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Abstract 

Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive 

sampling and a wide quasi-synoptic hydrographic and 18O dataset could be collected in the 

Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian 

continental margin. With the aim of determining the origin of freshwater in the halocline, 

fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a 

combination of salinity and 18O in the Eurasian Basin. Two methods, applying the preformed 

phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to 

further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While 

PO*-based assessments systematically underestimate the contribution of Pacific-derived 

waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar 

Drift due to denitrification in bottom sediments at the Laptev Sea continental margin. 

Within the Eurasian Basin a west to east oriented front between net melting and production of 

sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a 

pronounced layer influenced by brines released during sea-ice formation is present at about 30 

to 50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct 

definition of this maximum demonstrates the rapid release and transport of signals from the 

shelf regions in discrete pulses within the Transpolar Drift.  

The ratio of sea-ice derived brine influence and river water is roughly constant within each 

layer of the Arctic Ocean halocline. The correlation between brine influence and river water 

reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation 

within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where 

relatively small amounts of river water are found, sea-ice formation results in a linear 

correlation between brine influence and river water at salinities of about 32 to 34. In coastal 

polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation 
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transports river water into the shelf’s bottom layer due to the close proximity to the river 

mouths. This process therefore results in waters that form a second linear correlation between 

brine influence and river water at salinities of about 30 to 32. Our study indicates which layers 

of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal 

polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. 

Accordingly we use the ratio of sea-ice derived brine influence and river water to link the 

maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the 

Laptev Sea that was likely released in summer 2005.  

 

1. Introduction 

The strong vertical gradients in the Arctic Ocean halocline insulate the sea ice cover from the 

heat in the relatively warm Atlantic waters underneath (Björk and Söderkvist, 2002; Shimada 

et al., 2005). Below the surface mixed layer there is a strong and cold halocline, which is 

largely maintained by waters from the shelf seas (Aagaard et al., 1981) as well as convective 

offshore processes (Steele and Boyd, 1998). About 10 % of the world’s river discharge is 

released onto the Arctic shelf areas. But also large amounts of sea-ice are produced on the 

shelves by a change from ice-free conditions in summer to freeze-up in autumn and a nearly 

continuous production of sea-ice in polynyas during winter (Martin and Cavalieri 1989; 

Bareiss and Görgen, 2005). Between 1979 and 2007, Arctic ice cover declined by ~11 % per 

decade, and in summer 2007 it was about 37 % less than the average for this period (Comiso 

et al., 2008). Because of this decline in ice cover, large areas of the ocean especially on the 

shelves have been free of sea-ice for prolonged periods of time. Climatic changes may have 

an impact on the freshwater balance of the Arctic Ocean (Dickson et al., 2007; Rabe et al., 

2011) and the change in sea-ice cover may specifically influence the occurrence of coastal 

polynyas and thus, the amount of sea-ice formed there (Willmes et al., 2011). Therefore, in 

order to further understand possible consequences and feedbacks of the current and future 

changes, it is of fundamental importance to get a more detailed understanding of the Arctic 

system and to identify sources of the Arctic Ocean halocline waters with respect to regions 

and processes of formation. 

Lower Halocline Waters, typically characterized by salinities between 34.2 to 34.4, are found 

in all Arctic basins (Jones and Anderson, 1986). Upper Halocline Water is characterized by a 

salinity of about 32.8 to 33.2 and a Pacific-derived nutrient maximum (Jones and Anderson, 

1986, Weingartner et al., 1998) and is restricted to the Canadian side of the Lomonosov 

Ridge. Changes in the distribution of Pacific-derived waters and the position of the Transpolar 
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Drift system are associated with changes in the extent of the Beaufort Gyre, a large anti-

cyclonic gyre that dominates the surface circulation of the Canadian Basin. The Transpolar 

Drift transports surface and halocline waters from the eastern Arctic (at about 180°E) across 

the pole towards Fram Strait (at about 0°E).  

