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a b s t r a c t

This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen
(N) species in Boknis Eck e a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom
water oxygen concentrations (O2�BW) fluctuate greatly over the year at Boknis Eck, being well-oxygen-
ated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The
present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4

þ),
nitrate (NO3

�) and nitrite (NO2
�) were simulated using a benthic model that accounted for transport and

biogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical
analysis. The sediments were a net sink for NO3

� (�0.35 mmol m�2 d�1 of NO3
�), of which 75% was

ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and
25% to NO3

� reduction to NO2
� by denitrifying microorganisms. NH4

þ
fluxes were high (1.74 mmol m�2 d�1

of NH4
þ), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2

�
fluxes

were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen
(DIN ¼ NO3

� þ NO2
� þ NH4

þ) during winter. This is in large part due to bioirrigation, which accounts for
76% of the benthic efflux of NH4

þ, thus reducing the capacity for nitrification of NH4
þ. The combined rate of

fixed N loss by denitrification and anammox was estimated at 0.08 mmol m�2 d�1 of N2, which is at the
lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification
and anammox respond strongly and positively to the concentration of NO3

� in the bottomwater (NO3
�
BW).

Higher O2�BW decreases DNRA and denitrification but stimulates both anammox and the contribution of
anammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is
provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed
correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite
remaining uncertainties, the results provide a general mechanistic framework for interpreting the
existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as
predicting the types of environment where these reactions are expected to occur prominently.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With a total of 2.1 � 107 Tg N, the global oceanic nitrogen (N)
reservoir dwarfs that of phosphorus (P) (1 � 105 Tg P) (Galloway,
2003; Ruttenberg, 2003). However, only 2% of oceanic N is
bioavailable as (mainly) nitrate (NO3

�), with the remainder present
as dinitrogen (N2), whichmust be fixed by diazotrophs before it can
be assimilated into biomass. Consequently, N limitation is wide-
spread in the ocean, and biological fixation is the major source of
.

All rights reserved.
bioavailable N with lower, yet significant, contributions from
continental runoff and atmospheric fallout (Brandes and Devol,
2002; Gruber, 2008). Current estimates from global isotope
modelling indicate that total N sources are not balanced with N
losses via water column and sedimentary denitrification and the
relatively minor sink of particulate organic nitrogen burial in the
seafloor (Brandes and Devol, 2002). The main reason for this
discrepancy rests with the rate of sedimentary denitrification
which, at perhaps 2e3 times higher than N fixation, is quantita-
tively the most important process in the marine N cycle (Devol,
1991; Codispoti, 1995; Middelburg et al., 1996; Codispoti et al.,
2001; Brandes and Devol, 2002; Thullner et al., 2009). In addition
to this ‘canonical’ denitrification (Brandes and Devol, 2002),
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anammox e the microbially catalyzed oxidation of ammonium
(NH4

þ) with nitrite (NO2
�) to N2 emay account for up to 25% of total

N2 production in continental shelf sediments where 35e70% of
global sedimentary denitrification takes place (Gruber and
Sarmiento, 1997; Brandes and Devol, 2002; Thamdrup and
Dalsgaard, 2002; Thullner et al., 2009). For these reasons, much
effort has been placed in recent years on accurately constraining
rates of benthic denitrification and anammox in these settings (e.g.
Trimmer and Nicholls, 2009).

The source/sink strength of marine sediments for fixed N
depends on the rates of the complex array of regulatory microbially
mediated pathways occurring there in addition to environmental
variables. Organic-rich sediments on continental shelves with low
bottom water oxygen concentrations are well recognised loci of
denitrification (Berelson et al., 1996; Middelburg et al., 1996). These
areas may provide a negative feedback with productivity cycles and
amplify the importance of denitrification as a global sink for reac-
tive N in the oceans. The individual role of high carbon content and
low oxygen levels on denitrification is, however, more difficult to
isolate and quantify since they often occur simultaneously (Hedges
and Keil, 1995). In extreme settings, such as oxygen minimum
zones (OMZs) or hypoxic water bodies, the N cycle is often domi-
nated by dissimilatory reduction of nitrate to ammonium (DNRA),
a microbial reaction carried out by large sulfide oxidizing bacteria
such as Beggiatoa and Thioploca which can store NO3

� internally at
mM concentrations (Fossing et al., 1995; Schulz and Jørgensen,
2001; Jørgensen and Nelson, 2004). In contrast to denitrification
and anammox, DNRA recycles NO3

� to NH4
þ and preserves fixed N in

the system, potentially leading to large fluxes of NH4
þ to the water

column (Otte et al., 1999). Although these giant bacteria are
commonly associated with striking microbial mats, they are
widespread in coastal sediments where free sulfide accumulates in
the porewater (e.g. Jørgensen and Nelson, 2004). Yet, due to the
comparably few studies that have assessed DNRA in direct combi-
nation with denitrification, the importance of this process for
overall N cycling in marine sediments, especially those in season-
ally hypoxic environments, is unclear.

The rate of NO2
� production and consumption in porewater is

a critical factor in the sedimentary N balance since NO2
� is a reactive

intermediate in both the nitrification of NH4
þ to NO3

� and in the
canonical denitrification of NO3

� to N2. Uncoupling of these reac-
tions often leads to accumulation of NO2

� in the porewater, which
can elevate the importance of anammox to total benthic N2
production (Dalsgaard et al., 2005). These authors observed
a correlation between water depth and the relative importance of
anammox to total N2 production, hypothesising that carbon
oxidation rate was the principle control on anammox versus
denitrification. Sediment reworking by bioturbation and the
flushing of burrows by infaunal organisms with overlying seawater
(i.e. bioirrigation) can also stimulate coupled nitrifica-
tionedenitrification and/or direct denitrification from overlying
water nitrate and complicates the interpretation of measured
fluxes (Aller et al., 1983; Gilbert et al., 2003; Dunn et al., 2009;
Bertics et al., 2010). Ultimately, the amount of fixed N that is
removed from the seafloor depends on the interplay between the
fraction of in situ produced NO2

� that is nitrified or flushed out of
the sediment and the fraction that is denitrified to N2.

In the present study, we combine ex situ fluxes of dissolved
nitrogen species (DIN ¼ NH4

þ, NO2
�, NO3

�), porewater analyses,
sulphate reduction rate measurements and reactionetransport
modelling to identify and quantify the major processes driving the
fluxes of DIN to and from the sediment in a shallow water (28 m)
seasonally hypoxic channel in the SW Baltic Sea (Boknis Eck in the
Eckernförde Bay). A systematic sensitivity analysis on the model
output is performed to analyse how key environmental variables
including carbon fluxes, irrigation rates and bottom water chem-
istry, regulate the rates of denitrification, nitrification, anammox,
DNRA and the relative contribution of anammox to total N2
production. Our intention is to provide a mechanistic framework to
provide further insight into the known trends of anammox and
denitrification (Dalsgaard et al., 2005), thereby highlighting the
types of environment where these reactions are expected to occur
prominently.

2. Material and methods

2.1. Study site

Boknis Eck is a small channel located at the northern entrance of
Eckernförde Bay (54� 310N,10� 200 E) and has awater depth of about
28 m (Fig. 1). Frommid March until mid September, vertical mixing
is restricted by density stratification of the water column, which
leads to pronounced periods of hypoxia during late summer due to
microbial respiration of organic material in the bottom waters and
sediment (Hansen et al., 1999). Phytoplankton blooms generally
occur in autumn (September to November) and spring (March/
April), and around 75% and 50% of the total bloom production is
deposited on the seabed, respectively (Smetacek, 1984), giving rise
to an increase in benthic activity (Graf et al., 1983). Autumn storms
and a decrease in surface water temperature cause a mixing of the
water column and ventilation of the deeper water layers with
increased nutrient concentrations (Hansen et al., 1999). During
winter, the oxygen penetration depth into the sediments is higher
than in summer yet variable (Graf et al., 1983).

The sediments at the study site in Boknis Eck are classified as
fine grained muds (<40 mm) with a carbon content of 3e5 wt.%
(Balzer et al., 1986, 1987). With no significant terrestrial runoff, the
bulk of organic matter within Eckernförde Bay sediments origi-
nates from marine plankton and macroalgal sources (Orsi et al.,
1996). Degradation and fermentation of organic matter is suffi-
ciently high to produce free methane gas at Boknis Eck but fluid
seepage from groundwater discharge has not been observed
(Whiticar, 1982; Schlüter et al., 2000). The dominant fauna in the
sediments in winter/spring are the polychaetes Pectinaria koreni
and Nephtys ciliate with recorded abundances of 201e476 and
63e122 individuals m�2, respectively (Graf et al., 1982). Specimens
up to 10 cm long were present in the core presented in this paper.
Bacterial mats were absent on the surface of Boknis Eck sediments
at the time of sampling, but Beggiatoa are present below the
sediment surface at the redox interface at the top of the sulfide
layer (Preisler et al., 2007). In late summer 2010 when the bottom
waters become almost anoxic (Hansen et al., 1999), we observed
a blackening of the surface sediments and colonization by Beg-
giatoa filaments.

