas were used in order to avoid gaps in the model design (years 

included in ANOVA analysis of relative batch fecundity: 2000, 2001, 2002, 2004, 2006, and 

2008). In cases were significant differences were detected, a post hoc multiple comparison was 

performed (Tukey‟s HSD for unequal sample sizes). 

Relative fecundity was related to different biotic and abiotic variables in order to identify 

potential causes of the observed variability. Water temperature, salinity and oxygen content were 

used as abiotic variables, whereas sprat condition and stock abundance estimates were used as 

proxies for density dependent processes, e.g. trophic interactions. Hydrographic data were 

obtained from the hydrographic database of ICES (International Council for the Exploration of 

the Sea). Mean water temperature, salinity, and oxygen content for the analyses were estimated 

for the first and second quarter of each year for all three areas. These average hydrographic 

values were calculated for the entire water column, from the surface to depths where oxygen 

values lower than 1 ml l
-1

 are avoided by sprat (Stepputtis et al., 2011). Data on sprat stock sizes 

for use in the analyses were obtained from the most recent run of an area disaggregated Multi 

Species Virtual Population Analyses (MSVPA) conducted by the ICES Study Group of Multi 

Species Assessment in the Baltic (ICES, 2006). Or as an alternative, stock abundance estimates 

for ICES sub-division 25, obtained from the international Baltic acoustic survey conducted in 

May, were applied. Data on fish condition were obtained from the present study. 

 

I. 3 Results 

Absolute batch fecundity 

 

The absolute batch size of Baltic sprat varied between a minimum of 206 and a maximum of 

4244 eggs. The absolute batch size at peak spawning time as the mean of all examined sprat 

ovaries approximated 1533 (SD±637) eggs (n=1142). The number of eggs per batch increased 

with total fish length and fish body weight, respectively. Most significant results were obtained 

from linear regression models with batch size as dependent and total fish length as independent 

variables (Fig. 2; Tab. 1). In some cases no significant linear relationship could be obtained, 

probably due to insufficient sample sizes or a low coverage of the fish size spectrum.  

As sampling effort was highest in the Bornholm Basin, linear relationships were available for all 

data sets (Fig. 2). An analysis of covariance for these data showed significant differences in 
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slopes and intercepts of the regression lines among years (p<0.05). The regression lines of the 

years 1991, 2001, and 2004 were parallel, with a steeper slope compared to all other years. In 

this group, the intercept of the 1991 regression line was found to be significantly higher than in 

the years 2001 and 2004 (p<0.05). All the remaining regression lines obtained from the 

Bornholm Basin data were parallel, but also with differing intercepts. In this second group, the 

year 1995 possessed the highest, and the year 1996 the lowest intercept values. The three linear 

regressions of the Gdansk Deep fecundity data (2000, 2004, and 2006) showed no significant 

differences. Similar results applied to the five data sets compared for the Southern Gotland Basin 

(2001, 2002, 2004, 2005, and 2006). The ANCOVA analyses within years, testing for 

differences among areas, revealed lower intercept values for the Southern Gotland Basin samples 

compared to those of the Bornholm Basin for all years included. The regression results of the 

Gdansk Deep and Southern Gotland Basin showed significant differences in intercepts for 2004 

and 2006, whereas no differences in regressions were detected between Bornholm Basin and 

Gdansk Deep. 

 

 

Tab. 1: Overview of sampling years, area (BB = Bornholm Basin, GD = Gdansk Deep, SGB = 

Southern Gotland Basin), research vessel (AL = RV Alkor, WH = FRV W. Herwig III) number 

of fish analysed (n), relative batch fecundity (RBF±SE), and linear regression coefficients (r², r, 

p-value, y0, a) of batch fecundity and fish length. 

 

year area ship sampling period RBF n r² r p y0 a 

1991 BB AL 29
th
 – 31

th
 May 148.5 (±4.5) 55 0.26 0.51 <0.05 -3171 421 

1995 BB AL 18
th
 May 139.6 (±8.3) 16 0.28 0.53 <0.05 -1402 263 

1996 BB AL 19
th
 May 85.9 (±6.5) 26 0.29 0.54 <0.05 -2948 320 

1998 BB AL 20
th
 – 22

th
 May 129.6 (±4.6) 52 0.15 0.39 <0.05 -1650 259 

1999 BB WH 1
st
 – 7

th
 June 111.6 (±4.8) 48 0.37 0.61 <0.05 -2467 306 

2000 BB AL 25
th
 – 28

th
 May 134.1 (±4.7) 51 0.28 0.53 <0.05 -2971 381 

2001 BB WH 30
th
 May – 6

th
 June 136.2 (±4.2) 62 0.35 0.60 <0.05 -4076 469 

2002 BB WH 9
th
 – 17

th
 May 117.5 (±4.3) 61 0.21 0.45 <0.05 -1583 246 

2004 BB WH 13
th
 – 18

th
 May 128.0 (±4.1) 67 0.40 0.63 <0.05 -5561 581 

2005 BB WH 16
th
 – 20

th
 May 125.6 (±3.3) 102 0.57 0.76 <0.05 -2569 330 

2006 BB WH 24
th
 – 25

th
 May 130.0 (±2.8) 142 0.51 0.72 <0.05 -2566 335 

2007 BB AL 16
th
 – 17

th
 April 137.6 (±8.9) 14 0.36 0.60 <0.05 -1843 277 

2008 BB WH 12
th
 – 17

th
 May 139.9 (±3.8) 78 0.27 0.52 <0.05 -3042 368 

2000 GD AL 2
nd

 June 126.7 (±7.4) 20 0.43 0.65 <0.05 -4704 519 

2001 GD WH 27
th
 – 28

th
 May 110.8 (±8.6) 15 0.02 -0.13 0.63 2495 98 

2002 GD WH 5
th
 – 6

th
 May 85.2 (±6.4) 27 0.04 -0.19 0.35 2969 171 

2004 GD WH 20
th
 – 21

th
 May 118.6 (±10.0) 11 0.45 0.67 <0.05 -2632 331 

2006 GD WH 31
th
 May – 1

st
 June 119.8 (±4.7) 51 0.33 0.57 <0.05 -2207 297 

2008 GD WH 12
th
 – 17

th
 May 149.5 (±6.9) 23 0.06 0.24 0.27 -659 176 

2000 SGB AL 4
th
 June 111.2 (±10.5) 10 0.35 0.59 0.07 -5101 538 

2001 SGB WH 28
th
 May 89.2 (±7.1) 22 0.36 0.60 <0.05 -3513 377 

2002 SGB WH 5
th
 – 6

th
 May 90.4 (±5.0) 44 0.10 0.32 <0.05 -1680 225 

2004 SGB WH 19
th
 May 99.6 (±4.2) 64 0.48 0.69 <0.05 -2191 279 

2005 SGB WH 22
th
 – 23

th
 May 106.9 (±5.3) 39 0.39 0.62 <0.05 -1428 215 

2006 SGB WH 31
th
 May – 1

st
 June 93.8 (±5.8) 33 0.41 0.64 <0.05 -1572 221 

2008 SGB WH 12
th
 – 17

th
 May 102.8 (±11.1) 9 0.19 0.43 0.25 -1162 184 
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Fig. 2: Relationships between sprat absolute batch fecundity and sprat total length for the 

Bornholm Basin (BB = white circles; solid lines), Gdansk Deep (GD = grey triangles; dashed 

lines), and Southern Gotland Basin (SGB = crosshairs; dashed-dotted lines) for different years. 

Shown are significant linear regressions (p<0.05). Characters in parentheses denote significant 

differences in intercept of regressions within years (ANCOVA, p<0.05). 
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Relative batch fecundity 

 

 

Data on relative batch fecundity (RBF) were analysed by a two factorial analysis of variance 

(ANOVA) (Fig. 3; Tab. 2) using years and areas as categorical variables. Similar to absolute 

batch fecundity, the relative batch fecundity showed variability among years and areas. The 

ANOVA revealed as well a year as an area effect, and an interaction between both (p=0.007). In 

the Bornholm Basin, mean relative fecundity values (±SE) ranged between 85.9 (±6.6) eggs g
-1

 

in 1996 and 148.5 (±4.5) eggs g
-1

 in1991. In most of the observed years relative fecundity was 

higher in the Bornholm Basin compared to the other two areas although not significant in every 

case. Comparable low mean values were found for the Southern Gotland Basin, ranging between 

89.2 (±7.2) eggs g
-1

 in 2001 and 111.2 (±10.7) eggs g
-1

 in 2000 (Fig. 3), which were always 

lower than the Bornholm Basin values in the respective years. The relative batch fecundity data 

for the Gdansk Deep ranged in most cases between the other two areas, with the exception of 

2008, where it was slightly higher than in the Bornholm Basin, but not significant (HSD p=0.98). 

In 2002, it was as low as the Southern Gotland Basin value (HSD p=1.00). 

 

 
Fig. 3: Mean relative batch fecundity RBF (eggs g

-1
 OFBW) for different years in the Bornholm 

Basin (circles), Gdansk Deep (squares), and Southern Gotland Basin (diamonds). Asterisks at the 

x-axis indicate years included in an ANOVA. Different symbol fill colours denote significant 

differences (p<0.05) for that given year. Vertical bars denote 95% confidence limits. 

 

 

Tab. 2: ANOVA results testing effects among year and area on relative batch fecundity. Included 

were the years 2000 - 2002, 2004, 2006, and 2008. All three areas were included.  

 

 

SQ df MQ F p 

constant 6029464 1 6029464 5463.65 < 0.0001 

year 51890 5 10378 9.40 < 0.0001 

area 98766 2 49383 44.75 < 0.0001 

year*area 27187 10 2719 2.46 0.007 

error 851947 772 1104 
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Considering all three areas, the RBF showed the strongest relationship with temperature followed 

by salinity (Fig. 4). Oxygen content revealed no significant relation to RBF. Lowest values of 

mean water temperature and salinity were observed in the Southern Gotland Basin, where in 

general also the lowest RBF values were observed (Fig. 4a and 4d). The lowest RBF estimates 

observed in the Bornholm Basin were associated with the lowest observed mean temperature, but 

not with low salinity (Fig. 4). Female condition as well as stock size did not result in any 

significant relationships when considering all areas together. When investigating possible 

relationships between RBF and environmental parameters for each of the three basins separately, 

only the effect of mean temperature on RBF remained for the Bornholm Basin, whereas for the 

Gdansk Deep and the Gotland Basin no significant relationships were detected at all. This is 

probably due to the low number of years covered, and the limited observed range of the 

measured hydrographic variables within these two eastern basins. For the Bornholm Basin 

separately, using quarter 1 mean temperature as independent variable, resulted in the highest 

proportion of explained variability (Fig. 5a). Mean salinity showed no relationship, while oxygen 

content was found to be negatively related to RBF (Fig. 5b). From the biotic parameters which 

were tested RBF showed no significant relationship with neither the individual condition index 

nor MSVPA stock size estimates. In contradiction, the stock size estimate obtained by the 

acoustic survey revealed a negative relationship with RBF explaining as much as 64% of the 

variability (Fig. 5c). For this last case only 8 years could be included into the regression analysis. 

Therefore, the significance of this result must not be over-interpreted. However, it might be an 

indication of density dependent processes affecting sprat fecundity. 

 

 
 

Fig. 4: Relationship between relative batch fecundity (RBF) and mean hydrographic parameters measured 

during the first quarter of the year (a, b, c), and the second quarter (d, e, f). Black dashed lines display 

significant linear relations. Black arrows indicate the mean of the respective hydrographic parameter 

observed for the years 1990-2008 within the respective area. Bornholm Basin (BB) = white circles, 

Gdansk Deep (GD) = grey triangles, Southern Gotland Basin (SGB) = crosshairs. 
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Fig. 5: Significant relationships between relative sprat batch fecundity (RBF) and (a) mean 

winter temperature (solid line linear, dashed line non-linear), (b) mean winter oxygen content, 

and (c) sprat stock size obtained by an acoustic survey. All panels refer to the Bornholm Basin 

only. 

 

 

Non-linear regression models 

 

A multiple non-linear regression with mean values of batch fecundity (BF) as dependent 

variable, fish length class (TL) and mean temperature (T) as independent variables explained 

70% of the variability in BF (n=181). The following exponential model was fitted and results are 

presented in Fig. 6 and Tab. 3: 

             
       

   
 

    
 

 
 

 

 

                                                                       (4) 

 

where a, b, c and Tmax are regression coefficients. 

 

In the case of the relative batch fecundity (RBF), it was assumed that fecundity follows rather a 

flat top curve instead of a continuous linear increase with increasing temperature. Therefore, a 

model was established describing RBF as a sigmoid function of length and temperature (r² = 

0.70; p<0.05):  

 

     
 

   
       

 

                                       (5)    

   

where a, b and T0 are regression coefficients, and T is the mean winter temperature (Fig. 5a; Tab. 

3). 
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Tab. 3: Non-linear regression results. All parameter estimations are significant (p<0.05). BF = 

absolute batch fecundity, RBF = relative batch fecundity, T = mean water temperature. 

 

BF = a * Length * exp (-0.5*(ln(T/Tmax)/b)^2)+c 

parameter estimate standard error t-value (df=10) 

a 359.54 23.46 15.33 

TMAX 6.97 2.50 2.78 

b 1.46 0.55 2.68 

c -2753.16 243.51 -11.31 

RBF = a / exp (-1*(T-T0)/b) 

parameter estimate standard error t-value (df=175) 

a 137.03 5.74 23.88 

T0 3.17 0.20 2.46 

b 0.50 0.19 16.29 

 

 
Fig. 6: Non-linear regression model of mean batch fecundity with fish length class and mean 

temperature as predictor variables. n=179; r² = 0.70. 

 

I. 4 Discussion 

This is the first study to reveal differences in batch fecundity of sprat among areas and years in 

the Baltic. The deep basins of the central Baltic Sea serve as main spawning area for sprat and 

are characterised by different hydrographic conditions. The differences found in sprat fecundity 
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can partly be related to these hydrographic differences among basins, but also to interannual 

hydrographic variability. Batch size was found to be positively related to mean temperature but 

also with mean salinity. Larger batch sizes were found in the Bornholm Basin, where the mean 

water temperature and the mean salinity in the depth range of sprat prevalence is in general 

higher than in the Gdansk Deep and the Southern Gotland Basin. Sprat in the Baltic lives at the 

northern boundary of the geographical distribution of this species (Muus & Nielsen, 1999) and is 

adapted to warmer and more saline waters. Consequently, the observed higher fecundity in years 

with higher water temperatures may result from better growth, earlier maturation, and enhanced 

gonadal development leading to a higher egg production (Grauman and Yula, 1989). Low water 

temperatures reduce and delay the onset of the spring zooplankton production in the Baltic 

(Dippner et al. 2000), which will reduce the availability of prey species, especially of warm 

adapted copepods as Acartia spp. (Möllmann et al. 2004), for sprat. This reduction of food 

availability after a cold winter may negatively affect individual sprat fecundity in the following 

spawning season. Higher batch fecundity was also associated to higher temperatures in other 

clupeoids, e.g. the engraulids Encrasicholina heterobola (Milton et al., 1995) and Engraulis 

japonicus (Funamoto and Aoki, 2002). 

However, the highest observed water temperatures did not result in the highest fecundity values. 

Hence, it was assumed that fecundity is related to temperature in the form of a flat top curve 

rather than showing a linear relationship. Further, it is reasonable to assume that at some point, 

when temperatures reach a certain critical level, fecundity will decrease again, following an 

optimum curve. Optimum or tolerance curves describing physiological or biological processes 

are a common phenomenon in ecology, especially in relation to temperature effects (Huey and 

Stevenson, 1979; Pörtner and Peck, 2010). Consequently, fitting relative fecundity as well as 

absolute fecundity data to models with a temperature dependent plateau resulted in a quite high 

percentage of explained variability. This might be explained by temperature induced 

physiological stress, which may affect the egg production negatively when ambient temperatures 

exceed a critical value. Such an effect was described for Mediterranean sardine (Sardina 

pilchardus sardine), which seems to down regulate batch fecundity by atresia when ambient 

temperature increases above a certain level (Ganias, 2009). 

The linear regressions of sprat length and absolute batch fecundity showed distinct differences in 

slopes and intercepts between some years and areas. Differences in intercepts can be explained 

by variability in environmental conditions, affecting the egg production of the population 

without an interaction with fish size. The observed differences in the slopes of regressions can be 

explained in two ways: (i) it is an artefact of sampling; (ii) size dependent effects play a role, 

which affect smaller and larger sprat differently. The first case might be true, as in the three 

years where the slope of regression was found to be steeper compared to the other years, the 

small length classes are not well represented in the samples. The second case might be true, if 

e.g. food availability, ambient hydrographic conditions, or conditions during the winter, affect 

young fish and old fish differently. Young fish may be forced to allocate more energy into 

maintenance and somatic growth to survive when conditions are suboptimal, instead of investing 

energy into reproduction.    

The only available information on sprat relative fecundity existing so far for the Bornholm Basin 

is given by Müller et al. (1990) with a value of 122 eggs g
-1

 for the year 1988. This value is 

within the range observed for this area in the present study. However, this estimate is based on 

the total female weight, and therefore probably underestimates the relative fecundity compared 

to the findings of the present study. In contrast to the findings of the present study Alekseev & 

Alekseeva (2005) reported a decreasing relative fecundity with increasing fish length for Baltic 

sprat from the Gdansk Deep. They observed values ranging from 137 to 163 eggs g
-1

 depending 

on fish size. They explained their observation due to decreasing growth potential of older fish 

and the decreasing ability of these old age groups to convert consumed food into biomass. The 

data obtained within the present study did not reveal a size effect on RBF. Hence, the assumption 
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by Alekseev and Alekseeva (2005) cannot be supported. However, they used gutted weight 

instead of the ovary free body weight to calculate RBF and results of these two studies are 

therefore not directly comparable. 

In comparison to other sprat stocks, the observed values of mean relative batch fecundity for 

central Baltic sprat are low. For sprat of the southern North Sea and from the Kiel Bight, the 

mean relative batch fecundity was described with 413 eggs g
-1

 and 232 eggs g
-1

, respectively 

(Alheit, 1988). Both areas are characterised by higher salinities than the central Baltic. Egg size 

of sprat eggs increases from the North Sea towards the Baltic related to decreasing salinity 

(Russell, 1976). This trend proceeds within the Baltic, as sprat egg size increases from west to 

east in relation to the decreasing salinity (Nissling et al. 2003). As the ovary size is restricted to 

the fish body size, an increase in oocyte size with decreasing salinity may lead to a decrease in 

the number of hydrated oocytes per batch, thus explaining the influence of salinity on batch 

fecundity, especially the decreasing trend from western to eastern areas. From the presented 

results it can be concluded that in the Bornholm Basin ambient temperature exerts the major 

effect on sprat batch fecundity. However, in combination with the information on sprat egg size 

from literature, it seems reasonable that spatial differences on a longitudinal axis from west to 

east can be explained by differences in salinity.   

The history of sprat stock abundance showed highest values during the 90s of the last century, 

with a record of 2.937.000 t total biomass in 1995 (ICES, 2010). A decrease in weight-at-age 

was observed during this period of high sprat stock. This was explained by density dependent 

effects and a change in the abundance of important food organisms due to climatic processes 

(Cardinale et al., 2002). The present study indicated a density dependent effect on sprat 

fecundity for the Bornholm Basin, which was negatively related to the acoustic stock size 

estimated by an acoustic survey. It cannot be ruled out that quality and quantity of food may 

have a significant effect on sprat growth and, subsequently, on fecundity. A food effect on 

fecundity has been shown before for other fish species. For example, increased food availability 

had a positive effect on fecundity in Mediterranean sardine (Sardina pilchardus; Ganias, 2009; 

Somarakis et al., 2004). Further, it was demonstrated that the variability in Baltic cod fecundity 

is related to the availability of prey (Kraus et al. 2002). However, as only few fecundity data 

exist for years in which the sprat stock showed highest abundances, and also zooplankton 

abundance data were not available for the present study, this issue should be addressed in future 

studies. 

Differences in batch fecundity among years may also be affected by variability in the timing of 

spawning. An increase in batch size towards peak spawning and a decrease again to the end of 

the spawning season has been observed in former studies on sprat from Kiel Bight and the 

German Bight (Heidrich, 1925; Alheit, 1988). Data on batch fecundity presented by Alekseev 

and Alekseeva (2005) corroborate this trend for sprat in the south-eastern Baltic. However, it 

seems that batch fecundity during the main spawning season is relatively stable. For example, 

Kraus and Köster (2004) detected no changes in batch fecundity from March to June in 1999. 

Karasiova (2002) observed the timing of sprat peak spawning mainly in May/June over a broad 

range of years in the south eastern Baltic, with an exception for the year 1996, where the peak 

spawning shifted to July in the Gdansk Deep area. Therefore, we cannot entirely exclude the 

possibility that the variations we found in batch fecundity of Baltic sprat may at least partly be 

explained also by variability in the timing of spawning between years and areas. 

With a model on Baltic sprat batch fecundity and available time series on egg abundances in the 

central Baltic, it would be possible to estimate stock sizes of certain sprat stock components for a 

wide range of years with egg production methods, for which direct information on batch 

fecundity are lacking. Such fishery independent stock estimates, even if the applicability to the 

entire stock may be limited, may serve as a tool to validate stock abundance data obtained by 

other assessment methods, e.g. acoustic surveys or virtual population analysis (VPA). This is 

especially interesting for the Baltic sprat stock, where conflicting results on stock size 
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estimations from acoustic surveys and the Multi Species VPA approach hampered quantitative 

studies on recruitment processes of sprat and cod so far, for example the estimation of predation 

pressure on cod eggs by sprat in the Bornholm Basin (Köster and Möllmann, 2000). The 

obtained non-linear regression model from the present study, taking into account an interaction 

between fish length and temperature, explained a quite high percentage of the variability in 

Baltic sprat batch fecundity. But it should be seen as a first step towards modelling Baltic sprat 

reproductive potential as further factors potentially impacting sprat fecundity, e.g. prey 

availability and growth, have not been taken into account so far. 
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Chapter II: Seasonal variability of sprat spawning traits 

 

 

Abstract 

A number of spawning traits of Baltic sprat (Sprattus sprattus balticus S) have been analysed for 

the years 2005 and 2008 in order to reveal seasonal variability. Timing of spawning, batch 

fecundity, number of developing oocytes, spawning frequency, fish condition and atresia where 

included into analyses. Histology techniques in combination with image analyses have been 

applied to investigate different spawning stages of material sampled in 2008. Spawning sprat 

were detected from January to June. In November 2008 first signs of ovary maturation were 

observed. Relative batch fecundity was found to be low early in the year compared to summer 

with 85 eggs g
-1

 ovary free body weight observed in January 2005 and 165 eggs g
-1

 ovary free 

body weight observed in June 2008. Variability in batch fecundity during peak spawning was 

low. A seasonal decrease in oocyte dry weight and diameter was related to an increase in batch 

fecundity towards the end of spawning season. Spawning frequency was found to be relatively 

stable over the course of the spawning period with values slightly decreasing from 0.22 in March 

to 0.18 in June. Stereometric analyses confirmed the indeterminate spawning strategy of Baltic 

sprat. Prevalence of atresia was low during peak spawning (1 – 3%) but considerably higher 

during early spawning period (11%). In ripening ovaries from November atresia prevalence was 

38%. Female sprat condition was low during spawning period and sharply increased after 

spawning ceased. The combination of histology and stereometric methods proved to be a 

valuable tool for analysing maturation, fecundity and atresia in Baltic sprat. The results of the 

present study are important with respect to the spawning dynamics of Baltic sprat. 

 

Key words: batch fecundity, spawning frequency, developing oocytes, atresia 

 

II. 1 Introduction 

Strong seasonality in spawning activity is a common life history trait of temperate marine fish 

species. For a successful reproduction, it is essential that the produced early life stages are 

released in an environment where abiotic conditions and food availability are suitable for 

survival; a mechanism known as the “Match-Mismatch” concept (Cushing, 1975; Cushing, 

1990). Consequently, the spawning strategy of many temperate species has evolved to be 

synchronised with the peak of primary and/or secondary production to match with sufficient food 

availability for larvae (Sherman et al., 1984). Marine habitats show a high variability in their 

environmental features, which will determine the optimum spawning time. Thus, batch spawning 

over an extended spawning season has evolved in many marine fish species producing pelagic 

eggs (Murua and Saborido-Rey, 2003). This spawning strategy will increase the probability of at 

least some offspring cohorts to find optimum conditions for growth and survival (Alheit, 1988), 

and will therefore increase the probability of successful reproduction.  

In species that exhibit serial spawning, batch fecundity, spawning fraction and frequency, as well 

as egg quality may change over the course of the spawning season (Alheit, 1993; Trippel et al., 

1997). For multiple spawning fish species, e.g. Bay of Biscay anchovy (Engraulis encrasicolus; 

Motos, 1996), European sardine (Sardina pilchardus; Zwolinski et al., 2001), and European hake 

(Merluccius merluccius; Murua et al., 2006), batch fecundity has been shown to vary over the 

spawning season. Spawning frequency might also vary interannually due to the stock age 

structure, food abundance or other environmental factors (Claramunt et al., 2007; Ganias, 2009). 
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An increasing spawning frequency with progressing spawning season has been described for 

anchovy (Motos, 1996). In the case of spawning frequency, it has also been stated that it may not 

vary seasonally when stocks inhabit environmentally stable habitats (McEvoy and McEvoy, 

1992; Hunter and Lo, 1997). Fish egg quality, often assessed in terms of egg diameter or egg dry 

weight, has also been shown to vary over the spawning season (Blaxter and Hempel, 1963; 

Bagenal, 1971; Riveiro et al., 2004).  