In this study, the origin of waters is identified based on salinity and oxygen isotope values for 

the upper 150 m of the Arctic Ocean water column in 2007. The fractions of meteoric water, 

sea-ice meltwater or brine influence as well as marine water are discerned by a combination 

of salinity and 18O in the Eurasian Basin (Bauch et al., 1995). In order to distinguish Atlantic 

from Pacific sources in the marine fraction, the initial phosphate corrected for mineralization 

with oxygen (PO*) is used (Ekwurzel et al., 2001). However, since this method systematically 

underestimates the contribution of Pacific-derived water to the Arctic Ocean halocline mainly 

because of continuing oxygen exchange with the atmosphere (although restricted below ice 

cover), the nitrate to phosphate relationship (N/P) is also used (Jones et al., 1998). The N/P 

method has been successfully applied in the Canadian Basin (Yamamoto-Kawai et al., 2008) 

and in the Central Arctic Ocean (Jones et al., 1998, 2008), but not along the Siberian 

continental slope.  We therefore apply the N/P-based method but also identify the impact of 

local denitrification effects on the Siberian shelves, which potentially bias the results. Thus, a 

combination of the PO*-based and the N/P-based methods are used to constrain the extent of 

Pacific-derived waters in the Eurasian Arctic and the Transpolar Drift system.  

With these methods of water mass analysis, the origin of river water and sea-ice meltwater or 

formation (i.e. brines) within different layers of the Arctic Ocean halocline are identified. By 

interpreting the relative contribution from river water and sea-ice processes we are able to 

identify layers of the Arctic Ocean halocline influenced by sea-ice formation in coastal 

polynyas versus sea-ice formation over the open ocean. With the ongoing changes in sea-ice 

coverage in the Arctic Ocean it can be expected that these processes will change in the 

immediate future and that the relative contributions to the halocline from sea-ice formation in 

coastal polynyas and over the open ocean will change accordingly. 

 

2. Methods 

Water samples were collected during expeditions ARK-XXII/2 onboard RV Polarstern 

(PS07) and NABOS’07 expedition onboard RV Viktor Buynitskiy (VB07) in summer 2007 

(Fig. 1). On ARK-XXII/2 water samples for stable oxygen isotope analysis were taken with a 

standard rosette, and a subset of 38 vertical profiles were taken, using an ultra-clean 

Titanium-rosette with 12 L bottles (De Baar et al., 2008). Accordingly conductivity, 
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temperature and depth were measured on two CTDs, both Sea Bird electronics and calibrated 

onboard (Schauer, 2008). Hydrochemical analysis for NOx (NO3+NO2) and PO4 were 

conducted in a thermostat-controlled lab container with standard photometric methods using a 

continuous flow auto analyzer (Technicon TRAACS 800) and dissolved oxygen analyses 

were conducted with the Winkler Titration method (Schauer, 2008). On NABOS’07 water 

samples for stable oxygen isotope analysis were taken with a standard rosette and a shipboard 

SBE19 + CTD was used to record conductivity, temperature and depth vertically every 15-20 

cm. All technical details on methods and accuracy of CTD measurements and standard 

hydrochemical analysis can be found in NABOS’07 cruise technical reports 

(http://nabos.iarc.uaf.edu/cruise/reports.php). Analytical errors for NOx are better than 

±0.18 mol/kg and ±0.3 mol/kg for ARK-XXII/2 and NABOS’07, respectively. For both 

datasets, analytical errors for PO4 are better than ±0.015 mol/kg. Analytical errors for O2 are 

±2.6 mol/kg and ±0.3 mol/kg for ARK-XXII/2 and NABOS’07, respectively. Propagated 

errors for PO* are up to ±0.02 mol/kg for both datasets.  

Oxygen isotopes from all samples collected on PS07 and a subset of samples from VB07 were 

analyzed at the Leibniz Laboratory (Kiel, Germany) applying the CO2- water isotope 

equilibration technique on at least 2 sub-samples on a Finnigan gas bench II unit coupled to a 

Finnigan DeltaPlusXL. The overall measurement precision for 18O analysis is ±0.03‰ or 

smaller.  The 18O/16O ratio is given versus V-SMOW in the usual -notation (Craig, 1961). A 

subset of measurements for 18O of the eastern sections of VB07 (Fig. 4b) were analyzed at 

the NERC Isotope Geosciences Laboratory, Keyworth, by equilibration using a VG Isoprep 

18, with mass spectrometry performed on a VG Sira 10, yielding an average precision of 

0.03‰ on duplicates of these samples. These latter results have been published in 

combination with barium concentrations by Abrahamsen et al. (2009). 

Figures were created using Ocean Data View software (Schlitzer, 2010) and GMT (Wessel 

and Smith 1998). 