2.2. Sampling and analytical methods

Sediment samples were obtained on 18 and 23 February 2010,
prior to the spring bloom input, using a multiple corer (MUC)
which retrieved cores with a diameter of 10 cm and a maximal
length of ca 35 cm. On 1 July 2010 the sediments were sampled
using a gravity core. Upon recovery, the cores were immediately
transferred to a cool room (4e8 �C) in the IFMeGEOMAR labora-
tory. Three MUC cores were obtained on 18 February, two of which
were subesampled for porewater by squeezing 1e2 cm thick sli-
ces using a low pressure squeezer (argon at 1e5 bar), filtered
through 0.2 mm cellulose acetate Nuclepore� filters and collected
in recipient vessels. The third core was sampled anaerobically
using Rhizons�. Two MUC cores were obtained on 23 February,
one of which was sub-sampled for porewater by squeezing and



Fig. 1. Location (black square) of the time series station Boknis Eck in the Eckernförde Bay (SW Baltic Sea).
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the other using Rhizons. The gravity core was sub-sampled down
to 310 cm using Rhizons only. Wet sediment samples (w5 ml)
were collected and stored (4e8 �C) for the determination of
porosity.

The squeezed porewater samples were analyzed immediately
for total alkalinity, nitrate, nitrite, ammonium and sulfide. The
porewater sampled using Rhizons was simultaneously analyzed for
TA and ammonium and on one occasion sulfide. Porewater TA was
determined by titration with 0.02N HCl using the Tashiro indicator,
with calibration against IAPSO seawater standard with an accuracy
of 0.01 mEq l�1. Nitrate, nitrite, ammonium and sulfide concen-
trations were analyzed using standard photometric procedures
(Grasshoff et al., 1983) on a Hitachi U2800 photometer. Samples for
dissolved inorganic carbon determination were acidified to CO2
with phosphoric acid and measured on a Jena Analytik multi N/C
2100 S analyzer by NDIR analysis. Sulfate concentrations were
determined by ion chromatography (Metrohm ion chromatograph
with a conventional anion exchange column) using the IAPSO
seawater standard for calibration with a relative precision of <5%.
There were no obvious differences in the measured concentrations
of the samples obtained by Rhizons and squeezed sediments and,
therefore, they are not discussed individually.

In this paper, we also present previously published rates of
benthic sulfate reduction measured on 5 and 6 March 2002 by
Treude et al. (2005). These data are only used to constrain the order
of magnitude reactivity of organic carbon because interannual
differences in temperature and carbon deposition history can affect
the temporal evolution of the rates. Analytical details are presented
by these authors.

Concentrations of dissolved oxygen and nutrients in the water
column were measured as part of the Boknis Eck Time Series
project and determined using standard methods (Hansen, 1999;
Hansen and Koroleff, 1999).
In parallel with the porewater and water column studies, sedi-
ment cores were taken for incubation experiments. TwoMUC cores
including overlying water were transferred to the laboratory and
incubated at in situ temperature in darkness with a loose fitting lid.
The supernatant water was continually circulated using a stirrer
ensuring no resuspension of sediment. After 24 h, aliquots were
taken from each core at regular intervals for up to 120 h for analysis
of nutrients following the methodology described above for pore-
water. Corrections were made to the flux calculations account for
the decrease in water volume with removal of aliquots over the
incubation period.

2.3. Model development

2.3.1. Coupling reaction and transport
A steady state reactionetransport model (RTM) was developed

for the upper 60 cm of sediments. This depth was chosen in order to
capture the main trends in the geochemical profiles in the surface
sediment as well as the depth where sulfate reduction ends and
methanogenesis begins. In 1eD, the following mass conservation
equations (Berner, 1980; Boudreau, 1997) were used to resolve the
depth concentration profiles of aqueous, Ca(z,t) and solid, Cs(z,t),
species in addition to intracellular nitrate stored in large sulfur
bacteria, (Cb(z,t), along the vertical z axis:

4ðzÞvCaðz; tÞ
vt

¼ v

vz

�
4ðzÞðDðzÞ þ DbðzÞÞ

vCaðz; tÞ
vz

�

� 4ðzÞvaðzÞvCaðz; tÞ
vz

þ aðzÞ4ðzÞðCað0; tÞ

� Caððz; tÞÞÞ þ 4ðzÞ
X

Rðz; tÞ (1)
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ð1� 4ðzÞÞvCsðz; tÞ
vt

¼ v

vz

�
ð1� 4ðzÞÞDbðzÞ

vCsðz; tÞ
vz

�

� ð1� 4ðzÞÞ vsðzÞvCsðz; tÞ
vz

þ ð1� 4ðzÞÞ
X

Rðz; tÞ ð2Þ

4ðzÞvCbðz;tÞ
vt

¼ abðzÞ4ðzÞðCbð0;tÞ�Cbðz;tÞÞþ4ðzÞ
X

Rðz;tÞ (3)

where t (d) is time, 4(z) is depth-dependent porosity assumed to be
at steady state, va(z) (cm d�1) and vs(z) (cm d�1) are the advective or
burial velocities of porewater and solids, respectively, D(z) (cm2

d�1) is the tortuosity corrected molecular diffusion coefficient,
Db(z) (cm2 d�1) is the biodiffusion coefficient representing sedi-
ment mixing by bioturbation, a(z) (d�1) is the depth-dependent
bioirrigation coefficient for solutes, Ca(0,t) is the solute concentra-
tion at the sedimentewater interface, ab(z) (d�1) is the coefficient
for non-local transport of nitrate by filamentous sulfide oxidizing
bacteria and Cb(0,t) is the intracellular nitrate concentration at the
sedimentewater interface. SR is the sum of the rate of change of
concentration due to biogeochemical reactions. Solute and solid
concentrations were modeled in units of mmol cm�3 and dry wt.%,
respectively. The constitutive equations describing the calculation
of the depth-dependent parameters 4(z), D(z), vs(z), va(z), Db(z),
a(z) and ab(z) and corresponding parameters are detailed in the
Supplementary Material.

In addition to the above model, hereafter referred to as the
‘short core’, we developed a second model for the sediments
extending from the base of the bioturbation and bioirrigation layer
(ca 10 cm) down to 500 cm. The purpose of this model, hereafter
referred to as the ‘long core’, was to provide additional data on bulk
reactivity of pelagic particulate organic matter deposited on the
seafloor (POM) as well as determining solute concentrations to be
used as the lower boundary conditions of the short core where
measured concentrations were absent (see below). This approach
was necessary since the burial velocity has changed over time,
decreasing from 0.3 to 0.9 cm yr�1 in the surface layers to
0.07e0.12 cm yr�1 at ca 30 cm depth (Balzer et al., 1987; Nittrouer
et al., 1998). We assumed the burial velocity in the long core model
was 1.9 � 10�4 cm d�1 (0.07 cm yr�1), and 1.1 � 10�3 cm d�1

(0.4 cm yr�1) in the short core model.
The long core model considers the reaction and transport of

solutes and upward advection of methane gas (CH4(g)) using Eq. (4)
and (5), respectively:

vCaðz; tÞ
vt

¼ v

vz

�
D
vCaðz; tÞ

vz

�
� u

vCaðz; tÞ
vz

þ
X

rðz; tÞ (4)

vCH4ðgÞðz; tÞ
vt

¼ �ug
vCH4ðgÞðz; tÞ

vz
þ
X

rðz; tÞ (5)

where u (cm d�1) is the sediment burial velocity and ug (cm d�1) is
the gas advection velocity, defined as:

ug ¼ u� ug0 (6)

where ug0 (cm d�1) is the gas advection velocity at the sediment
surface determined from model simulations of gassy sediments in
Eckernförde Bay (Mogollón et al., 2009). The above equations
assume constant porosity, which is justified based on measure-
ments in the gravity core, and that the small gas concentrations
predicted by the model do not significantly affect the transport of
solutes (Mogollón et al., 2009). Model parameter values are listed in
the Supplementary Material.
The short and long core models are both run to steady state, that
is vCi/vt¼ 0 in Eq. (1) (for i¼ a,s,b) and vCH4(g)/vt¼ 0 for CH4(g). This
assumption is discussed in 3.2. POC and PON mineralization.

2.3.2. Reaction network and parameterization
Short core. Solutes considered were oxygen (O2), sulfate (SO4

2�),
total hydrogen sulfide (TH2S), total alkalinity (TA), total dissolved
carbon dioxide (TCO2), nitrate (NO3

�), intracellular nitrate stored
within large sulfur bacteria (NO3

�
bac), nitrite (NO2

�), dinitrogen (N2),
ammonium (NH4

þ) and dissolved methane (CH4). The only solid
species reported in this study is POM. However, the model also
includes the phosphorus and iron cycles including dissolved ferric
iron (Fe2þ) and solid reactive iron oxide (Fe(OH)3). Since the focus
of was on the benthic nitrogen cycle, their discussion is reserved for
a separate manuscript. The reaction network and relevant conver-
sion factors for simulating mixed phase reactions are detailed in
Table 1 and kinetic parameters are listed in Table 2.