For a better understanding of the reproductive potential of a stock, it is important to characterise 

this aforementioned seasonal variability of spawning parameters. This is especially important for 

studies investigating the spatial and inter-annual variability of spawning traits. For such 

comparisons, it is a prerequisite to assure that the parameters to be compared are taken from the 

same phase in the spawning period (Alheit, 1988). 

The spawning season of Baltic sprat (Sprattus sprattus balticus S.) is prolonged, lasting from 

February to August in the Baltic proper (Ojaveer and Kalejs, 2010). The onset of spawning may 

be dependent on temperature conditions, with extremely low winter temperatures causing a delay 

in the onset of spawning (Karasiova, 2002). For Baltic sprat, a multiple batch spawner with 

indeterminate oocyte recruitment, it has been shown that batch fecundity increases during the 

spawning season (Heidrich, 1925; Alekseev and Alekseeva, 2005). The only observation of 

spawning fraction and an estimate of spawning frequency for several consecutive months are 

given by Kraus and Köster (2004), who reported quite high variability in these parameters over 

the peak spawning season for the Bornholm Basin. 

Sprat egg diameter and dry weight were found to decrease during the spawning season (Nissling 

et al., 2003), which may be due to varying hydrographic conditions. How this change in egg size 

affects batch fecundity has never been investigated for Baltic sprat.  

Atresia plays a role in down regulating the realized fecundity in a number of marine fish species. 

This is especially the case for determinate spawners, e.g. cod (Gadus morhua; Kraus et al. 

2008), plaice (Pleuronectes platessa; Kennedy et al., 2007), and sole (Solea solea; Witthames 

and Greer Walker, 1995). These species are capital breeders (Jönsson, 1997), in which the cost 

of reproduction is financed by feeding prior to the spawning season. Hence, potential fecundity 

is determined before the onset of spawning. When conditions turn out to be sub-optimal, due to 

low food availability or unfavourable hydrographic conditions, ripening oocytes can be 

reabsorbed, and the gained energy may be used for the maintenance of essential physiological 

processes. In fish species with indeterminate oocyte recruitment, atresia might not play an 

important role, as the energy demanding process of oocyte recruitment can be immediately 

stopped if environmental conditions become sub-optimal. However, for European sardine it has 

been observed that higher levels of atresia occur when temperature conditions exceed a certain 

critical threshold (Ganias, 2009). Thus, also in these species atresia seems to be a mechanism to 

quickly activate energy reserves from ripening oocytes, which had been actually determined for 

spawning. For Baltic sprat, no prior studies have investigated atresia. Therefore, this aspect was 

included in the present investigation in order to assess if and to what extent atresia might occur 

in Baltic sprat ovaries and whether seasonal changes can be detected which might be explained 

by environmental factors. 

In the present study, the seasonal changes of batch fecundity, developing oocytes number, 

diameter and dry weight as well as the prevalence of atretic oocytes were analysed. For this 

purpose, ovaries were sampled over the spawning season and analysed with histological 

methods. For the first time in this species, a stereological approach (Emerson et al., 1991; Murua 

et al., 2003) was used to assess the number of developing oocytes.  
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II. 2 Methods 

Sprat were sampled in 2005 and 2008 during several research cruises conducted in the Bornholm 

Basin (Tab. 1). For the year 2005, determination of maturity was exclusively conducted 

macroscopically immediately after the haul on board. For this purpose at least 10 individuals per 

1cm length class were staged. Additionally, hydrated females were sampled in January, April 

and May for batch fecundity analyses in 2005. Samples for the year 2008 were taken in March, 

April, May, June, August and November. In this year, up to five sub-samples of 2 kg sprat were 

taken from pelagic fishery hauls. Samples were immediately fixed in a buffered 8% 

formaldehyde solution. To assure a proper fixation, the body cavity of each fish was opened. In 

the laboratory, the sex and maturity of each fish was determined in a first work step by 

macroscopic inspection of the ovaries. Then, at least 20 female sprat were then sampled 

randomly from the sub-samples for subsequent quantitative determination of maturity stages by 

histology. For analysis of batch fecundity, additional females with hydrated ovaries were 

collected when present in the fishery hauls. From these females, the ovaries were removed and 

again fixed in a buffered formaldehyde solution for further processing. Histological sections 

(tissue embedded in paraffin; 3µm sections; Hematoxilin staining) were produced from each 

sampled ovary. During the cruise in August 2008, only few sprat were caught, and only five 

females could be collected for histological analysis. Only one sprat sub-sample was available for 

November 2008. A total of 471 ovaries were analysed histologically for the year 2008 (Tab. 1).  

 

 

Tab. 1: Female sprat sampling for the year 2005 and 2008. DA = RV “Dana”, AL = RV ”Alkor”, 

WH = RV ”Walther Herwig III”.  

 

cruise date of sampling size range number of females 

   histology oocyte stage fecundity 

AL251 26
th

 – 28
th

 January 2005 11.4 – 14.0 0 0 25 

AL255 20
th

 – 23
th

 April 2005 10.1 – 14.9 0 0 45 

WH275 16
th

 – 19
th

 May 2005 9.6 – 15.3 0 0 102 

DA 0208 13
th

 - 15
th

 March 2008 9.9 - 14.5 129 110 55 

AL318 19
th

 - 21
th

 April 2008 10.5 - 13.4 113 104 44 

WH312 12
th

 - 18
th

 May 2008 10.6 - 14.4 128 101 55 

AL320 7
th

 - 10
th

 June 2008 11.2 - 14.2 70 60 31 

AL324 27
th

 August 2008 13.3 - 13.8 5 5 0 

DA 0808 15
th

 November 2008 9.8 - 14.6 26 26 0 

 

For all females analysed in the laboratory, weight, gutted weight, total length, and ovary weight 

and ovary free body weight (OFBW) was determined. Fulton‟s condition index (K) was 

calculated taking into account total fish length (L) and OFBW: 

 

   
    

   
                           (1) 

 

  

Oocyte developmental stages 

 

All histological sections were checked for the developmental stage of oocytes and the presence 

of recent postovulatory follicles (POF). According to Brown-Peterson et al. (2010) five oocyte 

developmental stages were distinguished: (i) primary growth, (ii) cortical alveoli, (iii) 

vitellogenesis, (iv) nucleus migratory and (v) hydrated oocytes. Recent POF (<24h) were 



II: Seasonal variability of spawning traits 

_____________________________________________________________________________ 

28 

 

identified using histological criteria published for Northern anchovy (Engraulis mordax) by 

Hunter et al. (1985). Additionally, each ovary section was checked for the presence of atretic 

cells.  

 

 

Number of developing oocytes 

 

The number of specific types of developing oocytes (NDO) was estimated for a subsample of 

ovaries covering all months in the year 2008 for which samples were available. For this purpose, 

the histological sections of ovaries were analysed with a stereometric method (Emerson et al., 

1991; Murua et al., 2003). Stereology is the tri-dimensional interpretation of bi-dimensional 

sections of a structure (Weibel et al., 1966). In fecundity studies, it allows the estimation of the 

number of oocytes within an ovary from histological sections of this ovary. This is done by the 

use of a point grid, the “Weibel Grid”, which is overlaid over the histological image of the 

section to be analysed (Fig. 1). The grid is constructed from hexagonal cells with known size. 

The distance between each point has to be less than the diameter of the smallest particle to be 

counted. For this procedure, an ImageJ (Rasband et al., 1997-2009) application was used, 

allowing an automated process of overlaying digital images of histological sections with the 

Weibel grid (the ImageJ application has been published on www.fresh-cost.org). The used 

Weibel grid contains 168 points and has an area of 0.023 cm² (Fig. 1). For each ovary, four 

randomly defined areas of the histological section were analysed. As shown by Emerson et al. 

(1991), four areas are sufficient for an accurate estimation of the mean. However, in some few 

cases it was only possible to analyse three areas. First, each point of the grid which is touching 

the cross section of a developing oocyte is counted to determine the area of the respective oocyte 

groups. Second, the total number of individual oocyte cross sections within the area of the 

Weibel Grid is counted. By definition, oocytes touching the right hand and lower border of the 

Weibel Grid are not counted (Weibel, 1979). Finally, the Weibel formula (Weibel et al., 1966) 

was used to calculate the number of developing oocytes (NDO): 

 

        
 

 
 

  
   

  
                (2) 

 

where   OV = ovary volume 

   C = size distribution coefficient 

   β = shape coefficient  

   Na = number of oocyte transections per unit area 

   Vi = the partial area of oocytes in the histological section 
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Fig. 1: Histological image of sprat ovary overlaid with the Weibel grid. The grid contains 168 

points and has an area of 0.023 cm² (edge length 1516µm).  The 84 horizontal bars visible in the 

grid represent two test points at their ends (n=168). Displayed are the colour coded point counts 

to estimate the partial area (Vi) of cortical alveoli oocytes (blue points), vitellogenic oocytes 

(green points), and oocytes with migratory nucleus (red points). Colour coded crosses represent 

the count of numbers of oocytes in different developmental stages (Na). Oocytes touching the red 

borders of the grid are not counted. 

 

 

Stereology has never been previously applied for Baltic sprat. Thus, ovary volume had to be 

determined as a function of ovary weight. Further, the correction factors C and β had to be 

estimated.  

Based on a subsample of 21 sprat ovaries, covering a broad range of ovary weights, the 

relationship between ovary weight and ovary volume was estimated following the method 

introduced by Scherle (1970). Ovary weight (OW) was measured to the nearest 0.001 g. A 

beaker filled with 4% formaldehyde solution was placed on a scale and each ovary was 

immersed into the fluid. The weight of the displaced fluid was measured. Then the volume of 

each ovary was calculated by dividing the displaced weight of the solution through its density 

(4% formaldehyde solution: ρ=1.029 kg m
-3

). A linear regression model was fitted to the 

obtained data of OW and OV which was used to estimate the ovary volume for each analysed 

ovary in the subsequent analysis.  

 

The coefficient C was calculated with the formula given by Williams (1997): 

 

    
  

  
 
   

              (3) 

 

M1 is the mean oocyte diameter:  

 

         
 
                               (4) 
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M3 is the cube root of the third moment about the mean of the oocyte size distribution: 

 

    
   

  
   

 
 
   

              (5) 

 

The shape coefficient β describes the ratio between the longest and shortest axis of a transected 

oocyte. For all analysed sections the longest and shortest axis of transected oocytes were 

measured with an image analysis system in order to calculate C and β. To obtain an unbiased 

estimate of the diameter, it is important only to measure oocytes which have been transected 

through their centre. This was achieved by only taking oocytes into account which have been 

transected through their nucleus. Emerson et al. (1991) recommend measuring at least 50 

oocytes for the determination of C. This estimation of oocyte size distribution assumes that the 

nucleus diameter is constant over the whole range of measured oocytes. For several species it has 

been shown that this assumption is not correct (Murua et al. 2003; Domínguez Petit, 2006). 

Therefore, the relationship between oocyte diameter (OD) and nucleus diameter (ND) was 

determined from the analysed histological sections and a correction factor D was calculated: 

 

   
   

   
                (6) 

 

Where LND is the ND from the largest observed oocyte with visible nucleus and NDi is the mean 

nucleus diameter form the ith oocyte size class. LND and NDi were obtained by a non-linear 

regression model fitted through the observed data of nucleus diameter and oocyte diameter 

relationship. The obtained size distributions for each ovary where then corrected by multiplying 

the relative frequency of one oocyte size class by Di. A total of 98 ovaries was analysed by 

stereology (Tab. 2). 

 

 

Tab. 2: Female sprat with ovaries in different development stages analysed with stereology for 

the spawning season in 2008. CA = only cortical alveoli oocytes, VIT = vitellogenic, NM = 

nucleus migratory, HYD = hydrated. 

 

month size range (cm) number of processed fish 

  CA VIT NM HYD total 

March 9.9 - 14.5 4 14 10 10 38 

April 11.1 - 13.1 1 5 8 6 20 

May 11.0 - 13.9 2 8 5 5 20 

June 11.5 - 14.2 0 8 7 5 20 

 

 

Spawning frequency 

 

The sum of hydrated oocytes and recent POF divided by two was defined as the proportion of 

females spawning per day and was used to estimate the spawning frequency. This procedure 

apparently reduces the error, and it has been demonstrated that spawning frequency estimation is 

more precise (Korta et al., 2010). This method assumes that the hydrated stage and the duration 

of recent POF lasts approximately one day each. The mean and variance of spawning frequency 

was estimated with the following equations (Piquelle & Stauffer, 1985): 
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              (7) 

 

        
    

           

      
 
    

 
       

            (8) 

 

where mi is the number of mature females in the ith haul, and yi is the proportion of hydrated 

females and females with recent POF divided by two. 

 

Batch fecundity 

 

Batch fecundity was estimated gravimetrically by using females with fully hydrated ovaries, 

applying the hydrated oocyte method (Hunter et al., 1985). For the year 2008 ovaries with recent 

POFs were excluded from the analysis, in order to minimise the risk of underestimation of batch 

fecundity. It might be that some females had already started spawning before the catch, or that 

some females lost hydrated oocytes due to handling while being sampled. Hydrated oocytes were 

separated from the ovaries and counted manually under a stereo microscope. For some ovaries, 

batch fecundity was also estimated with stereology. This method is described in detail below. By 

dividing the absolute batch fecundity value by the ovary free body weight (OFBW) the relative 

batch fecundity (RBF) was calculated for each fish. 

 

Dry weight and diameter of hydrated oocytes 

 

With an image analysis system (Leica QWin), diameters of hydrated oocytes were determined to 

the nearest µm for the 2008 sampling. For this purpose hydrated oocytes were stained with 

benguela rosa and photographed under a stereo microscope. In addition the hydrated oocyte dry 

weight was measured from a subsample of ovaries, for each cruise in 2008 where hydrated 

females were found. The completed hydration process of ovaries, for which oocyte dry weight 

and diameter were determined, was confirmed histologically. 

 

II. 3 Results 

Oocyte developmental stages 

 

In 2005, female sprats in spawning condition were found already in January samples. Although 

no histological analysis was performed for samples from this year, incidence of spawning was 

obvious from macroscopic inspections of sprat ovaries since hydrated females were present in 

the samples. In 2008, spawning females were found in March, April, May and June samples 

(Tab. 3). Spawning was fully established during April, May and June, as nearly all of the 

analysed ovaries contained oocytes in the cortical alveoli and the vitellogenic stage in these 

months. In March 2008, the share of ovaries with vitellogenic oocytes was slightly lower with 

90%, and also the proportion of ovaries containing POF (42%) was not as high as in the 

following three months. The proportion of ovaries containing oocytes in the nucleus migratory 

stage and hydrated oocytes varied considerably within the spawning period. While the proportion 

of ovaries with nucleus migratory oocytes increased from 25% in March to 43% in June, the 

proportion of females with hydrated oocytes was relatively stable in the range of 33% to 37%. 

Ovaries containing recent POFs decreased from March to June, but the percentage of ovaries 

containing POFs, regardless of POF stage, increased up to 100% in June. In August, none of the 

analysed ovaries showed signs of developing oocytes or recent spawning. In November, 77% of 

analysed ovaries contained cortical alveoli, and 19% vitellogenic oocytes, but no POF were 
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detected. The presence of vitellogenic oocytes is indicating that spawning will commence again 

soon. 

 

 

Tab. 3: Proportion (%) of different oocyte development stages, post ovulatory follicles (POF), 

and atretic oocytes. CA = cortical alveoli, VIT = vitellogenic, NM = nucleus migratory, HYD = 

hydrated. 

 

month n oocyte development POF atresia 

  CA VIT NM HYD <24h all  

March 110 99.1 90.1 25.2 33.3 8.1 42.3 10.8 

April 104 100.0 99.0 26.9 36.5 5.8 88.5 1.0 

May 101 100.0 97.0 29.7 34.7 5.9 76.2 3.0 

June 60 100.0 100.0 43.3 35.0 1.7 100.0 0.0 

August 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

November 26 76.9 19.2 0.0 0.0 0.0 0.0 38.5 

 

 

Coefficient estimation for stereology 

 

The relationship between ovary weight and volume could well be defined by a linear regression 

model with the intercept forced through the origin (Fig. 2; r²=0.99; p<0.05):  

 

OV = 0.931 (±0.018 SE) * OW         (9) 

 

This regression model was used in the stereological analysis to calculate the ovary volume from 

each analysed ovary.  

 

 
Fig. 2: Relation between sprat ovary weight and ovary volume with linear regression model 

forced through the origin.  
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The individual C values for the analysed ovaries ranged between 1.02 and 1.46. In some cases it 

was not possible to measure a sufficient number of oocytes for calculating C. In these cases, a 

mean value from ovaries in the same developmental stage was used (Tab. 4).  

 

 

Tab. 4: Mean values of the size distribution correction factor C obtained for ovaries in different 

developmental stages. CA = cortical alveoli, VIT = vitellogenic, NM = nucleus migratory, HYD 

= hydrated; sd = standard deviation. 

 

stage C sd 

CA 1.04 0.02 

Vit 1.13 0.04 

NM 1.23 0.08 

HYD 1.15 0.12 

 

 

The shape correction factor β was estimated with 0.83 (±0.1.2 SD; n=4237 oocytes measured) 

for the analyzed ovaries. The relationship between oocyte diameter (OD) and nucleus diameter 

(ND) is displayed in Fig. 3a. A power function was fitted to the data (r²=0.87: p<0.05): 

 

                                           (10) 

 

LND was estimated by this model for the largest observed oocyte with visible nucleus. Then D 

was calculated for each oocyte size group using equation 7 (Fig. 3b). 

 

 

 
 

Fig. 3: Relationship between nucleus diameter (±SD) and oocyte size class (a), and the 

relationship between correction factor D and oocyte size class (b).  
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Number of developing oocytes 

 

The number of oocytes in specific developmental stages increased with fish length (Fig. 4a). The 

number of the cortical alveoli stage was highest, followed by the vitellogenic oocytes and the 

nucleus migratory oocytes. Over the spawning season, the relative number of oocytes in the 

cortical alveoli stage showed an increasing trend from March (1613 ± 562 SD) until June (2342 

± 819 SD) (ANOVA, p<0.05; HSD-test, p<0.05). Relative numbers of oocytes in the vitellogenic 

stage showed a slight increase of values from March until May, followed by somewhat lower 

values for June. However, no significant differences were detected between months in this case 

(ANOVA, p>0.05). Oocytes in the nucleus migratory stage showed lowest values in March, 

compared to the nearly equal values observed for April, May and June (Fig. 4b). Since no 

homogeneity of variances could be achieved through transformation, only the extended median 

test could be performed in this case, which does not reveal significant differences between 

months. The proportions of cortical alveoli, vitellogenic and nucleus migratory oocytes were the 

same for April and May 2008, and also similar to March and June. The mean proportions of 

these three developmental stages were 60% cortical alveoli, 25% vitellogenic and 14% nucleus 

migratory. Nucleus migratory and hydrated oocytes were never observed parallel in the same 

ovary, indicating that all nucleus migratory oocytes belong to the developing batch to be 

spawned. However, comparing the observed numbers of these two developmental stages, this 

was only supported by the data from March and April, but not for May and June, where the 

number of hydrated oocytes in the ovaries was approximately the half of nucleus migratory. A 

comparison between batch fecundity obtained by manual counting and the stereometric method 

revealed substantial differences (Fig. 5). Batch fecundity estimated with the stereometric method 

was higher in all cases than the batch fecundity estimated manually by the hydrated oocyte 

method. 

 

 

 
 

 

Fig. 4: Stereology results. (a) Relationship of mean NDO with fish length, (b) relative NDO 

corrected for ovary free body weight over the spawning season. Red circles = cortical alveoli, 

green squares = vitellogenic oocytes, blue triangles = nucleus migratory, black diamonds = 

hydrated oocytes. Error bars denote standard deviations. 
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Fig. 5. Comparison between batch fecundity obtained by the hydrated oocyte method (manual 

counts hydrated oocytes) and the stereometric estimation.  

 

 

Atresia in Baltic sprat 

 

Atretic oocytes were found in sprat sampled in March, April, May and November 2008. In 

March 10.8% of female sprat were found to have atretic oocytes, while in April and May the 

value was considerably lower, with only 1% and 3% respectively. The highest level of atresia 

was found in November 2008 with 38% of all examined ovaries containing atretic oocytes. In all 

cases, atresia was associated to ovaries in the vitellogenic or cortical alveoli stage. Stereologic 

analyses revealed a percentage of 2% to 30% of atretic oocytes in the ovaries for March, with the 

exception of one fish in which mass atresia was detected. In this special case the number of 

atretic oocytes exceeded the number of healthy oocytes. In two ovaries analysed stereologically 

from May, the percentage of atretic cells was 3.6% and 8.2%. Atretic ovaries from November 

were not analysed stereologically. 

 

Batch fecundity 

 

In 2005, hydrated females were found in January, April and May. In 2008, hydrated females 

were detected from March to June. In August of both years, no females in spawning condition 

were detected any more, indicating that the spawning season had ceased already in late summer. 

In 2005, a total of 172 hydrated ovaries were analysed for batch fecundity. In 2008, a total of 178 

ovaries contained hydrated oocytes. From these ovaries, 144 were used for fecundity estimation; 

the rest was excluded due to the presence of recent POFs detected by histological inspection. 

However, excluding ovaries with recent POF from fecundity analyses did not lead to 

significantly different results, probably because of the high variability observed in batch 

fecundity. Hence, the results of both years are still comparable. Variability in batch fecundity 

was found to be high in both years. It ranged from 426 to 2865 hydrated oocytes in 2005, and 

from 333 to 3234 hydrated oocytes in the year 2008. Batch fecundity showed an increasing trend 

with increasing fish length, and data were fitted to linear regression models with length as 

continuous co-variable (Fig. 6). Analysis of covariance revealed no statistically significant 

differences among the slopes of regressions, as well for 2005 as for 2008 (ANCOVA; p<0.05). 
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The differences in the intercepts were found to be statistically significant among months in both 

years (ANCOVA; p<0.05), with lower intercepts for the regressions obtained for January 2005 

and March 2008, respectively. 

 

 

 

 
 

Fig. 6: Relationship between total fish length and batch fecundity in Baltic sprat for different 

months in 2005 (a, b, c) and in 2008 (d, e, f, g). Red lines show significant linear regressions 

(p<0.05).  

 

 
 

Fig. 3: Seasonal variability in mean relative Baltic sprat batch fecundity for the years 2005 

(triangles) and 2008 (squares). Error bars denote the standard deviation of the mean. Numbers of 

analysed sprat are listed in table 1. 
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The mean relative batch fecundity of January 2005 was significantly lower compared to April 

and May 2005 (ANOVA, p<0.05; HSD-Test, p<0.05), which did not differ significantly from 

each other. The relative mean batch fecundity in March 2008 was significantly lower than in all 

other months of that year (ANOVA; HSD-Test, p<0.05; Fig. 7). Batch fecundity for April and 

May 2008 did not differ significantly, whereas batch fecundity from June 2008 was significantly 

higher than batch fecundity from May 2008. However, June values did not differ significantly 

from values observed for April 2008. Between 2005 and 2008 no significant differences were 

found between the months of April and May.  

The Fulton‟s condition index observed in 2008 decreased from March to April, then increasing 

slightly to May and June, and increased sharply towards August. November values were only 

slightly lower compared to August values.    

 

 
 

Fig. 4: Change in Fulton‟s condition index of female Baltic sprat over the course of the spawning 

season in 2008. Error bars denote the standard deviation. Numbers of analysed sprat are listed in 

table 3. 

 

 

Hydrated oocyte dry weight and diameter 

 

The dry weight of hydrated oocytes was not related with fish length or weight in Baltic sprat. 

Significant differences were found for the mean dry weights of hydrated oocytes among the 

tested months (ANOVA, p<0.05; Fig. 5a). Values of March (0.025 mg ±0.008 SD) and April 

(0.0029 mg ±0.008 SD) differed significantly from May (0.017 mg ±0.005 SD) and June (0.015 

mg ±0.004 SD) values (HSD, p<0.05).  

The mean diameter of hydrated oocytes was not related with fish weight. Also no relation was 

found with fish length for March, April and May. Only for June a weak positive relation was 

found with length (r²=0.17; p=0.04). Therefore, in subsequent analyses length was not included 

as a covariate and the seasonal effect on oocyte diameter was tested with an ANOVA. The mean 
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oocyte diameter was found to decrease with progressing spawning season (ANOVA, p<0.05; 

Fig. 5b). The observed values of March (1232 µm ± 122 SD), April (1230 µm ± 109 SD) and 

May (1203 µm ± 119 SD) differed not significantly, but mean oocyte diameter of June (1138 µm 

± 82 SD) was significantly lower compared to March and April values (HSD, p<0.05). This 

trend is similar to the decreasing trend in oocyte dry weight. 

 

 

 
 

Fig. 5: Seasonal variability in hydrated oocyte mean dry weight ±SD (a), and mean oocyte 

diameter ±SD (b) of Baltic sprat. 

 

 

Spawning frequency 

 

Spawning frequency decreased during the spawning season with highest values in March (0.22; 

CV=1.11), slightly lower values in April (0.21; CV=0.65) and May (0.21; CV=0.44), and the 

lowest observed value in June (0.18; CV=0.19). 