 

3. Results and mass-balance analysis from summer 2007 

The upper layers of the Arctic Ocean were close to the freezing point and temperatures 

underneath rapidly increased between about 50 to 150 m water depth due to the subjacent 

warm Atlantic layer (Fig. 2). The surface mixed layer over the central Arctic Ocean was 

between 10 and 30 m thick in summer and separated from underlying waters by a steep 

salinity gradient (Figs. 3, 4).  
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Salinity and 18O show a first order linear correlation (Fig. 5) due to the mixture of ~0 ‰ 

18O marine water with significant amounts of isotopically depleted meteoric water. 

Therefore the distributions of salinity and 18O are in first order rather similar. Meteoric water 

consists of river runoff and local precipitation, with similar isotopic composition due to their 

common source and is referred to as river water within this study.  The deviations from the 

linear correlation are caused by sea-ice processes. In the southern Eurasian Basin the 

contributing water masses are river water, sea-ice meltwater and Atlantic-derived waters that 

can be separated by simple 3-component mass balance calculations (Östlund and Hut, 1984; 

Fig. 2). The marine source in the northern and eastern Eurasian Basin and in the North 

American basins (Makarov and Canadian basins) is expected to be a mixture of Atlantic and 

Pacific-derived waters (Bauch et al., 1995; Ekwurzel et al., 2001; Jones et al., 2008) and a 4-

component mass balance has to be applied (Fig. 3, 4). Over the Siberian shelves, the possible 

effects of local denitrification on the N/P relationship are assessed (see section 3.1). A 3-

component, as well as PO*-based and N/P-based 4-component mass balances are applied in 

the upper 150 m of the water column (section 3.2) that reveal the distribution of river water 

and net sea-ice processes (section 3.3) as well as the extent of Pacific-derived waters  (section 

3.4). 

 

3.1 Nitrate to phosphate ratios N/P 

Generally nitrate increases or decreases at a ratio of ~16:1 relative to phosphate due to 

photosynthesis and respiration in the ocean. However, as nutrient-rich Pacific waters enter the 

Arctic, they are subject to denitrification (Codispoti et al., 1991; Cooper et al., 1999), yielding 

a N/P signature distinct from that of Atlantic Waters (Jones et al., 1998; Yamamoto-Kawai et 

al., 2008; Jones et al., 2008). The N/P signatures for stations taken during PS07 and VB07 

(Fig. 6) are overall close to the “pure-Atlantic water line” as defined by Jones et al. (1998). 

Deviations from this correlation line suggest contributions of Pacific-derived waters, that is, 

values shift towards the “pure-Pacific water line”. We define a “pure-Atlantic water line” for 

our dataset by linear correlation of a subset of station data as [NOx] = 16.785*[PO4] - 1.9126 

(see diamonds and thick red line in Fig. 6) nearly identical to Jones et al. (1998). These 

stations are in the region of Atlantic inflow of the Arctic Ocean off the continental shelf of the 

Barents and Kara seas (80-85°N and 30-90°E). We refer to this region as the Atlantic regime 

since it is not expected to have any contribution of Pacific-derived water.  

Some deviations from the “pure-Atlantic water line” are apparent on the Barents Sea shelf 

(see squares in Fig. 6) and in the Laptev Sea (Fig. 7) where modifications by denitrification 
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within the sediments may occur. As our analysis relies on NOx (NO3+NO2) and does not 

include NH4, the actual value of the N:P ratio might be underestimated, e.g. in high 

productivity shelf areas where NH4 concentrations may be high. This in turn would result in 

the overestimation of the Pacific water contribution (Yamamoto-Kawai et al., 2008). 

However, NH4 concentrations over the Laptev Sea have been observed to be low (Nitishinski 

et al., 2007), and thus the effect on the calculation of Pacific-derived waters is expected to be 

minor.   

Stations from both the central Arctic Ocean (Fig. 7a, open symbols) and the Laptev Sea 

continental slope (Fig. 7a, closed symbols) show variable deviations from the “pure Atlantic 

water line” towards the “pure Pacific water line” (Jones et al., 2008; Yamamoto-Kawai et al. 