The chemical reactions are ultimately driven by the degrada-
tion of POM, considered here to occur by aerobic respiration,
denitrification, dissimilatory iron reduction, sulfate reduction and
methanogenesis. Three reactive POM pools (Gi) were considered;
a fast reacting pool (i ¼ 1) which decays in the 10 cm upper mixed
layer and two additional pools of lower reactivity (G2 and G3)
which decay over much longer time scales. In the model, POM is
chemically defined as CH2O(NH3)(N:C)i where (N:C)i is the miner-
alization ratio of particulate organic nitrogen (PON, assumed
equivalent to NH3) to particulate organic carbon (POC, defined
chemically as CH2O) in pool i ¼ 1, 2, 3. POM degradation is
described by first order kinetics using individual rate constants,
kGi, for each pool. The rate of POM mineralization at each depth by
each pathway is determined by concentration of electron accep-
tors existing at that specific depth using Michaelis Menten kinetic
limitation terms (fj, Table 1). Mineralization liberates TCO2 and
NH4

þ to the porewater according to the N:C ratio of the POM.
Ammonification is a term used here to describe the release of
inorganic nitrogen as NH4

þ during POM mineralization. The
reduced metabolites of POM mineralization (NH4

þ, Fe2þ, H2S, CH4)
were allowed to leave the sediment by diffusion, burial and irri-
gation or be oxidized.

The first order rate constants which define POM reactivity were
constrained from the measured data. The reactivity of G1 was
primarily obtained by simulating the fluxes and concentrations of
NH4

þ and the sulfate reduction rates measured ex situ using 35SO4
2�

(Treude et al., 2005). A better simulation of the data was obtained
by allowing enhanced degradation of organic matter by aerobic
versus anaerobic respiration pathways (e.g. Hedges and Keil, 1995),
prescribed using the factor, (fox, Table 1). The reactivity of G2 and
G3 was extracted by modeling SO4

2�, TA, TCO2 and NH4
þ concen-

trations in the long core (see Supplementary Material). Ex situ NH4
þ

fluxes provided a further check on total POM degradation.
Canonical denitrification was modeled as a two step process,

NO3
� / NO2

� / N2 (RNO3, RNO2), with NO2
� as an intermediate

species (Table 1). For simplicity, these reactions are referred to as
step 1 and step 2 of denitrification, although step 1 is not a deni-
trifying (N2 producing) reaction. The kinetics of this process was
formulated such that POM degradation via NO3

� was inhibited by
the accumulation of NO2

� due to greater catabolic energy yields for
the second step under standard conditions, i.e. POM was prefer-
entially degraded by NO2

� before NO3
�. The formation of nitrous

oxide (N2O) during the intermediate steps of denitrificationwas not
considered. Nitrification is described as the stepwise oxidation of
NH4

þ / NO2
� / NO3

� (RNH4ox, RNO2ox) since it requires the inter-
vention of 2 bacteria (e.g. Nitrosomonas and Nitrobacer spp.).
Nitrification competes for NO2

� with denitrification (RNO2) and
anammox (Ramx). Due to the presence of Beggiatoa, DNRA is also



Table 1
Reaction networks used in the models. Rates of POM degradation are dependent on the specific pool, Gi, under consideration. For the short core, i ¼ 1, 2, 3, and for long core,
i ¼ 2, 3. Porewater species are in mmol cm�3 of porewater and solid phase species in dry wt.%. Gi is defined as CH2O(NH3)(N:C)i.

Rate Stoichiometry Rate expressiona Unit

Short core
RO2 Gi þ O2 / (N:C)iNH4

þ þ (1e(N:C)i)CO2 þ (N:C)iHCO3
� þ

(1e(N:C)i)H2O
kGi$fox$Gi/fPOC$fO2 mmol cm�3 d�1 of TCO2

RNO3 Gi þ 2NO3
� / 2NO2

� þ (N:C)iNH4
þ þ (1e(N:C)i)CO2 þ (N:C)iHCO3

� þ
(1e(N:C)i)H2O

kGi$Gi/fPOC$fNO3$(1efNO2)$(1efO2) mmol cm�3 d�1 of TCO2

RNO2 Gi þ 1.33NO2
� þ (1.33 þ (N:C)i)CO2 / 0.66N2 þ (N:C)iNH4

þ þ
(1.33 þ (N:C)i)HCO3

� þ (1.33e(N:C)i)H2O
kGi$Gi/fPOC$fNO2$(1efO2) mmol cm�3 d�1 of TCO2

RFe Gi þ 4Fe(OH)3 þ (1 þ (N:C)i)CO2 / 4Fe2þ þ (8 þ (N:C)i)HCO3
� þ

(N:C)iNH4
þ þ (3e(N:C)i)H2O

kGi$Gi/fPOC$fFe$(1efNO3)$(1efNO2)$(1efO2) mmol cm�3 d�1 of TCO2

RSO4 Gi þ 0.5SO4
2� þ (N:C)iCO2 þ (N:C)i$H2O / 0.5H2S þ (N:C)iNH4

þ þ
(1 þ (N:C)i)HCO3

�
kGi$Gi/fPOC$fSO4$(1efFe)$(1efNO3)$(1efNO2)$(1efO2) mmol cm�3 d�1 of TCO2

RCH4 Gi þ (N:C)iH2O / 0.5CH4 þ (N:C)iNH4
þ þ (0.5e(N:C)i)CO2 þ

(N:C)iHCO3
�

kGi$Gi/fPOC$(1efSO4)$(1efFe)$(1efNO3)$(1efNO2)$(1efO2) mmol cm�3 d�1 of TCO2

RDNRA HS� þ NO3
� þ CO2 þ 2H2O / SO4

2� þ NH4
þ þ HCO3

� kDNRA$NO3
�$TH2S mmol cm�3 d�1 of NO2

�

Ramx NH4
þ þ NO2

� / N2 þ 2H2O kamx$NO2
�$NH4

þ mmol cm�3 d�1 of N2

RNH4ox NH4
þ þ 1.5O2 þ 2HCO3

� / NO2
� þ 3H2O þ 2CO2 kNH4ox$O2$NH4

þ mmol cm�3 d�1 of NH4
þ

RNO2ox NO2
� þ 0.5O2 / NO3

� kNO2ox$O2$NO2
� mmol cm�3 d�1 of NO2

�

RH2Sox HS� þ 2O2 þ HCO3
� / SO4

2� þ CO2 þ H2O kH2Sox$O2$TH2S mmol cm�3 d�1 of HS�

RAOM CH4 þ SO4
2� / HS� þ HCO3

� þ H2O kAOM$CH4$SO4
2� mmol cm�3 d�1 of CH4

Long core
RSO4 Gi þ 0.5SO4

2� þ (N:C)iCO2 þ (N:C)iH2O / 0.5H2S þ (N:C)iNH4
þ þ

(1 þ (N:C)i)HCO3
�

RGi$fSO4 mmol cm�3 d�1 of TCO2

RCH4 Gi þ (N:C)iH2O / 0.5CH4 þ (N:C)iNH4
þ þ (0.5e(N:C)i)CO2 þ

(N:C)iHCO3
�

RGi$(1efSO4) mmol cm�3 d�1 of TCO2

RAOM CH4 þ SO4
2� / HS� þ HCO3

� þ H2O kAOM$CH4$SO4
2� mmol cm�3 d�1 of CH4

RGF CH4 / CH4(g) if CH4 � CH4
* kGF$(CH4eCH4*) mmol cm�3 d�1 of CH4

Rdiss CH4(g) / CH4 if CH4 < CH4
* and CH4(g) > 0 kdiss$(CH4*eCH4)$CH4(g) mmol cm�3 d�1 of CH4

a Methodology for estimating RGi for the long core model is provided in the Supplementary Material.
Conversion factor between POC (dry weight %) and TCO2 (mmol cm�3): fPOC ¼ 100%,12gC=molC,4ðzÞ=ð103mmol=mol,rs,ð1� 4ðzÞÞÞ.
Kinetic limiting terms: f j ¼ ½j�=ð½j� þ KjÞ(for j ¼ O2, NO2

�, NO3
�, Fe(OH)3, SO4

2�), where Kj is the half-saturation constant for electron acceptor j.
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included (RDNRA). We consider that the major end products of this
reaction are SO4

2� and NH4
þ (Jørgensen and Nelson, 2004).