 

II. 4 Discussion 

Timing of spawning 

 

Baltic sprat spawning activity was already detected for January in the year 2005, albeit at 

relatively low levels. This is earlier than mentioned in most reports of sprat spawning for the 

central Baltic and demonstrates that the perception of the spawning dynamics of this species is 

not very clear yet. This is certainly due to the lack of continuous data sampling over the whole 

year in this area, which would enable a more precise resolution of the spawning dynamics in 

relation to environmental factors. For Baltic sprat, a prolonged spawning season has been 

reported with the peak of spawning activity from spring to midsummer. Kraus et al. (2003) 

reported a second spawning peak in autumn 2002, which was explained by an exceptional warm 

water inflow into the central Baltic basins in summer. The data of the present study show that 

sprat ovaries sampled in November 2008 already contained oocytes in the vitellogenic stage. 

This indicates that spawning probably commenced some days later. Either this was due to the 

occurrence of a second spawning peak as observed for 2002 (Kraus et al., 2003), or the next 

regular spawning season after the resting phase in summer already begun. As no data were 
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available for winter and the early period of the following year, this question cannot be answered. 

However, if female sprat allocated energy to oocyte development during winter time on a regular 

basis, either during a second spawning peak in autumn or due to an early beginning of spawning 

activities, this must have consequences for growth and eventually survival through the winter. If 

such second spawning peak will result in viable offspring, which eventually survives and recruits 

to the population is questionable. 

 

Number of developing oocytes 

 

The increasing number of cortical alveoli oocytes from March until June clearly confirms the 

indeterminate oocyte recruitment in Baltic sprat, which has been described before (Heidrich, 

1925; Polivaiko, 1980; Alheit, 1993). New oocytes recruited from the reserve pool throughout 

the spawning season. The mean number of oocytes in the cortical alveoli stage was always 

higher compared to the number of vitellogenic oocytes, which was, in turn, higher than that of 

oocytes in the nucleus migratory stage in all four months, although differences were not 

significant for April, May and June between the latter two stages. If it is assumed that the 

recruiting oocytes continuously develop to the next developmental stage until final hydration is 

reached, than the observed differences in numbers between the stages gives evidence for stage-

specific development durations. Thus, cortical alveoli would last more than twice as long as the 

vitellogenic and nucleus migratory stages, which show a similar stage duration because quite 

similar numbers of both were found in the ovaries.  

In the present study, the results of batch fecundity estimation with the stereometric method 

clearly indicated that the number of hydrated oocytes is overestimated in all cases compared to 

the gravimetric method and manual counting. This is in contrast to findings for hake (Merluccius 

merluccius; Domínguez-Petit, 2006) and also Brazilian sardine (Sardinella brasiliensis; Isaac-

Nahum et al., 1988), for which good agreement has been reported between the stereologic 

approach and conventional methods. However, the stereometric method makes some 

assumptions about the three dimensional nature of the oocytes within the ovary, which are not 

necessarily true. In addition, some bias is always introduced through the histological processing, 

which may cause some deformation of the ovary tissue, and especially the shrinkage of large 

oocytes. To overcome these simplifications and potential sources of error, correction factors on 

shape and the form of the size distribution of oocytes are included into Weibel‟s formula. In 

theory, the stereometric approach would best work for perfect spheres. Hence, bias increases 

with progressive developmental stages of the oocytes. Therefore, the estimation of batch 

fecundity must have the greatest bias, as the hydrated oocytes are most vulnerable to deformation 

due to the histological processing and their shape differs most from being spherical in the 

histological sections. It might be concluded that also the numbers of migratory nucleus oocytes 

are biased, which can explain the difference observed between numbers of vitellogenic and 

nucleus migratory. It is also possible that this observation represents the asynchronous oocyte 

recruitment in Baltic sprat. Nevertheless, the stereometric approach proved to be a valuable, 

time-saving tool to estimate the number of developing oocytes, especially the cortical alveoli and 

vitellogenic stage in a number of sprat ovaries. A further advantage is that the oocytes cannot 

only be counted, but the exact developmental stage of oocytes can be determined using 

histology. In addition, this method enables quantitative analyses of atresia in fish ovaries. 

 

Atresia 

 

Atresia was detected in Baltic sprat ovaries, with lowest values during the peak spawning period 

in April, May and June, and highest values in November and March, when the development of 

oocytes started again. This seasonal pattern of atresia could be due to sub-optimal conditions for 

spawning during the onset and towards the end of the spawning period. Ganias (2009) reported 
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that the prevalence of atresia in European sardine in the eastern Mediterranean was related to 

temperature. Therefore, it is possible that ambient temperature and/or food availability were not 

in the range required by sprat for maximum reproductive output, and less energy could therefore 

be allocated to reproduction. Atresia might be a mechanism for indeterminate spawners to react 

quickly to short-term changes in environmental conditions, especially a sudden shortage of food 

supply. However, batch fecundity was already lower in March compared to the rest of the peak 

spawning period, and only in 10% of female sprat atresia was detected. Hence, it seems that the 

direct regulation of fecundity in advance of oocyte recruitment is more important, and better 

reflects the adjustment of reproductive output to the prevailing environmental conditions on a 

population level. The high levels of atresia found in November can be interpreted similarly. As 

described by Kraus et al. (2003) for 2002, this observed oocyte recruitment may be a second 

spawning peak, triggered by exceptionally favourable environmental conditions late in the year. 

If conditions changed, parts, or all of the already recruited oocytes, could have been reabsorbed 

in November 2008. This cannot be solved here, because further observations on adult sprat or 

ichthyoplankton samplings covering the following months are lacking. 

 

Seasonality in batch fecundity  

 

Variability in fecundity has been described before for Baltic sprat (Heidrich, 1925; Alekseev & 

Alekseeva, 2005). The peak spawning might be delayed by extremely cold temperatures in 

spring, following a hard winter (Karasiova, 2002). Thus, it cannot be ruled out that inter annual 

comparisons of batch fecundity might be biased by this seasonality (Alheit, 1988) if the shape of 

the fecundity curve over the whole spawning season is unknown. In the present study, batch 

fecundity was found to be lower in the beginning of the spawning season and increased towards 

its end. It also becomes clear from the presented data that fecundity values during the main 

spawning season do not vary significantly. Highest batch fecundity was found in June, whereas 

in August the spawning activity has completely ceased already, thus the value of batch fecundity 

in this month was theoretically assumed to be zero. This means that the fecundity decreases 

faster towards the end of the spawning season than it is increasing at the beginning. It also 

appears possible that the recruitment of new oocytes is stopped immediately towards the end of 

the spawning season and the organic substance of already developed oocytes is reabsorbed via 

atresia. The presented observations on batch fecundity make it reasonable to assume that the 

fecundity curve increases at the beginning of the spawning season, reaches a plateau at peak 

spawning, and decreases rapidly towards the end of the spawning season. Consequently, when 

comparing Baltic sprat batch fecundity during peak spawning between years, the probability of 

bias due to seasonality is low, as Baltic sprat fecundity values will be rather stable over several 

months during spring and early summer. 

 

Sprat condition during spawning season 

 

Fish with a capital breeding strategy show a distinct reduction in condition over the course of the 

spawning season (Ganias, 2009; Henderson et al., 1996). The condition data obtained during the 

present study for the year 2008 suggest that sprat condition was relatively low from March to 

April, and then slightly increased until June (i. e. the end of the spawning season). Thus, it is 

likely that in March, sprat recruit oocytes at the expense of remaining energy reserves from 

overwintering. In April, when more prey organisms for sprat are available, incoming energy 

might be transferred directly into egg production. Thus, the condition increases in parallel to 

batch fecundity. When spawning has ceased in midsummer, energy from food uptake can 

entirely be transferred into somatic growth and condition increases again sharply. This implies 

that winter condition affects the initial batch fecundity of the following spawning season in 

Baltic sprat. The worst scenario would be a mild winter with low prey abundance. But also an 
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extremely cold winter with low food abundance and a delayed zooplankton production in spring 

(Dippner et al., 1997) will affect sprat egg production negatively.  

 

Oocyte diameter and dry weight 

 

The dry weight as well as the diameter of hydrated oocytes decreased during the course of the 

peak spawning. This is well in line with the increasing trend of batch fecundity. It is discussed in 

the literature that there is a trade-off between egg size and fecundity in fish, and that egg size is a 

maternal response to the variability in environmental conditions (Castro et al., 2009). Larger 

eggs often seem to be of better quality, and larval size is directly correlated to egg size. Hence, 

producing larger eggs may increase larval survival probability. It has been hypothesised that the 

production of larger eggs at the beginning of the spawning season is related to colder 

temperatures in multiple batch spawners, e.g. in Engraulis ringens and Sardina pilchardus 

(Castro et al., 2009; Riveiro et al., 2004). This might also be the case in Baltic sprat. Eggs are 

heavier and larger at the beginning of the spawning season, when temperatures are colder. These 

eggs contain probably more lipids and proteins. Low temperatures will decelerate the 

development and growth, and consequently the need of exogenous feeding for larvae will also be 

delayed. Given that the yolk-sac larvae in a cold environment are provided with a sufficient 

amount of nutrients, this deceleration of development might be of advantage to match with 

suitable food availability, which may not be fully achieved early in the spawning season. In turn, 

oocytes with a smaller amount of nutrients will also result in successful embryonic and larval 

development in warmer ambient water temperatures towards the end of spawning season despite 

of their shorter development time, since first feeding larvae are at once in an environment where 

sufficient prey organisms are available. Thus, the female fish can then produce more eggs to be 

spawned to further increase the probability of successful reproduction.  

A change in weight and size of pelagic fish eggs has also consequences for their specific gravity. 

In the strongly stratified Baltic Sea, this determines their vertical distribution in the water column 

(Nissling et al., 2003). Neutral buoyancy is a prerequisite for the successful development of most 

pelagic fish eggs, especially in the central Baltic basins, where anoxic water layers occur in 

deeper water layers (Wieland et al., 2000). Therefore, the change in sprat egg size over the 

spawning season may also be in response to changes in physical factors of the ambient 

environment, in order to maintain neutral buoyancy.  

 

Spawning frequency 

 

Baltic sprat spawning frequency showed only minor changes over the course of peak spawning 

in 2008, which is in contrast to previous findings for the Bornholm Basin. In the year 1999, 

Kraus and Köster (2004) observed a very high spawning fraction for April (63-93%), and an 

average value of 27% for May, June and July, with somewhat lower values towards the end of 

spawning season. The exceptionally high values in April, which would translate into a rather 

unrealistic spawning frequency of approximately one day, was explained as being an early phase 

of spawning, with no spawning pattern yet established in the stock and ongoing migration of 

actively spawning females into the investigation area. The values observed for May to July by 

Kraus and Köster (2004) come close to the values of the present study, and also the slight 

decrease towards the end of spawning activity is in line with the present findings. Possibly, the 

spawning activity in 1999 was delayed compared to the year 2008, where spawning was already 

fully established in March, thus this estimate of spawning frequency was not biased due to 

ongoing migration processes of actively spawning females. Another source of uncertainty is the 

difference in methods used to determine the spawning frequency. The previous estimation of 

spawning frequency by Kraus and Köster (2004) was solely based on macroscopic inspection of 

sprat ovaries applying the hydrated oocyte method (Hunter and Macewicz, 1985), whereas the 
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present findings also take the presence of postovulatory follicles (POF) into account.  

Macroscopic determination of the maturity stage is certainly not as precise as histological 

maturity classification. Further, it has been shown that spawning clupeoids form spawning 

aggregations and are probably more vulnerable to the fishing gear, which might lead to an 

overestimation of the proportion of hydrated females (Goldberg and Hunter, 1984; Alheit, 1985). 

Therefore, the postovulatory follicle method was proposed to estimate more precisely the 

spawning frequency from field samplings (Hunter et al., 1985; Ganias et al., 2003). Both 

methods still are dependent on the assumption that the fraction of sampled fish showing a certain 

maturity criterion, only hydrated or the average of hydrated and females with recent POF, 

represents the daily spawning fraction of the female stock. If the duration of recent POF lasts 

longer in Baltic sprat due to low ambient temperatures, compared to other clupeid species, 

spawning frequency would be overestimated. For other pelagic fish species the use of hydrated 

females and recent POF were shown to be a good estimate of spawning frequency (Isaac-Nahum 

et al., 1988; Korta et al., 2010; Domínguez-Petit, 2006). However, neither the exact duration of 

the hydrated oocyte stage nor the POF stage duration is known for Baltic sprat. Additionally, 

there exists contradictory information about the diel spawning behaviour of Baltic sprat in 

literature (Balzar, 1994; Alekseev and Alekseeva, 2005). But the observed spawning stages in 

the present study can be used to compare the relative rate of spawning during spawning season. 

The observed inter-annual and intra-annual consistency in spawning frequency, with the 

exception of April 1999 values (Kraus and Köster, 2004), is in line with observations in other 

clupeoid batch spawners. For Northern anchovy (Engraulis mordax), low variability in spawning 

frequency has been reported as long as the environmental conditions are relatively stable (Hunter 

and Lo, 1997). Ganias et al. (2003) found low variability in Mediterranean sardine (Sardina 

pilchardus) spawning frequency, which was explained by stable environmental conditions in 

addition with equally sized females, as spawning frequency has also been shown to be dependent 

on fish size (Parrish et al., 1989; Claramunt et al., 2007; Ganias et al., 2003).  

Spawning frequency is an essential input parameter for the DEPM (Parker, 1985), but also the 

most biased parameter in the majority of DEPM applications (Stratoudakis et al., 2006). It has to 

be stated here, that the results of the present study are based on comparatively low sample sizes 

and further investigations to clarify the recent findings on sprat spawning frequency would be 

desirable. However, the low variability in spawning frequency and batch fecundity, as observed 

for Baltic sprat in the present study, would translate into a continuous daily egg production over 

the course of peak spawning, which meets the underlying assumption to estimate the spawning 

stock biomass with the DEPM (Alheit, 1993). Hence, this method seems adequate to 

alternatively estimate Baltic sprat stock, independent of fishery data and on a regional scale, for 

years in which ichthyoplankton data are available. 

 

Conclusion 

 

The results of the present study clearly demonstrate that sampling for studies on fecundity and 

maturation dynamics should be extended to time periods beyond the peak spawning. This may 

especially become relevant when a possible shift to warmer ambient temperatures, due to climate 

change, affects the pelagic environment, and will cause changes in the life history traits of 

organisms assigned to all trophic levels of the ecosystem. Only a sampling coverage over the 

whole year, and that for several years with contrasting environmental conditions, will give the 

possibility to explore in detail mechanisms of spawning dynamics of marine fish species in 

relation to environmental variability in the field. The combination of histology and stereometric 

methods is recommended to differentially uncover oocyte development, fecundity and atresia in 

further studies on sprat maturation dynamics. 
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Chapter III: Observations on sex ratio and maturity ogives of Baltic sprat 

 

 

Abstract 

Data on length frequency distributions, growth, sex ratios and maturity ogives of Baltic sprat 

were collected from 1999 to 2009 in different ICES sub-divisions of the south-central Baltic Sea. 

Regression models were constructed to predict sex ratio and proportion mature sprat in relation 

to fish length. Additionally, a data set obtained from the former Study Group on Baltic Herring 

and Sprat Maturity (SGBHSM) was included into the analyses in order to investigate the 

variability in size at maturity. A shift in the most frequent length class was observed from West 

to East with a higher proportion of larger sprat in ICES sub-division 24. The pattern in sex ratios 

was found to be similar for each ICES sub-division with a higher proportion of females in the 

larger size classes. Spatial variability in size at which sprat mature was not found to be 

statistically significant. Von Bertalanffy Growth Functions were fitted to age-at-length data to 

analyse sprat growth in relation to sex. In all areas, female grew larger and mature at a larger size 

compared to males. Size at maturity could be related to winter temperature and stock size for 

sprat in ICES sub-division 25. The results of the present study are relevant to estimate the 

proportion of sprat stock contributing to spawning and form the basis to develop alternative 

indices to assess the stock reproductive potential of this stock in the Baltic. 

 

Key words: maturity ogive, sex ratio, growth, Baltic sprat 

 

III. 1 Introduction 

Maturity of fish at a given size or age is an important parameter to calculate the spawning stock 

biomass of a fish stock. However, standard assessment methods often do not account for 

variability in this reproductive trait and constant maturity ogives are generally used for spawning 

stock biomass (SSB) estimation. This is also the case for Baltic sprat. The standard stock 

assessment used for Baltic sprat is a virtual population analysis (Parmanne, 1994) with an 

extended survivors analysis (XSA; Shepard, 1999; ICES, 2010a). In this assessment, maturity 

ogives are kept constant, disregarding variability among areas and years. Further, the estimation 

of the spawning stock biomass does not account for variability in sex ratios. The same is true for 

an alternative assessment method, the multi species virtual population analysis (MSVPA), which 

accounts for natural mortality caused by predation, but not for variability in maturity or sex 

ratios to estimate the SSB. These standard assessment procedures are in contrast to the 

observation that males often mature at smaller sizes than females, causing a skewed sex ratio in 

the spawning stock due to male dominance of the younger size or age groups as it was observed 

for Baltic sprat (Grygiel and Wyszyński, 2003). The size or age at which fish mature is linked to 

fish growth and, thus, may vary in relation to variability in environmental conditions (Stearns 

and Crandell, 1984). Growth during early life may be affected by ambient temperature, food 

availability or food quality. Thus, interannual changes in climatic conditions (e.g. winter 

temperature), spatial differences in the hydrography of the various spawning areas and density 

dependent effects caused by fluctuations in population sizes may be important drivers for 

observed variability in both maturity and sex ratio (Blaxter and Hunter, 1982). Moreover, it was 

demonstrated that fishing pressure may act as selective force causing a decrease in size at first 

maturity (Heino et al., 2002). A decrease in size or age at first maturity was attributed to heavy 
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exploitation in a number of fish stocks, e.g. pilchard (Armstrong et al., 1989) and plaice (Nash et 

al., 2000).  

Hence, observations and studies to reveal causes and consequences of such variability in these 

reproductive traits are necessary. The last effort to analyse the variability in Baltic sprat maturity 

was performed by the Study Group on Baltic Herring and Sprat Maturity (SGBHSM; ICES, 

2002) in a time series from 1976 to 1987 and 1995 to 1996, revealing a high variability in the 

proportion of mature fish in age group one and, to a certain extent, age group two. However, it 

was not possible to explain the observed variability in maturity in the two youngest age groups 

by means of environmental conditions or changes in the stock structure. Therefore, the procedure 

of constant maturity ogives was maintained in sprat assessment and no new data or analyses on 

sprat maturity were provided since then (ICES, 2010a).  

It remains essential to report observations on these reproductive traits and to establish time 

series. Only such continuous data sets will reveal plausible relations between the observed traits 

and environmental conditions and will form the basis to develop process models which might be 

incorporated into assessment methods to enhance the SSB estimation. 

In the present study, observations on Baltic sprat length frequencies, growth, sex ratios, and 

maturity are reported for different years and areas in the Baltic Sea. Fish length dependent 

regression models on these parameters were established and the relationship between the length 

of first maturity (L50), winter temperature and SSB was explored. 

 

III. 2 Methods 

Sprat were sampled on several research cruises for the years 1999 to 2009 within the south 

central Baltic (Fig. 1; Tab. 1). Samples were taken within the Arkona Basin (ICES sub-division 

24), the Bornholm Basin (ICES sub-division 25), the Gdansk Deep (ICES sub-division 26), 

between Sweden and Gotland (ICES sub-division 27) and the Southern Gotland Basin (ICES 

sub-division 28). In total 39284 sprats were analysed. Data for length frequency distributions 

were obtained by measuring the total length to the nearest cm of subsamples of at least 200 

specimens of each haul. Data on sex and maturity were determined by macroscopic inspection of 

at least 10 individuals per length class from each haul. All specimens showing evidence of 

ripening gonads and all those with post-spawning characteristics were classified as mature, i.e. 

contributing to the SSB. Two different maturity keys were used. For the years 1999 to 2003, the 

maturity key of Alekseev and Alekseeva (1996) was applied. Thereafter (2004 to 2009) a 

standard maturity key, which is also used for the German standard surveys in the Baltic, was 

applied. Data obtained by means of the former maturity key were converted to the latter key in 

order to achieve comparable data (see Annex I). Since samplings were either based on 1 or 0.5 

cm length classes, all collected data were standardised to 1cm length classes. Length frequency 

distributions, sex ratios and maturity ogives were calculated by pooling all data from the second 

quarter of the year in order to obtain an estimate for the main spawning season of sprat in these 

areas (Ojaveer et al., 2010).  

  

The sex ratio was modelled as proportion females in a given length class L (PFL) with a logistic 

equation: 

 

          
 

         
      

 
  

  

 

where Pmin is the observed minimum proportion of females which serves as a start point for the 

logistic regression. L is the fish length class and PF50, a and b are regression coefficients. PF50, 

the inflection point of the logistic curve, describes the length where 50% of individuals are 
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females. This regression is only valid for length classes larger than or equal to the length class at 

which Pmin was observed.  

 

 

 
 

Fig. 1: Sampling stations within ICES sub-divisions (SD) in the Southern- and Central Baltic 

Sea. Each dot represents one fishery haul. For details on cruises and sampling see table 1. 
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Tab. 1: Sampling of Baltic sprat in different ICES sub-divisions (SD). Cruise (AL = RV”Alkor”, 

HE = RV”Heincke”, WH = RV “Walther Herwig III”), month, year, number of fish analysed for 

maturity and number of hauls per cruise. 

 

 

ICES sub-division cruise month year number of sprat number of hauls 

      

SD24 

WH206 June 1999 977 9 

WH228 June 2001 97 4 

WH239 May 2002 123 5 

WH251 May 2003 133 5 

WH263 May 2004 246 12 

WH275 May 2005 117 2 

WH288 May 2006 714 4 

   
Total 2407 41 

SD25 

AL141 April 1999 1178 13 

AL143 May 1999 1738 14 

WH206 June 1999 2053 25 

HE131 April 2000 983 12 

AL161 May 2000 831 15 

AL182 June 2001 1706 20 

WH228 June 2001 510 14 

AL200 April 2002 1074 17 

WH239 May 2002 249 15 

HE168 May 2002 770 14 

AL205 June 2002 572 13 

AL219 April 2003 878 16 

WH251 May 2003 124 11 

AL220 May 2003 127 9 

WH263 May 2004 422 25 

AL238 June 2004 564 11 

AL255 April 2005 888 17 

WH275 May 2005 754 9 

AL258 May 2005 534 11 

AL276 April 2006 2069 31 

AL277 April 2006 783 14 

WH288 May 2006 2683 22 

AL279 June 2006 464 10 

AL297 April 2007 1884 22 

WH299 May 2007 2119 15 

AL299 May 2007 617 11 

AL318 April 2008 3187 15 

AL320 June 2008 470 12 

AL335 April 2009 1503 16 

AL338 May 2009 124 2 

 
Total 31858 451 
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Tab. 1: continued. 

 

ICES sub-division cruise month year number of sprat number of hauls 

SD26 

WH206 May 1999 258 6 

AL161 June 2000 275 4 

WH228 May 2001 97 3 

WH239 May 2002 70 4 

WH251 May 2003 142 5 

WH263 May 2004 73 7 

AL238 June 2004 399 8 

AL255 April 2005 241 5 

WH275 May 2005 318 4 

AL277 April 2006 297 5 

WH288 May 2006 856 7 

   
Total 3026 58 

SD27 

WH206 May 1999 50 1 

WH228 May 2001 18 1 

WH239 May 2002 34 2 

WH263 May 2004 126 4 

WH288 June 2006 659 8 

WH299 May 2007 656 6 

   
Total 1543 22 

SD28 

WH206 May 1999 148 3 

AL161 June 2000 129 2 

WH228 May 2001 95 2 

WH263 May 2004 78 3 

   
Total 450 10 

 

 

 

The maturity ogives were modelled with a logistic equation as proportion mature individuals, 

mature females and mature males, respectively:  

 

    
 

         
     

 
  
   

 

where Pm is the predicted probability of maturity, L the fish length class, the regression 

coefficient L50 is the length class where 50% of individuals are mature or the length at first 

maturity, a and b are regression coefficients. To detect possible differences in mean values of L50 

between sexes, different years and areas, analyses of variance were performed, respectively. 

Length based maturity data from former studies of the Study Group of Baltic Herring and Sprat 

Maturity (ICES, 2002) were analysed. These data were sex combined data only. L50 values were 

calculated for ICES SD25 applying the same method as described above. A time series was 

constructed combining these data with new results obtained by the present study. Regression 

analyses were performed to investigate whether the observed variability in this data set could be 

explained by a possible effect of stock size or hydrographic conditions. To explore density 

effects, the total and spawning stock size obtained by the standard sprat assessment were used 

(ICES, 2010a). To explore the effect of environmental conditions, data from the ICES 

hydrograhic database were utilised. Mean values of salinity, oxygen content and temperature 
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were calculated for year quarters over the water column where oxygen content exceeded 1ml L
-1

, 

since sprat were assumed to avoid lower oxygen concentrations (Stepputtis et al., 2011). 

To investigate sprat growth, Von Bertalanffy Growth Functions (VBGF) were fitted to sex 

separated length-at-age data which were obtained from acoustic surveys for the years 2001 – 

2006:  

 

                           

 

where Lt is the length at age t, and Linf , k and t0 are regression coefficients.  

 

III. 3 Results 

Size frequency distributions revealed differences among ICES sub-divisions (SD). The 

proportions of sprat >13.5 cm length was higher in SD24 compared to the other areas (Fig. 2). 