2008). In the central Arctic Ocean deviations are highest at a salinity of about 33 and about 

100 m depth (not shown), while towards the surface deviations are seen at lower nutrient 

concentrations (Fig. 7a, open symbols). At the Laptev Sea continental slope, bottom water 

samples with salinities of about ~32.5 to 33 have maximal deviations from the “pure Atlantic 

water line” at low NOx values. This again indicates denitrification within the sediments, since 

deviations increase with depth and a Pacific origin can be excluded at 121°E at the Laptev Sea 

margin. Central Arctic Ocean waters with ~32.5 to 33 salinity and N/P values off the “pure 

Atlantic water line” (Fig. 7a) probably contain Pacific-derived water, but may also receive 

part of their elevated N/P signature from Laptev Sea bottom waters if these were transported 

via the Transpolar Drift.  

When comparing stations from the Laptev Sea continental slope at 126 and 131°E (Fig. 7b, 

open symbols) with the East Siberian Sea continental slope at ~140 to 158°E (Fig. 7b, closed 

symbols), the propagation of the N/P signal from outer Laptev Sea bottom water can be 

further inferred. Similar to values found at 121°E (Fig. 7a, closed symbols), deviations from 

the “pure Atlantic water line” at 126 and 131°E are also maximal at about 30-50 m water 

depth, nitrate levels of ~5 mol/kg and salinities of ~32.5 to 33 (Fig. 7b, open symbols). At 

the East Siberian Sea continental slope (~140 to 158°E) these signals and deviations from the 

“pure Atlantic water line” (Fig. 7b, closed symbols) are found at about 50 m water depth. At 

the East Siberian Sea continental slope though, deviations from the “pure Atlantic water line” 

additionally increase further towards the surface as nitrate values decrease. While the N/P 

signal found at ~158°E, salinities ~32.5 to 33 and ~50 m water depth may have been 

propagated from bottom water affected by denitrification in the Laptev Sea (~121°E to 

~131°E), the additional N/P signal at ~158°E in low salinity surface waters most likely has a 

Pacific-derived source. 
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3.2 Calculation of freshwater fractions and brine-influence in the upper water column 

The water mass fractions are calculated using either a 3-component or a 4-component system 

of mass balance equations based on salinity, 18O, and PO* or the nitrate to phosphate ratio 

(N/P).  

3.2.1 PO*-based calculation  

PO* is based on phosphate and dissolved oxygen and defined as 

1
2

3
4

* 95.1175/   molkgOPOPO   and represents the initial phosphate concentration 

that accounts for respiration of organic matter according to the Redfield ratios at which 

dissolved oxygen and phosphate are utilized or released, respectively (Broecker et al., 1985). 

In deep waters and below a closed sea-ice cover at reduced O2 atmospheric exchange PO* is 

assumed to be a quasi-conservative tracer (Ekwurzel et al., 2001). The mass balance is 

governed by the following equations: 

1 ripa ffff
        (1)  

measrriippaa SSfSfSfSf       (2)  

measrriippaa OOfOfOfOf       (3)  

*****
measrriippaa POPOfPOfPOfPOf     (4)  

where fa is the fraction of Atlantic water, fp the fraction of Pacific-derived water, fi the fraction 

of sea ice meltwater, and fr is the fraction of river water. S, O and PO* with the corresponding 

subscripts are the endmember values and measured values of salinity, 18O and PO*. In the 

Atlantic regime calculated fractions of Pacific-derived water may be strongly negative, 

because of inaccuracies in end-members and measurements as well as generally non-

conservative behavior of dissolved oxygen near the ocean surface. In these cases, Pacific-

derived water can be assumed to be absent or negligible and a three-component system of 

equations is solved instead, only using equations 1-3 with fp set to zero. Endmember values 

are given in Table 1, largely following Ekwurzel et al. (2001), but the 18O endmember for 

river water is set to −20 ‰ to reflect average Arctic river water (Bauch et al., 1995). For a 

detailed discussion on 18O of average Arctic Ocean river water refer to Cooper et al. (2008) 

and Bauch et al. (2010). Uncertainties based on analytical errors are considerably smaller than 

systematic and conceptual errors arising from limited knowledge of endmember values. 