Denitrification coupled to Fe2þ oxidation (Straub et al., 1996)
may compete with canonical denitrification for NO3

�. Abiotic or
biotic oxidation of NH4

þ by metal oxides may also act as an in situ
source for NO3

� which can be denitrified (Hulth et al., 1999). These
reactions were not considered in the model due to a lack of data
needed to constrain their rates and their relevance remains
uncertain at this time. In what follows, the term ‘denitrification’
applies to canonical denitrification (i.e. RNO2 and RNO3) rather than
anammox or anaerobic iron oxidation.

Anaerobic oxidation of methane (AOM) is the final reaction
considered in the short core model, and was described using
bimolecular kinetics (RAOM, Table 1). This expression thus does not
explicitly account for reactive intermediates (e.g. hydrogen,
acetate) which may be shuttled between methane oxidizers and
sulfate reducers (e.g. Dale et al., 2008a), yet it is sufficient to meet
the objectives of this study.

Long core. The reaction network for the long core model was
a simplified version of the short core model (Table 1). Solutes
considered were SO4

2�, TCO2, NH4
þ and CH4. Gaseous methane

(CH4(g)) was also included since upward transport and dissolution of
gas may be an important control on the CH4 profile and, by exten-
sion, on the depth of sulfate penetration (Mogollón et al., 2009).

POM was assumed to be mineralized by sulfate reduction and
methanogenesis only since other degradation pathways are mainly
confined to the upper 10 cm mixed or bioturbated layer. POM
concentrations were not modeled explicitly; instead the rate of
POM degradation in the long coremodel was imposed directly. Two
reactive POM pools were considered; G2 and G3 as defined above.
The fast reacting G1 pool pertains to the upper mixed layer only. G2
and G3 were assumed to undergo exponential decay with depth
(i.e. time) in the sediment (Berner, 1964), which allowed the
following degradation rates of these fractions to be formulated on
the basis of the carbon containing fraction:

RG2ðzÞ ¼ RG2ðbÞ,exp½ � gG2,ðz� zbÞ� for z> zb (7)

RG3ðzÞ ¼ RG3ðbÞ,exp½ � gG3,ðz� zbÞ� for z> zb (8)

where depth, z, refers to the sediment depth below the bio-
turbation zone, RGi(z) (mmol cm�3 d�1 of C) is the depth-dependent
rate of POC mineralization of POM pool i ¼ 2 or 3, RGi(b) is the rate
at the base of the bioturbated layer (z¼ b) and gGi (cm�1) is the rate
attenuation coefficient. The procedure for estimating these
parameters is outlined in the Supplementary Material.

The other reactions considered in the long core are AOM and
methane gas production and dissolution. The rates of gas forma-
tion, RGF, and dissolution, Rdiss, were described using kinetic
expressions of the departure from the local solubility concentra-
tion, CH4* (Dale et al., 2008b). CH4* (mol L�1) depends on salinity,
temperature and pressure and was calculated using the algorithm
in Dale et al. (2008b).

2.3.3. Boundary conditions and model solution
In the short core, boundary conditions at the top of the sediment

for solutes were imposed as fixed concentrations (Dirichlet
boundary) using values measured in the bottomwater or estimated
from the porewater data in the surface sediments. The intracellular
nitrate concentration (NO3

�
bac) is unknown, but given that the

surface sediments were oxygenated and no surface Beggiatoa were
observed, the concentration to NO3

�
bac was set equal to NO3

�.
Concentrations of O2, NO3

�, NO3
�
bac, NO2

�, N2 and SO4
2� at the bottom

(z¼ 60 cm) were specified as a zero gradient (Neumann boundary).
Bottom boundaries for TA, TCO2, TH2S, NH4

þ and CH4 were defined
as fixed concentrations determined from the measured data and



Table 2
Parameters used in the reaction network of the short and long core models. (L: based on previously reported values; M: constrained with the model, I: independently
determined from data).

Parameter Description Value Unit Source

Short core
kG1 Rate constant for G1 degradation 1.4 � 10�4 d�1 M
kG2 Rate constant for G2 degradation From long core
kG3 Rate constant for G3 degradation From long core
fox Enhancement factor for aerobic POM degradation 10 1 M
KO2 Half-saturation constant for O2 1 mM La

KNO3 Halfesaturation constant for NO3
� 10 mM La

KNO2 Halfesaturation constant for NO2
� 10 mM La

KFe Halfesaturation constant for Fe(OH)3 0.028 wt.% La

KSO4 Halfesaturation constant for sulfate From long core
kNH4ox Rate constant for aerobic oxidation of NH4

þ 2.7 � 104 M�1 d�1 La

kNO2ox Rate constant for aerobic oxidation of NO2
� 2.7 � 104 M�1 d�1 La

kamx Rate constant for anammox 2.7 � 104 M�1 d�1 La

kDNRA Rate constant for DNRA 2.7 � 105 M�1 d�1 La

kH2Sox Rate constant for aerobic oxidation of TH2S 2.7 � 104 M�1 d�1 La

kAOM Rate constant for AOM From long core
(N:C)1 Molar mineralization ratio of N:C in G1 9.5/106 mol N (mol C)�1 M
(N:C)2 Molar mineralization ratio of N:C in G2 From long core
(N:C)3 Molar mineralization ratio of N:C in G3 From long core

Long core
kG2 Rate constant for G2 degradation 4.1 � 10�6 d�1 M
kG3 Rate constant for G3 degradation 1.15 � 10�6 d�1 M
KSO4 Halfesaturation constant for sulfate 0.5 mM Lb

kAOM Rate constant for AOM 27.4 M�1 d�1 Lb

kGF Rate constant for methane gas formation 0.27 d�1 Lb

kdiss Rate constant for methane gas dissolution 2.73 M�1 d�1 Lb

CH4* In situ solubility of methane gas 7 mM I
(N:C)2 Molar mineralization ratio of N:C in G2 8/106 mol N (mol C)�1 M
(N:C)3 Molar mineralization ratio of N:C in G3 27/106 mol N (mol C)�1 M

a Bohlen et al. (2010).
b Dale et al. (2008b).
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the steady state results from the long core model. This choice of
boundary condition is justified since the concentration and fluxes
of these solutes below 60 cm are highly influenced by the miner-
alization of the G2 and G3 pools (see Section 3.2). Fluxes for solids
were imposed at the sediment surface (Robin boundary). The G1
flux was constrained from the measured rates of sulfate reduction
whereas fluxes of G2 and G3were set equal to the respective depth-
integrated rates of POC mineralization obtained from the long core.
At the bottom solids were specified with a zero gradient.

In the long core, solute boundary conditions at the top of the
sediment (z¼ b) were imposed as fixed concentrations using values
which were measured (SO4

2�, TA, TCO2, NH4
þ) or estimated (CH4).

Solute concentrations at the bottom were specified as a zero
gradient.

The set of coupled partial differential equations that describes
the dynamics of the model variables was transformed using the
method of lines by replacing the continuous spatial derivatives in
Eq. (1) to (5) with finite differences (Boudreau, 1997). The resulting
set of ordinary differential equations was solved using the NDSolve
algorithm in MATHEMATICA over an uneven grid of 600 nodes of
increasing thickness with depth in the sediment for both the short
and long core models. The models were >99% mass conservative.

2.4. System analysis

The reactionetransport model is a highly interconnected
biogeochemical system with many potential couplings between
reactions. It is our interest to determine which aspects of the
parameter set, forcing functions and associated uncertainties, have
the most effect on N turnover rates. Taking a stepwise approach
involving manually changing parameter values individually and
observing the model response change does not identify couplings
between parameters. Consequently, a system analysis based on
a two level factorial design was applied to the model to determine
which parameters and boundary conditions have themost effect on
N turnover rates. This statistical methodology monitors the
response of a predefined system output or attribute (for example,
a reaction rate or concentration) to the perturbations of n model
‘factors’ (for example, reaction parameters or forcing functions). As
described by Box et al. (1978), each factor is assigned a high and low
level, and the procedure returns the ‘effect’ of all possible high and
low level factor permutations on the model response. For n factors,
there are a total of 2n permutations and 2n system responses,
meaning that the system must be analyzed 2n times. Transformed
individual and combined parameter effects are subsequently
calculated from the vector of system responses using a simple
algorithm. Normal probability plots of the transformed affects are
used to visualize the factors or factor interactions that have the
largest impact on the system response (Box et al., 1978). A previous
application of factorial analyses to marine sediment dynamics is
given by Dale et al. (2006).

In this study, the identified model responses were the depth
integrated rates of DNRA, nitrification, denitrification, anammox
and the relative importance of anammox to total N2 production (%
Ramx ¼ Ramx/(RNO2þRamx) � 100%)). The set of factors tested were
those related to environmental forcings and suspected to have the
largest effect on these responses. These include the flux (FG1) and
reactivity (kG1) of G1, Db(0), a1(0) and ab1(0) in addition to bottom
water concentrations of oxygen, nitrate and nitrite (O2�BW, NO3

�
BW

and NO2
�
BW, respectively). The 8 factors require (28¼) 256 model

simulations to fully test the complete array of factor combinations.
The high and low factor levels for O2�BW, NO3

�
BW and NO2

�
BW were

set according the average intraeannual maximum and minimum
values in the Boknis Eck time series dataset (Hansen, 1993)
(Table 3). The high and low levels of FG1, kG1, Db(0), a1(0) and ab1(0)
were prescribed to expected variations in this environment. It is



Table 3
Low and high levels of the environmental factors tested in the factorial analysis.