The proportion of 12.5 cm and 13.5 cm length classes is nearly equal in SD24. In SD25 the 12.5 

cm is the predominant length class, whereas in SD26, SD27 and SD28 the highest proportion lies 

in the 11.5 cm length class. Pooled over all years, the distributions are bimodal in SD24, SD27 

and SD28, but unimodal in SD25 and SD26. However, in some years size frequency 

distributions in SD25 also revealed a pronounced bimodality with relatively high proportions of 

small individuals, which is not visible in the overall mean distribution. 

The coefficients of determination obtained for the growth models were in the range of 0.68 to 

0.84 for females and 0.53 to 0.72 for males, respectively (Tab. 2). For female sprat higher values 

of Linf and k were found compared to males, for every ICES sub-division apart from SD28. Thus, 

female sprats appear to grow faster to their theoretical maximum length, which is in addition 

larger than the maximum length of males (Fig. 3). 

The observed trends in sex ratio were similar for all analysed areas in the Baltic. The smaller size 

groups <10.5cm were male dominated, whereas the larger size groups were female dominated 

(Fig. 4; Tab. 3). In most of the cases Pmin was observed in the 10.5 cm length class, with the 

exception of SD24, where this value was observed at 12.5 cm. In the latter SD, the proportion 

females ranged more or less around 50% in size classes <12.5 cm. The PF50 values obtained by 

the regression models ranged between 12.93 cm (SD 26) to 13.62 cm (SD 24). 

Interannually variability in proportion mature was highest in the small length classes <11.5 cm 

for all areas (Fig. 5). The mean (±SE) L50 value for both sexes combined was highest in SD24 

with 10.41 (±0.21) cm, the lowest value was observed in SD25 with 9.37 cm (Fig. 6; Tab. 4). 

ANOVA did not reveal any statistically significant difference in sex combined L50 values among 

different areas (p=0.17).  

For all analysed areas and years, female sprat matured at a larger size than male sprat (Tab. 5; 

Tab. 6; Fig 7 - 10). In ICES sub-division 25 the mean (±SD) female L50 value was 10.17 (±0.4) 

cm, which was significantly higher than the mean L50 value observed for males of 8.97 (±0.5) cm 

(t-test; p<0.001; n=11). A significant difference between female and male mean (±SD) L50 values 

was also found for SD26, with 9.86 (±0.37) cm and 8.91 (±0.62) cm, respectively (t-test; p=0.02; 

n=5). For the other areas, low sample sizes prevented meaningful sex separated regression 

analyses for most of years so that in these cases only the sex combined mean L50 values were 

computed ( Fig 6a). 

The L50 values obtained from SGBHSM data for the years 1976 – 1987 of ICES sub-division 25 

were in general higher than the values obtained from the present study. The combined data set 

was plotted against ambient winter temperature and spawning stock biomass (Fig. 11). Linear 

regressions revealed a negative relationship between the L50 value and both ambient temperature 

during the first quarter (r²=0.53; Fig. 12a) and spawning stock biomass (r²=0.38; Fig. 12b). 

Ambient temperature and SSB were not correlated and data were normally distributed. Thus, 
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assumptions to perform a multiple linear regression model were met. The following model 

explained 65% of the observed variability: 

 

                                                            n=22; r²=0.65 

 

 

 
 
Fig. 2: Length frequency distributions as unweighted means from several years (n) observed for different 

ICES sub-divisions for the second quarter of the year. Error bars denote standard deviations among years 

(n) which were included in the analysis. 

 

 
 

Fig. 3: Length at age data for different ICES sub-divisions (SD) for several years combined. Error bars 

denote the standard deviation of the mean. Symbols are slightly offset on the x-axis for better visibility. 
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Tab. 2: Parameters of the Von Bertalanffy Growth Function Lt = Linf * (1-exp
-k*(t-t0)

). Presented 

are the results for different ICES sub-divisions (SD) separated for female and male sprat, years 

included in the analysis, number of sprat (n), coefficients of determination, regression 

parameters, standard error, t and p values. 

 

female 

sprat 

years 

included 
n r² coefficient 

standard 

error 
t p 

 
 

      

SD24 2001-2006 546 0.72 

Linf 14.98 0.15 101.00 0.00 

k 0.69 0.07 10.61 0.00 

t0 -0.71 0.15 -4.91 0.00 

SD25 2001-2006 836 0.68 

Linf 14.25 0.09 156.70 0.00 

k 0.66 0.04 14.72 0.00 

t0 -0.84 0.12 -6.89 0.00 

SD26 2001-2006 324 0.82 

Linf 14.43 0.22 65.29 0.00 

k 0.45 0.04 10.16 0.00 

t0 -1.32 0.19 -6.85 0.00 

SD27 
2001-2002, 

2004-2006 
186 0.84 

Linf 14.13 0.20 70.23 0.00 

k 0.51 0.05 9.73 0.00 

t0 -0.89 0.18 -4.88 0.00 

SD28 
2001, 

2004 
121 0.84 

Linf 13.52 0.18 73.17 0.00 

k 0.70 0.09 7.92 0.00 

t0 -0.57 0.19 -3.00 0.00 

male 

sprat 

years 

included 
n r² coefficient 

standard 

error 
t p 

SD24 2001-2006 311 0.53 

Linf 13.72 0.30 46.15 0.00 

k 0.62 0.13 4.74 0.00 

t0 -1.32 0.41 -3.23 0.00 

SD25 2001-2006 670 0.59 

Linf 12.91 0.13 101.64 0.00 

k 0.65 0.06 10.16 0.00 

t0 -1.15 0.19 -6.03 0.00 

SD26 2001-2006 295 0.6 

Linf 13.89 0.53 25.98 0.00 

k 0.29 0.06 4.68 0.00 

t0 -3.02 0.65 -4.68 0.00 

SD27 
2001-2002, 

2004-2006 
124 0.67 

Linf 12.40 0.28 44.88 0.00 

k 0.60 0.12 5.05 0.00 

t0 -1.14 0.38 -2.97 0.00 

SD28 
2001, 

2004 
98 0.72 

Linf 13.84 0.62 22.43 0.00 

k 0.38 0.10 3.85 0.00 

t0 -1.96 0.60 -3.25 0.00 
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Fig. 4: Observed Baltic sprat sex ratios (left panels) during the second quarter of the year with 

corresponding regression models including means ± standard deviations (right panels) for 

different ICES sub-divisions: SD24 (a, b), SD25 (c, d), SD 26 (e, f), SD 27(g, h) and SD28 (i, j). 
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Tab. 3: Parameters of logistic regression models of Baltic sprat sex ratios as proportion of 

females (PF) in a given length class (L): PFL = Pmin + (a / (1+exp
-1*(L-PF50)/b

)). Presented are the 

results for different ICES sub-divisions (SD) for all years combined, coefficients of 

determination (r²), number of sprat (n), standard error, t and p values.  

 

ICES sub-division  coefficient 
standard 

error 
t p 

SD24 

r² = 0.54 
Pmin = 0.38 

   
a = 0.62 0.16 3.96 <0.001 

n = 56 
b = 0.94 0.40 2.36 0.02 

PF50 = 13.62 0.68 20.15 <0.0001 

SD25 

r² = 0.91 
Pmin = 0.33 

   
a = 0.67 0.03 21.15 <0.0001 

n = 66 
b = 0.66 0.09 7.33 <0.0001 

PF50 = 13.26 0.12 113.63 <0.0001 

SD26 

r² = 0.78 
Pmin = 0.26 

   
a = 0.74 0.13 5.73 <0.0001 

n = 37 
b = 0.82 0.23 3.59 <0.01 

PF50 = 12.93 0.39 32.80 <0.0001 

SD27 

r² = 0.61 
Pmin = 0.34 

   
a = 0.66 0.19 3.49 <0.01 

n = 27 
b = 0.61 0.32 1.91 0.07 

PF50 = 12.96 0.52 24.97 <0.0001 

SD28 

r² = 0.52 
Pmin = 0.37 

   
a = 0.63 0.48 1.31 0.21 

n = 20 
b = 1.23 1.00 1.23 0.24 

PF50 = 13.17 2.24 5.87 <0.0001 
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Fig. 5: Observed length based Baltic sprat maturity ogives (left panels) during the second quarter 

of the year with corresponding regression models including mean values ± standard deviation 

(right panels) for different ICES sub-divisions: SD24 (a, b), SD25 (c, d), SD 26 (e, f), SD 27(g, 

h) and SD28 (i, j). 
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Tab. 4: Parameters of length based regression models of Baltic sprat maturity ogives as 

proportion mature individuals: Pm = a / (1+exp
-1*(L-L50)/b

). Presented are results for both sexes 

combined for different ICES sub-divisions pooled for all years. 

 

  ICES sub-division coefficient 
standard 

error 
t p 

SD24 
r² = 0.77 

n = 56 

a = 1.00 0.05 21.33 <0.0001 

b = 0.89 0.19 4.70 <0.0001 

L50 = 10.41 0.21 50.55 <0.0001 

       

SD25 
r² = 0.92 

n = 92 

a = 0.99 0.01 73.04 <0.0001 

b = 0.70 0.06 11.71 <0.0001 

L50 = 9.37 0.06 147.22 <0.0001 

SD26 
r² = 0.87 

n = 58 

a = 0.99 0.03 38.14 <0.0001 

b = 0.55 0.09 6.01 <0.0001 

L50 = 9.55 0.10 98.11 <0.0001 

SD27 
r² = 0.90 

n = 37 

a = 0.94 0.03 36.17 <0.0001 

b = 0.30 0.11 2.81 0.0082 

L50 = 9.59 0.08 114.93 <0.0001 

SD28 
r² = 0.95 

n = 29 

a = 0.98 0.03 38.40 <0.0001 

b = 0.56 0.09 6.54 <0.0001 

L50 = 9.80 0.10 103.03 <0.0001 

 

 

 
 

Fig. 6: Length at 50% maturity (L50) as regression coefficient values for sprat. (a) mean values 

for different ICES sub-divisions, error bars denote standard deviation. (b) female and male sprat 

observed for ICES sub-division 25 and (c) female and male sprat observed for ICES sub-division 

26. Error bars denote the standard error of the regression coefficient. 
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Fig. 7: Length based sprat maturity ogives for both sexes combined and sex separated observed 

for ICES sub-division SD24 in the second quarter of the year. 

 

 

 
 

Fig. 8: Length based sprat maturity ogives for both sexes combined and sexes separated observed 

for ICES sub-division 25 in the second quarter of the year. 
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Fig. 9: Length based sprat maturity ogives for both sexes combined and sex separated observed 

for ICES sub-division SD26 in the second quarter of the year.  

 

 

 

 
 

Fig. 10: Length based sprat maturity ogives for both sexes combined and sex separated observed 

for ICES sub-division SD27 in the second quarter of the year. 
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Tab. 5: Parameters of length based regression models of Baltic sprat maturity ogives as 

proportion mature individuals: Pm = a / (1+exp
-1*(L-L50)/b

). Presented are results for female sprat 

for different ICES sub-divisions pooled for all years. 

 

ICES sub-division coefficient 
standard 

error 
t p 

     

SD24 
r² = 0.79 

n = 56 

a = 1.01 0.05 20.93 <0.0001 

b = 0.86 0.17 4.96 <0.0001 

L50 = 10.92 0.20 55.07 <0.0001 

      

SD25 
r² = 0.96 

n = 89 

a = 0.99 0.01 70.27 <0.0001 

b = 0.61 0.05 12.33 <0.0001 

L50 = 10.21 0.06 177.68 <0.0001 

      

SD26 
r² = 0.72 

n = 59 

a = 0.92 0.04 20.91 <0.0001 

b = 0.46 0.13 3.53 0.0009 

L50 = 10.01 0.17 60.57 <0.0001 

      

SD27 
r² = 0.98 

n = 21 

a = 0.91 0.02 51.59 <0.0001 

b = 0.29 0.06 4.89 0.0001 

L50 = 9.67 0.06 174.26 <0.0001 

      

SD28 
r² = 0.95 

n = 29 

a = 0.97 0.03 35.73 <0.0001 

b = 0.45 0.08 5.62 <0.0001 

L50 = 10.31 0.09 117.83 <0.0001 

 

 

Tab. 6: Parameters of length based regression models of Baltic sprat maturity ogives as 

proportion mature individuals: Pm = a / (1+exp
-1*(L-L50)/b

). Presented are results for male sprat for 

different ICES sub-divisions pooled for all years.  

 

ICES sub-division coefficient 
standard 

error 
t p 

     

SD24 
r² = 0.62 

n = 52 

a = 0.96 0.05 18.63 <0.0001 

b = 0.77 0.23 3.35 0.0016 

L50 = 9.90 0.23 42.36 <0.0001 

      

SD25 
r² = 0.67 

n = 87 

a = 1.00 0.03 39.73 <0.0001 

b = 0.87 0.15 5.81 <0.0001 

L50 = 8.65 0.14 62.73 <0.0001 

      

SD26 
r² = 0.62 

n = 53 

a = 0.97 0.04 24.55 <0.0001 

b = 0.64 0.18 3.58 0.0008 

L50 = 8.88 0.18 49.24 <0.0001 

      

SD27 
r² = 0.89 

n = 19 

a = 1.00 0.04 24.04 <0.0001 

b = 0.57 0.13 4.26 0.0006 

L50 = 9.09 0.15 61.73 <0.0001 

      

SD28 
r² = 0.93 

n = 26 

a = 0.97 0.02 40.66 <0.0001 

b = 0.39 0.08 4.84 <0.0001 

L50 = 9.31 0.08 116.23 <0.0001 
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Fig. 11: Time series of L50 values estimated for the ICES SD25 from SGBHSM data (black 

diamonds) and the present study (black circles) in relation to SSB (grey bars) and ambient winter 

temperature (grey area). 

 

 
 

Fig. 12: Relationship of sex combined L50 values for ICES SD25 with (a) ambient temperature 

and (b) spawning stock biomass (SSB). 
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III. 4 Discussion 

The observed skewed sex ratios can be explained by the sex specific differences in growth rate. 

This pattern has been observed before also for other marine fish species, e.g. cod (Gadus 

morhua; Nash et al., 2010) or hake (Merluccius merluccius; Murua et al., 2010). 

Spatial differences in size at maturity have been observed for other clupeid stocks, e.g. sardine 

(Sardina pilchardus; Silva et al., 2006). The present study did not reveal statistically significant 

differences in the L50 values among areas. However, it is possible that such spatial differences 

might also be detected for Baltic sprat if more years can be included into future analyses. Similar 

to the sex ratio, the size at maturity is also dependent on growth. Hence, the observed differences 

in L50 values between female and male sprat may also be explained by sex specific growth rates. 

Larger L50 values for female sprat compared to male sprat have been reported for the time period 

1980-2000 for the Bornholm Basin and the Gdansk Deep, respectively (Grygiel and Wyszyński, 

2003). The sex separated L50 values from this former study were well in the range of the results 

from the present study.  

For sprat from the north-eastern parts of the Baltic, an increase of mature individuals in age 

group one and two has been reported for the 1990s compared to the 1980s (Kaljuste and Raid, 

2002) which was explained by an increase of ambient temperature. Similar results were reported 

by Grygiel and Wyszyński (2003) for Baltic sprat from south-eastern parts of the Baltic. Reglero 

and Mosegaard (2006) found a relationship between otolith size and onset of maturation in Baltic 

sprat and concluded that fish size at the end of the first growing season determines whether sprat 

matures at age one or age two. Results of the present study support the hypothesis that 

temperature conditions may influence the maturation of sprat since lower L50 values were related 

to warmer ambient winter temperatures. This finding indicates that a higher proportion of small 

sprat contribute to spawning after a mild winter. The results of the present study are solely length 

based, thus, it is not possible to relate the results to maturity at age directly. However, the 

decrease in L50 might be a combination of high growth rates and energy storage during the first 

growing season followed by a mild winter, provided sufficient prey availability. If in addition the 

spring zooplankton production starts earlier due to warmer water temperatures and earlier 

stratification, small sprat may already be able to allocate energy to reproduction and thus 

contribute to spawning. However, due to the lack of age-based maturity for most of the presented 

data it remains unclear whether the observed decrease in L50 with increasing stock size is due to 

decreased growth of age group two, which could then be explained by food limitation, or if also 

younger individuals contribute to spawning already. 

The obtained models on sex ratios and maturity ogives, sex combined as well as sex separated, 

can directly be used in a number of applications to study the Baltic sprat stock. Both 

reproductive traits are important parameters needed for the daily egg production method to 

assess sprat stock size from fishery independent information. In combination with knowledge of 

batch fecundity, spawning frequency and the duration of the spawning season, these data enable 

the estimation of the female spawning stock biomass (FSSB) or the potential egg production of 

sprat. Further, these data are especially relevant for the implementation of stage based matrix 

models, which have proven to be a valuable tool to assess the population dynamics of exploited 

fish stocks (e.g. Mantzouni et al., 2007; Pertierra et al., 1997; Butler et al., 1993), and for which 

the reproductive output of the adult population is a prerequisite (Caswell, 2001). The potential 

egg production of the stock could also be used in future studies to test if the SSB, in the way it is 

estimated today in the standard procedure of sprat assessment, is robust to the simplification of 

ignoring variability in maturity ogives and sex ratios. Kraus et al. (2002) demonstrated that the 

use of potential egg production as alternative measure of stock reproductive potential improved 

the stock-recruitment relationship for Baltic cod (Gadus morhua) by 10%, compared to the use 

of SSB. On the contrary, it was suggested that for hake (Merluccius merluccius), another gadoid 

species, the implementation of alternative indices of reproductive potential did not improve the 
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assessment (Murua et al., 2010). For the clupeoid sprat, future studies should test a possible 

effect of changing assessment procedures towards the utilisation of more realistic data with 

respect to the reproductive potential of the stock. More effort is needed to (i) build up conclusive 

models to explain variability in reproductive traits in order to model reliable data to fill the gaps 

in existing time series and (ii) to recover suitable historical data which may exist but have not 

been used for such purposes so far. The latter would give the opportunity to investigate longer 

time periods with contrasting environmental conditions.  

 

Acknowledgements 

I would gratefully like to thank Dr. U. Böttcher for providing sprat single fish data collected 

during the May acoustic surveys on RV “Walther Herwig III”. Thanks to Dr. G. Kraus for 

providing data from the STORE project and the ICES SGBHSM. Thanks to all those involved in 

sprat sampling during the GLOBEC Germany campaign and during all the other cruises with RV 

“Alkor”.  



IV: Dynamics of POF degeneration and oocyte growth 

_____________________________________________________________________________ 

63 

 

 

Chapter IV: The dynamics of postovulatory follicle degeneration and oocyte 

growth in Baltic sprat 

 

Haslob, H.
1
, Kraus, G.

2 
, Saborido-Rey, F.

3 

 

1
Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany 

 

2
 Johann Heinrich von Thünen-Institute, Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany 

 

3
 Institute of Marine Research (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain 

 

Abstract 

Ovaries of Baltic sprat (Sprattus sprattus balticus S.) were analysed histologically to identify 

stages of postovulatory follicles (POF) and to assess the oocyte development pattern. Samples 

were taken every 3 h during a 24 h trawl survey conducted in the Bornholm Basin in April 2007. 

Gonad histology revealed spawning of sprat throughout the day which hampered the exact aging 

of POFs. However, it was possible to define four stages of POFs, according to their histological 

features. The occurrence of these POF stages (I to IV) corresponded clearly to the development 

of the leading oocyte cohort. Further, the oocyte recruitment pattern revealed that the spawning 

batch can be identified prior to hydration. The POF stages I and II were present almost 

exclusively in vitellogenic ovaries, POF III were found in ovaries in the germinal vesicle stage, 

and POF stage IV was found exclusively in actively spawning fish with hydrated ovaries. Since 

only in very few ovaries POF were absent (5%), and in each ovary only one POF stage was 

present, the duration of POF degeneration approximately equals the average batch interval, i.e. 

the time lag between subsequent spawning events. Thus, aging of POFs can be realised when 

assuming 24 h duration of the hydrated stage and by combining the histological maturation 

stages of oocytes, the defined POF stages, and the evolution of the diameter of oocytes in the 

most advanced mode. A spawning interval of approximately 4.5 days was estimated for Baltic 

sprat using hydrated females and females with the most recent POF stage as spawning markers.  

 

Keywords: oocyte recruitment; post ovulatory follicle; spawning fraction; Sprattus sprattus 

 

IV. 1 Introduction 

Like many other small pelagic clupeids, Baltic sprat release several batches of eggs over a 

protracted spawning season and show indeterminate oocyte recruitment (Alheit, 1988; Heidrich, 

1925), i.e. the number of oocytes that will potentially be spawned during the breeding season is 

not determined prior to spawning. This means that individual potential fecundity cannot be 

estimated. However, the spawning stock biomass of these species can be determined from egg 

production methods, e.g. the Daily Egg Production Method, DEPM (Hunter, 1985) if 

information on a number of reproductive parameters is available. The use of DEPM requires the 

estimation of i) mean daily egg production from ichthyoplankton surveys and ii) the average 

daily individual fecundity. The latter involves the estimation of spawning frequency, batch 

fecundity, female weight and maturity status as well as sex ratio. Uncertainty in daily fecundity 

estimation of clupeids mainly resides in a lack of precision when estimating spawning fraction, 

either by the hydrated oocyte method or the postovulatory follicle (POF) method (Stratoudakis et 

al., 2006). The latter method requires histological preparation of ovaries to classify POF into 

daily cohorts. 
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Although the Daily Egg Production Method is a valuable, fisheries independent tool to estimate 

the spawning stock biomass of small pelagic fishes, such as anchovy and sardines (Stratoudakis 

et al., 2006), it has never been applied to the Baltic sprat stock on a regular basis. Thereby, a 

DEPM application would be especially interesting for the Baltic sprat assessment, where 

conflicting results on stock size estimations from acoustic surveys and a multi species virtual 

population analysis (MSVPA) approach hampered quantitative studies on recruitment processes 

of sprat and cod so far, for example the estimation of predation pressure on cod eggs by sprat in 

the Bornholm Basin (Köster and Möllmann, 2000). The Bornholm Basin serves sprat and cod as 

an important spawning ground (Aro, 1989). Therefore, this area is surveyed since years by 

means of ichthyoplankton and fishery surveys and data needed to implement the DEPM are 

available already (ICES 2002; Köster et al., 2005; Haslob et al., 2005). Thus, besides a future 

application even a retrospective stock assessment with the DEPM in order to validate former 

assessments is possible. However, the lack of adequate estimations of spawning frequency 

hampered the implementation of the DEPM for this pelagic species in former studies (Kraus and 

Köster, 2004). Neither have detailed histological investigations of Baltic sprat ovaries been 

published before nor was it attempted to age POF of sprat.    

The best way to estimate the duration of POF is by laboratory tank experiments, where fish 

spawn under controlled conditions and adult fish are sampled at a specified time after spawning 

(Macewicz et al., 1996). As this is often not practicable, an alternative method was developed to 

estimate the spawning fraction from a series of samples collected over a 24 h period in the field 

(Alheit et al., 1984; Goldberg et al., 1984). On the basis of such samples distinct histological 

stages of POF have to be defined in relation to the daily peak spawning time. Therefore, this 

method is strictly speaking only suitable for fish species with a daily synchronous spawning 

behaviour, e.g. the Northern Anchovy (Engraulis mordax; Hunter et al., 1985) or the 

Mediterranean Sardine (Sardina pilchardus sardina; Ganias et al., 2003). For sprat, 

contradictory observations on the diel spawning behaviour are reported in literature. Simpson 

(1971) reported the diel spawning of Sprat from the Irish Sea between 22:00 p.m. and 06:00 

a.m., with a peak between midnight and 04:00 a.m. For Baltic sprat, an asynchronous diel 

spawning pattern was observed (Alekseev and Alekseeva, 2005). The results of the present study 

also suggest a rather asynchronous spawning pattern, and direct aging of POF with respect to a 

diel peak in spawning was not possible.  

In the present paper, we introduce a method for staging POF according to (i) their histological 

features of degeneration, and (ii) the dynamics of the oocyte growth of the most advanced oocyte 

cohort. Further, we propose the use of females with hydrated oocytes and recent POF to 

determine the spawning frequency. This study is the first to analyse the histological features of 

ovarian maturation stages and POF of Baltic sprat in detail. 

 

IV. 2 Methods 

Baltic sprat were sampled with a pelagic trawl during a research cruise with RV “Alkor” in the 

Bornholm Basin during the main spawning season in April 2007 (Fig. 1). Pelagic trawls were 

carried out in the central basin defined by the 80 m depth line every 3 h over a 24 h period (n=9; 

Tab. 1). From each haul a 2 kg sub-sample (n≈200) of sprat was preserved in a buffered 10% 

formaldehyde solution. To assure proper fixation of the samples, the body cavity of each fish 

was slit open prior to fixation.  
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Fig. 1: Map of the sampling area in the Bornholm Basin (ICES Sub-Division 25). Fishery hauls 1 

– 9 (crosses) were conducted within the 80 m isobath. 