Systematic errors in river water and sea-ice meltwater fractions based on uncertainties in 

endmember salinity and 18O data (Tab. 1) remain on average within ±1% for the 3-
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component calculations. For the PO*-based 4-component calculation systematic errors due to 

uncertainties in endmembers are up to about 10% (Ekwurzel et al. 2001). However, 

systematic and conceptual errors for the PO* methods in the absence of an elevated PO* 

signal are larger for the Eurasian Basin, and calculations may produce strongly negative 

numbers in all fractions such that results are not interpretable at all. Although restricted below 

the ice cover, oxygen exchange with the atmosphere is likely responsible for this conceptual 

problem in surface waters of the Eurasian basin. Polynyas and leads serve to ventilate Arctic 

waters despite the ice cover during winter months and oxygen saturation values exceeding 

90% have been observed in waters shallower than 50 m (Falkner et al., 2005). 

3.2.2 N/P-based calculation 

Alternatively we apply the method proposed by Jones et al. (1998), as used in a salinity/18O 

mass balance by Yamamoto-Kawai et al. (2008). We use the measured NOx concentration of 

each sample and derive individual phosphate (P) endmembers for the Pacific and Atlantic 

fractions from the “pure Atlantic water line” defined for our study ([NOx] = 16.785*[PO4] - 

1.9126; section 3.1) and the “pure Pacific water line” as defined by Jones et al., (2008) ([NOx] 

= 15.314*[PO4] - 14.395) for each sample. These endmembers are used in a 4-component 

mass balance with equations 1-3 and equation 4 is replaced by: 

measrriippaa PPfPfPfPf       (5)  

where fa, fp, fi and fr are as defined above. P with the corresponding subscript is the phosphate 

value of each endmember or the measured sample. Fixed phosphate endmember values are 

assigned to river water and sea-ice meltwater (see Tab. 1) in contrast to Jones et al. (2008) and 

Yamamoto-Kawai et al. (2008), where values of river water and sea-ice meltwater are 

included within the Atlantic water assignment. Through this alteration the systematic errors 

are shifted from ignoring the independent impact of river water and sea-ice meltwater on the 

nutrient balance (as in Jones et al., 1998 and Yamamoto-Kawai et al., 2008) to introducing an 

independent error to the calculation of river water and sea-ice meltwater fractions. Differences 

are small, with up to 1% for the river and sea-ice meltwater fractions. For the Pacific water 

fraction, differences are up to 10%, thus remaining within the uncertainty (~10%) of the 

method (based on uncertainties in endmember values; see Tab. 1; Yamamoto-Kawai et al., 

2008). Due to inaccuracies in end-members and measurements, N/P-based calculations may 

also produce slightly negative fractions fp of Pacific-derived waters. These however, remain 

relatively small also within the Atlantic regime (average fp are ~-2%, with extreme values up 

to -10%) and are still within the uncertainty (~10%) of the method (Yamamoto-Kawai et al., 

2008). In this respect, the results based on the N/P method are considerably more robust than 
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the results based on the PO* method. Therefore the presented N/P-based results for fi and fr 

were not replaced with results from the 3-component system when fp is negative.  

3.2.3 Interpretation of calculated fractions  

A negative sea-ice meltwater fraction fi reflects the amount of water removed by sea-ice 

formation, and the absolute value is proportional to the subsequent addition of brines to the 

remaining water. In this manuscript we will therefore refer to negative fractions of sea-ice 

meltwater also as sea-ice derived brine influence or just brine influence. The sea-ice 

meltwater fraction does not include meltwater from ice formed from river water; this is river 

water previously transported by ice and is identified by its 18O and salinity signature, and it 

is accounted for in fr accordingly. All fractions are net values reconstructed from the 18O, 

salinity and the nutrient signature of each sample and are the result of time integrated effects 

on the sample volume over the residence time of the water.  

Inventory values of river water and sea-ice meltwater are calculated by integration of each 

fraction over the upper 150 m of the water column (Fig. 8). Since most of the freshwater is 

contained in the upper 50 m, the choice of the integration depth is not critical except for the 

inventory of Pacific-derived water. Uncertainties based on estimates of systematic errors are 

on average about 10% in absolute inventory values for all applied methods (3-component, 

PO*-based and N/P-based 4-component). 

 

3.3 Distribution of freshwater and brine-influence in the upper water column 

The largest fractions of river water fr are found in the Makarov Basin near the Lomonosov 

Ridge, with up to 21 % or 18% based on PO* and N/P calculations, respectively (Fig. 3). In 

the Laptev Sea the river water fractions fr reach about 35 % at our southernmost position (Fig. 