Factor Low High Unit

FG1 9 � 10�4 2.1 � 10�3 mmol cm�2 d�1 of C
kG1 6.9 � 10�5 2.7 � 10�4 d�1

Db(0) 2.7 � 10�3 0.14 cm2 d�1

a1(0) 0.027 0.27 d�1

ab1(0) 0.27 1.37 d�1

O2�BW 5 350 mM
NO3

�
BW 1.5 15 mM

NO2
�
BW 0.1 1 mM
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important to remember that the system analysis results may not be
universally applicable and are only valid for the specific ranges over
which the factors were varied. Nonetheless, the ranges encompass
much of the variability to be found in continental margin
sediments.
Fig. 2. Measured temperature, dissolved oxygen and nutrient concentrations at 25 m
water depth at Boknis Eck during 2010 measured by the Boknis Eck Time Series project
(see Acknowledgement for more information). The data marked with an arrow were
measured at the time of sediment sampling, where the nutrients were measured in the
supernatant of the retrieved multicores.
3. Results and discussion

3.1. N fluxes and porewater concentrations

During winter the bottom waters were well oxygenated with
pronounced seasonality and severe hypoxia in late summer (Fig. 2).
Nitrogenous nutrient concentrations were more variable, with
higher concentrations in January than in March due to consump-
tion during the spring bloom. The corresponding winter ex situ flux
measurements of NO3

�, NO2
� and NH4

þ are presented in Table 4, and
showed a clear trend of NO3

� uptake and NH4
þ release. The mean

NH4
þ efflux (1.74 mmol m�2 d�1) was about 5 times greater than the

NO3
� influx (�0.35 mmol m�2 d�1). By comparison, the mean NO2

�

efflux was negligible (0.01 mmol m�2 d�1). The net flux of DIN was
1.39 mmol m�2 d�1 and directed out of the sediment due to the
large NH4

þ efflux. The sediments were, therefore, a net source of DIN
in winter. The modeled fluxes are in very close agreement with
these values (Table 4). A short distance away up the channel bank
(20 m water depth) the sediments are also a net source of DIN, but
instead due to NO3

� and NO2
� efflux rather than NH4

þ which displays
a negligible flux (Balzer, 1984). At this site, the sediments are
sandier, possibly more efficiently aerated, and thus favorable for
nitrification. The large NH4

þ efflux is not obvious from the NH4
þ

porewater concentration profile which is essentially vertical in the
upper 10 cm and thus indicative of very low diffusive flux (Fig. 3).
The concentration profiles of SO4

2�, TCO2, TA and H2S show similar
trends, all of which point toward intense bioirrigation at this site.
High rates of irrigation down to 10 cm have been quantified in
Boknis Eck sediments using ex situ incubations of sediment cores
with bromide (Dale et al., unpublished). This non-local transport
accounts for 76% of the NH4

þ loss to the water column (Table 4).
The concentration gradients continue to evolve down through

the deeper sediment layers sampled with the long core, which
clearly indicates ongoing diagenesis (Fig. 4). Production of CH4 and
CH4(g) by the G2 and G3 fractions and their subsequent removal by
AOM leads to the development of a steep change in concentration
gradients of SO4

2�, TCO2, TA and CH4 at 40 cm where the zone of
anaerobic oxidation of methane by sulfate is situated (Figs. 3 and 4).

Molecular diffusion is a minor transport pathway for NO3
� into

the sediments. 76% of the NO3
� influx is attributed to uptake by

sulfide oxidizing bacteria (0.26 mmol m�2 d�1), and irrigation
accounts for 90% of the remainder (Table 4). The elevated pore-
water NO3

� concentrations observed may reflect the dominance of
non-local transport (Fig. 3). For example, bioirrigation may either
supply NO3

� directly or facilitate nitrification on burrow walls. Such
linkages between faunal activity and the N cycle have been inves-
tigated previously (Gilbert et al., 2003; Bertics et al., 2010).
However, our modeled and NO3
� penetration depths (1e2 cm) are

the same as those measured previously using microbiosensors
(Preisler et al., 2007), which points towards experimental artefacts
rather than natural phenomena. Althoughwe cannot be completely
sure, it is likely that cell lysis due to depressurization and porewater
extraction by squeezing in addition to the potential for NH4

þ

oxidation during sample manipulation are responsible for the high
NO3

� concentrations (e.g. Berelson et al., 1990; Rysgaard et al., 1994).
3.2. POC and PON mineralization

Table 5 shows the derived rate parameters for the 3 organic
matter fractions in the short and long core models, in addition to



Table 4
Measured and modeled fluxes across the sedimentewater interface in Boknis Eck
(mmolm�2 d�1) and the Pearson’s correlation coefficient (in parenthesis). Positive and
negative signs indicate efflux and influx, respectively. (DIN ¼ NO3

� þ NO2
� þ NH4

þ).

NO3
� NO2

� NH4
þ DIN

18 February 2010
Core 1 �0.44 (0.74) þ0.03 (0.61) þ1.61 (0.72) þ1.20
Core 2 �0.40 (0.92) e þ1.91 (0.97) þ1.50
23 February 2010
Core 1 �0.05 (0.16)a þ0.01 (0.63) þ0.34 (0.40)a þ0.30a

Core 2 �0.22 (0.75) �0.02 (0.51) þ1.70 (0.97) þ1.47
Mean ex situ flux �0.35 � 0.12 þ0.01 � 0.02 þ1.74 � 0.15 þ1.39

� 0.16
Modeled flux �0.34 [e0.26]b þ0.01 þ1.73 þ1.40
(% by bioirrigation) 90c 27 76 e

a Not included in the calculation of mean ex situ fluxes due to low level of
statistical significance.

b Figure in brackets is the predicted nitrate uptake by Beggiatoa.
c Not including nitrate uptake by Beggiatoa.
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the depth integrated rates of POC mineralization and ammonifi-
cation. The vast bulk of POC mineralization (97%) and ammonifi-
cation (95%) rates in the upper 60 cm (short core) is due to the
degradation of the reactive G1 pool. Because of the low attenuation
length of G1 (1/gG3 ¼ 4.3 cm), it is almost completely degraded by
60 cm, as is further evident from the low carbon burial efficiency
(CBE) of 0.5% at the same depth. By contrast, the high CBEs of the G2
and G3 fractions of 77 and 93% at 60 cm, respectively, confirm their
minor degradation in the short core. Consequently, the simulated
total carbon degradation rate in Fig. 5a is almost entirely due to G1.

In the long core, the slowly degrading G3 fraction accounts for
a greater proportion (58%) of total mineralization than G2 (42%).
The attenuation length of the G3 pool (1/gG3) is 167 cm, compared
to 47 cm for G2, and so it degrades over larger depths and longer
Fig. 3. Simulated (lines) and measured (symbols) geochemical depth concentration in Bokn
squeezing sediments and by Rhizons, respectively. The squares correspond to measurement
timescales. Overall, the rate of NH4
þ production in the long core

(0.56 mmol m�2 d�1) is about half that in the short core
(1.29 mmol m�2 d�1 of NH4

þ). Similarly, about one quarter of TCO2
production occurs in the long core. Consequently, the concentration
profiles solutes (NH4

þ, TCO2, TH2S, TA, CH4) below the irrigation
layer down to 500 cm are strongly modified by the mineralization
of the G2 and G3 pools (Fig. 4), which justifies the use of fixed
concentrations for their lower boundary conditions in the short
core model (Fig. 3).

The depth integrated total rate of carbondegradation in the short
core (14.2 mmol m�2 d�1 of C) is roughly a third of the annual mean
primary production (36 mmol m�2 d�1 of C; Bodungen, 1975),
reflecting the fact that most POC deposition takes place during the
spring and autumn blooms (Smetacek, 1984). Our value shows
a remarkably good agreement with the mean winter and spring
value of 12.2 mmol m�2 d�1 of C for water depths> 14m calculated
by a carbonmass balance (Balzer et al., 1986). POC mineralization is
muchhigher than the rate of benthicO2uptake (8.4mmolm�2d�1 of
O2) (Table 6) due of irrigation of reduced metabolites, in particular
H2S, out of the sediment before they can be oxidized. Balzer et al.
(1986) measured a winter rate of 9.1 mmol m�2 d�1 of O2 using in
situ chambers, which again provides independent corroboration of
our results. This value can be expected to increase to
13 mmol m�2 d�1 of O2 following the spring bloom deposition and
the ensuing enhancement of benthic activity (idem). The model
predicts that 57 and 40% of POC is degraded by O2 and SO4

2�,
respectively, with other mineralization pathways constituting the
remaining 3% (Table 6).