 

 

Histological processing 

 

In the laboratory, at least 20 females were taken randomly from each sample for histological 

analysis of the ovaries. From these specimens, the total body weight (nearest 0.1 g), ovary free 

body weight (nearest 0.1 g), and total length (nearest 0.1 cm) were measured. The ovaries were 

removed, weighed to the nearest 0.001 g, and fixed again in a 4%-formaldehyde solution. A 

tissue sub-sample from the middle part of each ovary was embedded in paraffin. Histological 

sections of 3 µm were cut and stained, using the Hematoxilin-Eosin method. All histological 

sections of ovaries were analysed for the developmental stage of oocytes and the presence of 

postovulatory follicles (POF). Five oocyte developmental stages were distinguished (Brown-

Peterson et al., 2010): primary growth, cortical alveoli, vitellogenesis, germinal vesicle 

migration (GVM) and hydrated oocytes (Fig. 2) forming the basis to classify the sampled 

females into three distinct phases of the reproductive cycle (Brown-Peterson et al., 2010): i) 

developing, ovaries containing only vitellogenic oocytes, ii) spawning capable, ovaries with 

oocytes undergoing GVM, and iii) actively spawning, hydration is present in the ovary.  

According to their histological features, POFs have been assigned into different stages of 

degeneration (Fig. 3). Referring to observations from other clupeid fishes, the shape, the size of 

lumen and the state of the granulosa layer were mainly used for that purpose (Ganias, 2003; 

Hunter and Macewicz, 1985). 
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Oocyte recruitment related to POF stage durations 

 

To assess the oocyte development pattern, 40 ovaries from two consecutive hauls (haul 6 and 7) 

were processed with the whole-mount method as described below. In addition, tissue of the same 

ovaries was analysed histologically. Thereby it was possible to relate the oocyte developmental 

pattern directly to histological results. For the whole mount method at least 50 mg of ovary tissue 

was removed from the sample. The oocytes were then separated into different size classes with 

600 µm, 300 µm and 150 µm sieves. After separation oocytes were photographed, automatically 

measured to the nearest µm (diameter) and counted with image analysis software (Leica Qwin 

Software). The separation with sieves into different size groups facilitates the image analysis, as 

no large oocytes will cover smaller ones. As all oocytes were measured, no bias in size 

frequency was introduced by sieving the material. However, for subsequent analysis only 

oocytes >200 µm diameter were taken into account in order to exclude primary growth oocytes. 

The oocyte diameters were grouped in 25µm intervals and length frequency distributions were 

established for each analysed ovary. Cohorts were identified in each oocyte size frequency 

distribution and for each cohort the median oocyte diameter was calculated. The median was 

chosen as some frequency distributions of the more advanced oocyte cohorts showed significant 

deviations from normal distribution (K-S-Test; p<0.05). By sorting the analysed ovaries 

according to their median oocyte diameter of the leading cohort, the oocyte growth dynamics 

was analysed with respect to the according POF stage and ovarian maturation stage of each 

analysed ovary. In order to estimate the relative duration of POF stages, those ovaries for which 

oocyte diameters were measured and which contained POFs were sorted by the median diameter 

of the most advanced oocyte cohort to display the whole spawning interval. Further, the POF 

stage and gonadal development stage were assigned to each ovary.  

 

Estimation of spawning frequency 

 

The mean spawning frequency (S), the proportion of females spawning per day, and its variance 

(Var(S)), were estimated with the following equations (Piquelle & Stauffer, 1985): 

 

   
      

 
   

   
 
   

  (1) 

 

        
   

  
            

      
 
    

 
       

 (2) 

 

where mi is the number of mature females in the ith haul and yi the proportion of spawning 

females. Each haul was used in this calculation. Prevalence of actively spawning females can be 

estimated from the proportion of imminent spawning females with hydrated oocytes (or less 

often germinal vesicle migration stage), or recent spawners, i.e. with presence of POFs. 

However, the proportion of females with hydrated oocytes or recent POF was highly variable 

between hauls. To reduce variability, the sum of females with hydrated oocytes and females with 

recent POF divided by two was used to estimate the prevalence of spawning females (Korta et 

al., 2010b). To estimate the spawning interval in days the duration and the peak spawning time 

during the day has to be known. In the case of Baltic sprat it was assumed that the duration of the 

hydrated stage and POF I is approximately 24 h each, and thus represents the daily spawning 

fraction of the population (Murua et al., 1998; Korta et al., 2010a). 
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Fig. 2: Stages of oocyte development. (a) cortical alveoli, (b) vitellogenesis, (c) germinal vesicle 

migration and (d) hydrated. 

 

 
 

Fig. 3: Stages of postovulatory follicles of Baltic sprat. (a) POF I < 24h, (b) POF II, (c) POF III 

and (d) POF IV > 72h. 
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IV. 3 Results 

The histological classification of all analysed ovaries revealed 23% (±15% SD) females with 

hydrated oocytes, 41% (±19% SD) in the vitellogenic and 36% (±20% SD) in the germinal 

vesicle migration stage (Tab. 1).  

 

Tab. 1: Date and time of sampling, n = number of sub-sampled females for histologic analysis; 

sex ratio as proportion of females from at least 200 specimens; fraction of maturity stages and 

POF stages derived from histological analysis. 

 

haul 

 

date 

 

time 

 

n 

 

sex 

ratio 

 

Fraction 

of: 
      

vitellogenesis GVM hydrated 
POF 

I 

POF 

II 

POF 

III 

POF 

IV 

No 

POF 

1 16 April 2007 06:18 21 0.41 0.19 0.57 0.24 0.00 0.10 0.38 0.43 0.10 

2 16 April 2007 09:00 23 0.48 0.30 0.57 0.13 0.09 0.17 0.35 0.30 0.09 

3 16 April 2007 12:00 23 0.22 0.86 0.14 0.00 0.65 0.22 0.09 0.00 0.04 

4 16 April 2007 15:00 20 0.22 0.50 0.10 0.40 0.25 0.25 0.05 0.40 0.05 

5 16 April 2007 18:00 20 0.31 0.35 0.15 0.50 0.20 0.10 0.15 0.55 0.00 

6 16 April 2007 21:00 20 0.58 0.50 0.25 0.25 0.10 0.25 0.35 0.20 0.10 

7 17 April 2007 00:00 21 0.54 0.38 0.38 0.24 0.14 0.19 0.38 0.24 0.05 

8 17 April 2007 03:00 21 0.30 0.38 0.48 0.14 0.29 0.10 0.38 0.19 0.05 

9 17 April 2007 06:00 21 na 0.24 0.57 0.19 0.10 0.10 0.52 0.29 0.00 

 

 

Spawning activity showed an asynchronous diel pattern, as females with hydrated ovaries were 

found throughout the day. However, the proportion of females with hydrated ovaries varied 

largely between hauls over the entire 24 h period. The highest proportion of hydrated females 

was found at 06:00 p.m. with nearly 50% of females containing ovaries with hydrated oocytes. 

The lowest value was found at noon with no females having hydrated oocytes (Fig. 4a).  

In 95% of the analysed ovaries POFs were detected. POFs were classified into four different 

stages based on their histomorphology: 

 

I. The POF has a clear convoluted shape and a rather big lumen. It consists of two cell 

layers, theca and granulosa with clearly visible nuclei and relatively thin width with 

similar morphology to the follicle wall in advanced vitellogenic oocytes. The cross 

sectional area is larger compared to that of other identified POF stages. This type of 

POF occurred exclusively in ovaries where vitellogenesis was the most advance stage 

of oocyte development (Fig. 3a).  

 

II. The POF has still a distinct convoluted shape but the lumen has become smaller. The 

two cell layers are still distinguishable but first signs of degeneration are visible: 

Vacuoles become visible and nuclear pycnosis occurs. The thickness of the two cell 

layers has clearly increased and granulosa cells are more rectangular. Again, this type 

of POF occurred exclusively in ovaries where oocytes have not developed further 

than vitellogenic stage (Fig. 3b). 

 

III. The convoluted shape begins to disappear, as the follicle is being resorbed. The POF 

lumen shrinks and is no longer clearly distinct. It is not possible to distinguish 

between the two cell layers. The cross sectional area has clearly decreased compared 

to the two first POF stages. The thickness of the two cell layers has decreased again 

due to degeneration. This POF type occurred in ovaries with early and advanced 

germinal vesicle migration stage or in ovaries with early hydrated oocytes (Fig. 3c). 
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IV. The convoluted shape and lumen are not visible anymore. The follicle has shrunk 

considerably, becoming more compact and the cross sectional area is very small 

compared to the other stages. This POF type occurred in ovaries with advanced 

germinal vesicle migration and hydrated oocytes (Fig. 3d). 

 

Also the occurrence of different POF stages showed an asynchronous pattern throughout the day 

(Tab. 1). The variability of POF stage proportions between the sub-samples was high for every 

POF stage. The highest range was detected for POF I with 0% at 06:00 a.m. and 65% at noon 

(Fig. 4b).  

 

 
 

Fig. 4: Share of different oocyte stages (a) and POF stages (b) in fishery hauls conducted over 

the 24 h period. 
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The analysis of oocyte size frequency revealed the presence of two clearly distinct cohorts of 

secondary growth stage oocytes: from the pool of early vitellogenic oocytes, subsequent cohorts 

develop one by one with increasing oocyte diameter until spawning (Fig. 5).  

 

 
 

Fig. 5: Typical oocyte size frequencies observed for specific ovarian maturation stages. (a) 

vitellogenesis (VIT), (b) germinal vesicle migration (GVM), (c) hydrated.  

 

 

The median oocyte diameter in ovaries with only vitellogenic oocytes ranged from 410 µm to 

558 µm, the median of oocytes in the germinal vesicle migration stage ranged from 568 µm to 

813 µm (Fig. 6), and the hydrated oocytes ranged from 877 µm to 1388 µm in diameter. While 

the size increase was clearly visible for the leading cohort, the median diameter of the second 

cohort remained constant around 400 µm. Although the median values between two cohorts 

become distinct in early development (Fig. 6), there was an overlap in oocyte size distributions 

during vitellogenesis, becoming completely separated when the leading cohort enters the 

germinal vesicle migration stage.  

The occurrence of POF stages (I to IV) corresponded clearly to the development of the leading 

oocyte cohort. The POF stages I and II were present almost exclusively in developing ovaries, 

and similarly POF III were found in spawning capable females, and POF stage IV was found 

exclusively in actively spawning fish with hydrated oocytes (Fig. 6). Considering that in very 

few ovaries POF were absent (5%), and in each ovary only one POF stage was present, the 

duration of POF degeneration equals the average batch interval, i.e. the time lag between 

subsequent spawning events.  

Using formula (1) with the average proportion of hydrated and POF I for the 24 h sampling, as 

daily spawning marker, resulted in a spawning frequency of 0.22 (CV=0.10).  
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Fig. 6: Development of median diameters of the reserve stock of oocytes (lower row) and 

developing oocytes (upper row) with corresponding POF stages. Box displays 25th and 75th 

percentiles, vertical lines display 10th and 90th percentiles. In the upper part of the figure 

estimated durations of POF stages are denoted.  

 

IV. 4 Discussion 

The investigated oocyte development pattern of sprat shows a distinct hiatus between oocytes in 

the germinal vesicle migratory stage prior to hydration and the remaining reserve oocytes. A 

similar pattern has been observed for the anglerfish Lophius litulon (Yoneda et al., 2001) and for 

Siganus canaliculatus (Hoque et al., 1999). One example for a clupeid fish with this type of 

oocyte development pattern is the Mediterranean sardine (Sardina pilchardus sardina) as 

described by Ganias et al. (2004). For the latter species it was possible to estimate batch 

fecundity by using not fully hydrated females. Our results demonstrate that it also could be 

possible in the case of Baltic sprat to use females in the germinal vesicle migratory stage to 

estimate batch fecundity. This will be of advantage for the sampling procedure as it is sometimes 

difficult to obtain enough hydrated females from one haul, since their proportion was shown to 

be highly variable. Moreover, the risk of including partly ovulated ovaries into the batch 

fecundity analysis would be minimized, without checking ovaries histologically for POFs. The 

auto-diametric method to estimate fecundity (Thorsen and Kjesbu, 2001) can be easily applied. 

Hence, increasing number of samples will enhance fecundity estimation accuracy. 

Unlike other clupeid fish species, Baltic sprat does not show a clear diel synchronous spawning 

behaviour (Alekseev and Alekseeva, 2005). Findings of the present study confirmed this 

hypothesis as females with hydrated oocytes and recent POF were found nearly throughout the 

day. Although there was a concentration of hydrated females found around 06:00 p.m. it is 

doubtful that this is a synchronised diel peak spawning, because (i) the occurrence of recent POF 

does not confirm this pattern, as no recent POFs occur during the early morning hours, and (ii) if 
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peak spawning occurred in the afternoon and at dusk, the elevated proportion of hydrated 

females should be found prior to the peak spawning for the duration of the hydrated stage. For 

the observed pattern that would translate into approximately 6 h duration for the hydrated stage 

from noon until the observed peak at 06:00 p.m.. Given the mean percentage of 23% hydrated 

females during the sampling this would result in more than one spawning per day and female, 

which seems quite unrealistic. The lack of diel spawning synchronicity is in contrast to many 

other clupeid species, e.g. for Sardina spp. or Sardinops spp. (Ganias et al. 2003; Macewicz et 

al. 1996), which synchronise their spawning during few hours at night time. For these species a 

reference time exists for the estimation of POF stages by means of field samplings. Alday et al. 

(2008) used an alternative approach to determine the POF duration in anchovy (Engraulis 

encrasicolus). They first defined different stages of POF solely based on histological features of 

degeneration, and then aged these defined stages in a second step by using information from tank 

experiments. Since no information from tank experiments with sprat was available for this study 

and no clear spawning peak during the day was found to serve as reference time, the exact 

estimation of POF duration was not possible in the present study. Nevertheless, it was possible to 

define four different stages of POF with respect to their histological features and their state of 

deterioration. Further, since nearly all analysed ovaries contained POF and in each ovary only 

one POF stage was present, it can be concluded that the duration of complete POF resorption 

equals the average batch or spawning interval. The estimated spawning frequency of 0.22 would 

translate into an average spawning interval of 4.5 days for individual female sprat, meaning that 

it takes 24h * 4.5 = 108 h from the earliest vitellogenesis stage to the fully hydrated stage. The 

estimated spawning interval is well in line with estimates in sprat literature, e.g., from the 

Bornholm Basin (Kraus and Köster, 2004), and from the Gdansk Deep (Alekseev and Alekseeva, 

2005). However, these studies also assumed duration of 24h of the hydrated stage, which lacks 

any evidence from field or tank experiment data. If we assume this spawning interval to be a 

realistic estimate for Baltic sprat it would be possible to estimate the duration of each ovarian 

developmental stage by converting their proportions into time. It would also be possible to give a 

rough estimation of the duration of POF stages III and IV, which are very closely related to the 

GVM and the hydrated oocyte stage, respectively. This approach would result in approximately 

29 h, 38 h and 41 h duration for the hydrated ovaries/POF IV, germinal vesicle migration/POF 

III, and vitellogenesis stage, respectively. Aging POF I and POF II is more complicated as both 

are related to the vitellogenic stage. However, the duration of POF I seems to be shorter than that 

of POF II, because there were less POF I stages recorded. Converting the proportions of POF I 

and POF II to time results in 15 h duration for POF I and 26 h duration for POF II. The duration 

of POF I is shorter than 24 h, while the duration of hydration might last longer than exactly one 

day. However, the total duration of hydration and POF I together was 44 h, i.e. ca. 48 h, as 

assumed to calculate the spawning frequency. 

Although the spawning interval estimated in the present study was well in line with literature 

values, our results differ considerably from historical observations by Heidrich (1925), who 

reported a spawning frequency of 7 to 9 days from the Kiel Bight area. This difference might be 

due to different environmental conditions between the Western and Central Baltic Sea, but it was 

also criticized that Heidrich might have underestimated the spawning frequency because of 

methodical shortcomings (Alekseev and Alekseeva, 2005; Kraus and Köster, 2004). 

Spawning frequency in the present study was estimated applying the average proportion of 

hydrated females and females containing POF I in their ovaries. This is in contrast to previous 

reports on sprat spawning frequency, where only the incidence of hydrated females was used as 

spawning marker (Kraus and Köster, 2004; Alekseev and Alekseeva, 2005). Although using 

exclusively hydrated females to calculate this parameter did not result in substantially different 

results, it is of advantage to include histological analyses in order to enhance the accuracy of 

estimations, because it was found that the hydrated oocytes might last for more than one day in 

the ovary, and the POF I duration was shorter. Thus, using only hydrated females may lead to an 



IV: Dynamics of POF degeneration and oocyte growth 

_____________________________________________________________________________ 

73 

 

overestimation of the spawning frequency, while using only POF I may lead to an 

underestimation. Hence the approach to combine both stages should give a more balanced 

estimation of spawning frequency, because the sum of both is closer to 48 h. 

Generally, the proportion of hydrated females exceeded the proportions of females with recent 

POF. This might not only be due to the longer duration of the hydrated stage, but can be due to 

the specific spawning behaviour of small pelagic fish, forming dense and female dominated 

spawning aggregations, which were reported to be more vulnerable to the sampling gear. Thus, 

in previous studies on spawning frequency, it was recommended not to use hydrated females for 

analysis, because they might be oversampled (Alheit, 1993; Alheit et al., 1984), and instead use 

the postovulatory follicle method. Our results showed that the hydrated oocyte method is 

appropriate to estimate spawning frequency in the case of Baltic sprat and might also be used to 

estimate the spawning frequency from historical sprat maturity data sets without parallel 

histological investigations.  

Duration of less than 24 h for the first POF stage, as we propose also for sprat, was reported for 

several clupeid species such as Sardina pilchardus pilchardus off Portugal (ICES, 2000), 

Sardinops melanostictus off Japan (Aoki and Murayama, 1993), and Sardinops sagax musica off 

Chile (Claramunt and Herrera, 1994). In contrast to sprat, for these species only three POF stages 

have been described. Similar to our observations on Baltic sprat the complete POF duration of 

northern anchovy lasted also longer than 72 h (Hunter and Macewicz, 1985). For the 

Mediterranean sardine (Sardina pilchardus sardina), the first POF stage was reported to last 10 h 

(Ganias et al., 2003), a comparably shorter duration than for sprat and most other clupeid 

species. These differences might be related to different temperatures prevailing in the 

investigated areas, as the resorption of POF is known to be strongly dependent on the ambient 

temperature (Fitzhugh and Hettler, 1995), and also the growth rates of oocytes have been 

reported to increase with increasing temperatures (Kurita et al., 2011). Therefore, the POF stage 

duration and the duration of ovarian developmental stages of Baltic sprat might vary over the 

prolonged spawning season due to an increase in ambient temperatures over the spawning season 

lasting approximately from March to June. However, this issue should be addressed in future 

investigations to further enhance the understanding of POF degeneration and thus spawning 

frequency of Baltic sprat. The methodology described in the present study, combining histology 

and image analyses, will clearly improve this type of analyses. 

From the oocyte size distribution it can be seen that right after releasing the spawning batch the 

next cohort of oocytes begins to increase in size to form a new batch. Our results indicate that the 

batch development cycle lasts approximately 4.5 days. Compared to other species this is rather 

quick. For Mediterranean sardine a spawning interval of 10 to 11 days was reported (Ganias et 

al., 2003), a value considerably lower than found for other sardine stocks from the Atlantic coast 

off Spain and Portugal (Ganias et al., 2003 and references therein). This was explained by the 

oligotrophic characteristic of the Mediterranean Sea, as the egg production and spawning 

frequency might be influenced by food availability and thus condition of the fish. The 

comparably fast oocyte development of Baltic sprat might therefore be due to favourable feeding 

conditions during the peak spawning period, which is synchronised with the peak production 

period of calanoid copepods in the central Baltic, the major prey items for sprat (Möllmann et 

al., 2004; Möllmann et al., 2003). Petrova (1960) reported an accelerated oocyte development of 

sprat which was explained by optimum food availability and also favourable temperature 

conditions. Hence, it seems to be a common pattern in Baltic sprat, that degenerated POFs and 

hydrated eggs can be found together in the same ovary. This can be explained by the 

comparatively slow POF degeneration, due to low ambient temperatures, and relatively fast 

oocyte development, due to favourable feeding conditions, compared to other clupeid fish where 

these features have been studied. Thus, the association of the respective POF stages to oocyte 

recruitment might differ with environmental conditions. It was not possible to investigate the 
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relative effect of temperature and prey availability on POF duration and oocyte recruitment in 

the present study, as only samples from one cruise were analysed. 

The results of the present study provide an excellent basis for future studies on sprat spawning 

dynamics, in order to compare reproductive parameters between different stocks, years and 

seasons. It might also be possible to extend our approach to study the dynamics of gonadal 

development in other fish species having a similar oocyte recruitment and daily spawning pattern 

to Baltic sprat, e.g. hake (Merluccius merluccius, Murua et al., 1998). However, so far all 

estimates of sprat spawning frequency are based on assumptions about the duration of used 

spawning markers and not on direct observations or experiment results. Therefore, it is strongly 

recommended to further investigate this important parameter of sprat which would allow a 

validation of our results and that of other authors. This study can be seen as a first approach to 

tackle the problem of POF stage duration and to get a more reliable estimate of spawning 

frequency for Baltic sprat.  
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Chapter V: Temperature-dependent egg development of Baltic sprat 

 

Abstract  

An experimental approach was used to determine the egg development time in relation to 

temperature in a range from 1.8°C to 16°C. The relationship between incubation temperature and 

the time to the end of each of four egg stages is presented. For all egg stages, time to complete 

the respective stage decreased exponentially with increasing ambient water temperature. A 

multiple regression model on temperature-dependent egg stage development time was 

established. At the lowest temperature only very few eggs developed successfully, at the highest 

temperature no successful egg development was observed. The presented results are relevant for 

the aging of field caught sprat eggs which enables to estimate mortality rates and the daily egg 

production.  

 

Key words: egg development, egg aging, Sprattus sprattus 

V. 1 Introduction 

In marine fishes, recruitment success is largely relying on the success of their early life stages as 

these are most susceptible to mortality (e.g. Hjort, 1914; Rothschild, 2000; Chambers and 

Trippel, 1997; Houde, 2002). The exact timing of critical transitions during early life history of 

temperate species is crucial for survival. Especially pelagic fish eggs are strongly influenced by 

abiotic factors such as temperature, salinity, oxygen saturation or wind forcing (Grauman and 

Yula, 1989; Blaxter, 1992; Köster et al,. 2003). Temperature plays a central role due to its 

importance in pacing physiological processes (Blaxter, 1992; Fuiman, 2002). Hence, knowledge 

about the duration and timing of early life stages is a prerequisite for understanding and 

interpreting match and mismatch situations between larval predators and their prey (Cushing, 

1972). 

Several applications have been developed to estimate the size of fish stocks by means of the 

abundance of their early life stages in the field (Lockwood et al., 1981; Parker, 1980). If the 

temperature-dependent development is known, observed abundance at specific egg stages can be 

converted into abundance at age in order to correct for instantaneous mortality and the daily egg 

production can be estimated from ichthyoplankton samples (Lo, 1985). Fox et al. (2003) found 

faster egg development rates under similar temperature conditions in Irish Sea plaice 

(Pleuronectes platessa L.) populations compared to eggs from North Sea plaice. They suggested 

genetic differences between the two stocks which could lead to inter-stock differences in egg 

development rates. Since the application of incorrect egg development rates clearly has the 

potential to bias the assessment of spawning stock biomass (SSB) using egg production methods, 

Fox et al. (2003) recommend that egg development relationships should be evaluated for each 

stock separately. 

Although sprat is an abundant and important species in the Baltic Sea ecosystem, little is known 

about temperature effects on their reproduction traits and early life stages. Sprat are 

indeterminate multiple batch spawners releasing several thousand pelagic eggs per spawning 

season, which may last from February to July in the Baltic (Ojaveer and Kalejs, 2010). Due to 

the brackish environment of the Baltic, egg buoyancy is restricted to the more saline, deeper 

water layers, i.e. 40-65 m in the Bornholm Basin, one important spawning area in the Baltic. As 

spawning season proceeds the vertical distribution of sprat eggs changes towards shallower 

water layers due to seasonal changes in hydrography (Nissling et al., 2003). Historic 

observations of egg and larval development are limited to few temperature regimes and the 
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majority of studies use field caught sprat eggs and larvae which causes variation due to the 

difference in age (e.g. Ehrenbaum, 1936; Morawa, 1953). Experimental data on sprat egg 

development from the English Channel were provided by Thompson et al. (1981). For Baltic 

sprat, Nissling (2004) provides information on temperature dependent egg developmental times 

in the Gotland Basin and the Gdansk Deep. However, this study does not provide information on 

the temperature dependent duration of all four egg stages, which is necessary to estimate 

mortality in the field. The aim of the present study was to establish a temperature-dependent 

model of Baltic sprat egg development that can be applied to estimate mortality and daily egg 

production in the field. This is a prerequisite for the application of the Daily Egg Production 

Method to Baltic sprat.  

 

V. 2 Methods 

Sprat eggs were obtained from the Bornholm Basin during a cruise with RV Alkor in 

March/April 2004 from stripping running, fully hydrated female sprat caught with a pelagic 

trawl.  