3; please note that the color scale ends at 20%). The distribution of sea-ice meltwater fractions 

(positive and negative fi) roughly exhibits a similar pattern to that of the river water fractions. 

Positive values of sea-ice meltwater inventories are found in the south-western Eurasian 

Basin, where river water fractions are quite small (~3%; see Fig. 2). In contrast, in the central 

and eastern Arctic Ocean river water fractions are large and net sea-ice formation is dominant 

(see Figs. 3, 4 and compare also inventories in Fig. 8). Only at the surface some additional 

sea-ice melting is found near the continental slope and in the Makarov Basin. There is a 

pronounced layer influenced by sea-ice formation present at about 30-50 m water depth east 

of the New Siberian Islands in the Eurasian Basin and all over the central Arctic Ocean 

basins. A maximum of this brine influenced layer is observed in the western section over the 

Lomonosov Ridge (Fig. 3).  
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3.4 Distribution of Pacific-derived waters in the upper water column  

PO*-based fractions of Pacific-derived water fp are only found in the Makarov Basin (Fig. 3, 4 

and compare also inventories in Fig. 8a). In the central Arctic Ocean maximum values are up 

to 50% at about 75 m depth (Fig. 3), with significant fractions of about 10% still found at 

about 50 m water depth near the Lomonosov Ridge. N/P-based fractions of Pacific-derived 

water are considerably higher, with up to ~100% over the Alpha Ridge (Fig. 3), up to ~50% 

near the East Siberian Sea and significant fractions of ~10% reaching in the Eurasian Basin up 

to the Gakkel Ridge (at about 86°N and 90°E). Maximum values are located at about 50 m 

water depth (Fig. 3).  

N/P-based fp of up to ~50% are also found in bottom waters at the continental slope of the 

central Laptev Sea (Fig. 3b). At this position however, the fp signal does not originate from 

Pacific-derived water, but from denitrification in shelf sediments (see 3.1). Further east, near 

the New Siberian Islands, PO*-based fp are absent (Fig. 4a), while N/P-based fp show 

significant contributions well above 25% within the surface layer. At the continental slope of 

the East Siberian Sea N/P-based fp show higher values than PO*-based fp estimates, and reach 

farther down to 75 to 100 m water depth (Fig. 4b). At ~50 m water depth the fp signal 

originates from the propagation of the apparent fp signal from the Laptev Sea continental 

margin (see 3.1). 

Since the N/P-based and PO*-based methods yield different ratios of Pacific/Atlantic water, 

the equations also yield different river water fractions. Thus, if a method overestimated the 

Pacific fraction (which is lower in salinity) it would underestimate the river water fraction and 

vice versa. As N/P-based fp are generally higher compared to PO*-based fp the N/P-based 

river water fractions fr are generally lower compared to PO*-based fr (Figs. 3, 4). Thus, PO*-

based river water inventories (Fig. 8a) in the Makarov Basin at the East Siberian Sea 

continental slope and over the Alpha Ridge are considerably higher than N/P-based river 

inventories (Fig. 8b). Sea-ice meltwater fractions and inventories (Fig. 8) remain nearly 

unaltered when either the N/P-based or PO*-based calculations are applied, since the salinity 

and 18O of the Pacific endmember falls almost exactly on the mixing line between river 

water and Atlantic endmembers (compare Pacific endmember in Tab. 1 and mixing line in 

Fig. 5).   

 

4. Discussion  
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Stable oxygen isotopes of the water in conjunction with salinity have proven to be a useful 

and reliable tracer to identify and distinguish freshwater sources. Thereby several studies have 

investigated and described the main features of the Arctic Ocean halocline based on stable 

isotopes in the Eurasian Basin (e.g. Bauch et al., 1995; Ekwurzel et al., 2001) and the 

Canadian Basin (e.g. Yamamoto-Kawai et al., 2008). In the following discussion we will 

evaluate the main features of the freshwater distribution in the Arctic Ocean halocline as 

observed in our quasi-synoptic dataset from summer 2007 and compare these with earlier 

18O and PO*-based assessments in the Eurasian Basin by Schlosser et al. (2002) (4.1). The 

2007 distribution of Pacific-derived water will be discussed (4.2) and compared with an 

alkalinity and N/P-based study from 2005, which reaches across the Canadian Basin into the 

Eurasian Basin (Jones et al., 2008). We will then proceed by focusing on the combined 

interpretation of fr and fi (4.3), that may be used to reveal processes and source areas 

contributing to the upper layers of the Arctic Ocean halocline in the Eurasian Basin (4.4). 