It is important to note that, as with the ex situ fluxes, the high
mineralization rates in the surface layers are not apparent from the
geochemical solute profiles due to intense bioirrigation (Fig. 3).
Irrigation has such a profound effect that the NH4

þ, TCO2, SO4
2� and

TA concentration profiles cannot be used to constrain the flux and
is Eck sediments. Open and closed symbols indicate that porewaters were extracted by
s made in the gravity core sampled on 1 July 2010 from Fig. 4. SNO3

� ¼ NO3
� þ NO3

�
bac.



Fig. 4. Simulated (lines) and measured (symbols) geochemical depth concentration profiles in Boknis Eck sediments. The squares correspond to measurements in the gravity core
sampled on 1 July 2010 and the open symbols are the mean data from Fig. 3 for comparison. Note that only the upper 300 cm are shown.

A.W. Dale et al. / Estuarine, Coastal and Shelf Science 95 (2011) 14e2822
reactivity of the labile carbon pool. For this reason, the rate and
depth distribution of G1 mineralization were mainly constrained
using measured rates of sulfate reduction (Fig. 5b) and the NH4

þ

efflux. The slight underestimation of the modeled sulfate reduction
rates in the top 5 cm is not a cause for concern when one considers
that they increase to 300 nmol cm�3 d�1 of SO4

2� following depo-
sition of plankton blooms (Treude et al., 2005). The modeled rates
presented here are thus good approximation of the highly con-
trasting pre-bloomwinter situationwhen the mineralization rate is
an order of magnitude lower.

A cautionary note must be made on the steady state assumption
used to determine the fluxes and reactivity of the organic matter
pools. Mineralization of G1 is certainly not constant over the year
since, as mentioned above, the rate of sulfate reduction in the
surface layers varies greatly between seasons due to the degrada-
tion of the spring and autumn blooms as well the effect of seasonal
temperature changes of ca 10 �C on reaction rates (Treude et al.,
2005). The steady state assumption is probably more applicable
to the G2 and G3 pools, which are much less reactive and degrade
over greater sediment depths. However, there is evidence to
suggest that the system has attained a quasi steady state over
winter. For example, if the reactivity of fresh organic matter
degrades with a rate constant, kf, of ca 10 yr�1 (Middelburg, 1989)
Table 5
Derived rate parameters for POC degradation (Gi, i ¼ 1, 2, 3), including rate at top of co
deptheintegrated rate attributed to each POC fraction. Data for the depths 0e60 cm and 1
production from POM is equivalent to

P
RGi � (N:C)i. (n/a ¼ not applicable; pool G1 was

G1

RGi(0) (mmol cm�3 d�1 of TCO2) 3.95 � 10�4a

RGi(b) (mmol cm�3 d�1 of TCO2)b e

gGi (cm�1) 0.234c

1/gGi (cm) 4.3
(N:C)i (from Table 2) 9.5
CBE at 60 cm (%) 0.5

Short core depth-integrated ratesP
RGi (0e60 cm) (mmol cm�3 d�1 of TCO2) 13.7

% total 97P
RGi � (N:C)i (0e60 cm) (mmol cm�3 d�1 of NH4

þ) 1.23
% total 95

Long core depth-integrated ratesP
RGi (10e500 cm) (mmol TCO2 cm�3 d�1) n/a

% total n/aP
RGi � (N:C)i (10e500 cm) (mmol cm�3 d�1 of NH4

þ) n/a
% total n/a

a Derived from the short core model results as the sum of RO2 þ RNO3 þ RNO2 þ RFe þ
b Imposed rate at sediment surface in long core model.
c Estimated as kG1/vS(0), where vs(0) (cm d�1) is the sedimentation velocity at the top
the corresponding decay half life is (eln(0.5)/kf ¼ ) 25 days.
Sampling took place in February 2010, which is a time difference of
approximately 4e5 halfelives for fresh phytodetritus following the
autumn bloom deposition which normally occurs in October (Graf
et al., 1982, 1983). The autumn bloom would thus be completely
degraded by February with only a few percent remaining. In fact,
MeyereReil et al., (1987) reported that benthic metabolism
decreased rapidly following the autumn bloom reaching baseline
levels by December, and the same author measured low, but vari-
able, enzymatic activities during winter (MeyereReil, 1983).
However, persistently low winter temperatures may be a limiting
factor for respiration and allow a quasi steady state may be ach-
ieved by ‘winter dormancy’ (Smetacek, 1985). Admittedly, intra-
annual benthic metabolism in Boknis Eck sediment is dynamic, and
there is some evidence to suggest that benthic bacterial numbers
increase steadily in shallower sediments of the channel during
winter due to accumulation of resuspended terrestrial material and
refractive macrophytes (MeyereReil et al., 1987). Without the
necessary time series data of total benthic reparation in the deep
channel, it is not possible to accurately determine the error
incurred by assuming steady state conditions. For the present
application, we assume that the error scales quantitatively with
and outbalances the uncertainty in the measured fluxes (Table 4).
re (RG1(0) and RG2,3(b)), deptheintegrated rates (
P

RGi) and percentage of the total
0e500 cm are derived from the short and long core model, respectively. Ammonium
not included in the long core model).

G2 G3 Total
rate

e e

3.56 � 10�6 1.44 � 10�6

0.021 0.006
47 167
8 27
77 93

0.3 0.1 14.2
2 1
0.02 0.03 1.29
2 3

1.33 1.82 3.15
42 58
0.10 0.46 0.56
18 82

RSO4 þ RCH4 at the sediment surface (0e1 cm).

of the short core (see Supplementary Material).



a b

Fig. 5. (a) Simulated total organic carbon degradation rate (SRGi ¼ RO2 þ RNO3 þ RNO2

þ RFeþ RSO4þ RCH4, Table 1), (b) simulated (line) andmeasured (symbols) depth profile of
the sulfate reduction rate (RSO4) in Boknis Eck sediments from Treude et al. (2005). The
depth of the simulated peak of anaerobic oxidation of methane is indicated.
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3.3. N-turnover rates in Boknis Eck sediments during winter

The depth integrated rates of N-turnover processes in the short
core that contribute to the exchange of nitrogen between the
sediment and water column are listed in Table 6 by decreasing
magnitude. There are no previous published studies of direct
measurements of N-turnover in Boknis Eck sediments. The rates
were parameterized according to a well constrained modeling
study of sediments from the Peruvian OMZ by Bohlen et al. (2010),
and we are fully aware that the same parameter values may not be
applicable to Boknis Eck sediments. This is a shortcoming of the
present study which needs to be reconciled in the future with
labeling experiments. At the present time, the rates reported are
theoretical yet represent our best estimate for N redox cycling
pathways in Boknis Eck.

Ammonification is the most important process (1.28 mmol
m�2 d�1 of NH4

þ) plus the additional 0.29 mmol m�2 d�1 of NH4
þ,

which diffuses up from deeper sediments. DNRA is the next most
important process quantitatively (0.26 mmol m�2 d�1) and accounts
for 20% of theNH4

þ input. This prominent role of DNRA for N cycling is
Table 6
Modeled turnover rates in the short core (0e60 cm).

Pathway Rate Unit

PON deposition 1.79 mmol m�2 d�1 of N
Ammonification 1.22 mmol m�2 d�1 of NH4

þ

PON burial (60 cm) 0.51 mmol m�2 d�1 of N
NH4

þ influx across lower boundary (60 cm) 0.29 mmol m�2 d�1 of NH4
þ

DNRA 0.26 mmol m�2 d�1 of NH4
þ

Denitrification step 1: NO3
� / NO2

� 0.11 mmol m�2 d�1 of NO2
�

Denitrification step 2: NO2
� / N2 0.08 mmol m�2 d�1 of NO2

�

Nitrification step 1: NH4
þ / NO2

� 0.06 mmol m�2 d�1 of NH4
þ

Anammox 0.04 mmol m�2 d�1 of NO2
�

Nitrification step 2: NO2
� / NO3

� 0.03 mmol m�2 d�1 of NO2
�

Contribution of anammox to N2 production 50 %
Total benthic O2 uptake 8.4 mmol m�2 d�1 of O2

POC mineralization by O2 57 %
POC mineralization by SO4

2� 40 %
a common characteristic of coastal sediments with high carbon
oxidation rates (Jørgensen and Nelson, 2004). Although Beggiatoa
were not visible by eye on the sediment surface, they are located
below the surfacewhere they forma biological interface between the
oxic and the anoxic sulfidic layers (Preisler et al., 2007). These authors
measured a DNRA rate of 0.04 mmol m�2 d�1 of NH4

þ by 15NO3
�

incubation in Boknis Eck, which is 1 order of magnitude lower than
both our modeled DRNA rate and net NH4

þ and NO3
�
fluxes (Table 4).