Eggs were obtained from a single female. Eggs were fertilised with a mixture of sperm from six 

males for 30 minutes in unfiltered surface seawater at ambient salinity of 7.1 psu. Subsequently, 

eggs (n=2906) were transferred into a 500 ml plastic box containing 1.0 µm filtered Baltic 

seawater with a salinity of 18 psu, which keeps fertilised eggs floating (Nissling et al., 2003; 

Nissling, 2004). Unfertilised eggs were negatively buoyant. Thus, eggs which had sunk to the 

bottom were removed (Nissling, 2004). Subsamples of the remaining floating eggs were checked 

under a stereo microscope after 12 h to ensure fertilisation success. The fertilised eggs were 

stored in darkness in a temperature controlled room at 6 °C (±0.5 °C) on board. All eggs were 

transported to the laboratory in Kiel and upon arrival separated into 150 ml beakers filled with 6 

°C and 5 µm filtered water with a salinity of 14.8 psu. The time from fertilization to the start of 

the experiment was 38 h. The salinity of 14.8 psu kept the eggs at all temperatures floating. Each 

beaker, containing 30 to 156 eggs, was placed into a temperature gradient table (Thomas et al., 

1963) in a temperature-controlled room with a light regime of 12 h light and 12 h darkness. The 

incubation table is an aluminium block, which is heated on one side and cooled on the other side 

to create a stable temperature gradient (Fig. 1). It contains 6 x 10 holes in which the beakers can 

be placed. Ten different temperatures were set in three to four beakers (1.8 °C, 3.4 °C, 5.2 °C, 

6.8 °C, 8.4 °C, 10.0 °C, 11.6 °C, 13.1 °C, 14.7 °C, and 16.0 °C). The single temperatures were 

stable with minimum and maximum fluctuations of 0.08 and 0.17 °C, respectively. After the 

beakers were placed into the table, they were gently acclimated to the chosen temperatures with 

approximately 1 °C per hour. Before incubation, sub-samples of eggs were checked under a 

stereo microscope to determine the developmental stage at the start of the incubation. Eggs were 

assigned to development stages according to Thompson et al. (1981). Due to the time lag 

between fertilisation and incubation all eggs had reached already development stage IB at the 

start of the incubation. Therefore, the first egg stages IA and IB had to be combined to a single 

stage I in the subsequent analyses since the end of stage IA was not recorded. Dead eggs were 

removed every day from the beakers to remain good water quality. Every 24 hours, digital 

images of randomly chosen sub-samples (1-2 eggs per beaker) of eggs were recorded with a 

camera system under a stereo microscope. Due to the low numbers, photographed eggs were 

immediately replaced back into the respective beaker. Afterwards egg developmental stages 

were determined from digital images (Fig. 2). The duration of the egg stages I to IV was defined 

as days until the last egg of a temperature group reached the next stage.  
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Exponential decay models were fitted to the data of different egg stages: 

 

                       (1) 

 
where tdi is the duration of the ith egg stage in days, T the ambient temperature (°C) and a and b 

regression coefficients. To obtain a single model to predict egg duration in relation to ambient 

seawater temperature a multiple non-linear regression analysis was performed using the 

following equation: 

 

                
                                                                          (2) 

 
where tdi is the duration of the ith egg stage in days, T the ambient temperature (°C), Si the ith egg 

stage and a, b and c regression coefficients. 

 

 
Fig. 1: Schematic of the temperature gradient table used in the egg incubation experiments with 

10 temperatures (columns A-J) and six replicates (beakers, row 1-6). 
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Fig. 2: Sprat egg development stages. (a) stage IB, (b) early stage II, (c) late stage II, (d) stage 

III, (e) stage IV and (d) hatching sprat larva. Photographs taken by Holger Haslob, IFM-

GEOMAR. 

 

V. 3 Results 

Sprat egg development was temperature dependent. The duration of each developmental stage 

(Fig. 2) exponentially decreased with increasing temperature (Fig. 3; Tab. 1). A multiple 

regression can successfully describe the relationship between stage duration and temperature for 

the four differentiated stages (r
2
=0.97, Tab. 1). For the first egg stage, the duration time was 5 

days at the lowest temperature (1.8 °C) and two days for temperatures above 10 °C. The 

observed time from fertilisation to hatch was 17 days at the coldest temperature and 6 days at 

14.7 °C, the highest temperature at which successful egg development was observed. Above 14.7 

°C, no successful egg development was observed. At the lowest temperature (1.8 °C), only two 

eggs survived, one larva having a malformed yolk sac and the other hatching successfully.  
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Tab. 1: Regression coefficients of exponential models on egg stage duration for specific egg 

stages in relation to ambient temperature (equation 1) and for all stages combined in a two factor 

exponential regression model (equation 2).  

 

egg stage 
regression 

coefficients 

standard 

error 
r² p 

I 
a 5.57 0.38 

0.93 
<0.0001 

b 0.08 0.01 0.0002 

II 
a 8.06 0.35 

0.98 
0.0019 

b 0.08 0.01 0.0131 

III 
a 13.61 1.24 

0.89 
<0.0001 

b 0.11 0.01 0.0002 

IV 
a 20.33 1.43 

0.95 
<0.0001 

b 0.13 0.01 <0.0001 

stages 

combined 

a 5.58 0.55 

0.97 

<0.0001 

b 0.12 0.01 <0.0001 

c 0.87 0.08 <0.0001 

 

 

 
 

Fig. 3: Development time of stages I-IV of sprat eggs at the different experimental temperatures. 

Data were fitted to a multiple regression model. Lines represent the model prediction for the 

respective stage. Parameter estimates (±SE) are given in table 1. 
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V. 4 Discussion 

The obtained egg stage duration times are generally in line with observations by Thompson et al. 

(1981) who performed experiments on the development of sprat eggs from the English Channel 

(North Sea) using 19 different temperatures from 4.5-20 °C. Compared to the data provided by 

Nissling (2004) the observed time from fertilisation to hatch was approximately one day longer 

for the whole temperature range. The deviations in the egg stage durations may be explained by 

the time lag between fertilisation and incubation in our study. All eggs experienced 6 °C 

temperature conditions during the transport which might have caused faster development of the 

eggs in the lower temperatures and a somewhat slower development in the higher temperature 

treatments.  

Furthermore, colder temperatures appeared to increase the variability within experimental 

groups, as some embryos were not able to hatch while other larvae already had hatched at the 

coldest temperatures. This was probably due to reduced embryonic activity which may hamper 

the hatching success in colder temperatures. 

No successful egg development was observed at the lower and upper end of the tested 

temperature range. The lack of successful hatching at the lower temperature extreme agreed with 

results from experiments conducted by Nissling (2004) who reported higher mortalities for 

temperatures below 4 °C. Thompson et al. (1981) found successful development over the full 

temperature range, although from 17.4-20 °C hatching occurred prematurely before many eggs 

reached stage IV. The authors doubted the larvae were sufficiently well developed to survive. 

Egg survival until hatch between 6 °C and 18.5 °C ranged from 36% to 67%, with higher 

mortality at the extremes of the experimental temperature range. These findings of successful 

egg development above 14.7 °C are in contrast to the findings of the present study and may be 

related to possible genetic adaptations or a difference in incubation salinity between the two 

experiments. 

Results obtained by the present study enable to assess the impact of interannual changes in 

ambient temperatures on Baltic sprat egg stage duration in the field. Low temperatures prolong 

the development time of sprat eggs, thus increasing the susceptibility to predation (Nissling, 

2004). In the context of a match-mismatch hypothesis (Cushing, 1972), interannual changes in 

ambient temperatures have consequences for the successful survival of larvae as the time of 

hatch will be affected, and thus their ability to find sufficient food for first feeding. On shorter 

time scales, temperatures in the upper halocline, i.e. the water layer where sprat eggs occur 

(Nissling et al., 2003), may be affected even stronger due to the inflow of warm summer surface 

waters from the Kattegatt (Mohrholz et al., 2006). Further, the effects of temperature elevation 

due to climate change (IPCC 2002) can be investigated. Alheit et al. (2005) compared 

temperature time-series for the Bornholm Basin from 1970-1987 and 1988-2003 and found an 

increase in the spring and autumn surface mixed layer temperature by about 1.5 °C. Baltic sprat 

eggs are supposed to take advantage of a predicted elevation of ambient temperatures 

(MacKenzie et al,. 2007; Nissling, 2004) because present average ambient conditions in the 

water layer where sprat eggs occur (45 to 65 m; ~4 °C) range below the optimum survival 

temperature described for sprat eggs (Petereit et al., 2008; Nissling, 2004).  

The acquired temperature-dependent egg development model can now be applied to sprat egg 

stage abundance data in order to estimate daily mortality and egg production in the field. This 

allows the investigation of factors influencing egg survival on spatial and temporal scales as well 

as the application of the Daily Egg Production Method as a fishery independent stock assessment 

tool.  
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Abstract 

Baltic sprat (Sprattus sprattus balticus, Schneider 1908) is a key species in the Baltic Sea, as it is 

the most abundant planktivorous fish species in this pelagic ecosystem. In the present study the 

Daily Egg Production Method was applied to Baltic sprat in the Bornholm Basin, an important 

spawning ground for sprat and cod, for the years 1999 to 2008. Results were compared with 

stock size estimations obtained by a multi species virtual population analysis and results obtained 

by an acoustic survey. In general, the results obtained by the egg production method were in the 

same order of magnitude compared to the other methods, being closer to the acoustic estimate. 

However, results also revealed pronounced differences between compared methods. Since the 

accurate determination of the daily spawning fraction bears major uncertainties different 

scenarios were tested for this parameter. Least deviation to the other assessment methods was 

obtained when using a daily spawning fraction of 24%, which corresponds well to values 

described in literature. The applicability of the Daily Egg Production Method to Baltic sprat was 

clearly demonstrated and it can serve as valuable tool for the estimation of Baltic sprat stock 

sizes independent from fishery data as well as for spatial sub-areas, i.e. distinct spawning areas.  

 

Key words: DEPM, spawning frequency, Sprattus sprattus 

 

VI. 1 Introduction 

The Daily Egg Production Method (DEPM) was demonstrated to be an adequate tool to estimate 

the spawning stock biomass of pelagic fish species with indeterminate oocyte recruitment and 

multiple batch spawning (Parker, 1980; Lasker, 1985). Since then, the DEPM has been applied 

for many stocks around the world (Stratoudakis et al., 2006; Alheit, 1993). One advantage of egg 

production methods is their independence of catch data from commercial fisheries, which is 

often biased due to: (i) misreporting of catches, (ii) discards, or (iii) specific fishing patterns. 

Further, only a single survey during the peak spawning period of the species under investigation 

is necessary to assess the spawning stock biomass. In addition to the stock size estimate, the 

DEPM provides valuable biological data of the stock reproductive potential, which is often not 

taken into account in standard assessment methods, e.g. the fecundity and spawning frequency of 

fish as well as the distribution, abundance and survival of the early life stages. Therefore, the 

DEPM is a cost and time effective alternative assessment method that combines processes acting 

on biological traits from the oocyte development to the egg phase in the open sea (Stratoudakis 

et al. 2006) with the potential to provide new insights into the reproductive dynamics of the 

assessed fish species (Somarakis et al., 2004) and its interaction with the environment. One 
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disadvantage is that the DEPM cannot be applied beyond spawning season. Also, two major 

methodological challenges remain: first, in order to assess the whole population it has to be 

assured that the complete spawning area is covered by the ichthyoplankton survey and spatial 

patchiness in egg distribution is resolved sufficiently. Second, a crucial source of uncertainty in 

applying the DEPM has been identified in the determination of the spawning frequency 

(Stratoudakis et al., 2006).  

Baltic sprat is assessed by the International Council of Exploration of the Sea (ICES) as a single 

stock unit in the entire Baltic (ICES Sub-Divisions 22-32) using a virtual population analysis 

with an extended survivor analysis (XSA) based on catch data, which is tuned by an acoustic 

survey conducted in autumn and spring (ICES, 2010a). The calculation of the spawning stock 

biomass (SSB) with this standard method does not take into account observed spatial and 

temporal variability of important reproductive parameters. As comprehensive and coherent 

investigations on the variability of Baltic sprat maturity are lacking so far (ICES, 2010a), the 

maturity ogive is kept constant over the whole time series to calculate SSB. In general, more 

than 90% of the sprat stock older than 2 years is mature. However, there is a considerably 

variability in the proportion mature in age groups one and two. This may lead to a significant 

underestimation of sprat SSB in years with a high proportion of young sprat being mature or vice 

versa. Further, the spawning stock biomass is calculated without taking sex ratios into account. 

The latter approach is in contrast to observations which show that the sex ratio is skewed 

towards a higher proportion of females with increasing size or age, respectively (Grygiel and 

Wyszyński, 2003). Another shortcoming of this assessment is that the stock abundance estimates 

are not provided for stock components inhabiting different areas of the Baltic Sea. As sprat is 

known to be an important predator on eggs of eastern Baltic cod (Köster and Schnack, 1994), 

which has its main spawning ground in the Bornholm Basin, it is desirable to estimate the stock 

size in this particular area. 

Several attempts have been made in the past to estimate sprat stock sizes in the Baltic Sea by egg 

production methods. Grauman and Krenkel (1986) estimated the sprat stock covering extensive 

areas from the Arkona Basin up to the central Gotland Basin. Macarchouk (2001; 2007) 

estimated the sprat stock for the Gotland Basin applying the Hensen-Apstein method. However, 

these authors made many assumptions and simplifications concerning sprat stock structure, e.g. 

fecundity and spawning fraction, particularly crucial parameters to assess a fish stock with egg 

production methods. Kraus and Köster (2004) applied for the first time the DEPM to estimate 

sprat stock abundance for Baltic sprat. They modified the original DEPM model to calculate the 

stock size based on fish length classes. However, their study was restricted to one year only, but 

showed that this method might be applied successfully to Baltic sprat. 

In the present study, detailed observations on reproduction parameters of Baltic sprat, i.e. sex 

ratios, maturity ogives, spawning fraction, and batch fecundity were combined with total sprat 

egg production from ichthyoplankton surveys, in order to assess the stock size of Baltic sprat 

with the DEPM. Stock size estimates were thus achieved for the Bornholm Basin area (ICES 

Sub-division 25) as a continuous time-series for the years 1999 to 2008. The obtained results 

were compared with sprat abundance data from acoustic surveys and from an area disaggregated 

multi-species virtual population analysis (MSVPA). 

 

VI. 2 Materials and Methods 

Daily egg production from ichthyoplankton surveys 

 

The abundance of sprat eggs was obtained from ichthyoplankton surveys covering the Bornholm 

Basin (Tab. 1) on a 45 stations grid (10.0 * 8.5 nm miles; Fig. 1). Double oblique hauls with a 

Bongo net (Ø=60 cm; 335 µm and 500 µm mesh size) were conducted on each station. In some 
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years, not all stations were sampled due to gear failure in some cases or bad weather conditions, 

but a sufficient coverage of the basin was achieved in all years. Samples were preserved in a 4% 

buffered formaldehyde solution immediately after sampling. Samples obtained by the 335 µm 

mesh nets were sorted in the laboratory and eggs were assigned to five egg stages (Ia, Ib, II, III, 

IV according to Thompson et al., 1981). The egg abundance was calculated as eggs m
-2

 on each 

station. Because of uncertainties concerning the identification of egg stage Ib, the first two stages 

were grouped to a single stage I. The total abundance data where fitted to normal distribution 

curves to visualise the seasonal course of egg production in the investigated area. It was assumed 

that the highest observed value is an indicator for the peak spawning and was therefore chosen 

for the DEPM calculation procedure. 

 

 

Tab. 1: Ichthyoplankton sampling and daily egg production results used for spawning stock size 

estimations: cruise (AL = RV”Alkor”), month and year of sampling, number of stations, total 

egg abundance, mean ambient temperature (°C) integrated over water layers characterised by 8 – 

12 psu, stage duration of egg stage I in days, mortality rate, and daily egg production.  

cruise month year 
n 

stations 

total 

abundance 

egg stage I 

mean 

ambient 

temperature 

duration 

egg stage 

I 

daily 

mortality 

z 

daily egg 

production 

   
 

   
 

 
AL143 June 1999 42 5.62*10

12
 5.04 3.1 0.46 3.46*10

12
 

AL161 May 2000 41 1.61*10
12

 4.57 3.3 0.14 0.62*10
12

 

AL182 May 2001 45 3.72*10
12

 4.36 3.4 0.20 1.53*10
12

 

AL200 April 2002 29 3.46*10
12

 5.23 3.1 0.86 2.58*10
12

 

AL217 March 2003 45 1.88*10
12

 3.47 3.7 0.34 0.89*10
12

 

AL238 June 2004 45 1.55*10
12

 4.56 3.3 0.25 0.69*10
12

 

AL258 May 2005 42 1.14*10
12

 4.18 3.4 0.20 0.47*10
12

 

AL279 June 2006 41 2.61*10
12

 3.15 3.9 0.27 1.09*10
12

 

AL299 May 2007 38 4.36*10
12

 5.04 3.1 0.18 1.86*10
12

 

AL318 April 2008 45 3.97*10
12

 5.84 3.1 0.20 1.75*10
12

 

 

 

Total egg abundance in the area of each egg stage was estimated with an objective analysis 

(Bretherton et al., 1976) which interpolates over stations where no data are available. This 

approach is based on the Gauss-Markov theorem, which gives an expression for the linear least-

square error estimate of the variables. The analysis uses a spatial covariance function of 

measurements and assumptions concerning the measurement noise and small-scale errors 

inferred from the observed egg abundance data on each single station. In general, sprat eggs were 

present on all stations within the surveyed area during the peak spawning period. Thus, the 

whole area of the surveyed station grid was included for every year in the abundance estimate. 

Taking into account noise levels of 0 to 15% in the egg data resulted in an underestimation of 

abundances. In the worst case this method underestimates the egg abundances up to 30%. To 

account for such uncertainties, a confidence interval based on these values was constructed. 
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Fig. 1: Investigation area in the south-central Baltic. Dots show position of stations covered by 

the ichthyoplankton surveys. ICES rectangles used for stock abundance calculation from 

acoustic survey data, and for downscaling MSVPA abundance data are labelled with their code. 

 

 

To obtain an estimation of the total daily egg production (DEP), a temperature-dependent stage 

model is required to calculate the duration of egg stages. A model derived from experimental 

data (Petereit et al., 2008; chapter V) was applied:  

 

                                                                        (1)  
 
where tdi is the endpoint of the ith egg stage, T is the ambient temperature (°C), and S is the 

specific egg developmental stage. It has been shown that sprat eggs in the Bornholm Basin 

generally occur in water layers characterised by salinities of 8 – 12 psu (Nissling et al., 2003). 

Therefore, the mean temperature of these water layers was used. In order to assess the possible 

bias from estimating the ambient temperatures, the 95% confidence intervals of this parameter 

were calculated and applied to the DEP calculation. All hydrographic data were derived from the 

ICES hydrographic data base.  

 Different to the standard procedure in the DEPM (Lo, 1985), it was not possible to classify the 

sprat egg abundance data directly to daily cohorts, because neither the egg data nor the adult 

stock data gave evidence for a synchronised spawning of sprat during a certain time of the day. 

Hence, it was assumed that sprat show no synchronised spawning pattern over the day, a view 

which is also supported by other authors (Alekseev and Alekseeva, 2005). Further, the duration 

of the youngest egg stage lasts more than one day for Baltic sprat at the observed ambient 

temperatures. Therefore, it was not possible to calculate the DEP directly from fitting the 

observed egg abundance data to the exponential decay mortality model (Lo et al., 1985), as this 

will (i) overestimate the DEP by neglecting the mortality acting immediately on the eggs from 

the time of spawning until the time of sampling, and (ii) would only be an adequate estimation 

for a synchronised spawning event. Thus, a different approach was chosen to estimate the DEP 
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assuming a continuous egg production over the day and taking into account natural mortality. 

The general formulation of the exponential decay model reads: 

 

                                              (2) 

 

where ABt1 is the abundance of a given egg batch at an observed time point t1 which results of a 

specific egg production EP at t0, with mortality z acting over a period of time t1-t0. 

Since this holds true for every egg spawned prior to sampling for the total duration of all four 

defined egg stages, we may set up an integrated model to predict abundance for each egg stage 

as follows: 

 

                            

       
            (3) 

 

where the total abundance of all eggs assigned to the ith stage is given by the area under the curve 

of the exponential decay model between the endpoint of the preceding stage td(i-1) and the 

endpoint of the ith stage tdi. This area can be approximated by summing the abundance of eggs 

spawned during certain intervals of time; an hourly egg production HEP was chosen as this 

seems to be sufficiently accurate for the applied temperature-development model. It can thus be 

written: 

                           
                         (4) 

 

where instantaneous mortality zh is given for hourly death rates. Predicted abundance ABi was set 

as a dummy parameter, and the squared error calculated as the squared difference to the observed 

abundance of the respective stage. By minimizing the sum of squared errors (SSE) of all 

available egg stages, equation (4) was solved for HEP and zh. Hereby, both differing stage 

durations and constant mortality acting upon continuously produced eggs were taken into 

account. HEP and zh were then multiplied by 24 to yield the DEP and the daily mortality 

coefficient z. 

In general, the DEPM survey should be conducted during the peak spawning period, because 

then the largest part of the stock is present on the spawning ground. For most of the analysed 

years several ichthyoplankton surveys have been conducted. Thus, in order to match peak 

spawning, the highest observed egg abundance was chosen to calculate the spawning stock 

biomass with the DEPM.  

 

Stock structure and spawning fraction 

 

Sampling of adult sprat in the investigation area was carried out either on the same cruises on 

which the ichthyoplankton survey was conducted or on parallel acoustic surveys covering the 

Bornholm Basin during peak spawning time of sprat each year (Tab. 2). The length frequency 

distribution was calculated by measuring subsamples of at least 200 specimens to the nearest cm 

of each haul. Average length distributions were calculated by weighting the station specific 

length frequency distributions by the corresponding catch rates. Sex and maturity were 

determined by macroscopic inspection of at least 10 individuals per 1 cm length class from each 

haul. To estimate the spawning fraction, the hydrated oocyte method was applied assuming that 

the hydrated oocyte stage lasts 24 h (Hunter and Macewicz, 1985). This method makes solely 

use of the incidence of females with hydrated oocytes and assumes that the proportion of females 

with hydrated oocytes from all females in spawning condition represents the proportion of 

females spawning per day. However, although it is generally straightforward to identify 

advanced hydrated oocytes by macroscopic inspection of fish ovaries (Hunter at al., 1985; 
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DeMartini and Fountain, 1981), this method bears considerable uncertainties. The duration of the 

hydrated stage has to be known, which is often assumed to last approximately 24 h. Further, the 

results may be biased since clupeid fish form female dominated spawning aggregations, and thus 

females with hydrated ovaries may be oversampled in some fishery hauls (Alheit, 1985). To 

account for these uncertainties, different spawning frequencies were tested. In a first approach 

the actually observed values per length class were utilised and contrasted to results based on an 

overall mean of the observed spawning frequency values. This was done to test for the impact of 

a possible length class dependency of this parameter. In an alternative approach three scenarios 

were calculated, to investigate in which amount the stock sizes obtained by the DEPM change 

compared to stock sizes obtained by the acoustic survey and the MSVPA:  

 

Scenario I: a mean spawning frequency of SF=0.24 was utilised which was obtained by 

averaging values from recent literature (Chapter IV SF=0.22; Kraus and Köster, 2004 SF=0.27; 

Alekseev and Alekseeva, 2005 SF=0.23). 

 

Scenario II: the mean value was halved to SF=0.12. This scenario takes into account a report on 

spawning frequency of sprat from the Western Baltic (SF≈0.11; Heidrich, 1925), and a possible 

oversampling of hydrated females.  

 

Scenario III: the mean value was doubled to SF=0.48 in order to test an extreme underestimation 

of spawning frequency.   

 

Batch fecundity 

 

For fecundity analyses female sprat with fully hydrated ovaries were collected. Running ripe 

females were excluded from analyses. Whole fishes were conserved in a buffered 4% 

formaldehyde seawater solution. In order to assure a proper fixation the body cavity was slit 

open. Batch fecundity was estimated gravimetrically in the laboratory by counting the hydrated 

oocytes from an ovarian sub-sample (Hunter et al., 1985). Linear regression models with fish 

total length as predictor, and absolute batch fecundity as response variable were established for 

each year. For the year 2003 no fecundity data existed. It has been shown that a model of batch 

fecundity taking into account fish length and ambient temperature explained the largest 

proportion of variability (see Chapter I). Therefore, this model was used to estimate batch 

fecundity for each length class for the year 2003:  

 

               
       

   
 

    
 

 
 

 

 

                         (5) 

 

where BF is the batch fecundity (number oocytes spawned per batch), L the fish length class 

(0.5cm), T (3.47°C) the observed mean temperature integrated over the water column for the 

specific date (March 2003), from surface to depths where low oxygen levels prevent the 

occurrence of sprat (< 1ml l
-1

), Tmax (6.97°C±2.50SE), a (359.54±23.46SE), b (1.46±0.55SE), 

and c (-2753.16±243.51SE) regression coefficients (see Chapter I). Temperature data for this 

model were obtained from the ICES hydrographic data base. 

 

 

 

 

 

 



VI: Application of the DEPM 

_____________________________________________________________________________ 

87 

 

Tab. 2: Adult stock sampling: cruise (AL = RV“Alkor”; WH = RV“Walther Herwig III”), year 

and month of sampling, numbers of analysed sprat for establishing length class specific sex 

ratios, maturity ogives, and fecundity analyses, linear regression models on batch fecundity. BF 

= batch fecundity, L = total fish length. 