 

4.1 Freshwater distributions fr and fi in 2007  

In the northern and western Eurasian Basin there is a front defined by a change between net 

melting of sea-ice in the region of Atlantic Water inflow and net production of sea-ice 

concurrent with considerable amounts of river water on the central Arctic side (Figs. 8 and 3) 

(Bauch et al., 1995; Ekwurzel et al., 2001). The front is mainly oriented from west to east due 

to the inflow of warm Atlantic Water through Fram Strait and the Barents Sea and the general 

movement of waters from west to east along the continental slope (Newton et al., 2008). In 

2007 the location of this front is approximately 90°E and 85°N over the Gakkel Ridge, where 

river inventories rapidly increase from about 2 m to 8 m and sea-ice meltwater inventories 

change from about 1 m to -3 m (see Fig. 8 and Fig. 3). In the region of Atlantic water inflow 

fractions of river water fr are correlated to positive values of sea-ice meltwater fractions fi. 

This suggests that the small fractions of river water (~3%) present here are transported into 

this region by ice formed elsewhere in the Arctic (Pfirman et al., 2004) rather than by local 

runoff. Potential sources could be shelf regions farther east with considerable fractions of 

river water (Pfirman et al., 1995, 1997). Only the station sampled closest to Franz Josef Land 

(Fig. 2b) shows river water fractions with small brine influence, whose signal may originate 

from local runoff.   

Our quasi-synoptic dataset from summer 2007 suggests that the spatial and temporal 

variability is much higher than deduced from earlier assessments. In the 1990s a decline in the 

extent of the Beaufort Gyre, and thereby a shift of the Transpolar Drift toward the North 
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American side over the central Arctic Ocean (e.g., Morison et al., 2006), resulted in a thinning 

of the Arctic Ocean halocline (Steele and Boyd, 1998). Accordingly, the PO*-based 

assessment by Schlosser et al. (2002) deduced a change in the river water and sea-ice 

meltwater fractions between parallel sections in the western and eastern Eurasian Basin 

sampled in 1991 and 1996, respectively. Due to the movement of waters in the Transpolar 

Drift, the two sections could be linked and variation assumed to be caused by temporal 

variations and a general thinning of both the amount of river water and the brine influence 

(neg. fi) in 1996 relative to 1991 (Schlosser et al., 2002). Our dataset in 2007 indicates that the 

temporal variability is much higher than assumed by Schlosser et al. (2002): Similar values to 

those found in 1996, with reduced river water inventories and brine influence are observed in 

the eastern Eurasian Basin in 2007, while a distinct maximum in river water and brine 

influence is found over the Lomonosov Ridge close to the pole (Fig. 3a). That is, the 2007 

river water inventories of about 12 m and sea-ice meltwater inventories of about -5 m (Fig. 

8a) are over the Lomonosov Ridge even more extreme than those observed in 1991 (PO*-

based). Since the maximum in brine influence and river water in 2007 is observed in the 

Transpolar Drift towards Fram Strait (Fig. 3a), but is significantly reduced less than 200 km 

farther upstream (Fig. 3b), our observations suggest a discrete release of these waters from the 

shelf and a rather rapid transport in the Transpolar Drift in geographically limited pulses. A 

freshwater mass balance assessment by Jones et al. (2008) using alkalinity, salinity and N/P 

also shows two geographically limited maxima close to the Lomonosov Ridge, both 

correlated to maxima in river water fractions in 2005. Since their 2005 section runs 

perpendicular, parallel and then perpendicular again relative to the Lomonosov Ridge, and our 

data indicate that discrete pulses of shelf waters are transported in the Transpolar Drift, we 

may speculate that these two maxima may represent one or two freshwater pulses from the 

shelves. Our interpretation that discrete pulses of Siberian shelf waters are transported in the 

Transpolar Drift is also supported by model simulations. These show the release of river water 

from the Siberian shelves into the Transpolar Drift in discrete pulses with pronounced 

seasonal to multi-year variability (Karcher et al., 2006)   

 

4.2 Distribution of Pacific-derived water  

Pacific-derived water (fp) as determined with the PO*-based calculation is observed at the 