However, they also reported a 10 fold ormore variability in Beggiatoa
biomass between March 2002 and January 2003 which may be
related to bloom deposition and very likely explains some of the
divergence between our modeled and their measured rates. Nitrifi-
cation (step 1) consumes only a few percent of NH4

þ produced by
these processes, which is not surprising since almost all NH4

þ is
flushed out to the seawater by irrigation. Although benthic NH4

þ

production and release increases productivity in shallow waters (An
and Gardner, 2002; Dale and Prego, 2002), it remains to be shown if
this export of NH4

þ to the water column in winter is important for
sustaining the spring bloom in Boknis Eck (Smetacek, 1985).

The uptake of NO3
� from the water column by DNRA is twice as

largeas the lossofNO3
�bystep1ofdenitrification(0.12mmolm�2d�1

of NO3
�). Furthermore, nitrification (step 2) supplies only 25% of the

NO3
� reduced by denitrification (step 1) to NO2

�. Therefore, (i) DNRA
rather than denitrification drives the flux of NO3

� into the sediment,
and (ii) the bottom water is the most important NO3

� source for
heterotrophic denitrification of NO3

� to NO2
�.

Denitrification (step 2) and anammox are of ecological signifi-
cance since these pathways reduce NO2

� to N2 thereby regulating
the flux of DIN to the water column. The total loss of fixed N by
denitrification and anammox is 0.12 mmol m�2 d�1 of NO2

� and is
equal to 35% of the NO3

� influx. Balzer (1984) estimated a denitrifi-
cation rate of 0.34 mmol m�2 d�1 at the nearby sandy site. The total
N2 production rate reported here (0.08 mmol m�2 d�1 of N2) is at
the lower end of N2 production rates in the Baltic Sea region
(Rysgaard et al., 2001; Tuominen et al., 1998 and references therein)
and other continental shelf settings (Devol, 1991; Devol and
Christensen, 1993; Dale and Prego, 2002; Rysgaard et al., 2004;
Glud et al., 2009). The likely explanation is that NO3

�
BW in Boknis

Eck (6 mM) is up to 6 fold lower than reported for these other study
areas, and which may strongly limit N2 production by denitrifica-
tion and anammox (see Section 3.4). The model predicts that
anammox accounts for 50% of N2 production. However, only ca 10%
is expected for Boknis Eck based on the correlation by Dalsgaard
et al. (2005) between the relative contribution of anammox to N2
production and water depth (0e800 m). As discussed in the
following section, we ascribe this discrepancy to the intense irri-
gation in Boknis Eck sediments.

3.4. Regulation of nitrification, denitrification, DNRA and anammox
by environmental variables

To gain mechanistic insight into the processes controlling N-
turnover, we developed the system analysis to identify the main
environmental factors which exert the most effect on the reaction
rates. Although the results are constrained using measured data
from Boknis Eck, the widespread occurrence of these processes in
marine sediments allows for a more general discussion. Further-
more, the transport parameters and bottomwater chemistry ranges
tested in the system analysis encompass much of the variability
which one may encounter in continental margin settings.

The plot in Fig. 6a shows the main factors which control the rate
of DNRA (RDNRA). The factors which lie furthest away from the
normal distribution line (dashed) are those which cause the
greatest change in DNRA over the tested parameter ranges. ab1, one
of the parameters determining the uptake of NO3

� by large sulfur
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bacteria, has the largest effect on this process and lies on the right
hand side of the plot. This means that an increase in ab1 leads to an
increase in DNRA rate, by an amount equal to 0.38mmol m�2 d�1 of
NO3

� for the tested range of ab1 of 0.27e1.37 d�1 (100e500 yr�1).
The interpretation here is straightforward; more intense nitrate
transport enhances the rate of DNRA. In the present context, one
can assume that ab1 is analogous to the intracellular concentration
of nitrate (NO3

�
bac) or the biomass of sulfide oxidizing bacteria. An

increase in the flux of G1, FG1, also favors DNRA since this leads to
higher rates of sulfide production and accumulation of free sulfide.
On the other hand, the rate of irrigation by animals, a1, and the
bottomwater oxygen concentration, O2�BW, lie on the left hand side
of the figure which indicates that an increase in these factors will
tend to decrease DNRA. This arises from a greater flushing of
burrows and removal of sulfide by bioirrigation (data not shown)
and from aerobic sulfide oxidation. Increased ventilation further
enhances aerobic oxidation of POM and, hence, reduces the rate of
sulfate reduction by lowering the amount of carbon which can be
oxidized by this pathway.

The system analysis results for denitrification (step 1) are shown
in Fig. 6b (RNO3). Essentially the same results were obtained for
denitrification (step 2) (data not shown). There are 3 factors which
exert most control on these processes; bottom water nitrate
concentration (NO3

�
BW), O2�BW and a1. Higher NO3

�
BW increases

denitrification rates since this process is NO3
� limited. Higher O2�BW

decreases denitrification because of preferential organic carbon
consumption by aerobic bacteria, ultimately leading to carbon
limitation for denitrification (Middelburg et al., 1996). Any potential
positive feedback by higher O2�BW due to coupled nitrifica-
tionedenitrification is negligible by comparison. In fact, the anal-
ysis for nitrification (RNH4ox, Fig. 6c) shows that the tested increase
in O2�BW raises nitrification by a smaller amount than it decreases
denitrification (Fig. 6b).

The data point corresponding to NO3
�
BW on the denitrification

plot (Fig. 6b) ismuch further displaced from the normal distribution
line than O2�BW, which implies that denitrification (step 1) is much
more sensitive to this variable. However, the combined effect of
these parameters is also important, as can be seen by the second
order interaction term O2eBWeNO3

�
BW indicated on the left of the

figure. To interpret the effects individually, the bubble plot in Fig. 7a
showshowdenitrification responds tohigh and low levels of NO3

�
BW

and O2�BW. The rate of denitrification changes by a factor of 7e8
when NO3

�
BW increases from the low to high level and when O2�BW

is held constant at the low level. By contrast, the increasing oxygen
levels reduce denitrification by a factor of two only, thus confirming
that NO3

�
BW is the major control on denitrification (step 1) when

considering the annual range in parameter values. Consequently,
irrigation raises denitrification via enhanced influx of NO3

�, even
though the additional input of O2 has a negative, but smaller,
feedback on denitrification (Fig. 6b).

Using a similar diagenetic model based on globally averaged
data, Middelburg et al. (1996) observed that sediment denitrifica-
tion was most sensitive to the fluxes of organic carbon when
increased by up to a factor of 3. Our results demonstrate that carbon
flux (FG1) is not a sensitive factor. This does not mean that carbon is
unimportant for denitrification since this has been clearly
demonstrated on numerous occasions (reviewed by Dalsgaard
Fig. 6. Normal probability plots derived from the factorial analysis showing the effects
of the environmental forcings on the depth integrated rates (in mmol m�2 d�1) of (a)
DNRA, (b) denitrification (step 1), (c) nitrification, (d) anammox, and (e) relative
contribution of anammox to total N2 production (in %). (a) to (d) are plotted on the
same scale to facilitate comparison of the overall effects. Note that the results for
denitrification (step 2) (not shown) are essentially the same as those for denitrification
(step 1).



Fig. 8. Simulated rates of anammox (Ramx, Table 1) in Boknis Eck sediments using low
(1.5 mM, solid line) and high (15 mM, dashed line) bottom water nitrate concentrations.

a

b

Fig. 7. Bubble plots showing the depth integrated rates of (a) denitrification (step 1),
and (b) anammox due to the interaction terms between O2eBWeNO3

�
BW and kG1eNO3

�
BW,

respectively. The axes indicate the high and low levels of the factors tested (Table 3)
and the values adjacent to the bubbles are the effects of the interactions on rates (in
mmol m�2 d�1).
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et al., 2005). Instead, it shows that the inter-annual variability in
organic matter flux in Boknis Eck places less stringent substrate
limitation constraints on denitrification than changes in bottom
water chemistry. In other words, denitrification is more limited by
the availability of NO3

� than organic carbon in Boknis Eck sedi-
ments, much in the same way as the muddy sediments of the
Thames estuary (Trimmer et al., 2000). This discrepancy demon-
strates the need for careful consideration of site specific NO3

�
BW,

O2�BW and carbon oxidation rates when estimating regional or
global benthic N budgets, especially in coastal sediments where
spatial heterogeneity in turnover rates tends to bemuch larger than
in slope or abyssal sediments.

The results for anammox (Ramx) reveal that increased levels of
NO3

�
BW and O2�BW lead to higher rates, whereas increased reac-

tivity of G1 (kG1) has the opposite effect (Fig. 6d). Overall, NO3
�
BW

and kG1 have the largest single effects, yet these terms also weakly
interact (kG1eNO3

�
BW). As for denitrification, further examination

shows that anammox is far more sensitive to NO3
�
BW than kG1

(Fig. 7b). The importance of NO3
�
BW on anammox arises through the

production of NO2
� (NO3

� / NO2
�) by denitrification (step 1).