 

cruise month year number of sprat analysed fecundity models 

   
sex ratio, maturity fecundity linear regressions 

AL143 June 1999 1738 
  

WH206 June 1999 
 

48 BF = -2467 + L * 306 

AL161 May 2000 831 51 BF = -2971 + L * 381 

AL182 May 2001 1706 
  

WH228 June 2001 
 

62 BF = -4076 + L * 469 

AL200 April 2002 1074 
  

WH239 May 2002 
 

61 BF = -1583 + L * 246 

AL217 March 2003 979 
  

WH263 May 2004 
 

67 BF = -5561 + L * 581 

AL238 June 2004 564 
  

WH275 May 2005 618 102 BF = -2569 + L * 330 

WH288 May 2006 1803 142 BF = -2566 + L * 335 

AL297 April 2007 
 

14 BF = -1843 + L * 277 

AL299 May 2007 617 
  

AL318 April 2008 3187 41 BF = -4284 + L * 477 

 

 

Estimation of stock size 

 

The stock size in numbers at sampling date t (Nt) was estimated by applying a modified formula 

of the daily egg production method introduced by Kraus and Köster (2004): 

 

    
  

                           
    
   

                                                                              (6) 

 

where P0 is the total daily egg production obtained from ichthyoplankton surveys in the field, Lt,1 

is the relative frequency of length class l at date t, St,1 is the sex ratio, Mt,l the proportion mature 

females, SFt,l the fraction of females spawning per day, and BFt,l the batch fecundity.  

Stock size estimations obtained with the daily egg production method for the Bornholm Basin 

were compared with stock size estimations from (i) an acoustic survey targeting sprat population 

in the central Baltic during peak spawning period, and (ii) an area disaggregated multi species 

virtual population analysis (MSVPA; ICES, 2006). The abundance data from the acoustic survey 

are based on ICES rectangles. To obtain comparable stock abundance values, the abundance 

values from these surveys were summed up over the ICES rectangles covering the Bornholm 

Basin for each year (38G5, 39G5, 40G5, 39G6, 40G6; Fig. 1). The area disaggregated MSVPA 

stock abundance estimates are based on an ICES sub-division scale. Thus, they were down-

scaled to the area of the Bornholm Basin by the use of distribution patterns obtained from the 

acoustic survey (Köster, 1994). 
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VI. 3 Results 

Egg abundance and daily egg production 

 

Egg abundance as well as egg distribution patterns showed distinct variability over the observed 

time period. The horizontal distribution of sprat eggs observed at peak spawning revealed that 

sprat eggs occurred on nearly each sampled station of the survey grid (Fig. 2). The margins of 

the basin showed in general lower egg abundances compared to the centre. However, in some 

years with high egg abundances (e.g. 1999), also high values were found at the margins, 

indicating that not the whole spawning area was covered in some years. The maximum 

abundance ranged from 5.62*10
12

 eggs in June 1999 to 1.14*10
12

 eggs in May 2005 (Fig. 3; Tab. 

1). Peak egg abundances were mostly observed in May/June. In the year 2003 maximum egg 

abundance was observed in March, in 2002 and 2008 the maximum egg stage I abundance was 

observed in April. No egg abundance curves could be fitted in 2002 and 2001, due to limited 

data points in these years. Especially in the case of 2000 it is therefore not fully assured that the 

stock size estimation reflects the situation during peak spawning. In May/June 1999 the egg 

stage I abundance nearly tripled within two weeks from 1.9 * 10
12

 to 5.62 * 10
12

 (Fig. 3a).  

The estimation of daily egg mortality resulted in mortality coefficients ranging from 0.14 to 0.86. 

Highest daily egg production was observed for June 1999, the lowest value was found in May 

2000.  
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Fig. 2: Horizontal distribution of sprat eggs in the Bornholm Basin during peak spawning time 

1999 - 2008. 
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Fig. 3: Total seasonal egg stage I abundance in the Bornholm Basin for the years 1999 to 2008. 

 

 

Adult stock parameters 

 

Length frequency distributions of the sampled sprat stock showed a similar picture for all 

observed years (Fig. 4). The majority of fish ranged from > 11 cm to < 13 cm. In 2002, 2003, 

and 2004, a bimodal distribution was observed caused by a remarkably high proportion of 

smaller individuals. In 2004, the proportion of length classes was more evenly distributed in 

comparison to all other years. 

Sex ratios showed an increasing trend in the proportion of females with increasing fish size for 

all observed years (Fig. 4). Variability was higher in the smaller length classes, probably due to 

uncertainties in macroscopic identification of sexes in immature, small fish < 10 cm. The 

proportion of mature females showed in some years (e.g. 2000, 2001) a remarkably sharp 

increase with size, changing from around 20% up to 100% from one cm-length class to the next. 

In general there was a more or less moderate increase in the proportion mature females with L50 

values ranging between 9.5 cm and 10.5 cm length. In almost all cases the female sprat > 12.5 

cm were 100% mature.     

The daily spawning fraction of the female stock mainly ranged between 20 and 30% (Fig. 4). 

The overall mean spawning fraction was 24%. However, considerably higher values for single 

size classes were observed in some cases, e.g. in the year 2004 up to 50% in length class 12-13 

cm. Further, in 2003 a remarkably low proportion of females with hydrated oocytes was detected 

which resulted in very low spawning fractions. A clear trend of spawning frequency with fish 

size was not obvious. In some years an increase with length could be shown, in some other years 

even a decrease with fish length was observed. In almost all years no spawning frequency could 

be estimated for fish < 9.5 cm, although some of these females were classified as mature, but no 

hydrated females were detected.  
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Fig. 4: Adult stock parameters of sprat for the investigated years during the peak of spawning. 

 

 

Batch fecundity      

 

For all observed years batch fecundity was positively related to fish length (Tab. 2). Linear 

regression models were all statistically significant (p<0.05). Slopes as well as intercepts showed 

differences between some years (ANCOVA; p<0.05). The steepest slopes were found for the 

years 2001, 2004, and 2008, which were also the years with the lowest intercept. All other 

regression curves were rather similar with only minor differences. The estimated batch fecundity 

values for the year 2003 resulted in the following model: BF = -2753 + L * 321, where BF is the 

batch fecundity (oocytes spawned per batch) and L the total fish length (cm), which is in good 

accordance to the observed values for all the other years. 

 

Stock size  

 

Considering the 95% confidence intervals for mean ambient temperature values, leads to an 

uncertainty in DEPM based stock size estimates in the range of 6% to 16%. Correcting the 

calculated egg abundances for the maximum underestimation due to the objective analysis 
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resulted in 23% higher stock estimates. These results were used to create a confidence interval 

for the DEPM estimates. 

The two approaches using either observed spawning frequency values per length class or 

observed mean values, revealed a similar trend in the estimated DEPM stock sizes with high 

interannual variability (Fig. 5). The utilisation of both methods resulted only in a substantial 

difference for the 2003 stock size estimate (Fig. 5a, b). This can clearly be explained by the 

lowest observed spawning frequencies in this year. Stock sizes obtained by the DEPM were 

highest in the year 1999, followed by the lowest stock size in 2000. For the year 2002, a second 

peak in sprat abundance was detected. The DEPM then revealed a steady decrease until the year 

2005 and a continuous increase in stock size for the last three years of the time series. 

Generally, variability among the different years was even higher in the acoustic survey stock 

estimate. Similar to the DEPM, the acoustic survey detected a peak in sprat abundance in 2002, 

although the acoustic estimate is more than twice as high as the DEPM estimate. The acoustic 

stock estimate for the years 2004 and 2005 show considerable higher values compared to the 

DEPM with an opposite trend for these two years. Only in 1999, the acoustic stock size was 

considerably lower than the DEPM estimate. The acoustic survey revealed that between 31% and 

67% of the total stock in ICES sub-division 25 were detected within the Bornholm Basin during 

the survey. Accordingly, the highest absolute stock sizes in the Bornholm Basin were observed 

in those years where proportions of fish acoustically detected within the basin were also high. 

The stock estimates of the MSVPA where down-scaled to the Bornholm Basin using the 

distributions obtained from the acoustic results (Tab. 3). 

The MSVPA stock estimates are generally less variable among years compared to the other two 

methods. Only for two years (2001 and 2002), it shows a good accordance to the DEPM, when 

the mean observed spawning frequency was applied (Fig. 5b). For most years, the MSVPA stock 

size is higher compared to the DEPM, apart from the year 1999. Compared to the acoustic 

estimate the MSVPA is also higher for most of the years, but is in good accordance for the years 

2001 and 2005. Generally the trend of the MSVPA values was similar to that of the acoustic 

survey, which is due to the use of acoustic distribution patterns to down-scale MSVPA results.  

 

 

Tab. 3: Baltic sprat stock sizes (numbers * 10
9
) obtained by the acoustic survey and the MSVPA 

for the whole ICES sub-division 25 and the Bornholm Basin. MSVPA stock sizes where down-

scaled with the share of the stock in the Bornholm Basin obtained by the acoustic survey.  

 

 
quarter 2 acoustic survey 

 
MSVPA 

year 
ICES 

SD25 

Bornholm 

Basin 

Share of stock in the 

Bornholm Basin (%)  

ICES 

SD25 

Bornholm 

Basin 

     
 

 
1999 40.81 16.63 40.76 

 
52.76 21.51 

2000 n.a. n.a. n.a. 
 

44.22 22.68 
2001 29.58 9.21 31.14 

 
32.50 10.12 

2002 52.91 35.59 67.26 
 

29.40 19.77 
2003 11.40 6.47 56.74 

 
28.01 15.90 

2004 28.02 14.55 51.92 
 

43.96 22.83 
2005 35.79 23.45 65.51 

 
34.05 22.31 

2006 21.00 11.50 54.77 
 

n.a. n.a. 
2007 22.46 11.88 52.88 

 
n.a. n.a. 

2008 22.74 10.65 46.83 
 

n.a. n.a. 
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Fig. 5: Stock abundance data obtained from the DEPM (black circles, solid line), the acoustic 

survey (grey squares, dashed line), and the MSVPA (white triangles, dotted line). The DEPM 

was calculated for different spawning frequencies: (a) length class specific observed spawning 

frequency (SF) obtained by the present study; (b) overall mean spawning frequency of observed 

values from the present study. The confidence interval of the DEPM is based on the uncertainty 

in egg abundance calculation, and the estimation of mean ambient temperature for the egg stage 

duration model. 
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Fig. 6 (a) DEPM scenario I with average spawning frequency (SF) obtained by literature values, 

(b) scenario II with halved SF, (c) scenario III with doubled SF. The confidence interval of the 

DEPM is based on the uncertainty in egg abundance calculation, and the estimation of mean 

ambient temperature for the egg stage duration model.  
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When comparing the DEPM results obtained by the different scenarios with changes in spawning 

frequency by ±50% (Fig. 6), the best accordance was achieved by scenario I, i.e. when using 

literature values (Fig. 6a). In this scenario five years fit well to the acoustic estimate (2001, 2003, 

2006, 2007, and 2008), with values of the acoustic estimate still lower than the DEPM results, 

but within the DEPM confidence intervals. This is also a better accordance compared to the 

scenarios where the observed values of spawning frequency were used. In scenario I most of the 

MSVPA stock sizes are still considerably higher than the DEPM values, apart from 1999 which 

is lower. For 2001 and 2002 MSVPA estimates are well within the DEPM confidence interval. In 

scenario II the DEPM stock sizes doubled and were now higher in a number of years compared 

to the acoustic and MSVPA estimates, even exceeding both methods more than three times in 

1999. An overlap with the DEPM confidence interval was only achieved for 2002 and 2003, for 

the acoustic survey and the MSVPA respectively. By increasing the spawning frequency by 50% 

in scenario III the DEPM stock estimates were halved. In this scenario the DEPM estimates, and 

even the upper limit of its confidence intervals, are lower compared to all other estimates, apart 

from the year 1999 where it nearly equals the acoustic estimate. 

         

VI. 4 Discussion 

The application of the daily egg production method to Baltic sprat inhabiting the Bornholm 

Basin is a challenging exercise as this stock shows some peculiarities compared to other clupeid 

stocks for which this method has been applied: (i) the Bornholm Basin is a brackish water habitat 

with a unique stratified hydrography, (ii) in contrast to other clupeid species, sprat do not show a 

synchronised diel spawning pattern, (iii) uncertainties reside in the limited amount of 

information on spawning frequency of Baltic sprat. 

The first two points have consequences for the estimation of the daily egg production (DEP), 

which is one of the most influential input parameter for the DEPM. DEP is influenced by the 

temperature dependent egg stage duration, which is essential to estimate the daily mortality rate. 

Hydrography and egg buoyancy determine the vertical distribution of pelagic fish eggs (Wieland 

et al., 1994). Thus, the estimation of ambient temperature is not trivial and may be biased, 

because hydrography and buoyancy may change during the spawning season affecting the 

vertical distribution of sprat eggs (Nissling et al., 2003). An operational model on the vertical 

distribution of sprat eggs related to hydrographic features is still lacking. Consequently, the 

vertical distribution of sprat eggs was assumed to be confined to water layers characterised by 8 

– 12 psu (Kraus and Köster, 2004), based on observations made by Nissling et al. (2003). The 

results of the present study showed that the stock size estimations derived by the DEPM might 

change up to 16% due to the range in ambient temperature within the 95% confidence intervals, 

which corresponds to a possible deviation of 0.8 to 2.2 °C of the mean value. Thus, a biased 

estimate of the ambient mean temperature due to uncertainties in the vertical distribution of sprat 

eggs will affect the DEPM estimations.  

The lack of a synchronised diel spawning pattern in combination with stage durations of the 

identifiable egg stages of more than one day were impeding the classification of eggs into 

distinct daily cohorts (Lo, 1985). Therefore it was not possible to estimate daily egg production 

and mortality by directly fitting a model of exponential decay through observed abundance 

values. Since stage I eggs were already experiencing up to three days of unknown mortality, it is 

impossible to estimate DEP from this stage only. Thus, a rather continuous egg production over 

the day was assumed and daily mortality rates as well as daily egg production were modelled on 

the basis of the observed abundance data of all four stages. In the case of Baltic sprat, this 

method will result in a more precise estimation of mortality and daily egg production as the egg 

stage specific, temperature dependent development duration is taken into account. However, the 

diel spawning pattern of sprat, and possibly seasonal variation of this parameter, has to be 
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explored further since contradicting information exists on that issue in literature for Baltic sprat 

(Kraus and Köster, 2004; Alekseev and Alekseeva, 2005; Balzar, 1994). This would either 

justify the introduction of the alternative method to estimate the daily egg production from 

ichthyoplankton field data as proposed in the present study, or would demonstrate the need of an 

improvement of ichthyoplankton sampling and analyses, as it is not possible to classify the 

sampled sprat eggs into daily cohorts based on the available data. To overcome the latter 

problem a finer resolution of sprat egg development would be necessary with clearly identifiable 

stages lasting less than one day, for example by microscopic identification of cleavages in the 

youngest egg stages (Simpson, 1971). 

 Spawning frequency is one of the parameters with the highest uncertainty in the DEPM 

(Stratoudakis et al., 2006). Usually this parameter can be determined from field data by the 

postovulatory follicle (POF) method or by the hydrated oocyte method (Hunter and Macewicz, 

1985). For both methods the duration of either the POF stages or the hydrated stage has to be 

known. This can be achieved either by tank experiments or by field observations when the diel 

spawning is synchronised. For sprat it was assumed that no clear diel synchronicity of spawning 

is the case, so the POF method cannot be applied without prior tank experiments to determine 

exact POF durations. Consequently, laboratory experiments on sprat to determine the spawning 

frequency would be the only way to get an accurate measure of this parameter. However, such 

laboratory experiments are lacking so far because it was not feasible to keep Baltic sprat in tanks 

for such experiments. Hence, all recent available information on spawning frequency of Baltic 

sprat (Kraus and Köster, 2004; Alekseev and Alekseeva, 2005; see Chapter IV) is based on the 

hydrated oocyte method (Hunter and Macewicz, 1985) assuming a duration of the hydrated stage 

of approximately 24 h, based upon observations in other clupeid species (Hunter and Macewicz, 

1985). Furthermore, this method may be biased through oversampling of spawning females 

(Alheit, 1985) or uncertainties in the exact classification of maturity stages in cases where no 

histology was applied. However, results of the present study confirm literature values for this 

species and provide additional evidence that a spawning interval of 4.5 to 4 days (SF = 0.22 – 

0.25) might be realistic for Baltic sprat. The use of these values in the present DEPM application 

is justified because only the scenario using a spawning frequency in this range resulted in a 

rather good accordance between stock sizes obtained by the acoustic survey and the DEPM, two 

totally independent assessment methods, for a number of years. Spawning frequencies in the 

range of approximately four days have also been described for other clupeid fish, e.g. sardine 

(Sardina pilchardus) off Spain (East Cantabria) with a spawning frequency ranging between 

0.21 and 0.23 (see review in Ganias et al., 2003). Somewhat higher values were reported for Bay 

of Biscay anchovy (Engraulis encrasicolus), ranging between 0.26 and 0.32 (Motos, 1996), 

which is also in the range of the observed values for Baltic sprat. Compared to most other 

estimates of spawning frequency for clupeid fish species, this seems to be rather high, and was 

explained by relatively high temperatures prevailing in this area during the peak spawning of 

anchovy. Spawning frequencies in the range used for scenario III or even higher have been 

reported only for tropical species (e.g. Sardinella brasiliensis, Isaac-Nahum et al., 1988; 

Encrasicholina purpurea, Clarke, 1987). As temperatures in the Baltic are lower during sprat 

peak spawning compared to the aforementioned examples, we argue that spawning frequency is 

similar to or less than the observed values. Thus, it is highly recommended that spawning 

frequency of Baltic sprat is further assessed, and former estimations re-evaluated. This would 

also be valuable information for a number of other applications, e.g. individual based modelling 

or a matrix population model approach, where the seasonal egg production is important. 

No clear size effect of spawning frequency could be shown for sprat in the present study as it has 

been reported for other clupeid species (Claramunt et al., 2007; Ganias et al., 2003; Parrish et 

al., 1986). However, Claramunt et al. (2007) showed that spawning frequency in dependence of 

body size is best described by a logistic curve. If this is true also for Baltic sprat, and some of the 

presented data support this hypothesis, this size dependency would have a considerable influence 
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on the results of the DEPM in cases where smaller individuals are more abundant compared to 

larger individuals. The length frequency distributions showed that this is usually not the case. 

And even if this scenario would occur, the much lower proportion mature and the lower 

fecundity in the smaller length classes would further dampen the effect of high abundance. For 

the same reason, the use of fixed spawning frequencies for each length class did not result in 

pronounced differences compared to the use of length class specific spawning frequencies as in 

the length classes that most contribute to spawning, the spawning frequency is relatively stable.  

Uncertainties in the other adult stock parameters may hold sources of error, but not with the 

same impact as the discussed uncertainty in the estimation of spawning frequency. Variation 

introduced by batch fecundity values by sampling or measurement error will certainly not reach 

the level of impact on DEPM estimates compared to spawning frequency. High variability was 

observed in sex ratios and proportion mature fish, and especially for the smallest length classes 

values might be uncertain. This can be explained by (i) uncertainties of sex and maturity 

classification in these small fish by macroscopic inspection of ovaries, (ii) sample sizes of small 

length classes may be inadequate in some cases. The determination of relative length frequency 

distribution is in general straightforward and sample sizes were in all cases sufficient to get a 

representative estimation. Thus, the error introduced by these other input parameters generally 

was considerably lower than observed for spawning frequency and thus will not result in a 

comparable impact on DEPM estimates in the case of Baltic sprat.  

We assumed that all oocytes were spawned and have been fertilised successfully. However, 

fertilisation rates may be dependent on hydrographic parameters, e.g. temperature or salinity. 

Therefore, it is likely that a proportion of oocytes might not be fertilised under certain 

circumstances (Markle and Waiwood, 1985; Hempel, 1979). Unfertilised eggs rapidly sink down 

to the bottom and were thus under estimated in our egg production estimates. To further enhance 

the accuracy of the DEPM, fertilisation success in relation to hydrography should be included in 

future studies. 

In general, the DEPM application for Baltic sprat was in the same order of magnitude as results 

from the acoustic survey and the area disaggregated MSVPA, showing that its utilisation as 

alternative, fishery data independent stock estimate is justified. However, for some years 

considerable deviations between the results of the different approaches were found. This was to 

some extent to be expected as the results were not strictly comparable, especially when 

comparing the DEPM with the MSVPA. The DEPM solely assesses the sprat stock in the area 

covered by the ichthyoplankton survey, whereas the MSVPA uses a completely different 

approach for down-scaling the assessment to ICES SD 25, i.e. using the distribution patterns 

from the acoustic survey. Further, MSVPA does not account for the female proportion and uses 

constant maturity ogives, obviously an unrealistic scenario. Another source of uncertainty is the 

use of commercial catch data in the MSVPA, which might also be biased. Pronounced 

differences existed in some years between the acoustic stock size estimate and the DEPM. These 

differences might also be due to uncertainties in the acoustic methodology. Sprat occurs together 

with herring and cod in the investigated area, thus a separation of species is needed. However, 

the separation of species by means of their acoustic back scatter signal remains uncertain. Thus, 

fishery hauls have to be conducted in parallel to crosscheck species composition. In addition, age 

and weight structure has to be obtained by fishery hauls in order to calculate total abundance and 

biomass for each species. In general only two fishery hauls per ICES rectangle are conducted 

within the acoustic survey for this purpose (ICES, 2010b), which might not be sufficiently to 

represent the investigated area. Further, the spatial resolution of the acoustic survey is 

comparably low, with only two transects crossing one ICES rectangle (ICES, 2010b). Therefore, 

extrapolating the acoustic abundance estimate to large areas might introduce a certain error to the 

estimation of stock size.    

Sprat are migrating into the deep basins of the Baltic for spawning, afterwards they again 

migrate out of the basin for summer feeding, and they return not before late autumn to 
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overwinter in the warmer water layers below the halocline (Aro, 1989). Deviation between 

results obtained by the DEPM and the acoustic survey might therefore partly be explained by a 

different timing of the two applied surveys for some years. However, this can only result in 

higher stock sizes obtained by the DEPM in the present study. The DEPM was always applied 

for the time of peak abundance of sprat eggs, assuming that the largest proportion of the stock 

was located in the Basin whereas the acoustic survey was in some cases not matching the peak of 

egg abundance. It might be possible that parts of the spawning stock had already migrated out of 

the basin again while the acoustic survey took place. Thus, the large deviation for the year 2002, 

where the acoustic estimate was exceeding most of the results obtained by the DEPM scenarios, 

cannot be explained by a possible migration effect alone. But this might be the case for the 

comparable high DEPM estimate for 2003 using the observed spawning fraction, which is based 

on data from March, while the acoustic survey was conducted later in May. However, the high 

DEPM stock estimate for 2003 is solely due to the low observed spawning fraction. Using the 

observed mean spawning fraction resulted in nearly equal stock sizes for both methods.          

Refinement of methods, especially sampling and survey design to better meet requirements for 

the DEPM application, will increase the accuracy of the spawning stock estimates. The present 

application was, to a certain extent, an opportunistic approach as some of the data were obtained 

from different research cruises. Therefore, sampling of all necessary data within one survey or at 

least during the same time period is highly recommended to avoid the time lag between e.g. 

ichthyoplankton survey and adult stock sampling (Smith and Hewitt, 1985). Further, histological 

analyses of sprat ovaries could improve the determination of maturity, batch fecundity and 

spawning frequency (see Chapter II and IV). The diel spawning pattern of sprat, and possibly 

seasonal variation of this parameter, have to be explored more extensively, as contradicting 

information exists on that issue in the literature (Kraus and Köster, 2004; Alekseev and 

Alekseeva, 2005; Balzar, 1994). This would either justify the introduction of an hourly egg 

production approach, or would clearly show the need of an improvement in ichthyoplankton 

sampling and analyses, as it is not possible to classify the sampled sprat eggs into distinct daily 

cohorts with the available data. 

Quantitative studies on recruitment processes of sprat and cod, for example the estimation of 

predation pressure on cod early life stages by sprat (Köster and Möllmann, 2000) were so far 

hampered by conflicting results on Baltic sprat stock size estimations from acoustic surveys and 

the MSVPA approach. Retrospective stock assessments can be conducted by the DEPM using 

historical egg abundance data. If these data originate from ichthyoplankton surveys where cod 

egg and larval abundance data were obtained in parallel, this would enable a meso-scale spatial 

resolution to evaluate the impact of sprat predation. This method would also be suited to extend 

area specific assessments to eastern Baltic basins, e.g. the Gotland Basin, and the Gdansk Deep. 

Further, the stock can be assessed retrospectively for time periods and areas where no regular 

trawl survey monitoring is available, but still a considerable proportion of the sprat stock is 

supposed to be spawning. 

In conclusion, the present study revealed the applicability of the DEPM to assess the Baltic sprat 

stock, but some problems could not finally be resolved. Improvements have to be made in future 

applications to minimise the remaining uncertainties, especially with regards to spawning 

frequency and the diel spawning pattern. If these uncertainties can be ruled out, the DEPM is a 

promising option as fishery independent method to assess the Baltic sprat stock size.  
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Conclusion and Outlook 

 

In the present study, a number of reproductive traits of Baltic sprat were investigated, all of   

which are essential with respect to the assessment and further studies of the population dynamics 

of this key ecological species of the Baltic Sea. Interannual, seasonal and spatial variability in the 

investigated reproductive traits of Baltic sprat was revealed and could partly be attributed to 

hydrographic conditions and sprat stock size.  

Absolute and relative batch fecundity was found to differ among areas and between years in the 

southern-central Baltic, where important spawning areas of this species are located and was 

related to temperature, salinity and stock size (Chapter I). Batch fecundity decreased from west 

to east which can be explained by a decrease in salinity. The interannual variability of batch 

fecundity observed within the Bornholm Basin can be best explained by an effect of ambient 

temperature. However, time series data on growth and zooplankton abundance were not 

available for the present study. As a relation of relative sprat batch fecundity to stock size was 

found for the Bornholm Basin, it is likely that fecundity is density dependent and related to food 

availability, which should be taken into account in future studies in order to improve the models 

presented in this study to predict sprat batch fecundity. The seasonal variability for Baltic sprat 

(Chapter II) in batch fecundity was confirmed (Heidrich, 1925; Alheit, 1988). However, it was 

also found that the batch fecundity is rather stable during the peak spawning period. A slight 

increase towards the end of the spawning season could be related to a decrease in oocyte dry 

weight and diameter, which was described already for other clupeid species (Blaxter and Hunter, 

1982). This may be in response to changes in hydrographic conditions over the course of the 

spawning season to (i) maintain neutral buoyancy of eggs which is a prerequisite for survival and 

(ii) to provide the embryo with larger amounts of nutrients to increase survival probability of 

yolk sac larvae when ambient temperatures are still low at the beginning of the spawning season.      

The present study revealed that the onset of spawning may already start in January (Chapter II), 

which is earlier than what has been reported before for Baltic sprat (Ojaveer and Kalejs, 2010). 

Further, evidence was found that a second spawning peak occurred in autumn. Future studies 

should address whether this is a regular pattern in timing of sprat spawning or whether it is an 

exceptional spawning event due to environmental factors, as reported for autumn spawning in 

2002 (Kraus et al., 2003). This unusual egg production may be a waste of energy reserves and 

may therefore (i) negatively influence the probability of sprat surviving through the winter 

period, which might have consequences for year class strength, and (ii) reduce the fecundity of 

the following regular spawning season due to an early depletion of energy reserves.    

A second reproductive trait for which temperature dependence was demonstrated is the length at 

first maturity (Chapter III). Our results suggest that the proportion of small sprat contributing to 

spawning, and thus forming a part of the spawning stock, is related to ambient winter 

temperatures in the Bornholm Basin. This can be explained by the positive effect of warmer 

temperature on growth, given that sufficient prey is available. Our results suggest that, after 

comparatively warm winters, a large proportion of small (probably age class one) sprat already 

migrate into the basins and contribute to spawning. However, maturity data used for these 

analyses were all length based. Age based maturity ogives should be analysed additionally to 

confirm this hypothesis and clarify whether the observed shift in L50 translates directly into a 

shift in age at maturity. Obtaining a conclusive model to explain the variability in the proportion 

mature in the first two age classes would be of importance for the assessment. This would allow 

to recalculate the SSB for the assessed period and to evaluate the impact of variability in 

maturity ogives on the sprat stock assessment. 

Ojaveer et al. (2010) suggested a critical evaluation of the present approach of assessing the 

sprat stock of the Baltic proper as one single stock unit, because spatial differences in life history 

traits, e.g. morphometrics and growth, have been reported (e.g. Lindquist, 1971). The obvious 
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variability among the areas investigated in the present study, which may be due to spatial 

differences in growth, support this statement. 

Results on the dynamics of oocyte recruitment (Chapter IV) in Baltic sprat proved that the 

spawning batch is clearly identifiable prior to hydration, although the general indeterminate 

oocyte recruitment pattern was confirmed. This allows estimating batch fecundity from females 

in both ovarian developmental stages, i.e. the germinal vesicle migration stage and the hydrated 

stage. The advantage is that (i) sufficient material for batch fecundity analyses can be collected 

more easily, and (ii) it may be feasible to use image analysis systems to multiply sample sizes 

and to improve accuracy. The auto-diametric method could be applied to sprat in order to yield 

theoretical values of potential fecundity but also batch fecundity may be assessed. The auto-

diametric method is based on the relationship between mean oocyte diameters and oocyte density 

in the ovary (Thorsen and Kjesbu, 2001). Once a calibration curve of this relationship has been 

established fecundity can be estimated by the measurement of oocytes from a sub-sample of 

ovary tissue. In comparison to the conventional gravimetrical method where oocytes have to be 

counted manually, large numbers of samples can be processed rapidly applying a computer-aided 

image analysis system. However, the precision of the auto-diametric method should be tested 

statistically prior to a possible application to Baltic sprat. Witthames et al. (2009) reported that 

this method was less accurate when applied to the indeterminate spawner hake (Merluccius 

merluccius), compared to species with determined oocyte recruitment as cod (Gadus morhua) or 

plaice (Pleuronectes platessa). Results of the present study (Chapter IV) suggest that the 

reported spawning frequencies of approximately four days might be realistic for Baltic sprat. 

However, all available information on this reproductive trait are solely based on assumptions so 

far, including results of the present study, and a validation is a prerequisite for further effort to 

implement the DEPM and population dynamic models which take into account the daily or 

seasonal egg production of this stock. The approach of the present study to use histology and 

modern image analysis to analyse the ovarian cycle of sprat over a 24 h period is in principle 

adequate. However, sample sizes were limited and only one single 24 h fishery sampling for one 

time point of the year could be realised. Therefore, this study has to be seen as a pilot study. 

Important results on the ovarian dynamics in relation to postovulatory follicles (POF) were 

described in the present study with the major finding that the degeneration of POF equals the 

spawning interval. More effort in this direction would help to clarify the picture. Several 24 h 

fishery samplings should be carried out to get a more reliable result on the diel spawning pattern. 

Vertically resolved ichthyoplankton samplings over more than one 24 h sampling are required to 

elucidate the spawning behaviour of Baltic sprat. The latter approach was used by Balzar (1994) 

who found evidence for Baltic sprat spawning at night near the surface. However, this study was 

restricted to one sampling period in July, i.e. at the end of sprat spawning season. It has been 

reported before that sprat spawning shifts from below the halocline at the beginning of the 

spawning period to surface water layers towards the end of the spawning season (Alekseev and 

Alekseeva, 2005). This shift in spawning depth might also affect the diel spawning behaviour. 

Simpson (1971) was able to determine the diel peak spawning of sprat from ichthyoplankton 

samples by identification of the earliest cleavage egg stages. This would also be a possible 

approach to unequivocally determine the diel spawning behaviour of Baltic sprat. Otherwise, 

tank experiments could be used to investigate spawning frequency in detail (Leong, 1971). The 

latter approach would have the advantage that the effect of temperature on spawning frequency, 

duration of ovarian developmental stages and the duration of POF could be investigated in 

parallel, which is desirable and has been shown to be possible for other species (Kurita et al., 

2010). However, it is questionable if the latter approach is feasible for Baltic sprat. Sprat is a 

vulnerable fish which is difficult to handle and to keep in tanks in sufficient numbers and for a 

sufficient time to perform such experiments successfully. Further, artificial condition in tanks 

may also affect the behaviour of fish and does not necessarily reflect natural behaviour.  
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The obtained data were used to implement the Daily Egg Production Method to the Baltic sprat 

stock in the Bornholm Basin (Chapter VI). Results clearly demonstrated that the DEPM is a 

promising approach to assess this stock. In contrast to the standard procedure in sprat stock 

assessment, this approach takes into account observed variability in sprat reproductive traits. 

However, some uncertainties concerning the input parameters were identified which require 

improvement. First, it remains difficult to identify distinct daily cohorts of spawned eggs from 

the ichthyoplankton field samples with the existing classification of sprat egg development 

stages and the resulting temperature dependent development model (Chapter V). This is due to 

the relative long duration (more than one day) of the first identifiable egg stage for the observed 

range in ambient temperature. It may be useful to investigate whether it is possible to define 

more egg stages and to establish a temperature-dependent development model with a higher 

resolution (Smith and Hewitt, 1985). Secondly, it was shown that the diel spawning pattern of 

Baltic sprat is not as synchronous as in many other clupeoid species, a fact which further 

hampered the precise identification of daily cohorts of spawned eggs and the determination of 

spawning frequency from histological analyses of sprat ovaries. Improvements are especially 

necessary in the estimation of spawning frequency of Baltic sprat as discussed above. 

A number of important findings and data have been obtained by the present study concerning the 

reproductive traits of Baltic sprat. This new knowledge may serve as basis to (i) enhance existing 

assessment methods and to test alternative indices for sprat stock reproductive potential (e.g. 

female spawning stock biomass or potential egg production), (ii) implement alternative 

assessment methods (e.g. DEPM) and (iii) further investigate the population dynamics and the 

ecology of Baltic sprat. The latter may be accomplished by means of modelling, either individual 

based models (IBMs) or population based models, for which obtained data of the present work 

will serve as important input parameters. Various interesting questions concerning the 

reproductive biology of sprat still remain to be solved. Thus, further investigations are needed 

that combine sophisticated field sampling, laboratory experiments and modelling activities to 

complete our understanding of Baltic sprat reproductive biology and its potential application in 

assessment methods. 

 

A stage-based matrix model to resolve critical life stages of Baltic sprat population in 

relation to temperature 

Baltic Sea sprat recruitment is highly variable which can partly be explained by atmospheric 

forcing and changes in ambient temperature (Baumann et al., 2006a; MacKenzie and Köster, 

2004; Köster et al., 2003). Several important life history parameters of sprat are directly affected 

by changes in environmental conditions. For instance, the development and survival of early life 

stages as well as the maturation process and batch fecundity of adults are related to ambient 

temperature. However, the relative impact of processes acting on individual life stages from eggs 

to the spawning stock, finally resulting in recruitment, are still poorly understood. To resolve 

this, it is essential to identify critical life stages with respect to various environmental factors. 

Because all life stages of sprat are likely to be differentially affected by a possible global climate 

change, investigating the cumulative effects of a possible increase in ambient temperature on the 

sprat population dynamics is particularly needed. A promising approach for such a study would 

be a stage based population model. The basic principle of such models was described by Leslie 

(1945). Lefkovitch (1965) introduced a stage-based extension of this model. Since then, stage 

based matrix models have been used successfully in order to investigate the population dynamics 

of small pelagics (e.g. Mantzouni et al., 2007; Pertierra et al., 1997; Butler et al., 1993). This 

approach accounts for changes in the vital rates of each specific life stage and thus enables the 

identification of the most critical life stages in terms of population response to environmental 

forcing (Caswell, 2001). 
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Three important stage specific life history traits are usually included in such models: (i) the 

duration of a specific life stage, (ii) the stage specific mortality or probability of survival and (iii) 

stage specific reproduction output. The life table matrix describes the transition of a population 

from time t to time t+1 in terms of vital rates, i.e. the probabilities of surviving and staying in 

stage i, the probability of surviving and growing into stage i+1, and the reproductive rate per 

stage and unit time. 

 
Fig. 1: Conceptual model of a Baltic sprat population matrix. Defined are seven different stages: 

eggs, yolk-sac larvae, feeding larvae (larvae), juveniles, and three adult stages (I to III). gi = 

growth of the ith stage for i = 1 - 6, si = survival probability of the ith stage for i = 1 - 7, EPi = egg 

production of the ith stage for i = 5 - 7.  

 

 

For Baltic sprat, it would be possible to construct such a model with seven different life stages 

(Fig. 1). Many of the parameters which are needed to run such a model have been obtained by 

the present work and can be estimated as a function of temperature: the duration of egg 

development, growth of yolk-sac larvae (Petereit et al., 2008), size at maturity and batch 

fecundity. However, due to the indeterminate spawning strategy of sprat some assumptions still 

have to be made in order to calculate the total egg production of the defined adult stages. 

Spawning frequency and therefore the number of batches spawned over the whole season is still 

a source of uncertainty, but results of the present study gave some evidence that a spawning 

interval of approximately four days could be used as initial input parameter. Some input 

parameters which were not a subject of matter in the present work are available from literature, 

e.g. juvenile and feeding larvae growth rates in relation to temperature (Baumann et al., 2008; 

Baumann et al., 2006b; Clemmesen, personal communication). Some parameters have still to be 

investigated from survey data, e.g. juvenile mortality, adult growth and mortality. All these data 

combined in the described matrix model may allow to model sprat population dynamics in 

relation to changes in ambient temperature. Predicted elevation in seawater temperature is 

supposed to result in more favourable conditions for Baltic sprat recruitment  as many of sprat 

life history traits seem to be positively related to temperature (MacKenzie and Köster, 2004; 
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Nissling, 2004), and the Baltic sprat population resides in the lower temperature range of the 

species distribution. However, Baltic sprat is only one part of a complex pelagic ecosystem. A 

change in temperature may also result in a shift in marine production cycles and consequently 

may lead to mismatch situations with negative impact on sprat recruitment. A temperature 

elevation in the Baltic may also have the potential to alter the species composition and may 

favour invasive species, e.g. Mnemiopsis leidyi, which potentially is a threat for pelagic fish eggs 

and larvae via predation (Haslob et al., 2007) or via competition for food (Schaber et al., 2011). 

While the matrix model approach may allow the identification of critical life stages with respect 

to the population growth rate, it is an inadequate tool to quantitatively predict how changes in 

phenology of the respective sprat life stages and their prey and predators will act on sprat 

recruitment. To tackle the latter problem, it might be useful to couple results from ongoing 

process oriented IBM modelling activities and the matrix model approach in future studies.  
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Annex I: Maturity Keys 

A) Maturity stages for the Baltic sprat (used in LATFRI and ATLANTNIRO) 

(From: Alekseejev F.E. & Alekseejeva E.I., 1996. Assessment of gonads maturity stages and study of sex cycles, fecundity, eggs production and 

maturation rate of marine commercial fishes. Methodical manual. Kaliningrad, AtlantNIRO) 

 

Stage State Females Males 

I Juvenile Gonads are thin, thread-like, colourless and transparent. Sex of fish is not distinguishable by naked eye. 

II Immature 

(non-mature) 

Ovaries are small, tubular, slender, and yellow-orange. Oocytes are 

not visible by eye. 

If the colour is dark violet: stage VI-II!!! 

Testes are thin, flatten, half-transparent 

and greyish. 

III Ripening Ovaries increasing the size and at the end of the stage occupy up to 

2/3 of body cavity. In the beginning of stage oocytes are half-

transparent, but at the end of stage non-transparent, yellow. Only at the 

caudal end (near the ass) there might be some reddish area. Non-

transparent and yellow oocytes are seen by naked eye through the 

membrane of ovaries. Diameter of oocytes is 0.2 mm in the beginning 

of stage and 0.5 mm – at the end of stage. 

Sub-stages of stage III (differentiation of the ripening females from 

those who are close to the mature stage) are no longer separated. 

To distinguish between stage III and IV use the size of the oocytes. 

Oocytes in stage IV are slightly bigger! 

III is separated from VI-III with the help of the colour of the ovary 

(VI-III: reddish violet). 

Size of testes has increased and at the end 

of stage III they occupy most of body 

cavity. Testes are elastic on touch. At the 

end of stage, they are white (though real 

white ones are hardly available). To 

distinguish from stage IV, a cross-section 

of testes can be done. Overrun’ 

(overflow) and exude of milt should not 

occur, the form should be maintained. 
III has also a different shape of the testes 

with a triangular form. 

IV Mature 

(ripe) 

Ovaries occupy all empty space in body cavity. Non-transparent oocyte 

diameter is 0.5-0.6 mm, so oocytes are slightly bigger than in III. 

The colour of the ovary is light yellow, not reddish! 

Testes occupy all body cavity, are elastic 

and white. In cross-section, they 

„overrun‟ (overflow) exuding thick milk. 

IV-V Pre-spawning Ovaries occupy all empty space in ventral cavity firmly pressing on all 

other organs. Through the membrane of ovaries are seen large 

(diameter 0.7-1.0 mm) and transparent (hydrated) oocytes. In ovary 

they are evenly distributed between different size ripening and non-

transparent oocytes. There are no eggs available in ovaries cavity. 

It is very important to distinguish between IV-V and VI-IVh (a new 
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invention!). IV-V is mostly yellow in contrast to VI-IV which is red-

violet (but both are of course a bit transparent). 

V 

(VI-V) 

Spawning Slight pressure upon the belly extrudes eggs from the genital opening 

(press before cutting the fish!). Running during the day is really 

seldom! 

Slight pressure upon the belly extrudes 

thin milk from the genital opening, so 

press before cutting the fish!!! 

VI-III Partly 

spawned - 

ripening 

Ovaries are similar to the stage III, but have reddish-violet colour. 

Ovaries are soft on touch. In cross-section of ovaries in ovaries cavity 

are seen separate, not spent eggs. 

Use the size of oocytes to differentiate between VI-III and VI-IV 

 

VI-IV Partly 

spawned - 

mature 

Ovaries are similar to stage IV but reddish-violet. In ovaries cavity can 

be seen separate, not spent eggs. Do not judge by size of ovary but 

again by size of oocytes! 

Testes are similar to stages III and IV, but 

smaller, soft and unevenly coloured: 

Milk is remaining in the upper part (white 

areas), reddish or brownish spots occur. 

VI-IVh NEW! New invention to separate between first time spawners (IV-V) and 

those which are entering from VI-IV: Similar to IV-V (see above) but 

the colour is red-violet!!! 

 

VI Spent 

(Spawned) 

Like an early stage III, but Ovaries are very flabby (and small), mainly 

dark red, half-transparent. Small number of remaining yellow 

oocytes can be seen through membrane of ovaries. Cross-section of 

ovaries cavity has large opening in which can be seen separate, not 

spent or remaining eggs. 

Testes are small, soft and flabby. Colours 

of testes are red-brawn frequently with 

white spots. In cross-section, they not 

„overrun‟ (overflow) but small amount of 

remaining milk is exuded. 
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B) Maturity key used by the Heinrich von Thünen Institute for Baltic Fisheries, Rostock, Germany (vTI-OSF)* 

 

code   Females Males 

0 juvenile No sex differentiation by the naked eye possible 

1 juvenile immature, ovary thin, tubular and transparent 

ovary Ø > 1  -1.5 mm, oocytes not visible 

testes thin, tubular greyish 

Ø > 1 - 1.5 mm 

2 resting Ovary grey-white to yellow-pink, hyaline 

ovary Ø > 1,5 -3 mm, oocytes not visible 

testes grey, compact  

Ø > 1,5 -3 mm 

3 ripening Ovary yellow-orange, well supplied with blood, 

hyaline, 

fills up to 1/2 of body cavity 

ovary Ø >2 -3,5 mm 

testes grey with beginning elucidation, compact,  

fills up to ½ of body cavity,  

Ø >2 -3,5 mm 

4 ripening Ovary yellow to light red, opaque to semi-

transparent, fills up to 2/3 of body cavity, opaque 

yellow oocytes (0.2 -0.5 mm) are visible 

testes light grey to whitish,  

fills ½ to 2/3 of body cavity,  

Ø >2 -3,5 mm 

5 ripe Ovary tight, fills more than 2/3 of body cavity, 

yellow-reddish, numerous opaque  oocytes (0.5 - 0.6 

mm) 

testes light grey to whitish, at the edges soft, fills 

2/3 of the body cavity, releases white milt under 

pressure 

6 spawning Abdominal cavity swollen, ovary tight,  reddish,  

besides ripening opaque oocytes, numerous  

transparent oocytes (0.7 -1 mm) visible 

testes light grey to white,  

releases white and runny  

milt under pressure 

7 ripening again partly spent, ovary red to grey-red, purple, smaller,  

some hydrated oocytes left,  

otherwise similar to stage 5 

testes coloured irregular, reddish or brownish 

blots, grey at the lower edge,  

partly whitish remains of milt 

8 spent spent, ovary grey-red and hyaline, flabby,  

ovary Ø 2 - 3 mm  

testes grey to brownish, small, flabby, reduced in 

size, Ø 2-3 mm  

 

* translated into English by Holger Haslob, IFM-GEOMAR 
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Annex II: Histological features of sprat ovaries 

 

 

 

Fig. 1: Histological sections of ovaries from immature/resting until early vitellogenesis. (a) 

Resting or immature. Only oogonia and primary growth oocytes with large nuclei are visible; (b) 

oogonia (og) and primary growth oocyte (pg), nc = nucleus. (c) Beginning maturation with 

secondary growth oocytes in the cortical alveoli stage. The oocyte size has increased and cortical 

alveoli are visible at the cell periphery. (d) Oocyte with cortical alveoli at the periphery. (e) Early 

maturation, besides oogonia and primary growth oocytes first signs of vitellogenesis becomes 

visible. (f) Secondary growth oocyte with first signs of vitellogenesis; yolk granules become 

visible. Photographs taken by Holger Haslob, IFM-GEOMAR. 
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Fig. 2: Histological sections of ovaries from vitellogenesis until full hydration. (a) Oocytes in the 

vitellogenesis stage besides primary growth and oogonia. Oocytes are completely filled with 

yolk. (b) Oocyte in advanced vitellogenesis stage filled with yolk. (c) Nucleus migratory stage. 

The nucleus migrates towards the micropyle and yolk granules begin to hydrolyse. (d) Oocyte in 

nucleus migratory stage. Yolk in the center of the cell hydrolyses, nucleus migrates toward 

micropyle. (e) Hydrated stage with fully hydrated oocytes; (f) Fully hydrated oocyte. The yolk 

has completely hydrolysed and the nucleus has disintegrated. Within a short time these oocytes 

will be ovulated and spawned. Photographs taken by Holger Haslob, IFM-GEOMAR. 
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Fig. 3: Deterioration stages of postovulatory follicles. (a) Ovary recently after spawning with 

numerous fresh postovulatory follicles; (b) recent postovulatory follicles; (c) advanced 

postovulatory follicle; (d) postovulatory follicles with beginning signs of pycnosis; (e) remains 

of a postovulatory follicle in the center of the section. ca = cortical alveoli, vt = vitellogenesis, 

nm = nucleus migratory, hy = hydrated. Photographs taken by Holger Haslob, IFM-GEOMAR. 
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Fig. 4: Macroscopic and histological appearance of female sprat in an early maturation stage. (a) 

whole fish: total length = 11.4 cm, total weight = 8 g; (b) body cavity slit open; (c) dissected 

ovary; (d) enlarged ovary with oocytes becoming visible in the anterior part; (e) histological 

section with visible oogonia, primary growth oocytes and oocytes with beginning vitellogenesis. 

Edge lengths of squares in panels a – d correspond to 1cm. Photographs taken by Holger Haslob, 

IFM-GEOMAR. 
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Fig. 5: Macroscopic and histological appearance of mature female sprat. (a) whole fish, total 

length = 12.7 cm, total weight = 11 g; (b) body cavity slit open; (c) dissected ovary; (d) enlarged 

ovary with clearly visible, opaque oocytes; (e) histological section corresponding to the 

macroscopic stage. Besides oogonia and primary growth oocytes several oocytes in advanced 

vitellogenesis are visible. Also visible are some postovulatory follicles indicating repeated 

spawning. Photographs taken by Holger Haslob, IFM-GEOMAR. 
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Fig. 6: Macroscopic and histological appearance of female sprat preparing spawning. (a) whole 

fish, total length = 13.1 cm, total weight not available; (b) body cavity slit open; (c) dissected 

ovary; (d) enlarged ovary. Compared to stage 4 in this stage the oocytes have increased slightly 

in size and begin to become transparent in the center; (e) histological section corresponding to 

this stage. Besides oogonia and primary growth oocytes several oocytes in the migratory nucleus 

stage are visible. Photographs a-d taken by Dr. J. Schmidt, CAU-Kiel. Photograph e taken by H. 

Haslob, IFM-GEOMAR. 
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Fig. 7: Macroscopic and histological appearance of female sprat with fully hydrated oocytes. (a) 

whole fish, total length = 13.0 cm, total weight = 16 g; (b) body cavity slit open; (c) dissected 

ovary; (d) enlarged ovary with clearly visible and transparent oocytes; (e) histological section of 

an ovary with hydrated oocytes. Photographs taken by Holger Haslob, IFM-GEOMAR. 
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Annex III: Histology protocols 

 

Ovaries for histological analyses were fixed in a buffered 4% formaldehyde solution. From each 

ovary a sub-sample was cut and embedded in paraffin. Prior to embedding the tissue was 

dehydrated using a semi-enclosed benchtop tissue processor (Leica TP1020) following the work 

steps listed in table 1. The embedding process was done by using an embedding station (Leica 

EG1160). The produced paraffin blocks were stored in a refrigerator for at least 24 h prior to 

sectioning. Shortly before the preparation of sections the paraffin blocks were once more cooled 

down in an ice box. The rapid cooling process of the blocks enhances the quality of the histology 

sections and facilitates the sectioning with the microtome. Sections of 3 µm were produced. The 

sections were transferred onto microscope slides and stored for 24 h in an oven at 48 °C prior to 

staining. Hematoxilin-Eosin was chosen as stain. An automated staining machine was used 

(Leica ST5010). The staining process followed the steps listed in table 2.  

 

Tab. 1: Tissue processing protocol 

 

Step Reagent Time 

1 Ethanol 70% 45' 

2 Ethanol 96% 1h 30' 

3 Ethanol 96% 1h 30' 

4 Ethanol 100% 1h 30' 

5 Ethanol 100% 1h 30' 

6 1:1 Ethanol:Toluene (v:v) 2h15' 

7 Toluene 1h 30' 

8 Toluene 1h 30' 

9 1/2 Toluene 1/2 Paraffin 2h15' 

10 Paraffin 3h 
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Tab. 2: Section staining protocol 

 

Step Reagent Time (min:sec) 

1 Xylene 10:00 

2 Ethanol 100% 4:00 

3 Ethanol 80% 3:00 

4 H2O 2:00 

5 Hematoxylin 4:00 

6 H2O 2:00 

7 Acid alcohol 0:10 

8 H2O 3:00 

9 Litium Carbonate 0:10 

10 H2O 1:00 

11 Ethanol 70% 1:00 

12 Eosine-Floxine 2:00 

13 Ethanol 96% 2:00 

14 Ethanol 100% 2:00 

15 Xylene 5:00 

16 Xylene 3:00 
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