To illustrate this effect, Fig. 8 shows themodeled rate of anammox
with low (1.5mM)andhigh (15 mM)NO3

�
BW,with all other parameters

unchanged. It is clear from the figure that higher NO3
�
BW greatly

stimulates anammox in the subsurface irrigated layers by alleviating
NO2

� limitation of ammonium oxidizers. Irrigated sediments have
a large capacity for N redox cycling due to the increased effective
surface area of the sediment by burrow walls (Aller et al., 1983), and
we conclude that deep NO3
� transport and reduction gives rise to the

elevated relative importanceof anammox toN2productionestimated
for Boknis Eck (50%, Table 6). Enhanced transport of NO3

�, and thus
NO2

�, to sediment layers where anammox is NO2
� limited establishes

a critical linkage between denitrification, anammox and biota and
may provide an explanation for the observed strong correlation
between anammox and NO3

�
BW (RisgaardePetersen et al., 2004;

Rysgaard et al., 2004; Trimmer et al., 2003).
O2�BW also enhances anammox since it leads to higher rates of

nitrification (Fig. 6c,d) but, as mentioned, its effect is less important
than NO3

�
BW. On the other hand, higher O2�BW greatly enhances the

relative importance of anammox to total N2 production, % Ramx
(Fig. 6e). This implies that coupling of anammox and nitrification
(NH4

þ / NO2
�) leads to high % Ramx, whereas coupling of anammox

and denitrification (NO3
� / NO2

�) favors higher absolute rates of
anammox. Consequently, % Ramx is strongly yet negatively affected
by kG1 because higher carbon reactivity channels more O2eBW into
mineralization at the expense of nitrification and increases the
demand on NO2

� by denitrification (step 2) (Trimmer and Nicholls,
2009). In fact, nitrification responds negatively to increased carbon
fluxes (Fig. 6c). We thus propose that this explains why absolute
and relative rates of anammox are generally inversely correlated
(Dalsgaard et al., 2005), that is, because the controls on NO2

�

sources (i.e. nitrification and denitrification) are different and vary
in intensity depending on the type of setting (see Section 3.5).
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3.5. Synthesis: biogeography of denitrification, DNRA and
anammox

The system analysis shows that the environmental factors
which exert a major control on N-turnover processes are also those
which display high variability in natural settings. This allows us to
broadly summarize the types of environment where the relative
importance of DNRA, denitrification and anammox are highest.

It is well known that sediments in upwelling regions, oxygen
minimum zones and hypoxic basins and bays tend to be colonized
by mats of large sulfur bacteria and exhibit high rates of DNRA (e.g.
Fossing et al., 1995; Preisler et al., 2007). Yet, Jørgensen and Nelson
(2004) postulate that their occurrence is widespread in coastal
sediments such as Boknis Eck which receive high fluxes of phyto-
detritus even though bottomwaters are permanently or seasonally
oxic. However, because the half saturation constant of NO3

� for
denitrification is much lower than that for DNRA (101 versus 102

uM; Tiedje et al., 1982), denitrifiers should, in theory, strongly
compete or even outcompete sulfide oxidizers for bottom water
NO3

�. Nonetheless, filamentous motile sulfide oxidizers such as
Beggiatoa and Thioploca have a physiological advantage over deni-
trifying bacteria since they can access the seawater NO3

� reservoir
directly by extension of their filaments through the diffusive
boundary layer into the water column (e.g. Huettel et al., 1996).
Denitrifying bacteria will be limited by NO3

� transport into the
sediment by diffusion. Therefore, they do not strictly compete with
each other for NO3

�. The versatility of motile sulfur bacteria to
access seawater NO3

� is undoubtedly one reason why DNRA is
a major pathway in N cycling even in coastal sediments provided
that the organic matter loading is high enough (reviewed by
Jørgensen and Nelson, 2004). Note, however, that non-filamentous
sulfide oxidizers such as the giant non-motile Thiomargarita also
rely on molecular diffusion or resuspension of surface sediments to
access the seawater NO3

� reservoir (Schulz and Jørgensen, 2001).
Toxicity toward sulfide may also be a limiting factor for denitrifying
bacteria in these environments (Sørensen et al., 1987), although
this was not explicitly included in the model presented here.

Given that free sulfide accumulation in the porewater is
a prerequisite for giant sulfur bacteria, we should expect to find
a reduction in the dominance of DNRA as carbon flux decreases.
Denitrification should then take over as the major consumer of
bottom water NO3

� when a tipping point in carbon flux and/or
reactivity has been reached. In support of this thesis, benthic data
collected recently along the 11 oS transect of the Peruvian OMZ do
in fact show that the relative importance of denitrification to total
NO3

� uptake increases steadily from ca 23% on the shelf where
carbon concentrations are ca 10 wt.%, to ca 100% on the continental
slope where carbon concentrations are 4 wt.% and bottom water
oxygen was 40 mM (Bohlen et al., 2010). Seafloor observations
further reveal that sulfide oxidizing bacteria are present at high
densities on the Peruvian shelf (Levin et al., 2002). An increase in
denitrification at the expense of DNRA has also been observed with
increasing distance away from caged fish farms, which illustrates
that the same tendencies also operate over much smaller spatial
scales (Christensen et al., 2000). These studies suggest that it is the
dynamic interplay between carbon flux and reactivity (hence
sulfide concentration) and oxygen availability that determines
whether the sediments will be net recyclers (i.e. by DNRA) or sinks
(i.e. by denitrification) of DIN.

Our analysis has highlighted a potentially critical role of nitri-
fication in supporting high relative rates of N2 production by
anammox (% Ramx) and of denitrification in supporting high abso-
lute rates of anammox (Ramx). This theory fits with the data pre-
sented in the seminal study of Dalsgaard et al. (2005) and expands
on their idea that %Ramx is negatively correlated with sediment
mineralization rates. High mineralization rates invariably imply
high rates of NO2

� production by denitrification, a minor fraction of
which is lost to anammox. Thus, denitrification and anammox
appear to be correlated in organic-rich shallow water settings such
as fjords and estuaries, but %Ramx remains low (Dalsgaard et al.,
2005). Oxygen penetration also tends to be low in highly reactive
sediments which limits the efficiency of nitrification as the other
supply pathway of NO2

� for anammox.
Anammoxought to dominate over denitrification in less reactive

sediments where nitrification is maximized, such as hemipelagic
continental shelf sediments. Dominance of nitrification over deni-
trification in these environments is evident from the fact that NO3

�

fluxes tend to be greater than NH4
þ
fluxes and directed out of the

sediment (e.g. Middelburg et al., 1996; Christensen et al., 1987;
Devol and Christensen, 1993). Whilst there are still very few
studies which have systematically investigated denitrification and
anammox in open ocean continental shelf sediments, the study by
Trimmer and Nicholls (2009) is exceptional. They observed an
increase in %Ramx from 33% on the continental shelf to 65% on the
slope, which fits with the general trend compiled from individual
study sites (Dalsgaard et al., 2005). With the advent of NO3

�

microbiosensors which can be deployed in situ (Glud et al., 2009),
the technology is now available to more accurately quantify and
correlate nitrification and anammox rates for sediments from the
shelf down to the continental slope.

4. Conclusions

This study aims to understand themajor environmental controls
on N turnover processes in surface marine sediments of Boknis Eck;
a seasonally hypoxic channel in the SW Baltic Sea. The results of
a numerical model are confirmed using field data including pore-
water geochemistry and measured fluxes across the seafloor.
Boknis Eck sediments are reactive and constitute a large source of
NH4

þ due to intense irrigation of the surface sediments by
indwelling macrofauna. An additional flux of NH4

þ by Beggiatoa
carrying out dissimilatory nitrate reduction to ammonium is also
consistent with our field observations. The modeling study also
provided first estimates of N turnover rates by denitrification and
anammox in Boknis Eck sediments which now require experi-
mental verification. Future work will explore how these trends
behave during the transitional period to severe hypoxia, or even
anoxia, which occurs at the study site in late summer.

From a systematic analysis of themodel output after varying key
parameters over ranges exemplary of continental margin marine
sediments, we conclude that the biogeography of microbial N
turnover pathways has the potential to be predicted based on the
type of setting studied. For example, we hypothesize that anammox
is mainly coupled to (i) denitrification in highly reactive poorly
ventilated sediments (e.g. organic-rich coastal settings) and (ii)
nitrification in lesser reactive yet well ventilated sediments where
nitrite production and availability is maximized (e.g. hemipelagic
settings). Consequently, simultaneous quantification of the rates of
denitrification and nitrification are needed to understand how
anammox varies over regional scales. This information is also
urgently needed to quantify N fluxes in marine sediments using
dynamicmodels and also to predict how these fluxesmay change in
the future due to natural and/or anthropogenic interferences.
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