North American side of the Lomonosov Ridge in the Makarov Basin only (see Fig. 8a). Due 

to some limitations in the PO* calculations (as described above), Pacific-derived water may 

be underestimated and the N/P method needs to be considered. The PO* method relies on the 
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assumption of a restricted exchange of oxygen with the atmosphere under the sea-ice cover, 

which is questionable for the surface mixed layer especially in 2007. Also endmembers for 

the Pacific component in the PO*-based calculations reflect waters flowing over the Chukchi 

Sea during winter with relatively high nutrient concentrations (Cooper et al., 1999), and PO*-

based calculations may underestimate samples carrying the more nutrient-depleted summer 

conditions (see Ekwurzel et al., 2001; Yamamoto-Kawai et al., 2008).  

The N/P-based estimate accounts for changes caused by photosynthesis and respiration in 

both marine components, but may produce overestimates in certain areas such as the Siberian 

continental slope where denitrification creates an apparent fp signal. This effect is found in 

Laptev Sea bottom water at a salinity range of about 32.5 to 33 (Fig. 3b) and creates apparent 

fp values of up to 50%. This component of Laptev Sea bottom water has a brine signal (neg. 

fi) of -7 to -10% (Fig. 3b) and spreads eastwards along the continental slope (see section 3.1) 

and into the Transpolar Drift in accordance with the general surface circulation. In the 

Transpolar Drift over the Lomonosov Ridge we find water at this salinity range with brine 

signals of -3 to -4% (neg. fi) somewhat lower compared to Laptev Sea bottom water, while 

towards the Canadian side, the brine signal disappears (see Fig. 3). Pacific winter water 

(Upper Halocline Water at S~33.1) is typically also associated with brine production on the 

Chukchi shelf (Cooper et al., 1997), but due to the decline of the brine signal towards the 

Canadian side we argue that the brine influence can be regarded primarily as a tracer of 

Siberian shelf water within this region and the Transpolar Drift. We therefore assume that we 

may identify the apparent fp from denitrification at the Laptev Sea continental margin by its 

brine signal. As the salinity range of Pacific-derived water (~32.7) is identical to this 

component of brine-enriched Laptev Sea bottom water we estimate the relative contribution 

of the apparent fp directly from the dilution of the brine signal to be about 25% over the 

Lomonosov Ridge. As calculated fp values are in the same range the entire fp signal over the 

Lomonosov Ridge at salinities of about 32.5 to 33 is deduced to be only apparent with origin 

on the Siberian shelves.  

Taking the PO*-based fp as a lower limit and acknowledging the N/P-based fp may 

overestimate Pacific-derived waters, in this case within the Transpolar Drift system, we 

conclude that overall Pacific-derived water is approximately limited to the position of the 

Lomonosov Ridge and the Transpolar Drift in 2007.   

The freshwater assessment from 2005 by Jones et al. (2008) shows N/P-based Pacific-derived 

waters on the North American side of the Lomonosov Ridge reaching down to 100 m water 

depth over the Alpha Ridge as seen also in 2007. Within the Transpolar Drift over the 
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Lomonosov Ridge the fp signal of Pacific-derived waters is found at shallower depths, again 

similar to 2007. Thus, based on our study, we can assume that the N/P-based assessment by 

Jones et al. (2008) also overestimated Pacific-derived waters in the Transpolar Drift at 

salinities of about 32.5 to 33 due to the N/P signal from the Siberian shelves to a similar 

degree.  

Recent research support our general conclusions that i) Pacific water was limited to the North 

American side of the Lomonosov Ridge during 2007, and that ii) the apparent fp signal and the 

concurrent brine signal originates on the Siberian shelves. Using the N/P method, Alkire et al. 

(2010) found that Pacific-derived waters were nearly absent in the Makarov Basin in spring 

2007 and 2008, although they did not take into account any potential contribution of 

denitrified Siberian shelf waters. Furthermore, Alkire et al. (2010) conclude that meteoric 

water is likely of Siberian origin in the Makarov Basin in 2007 and 2008. Their N/P based 

analysis included NH4 in addition to NOx (NO3+NO2), which improves the accuracy of the 

method as highly-productive shelf waters may contain high concentrations of NH4 

(Yamamoto-Kawai et al., 2008). However, despite the methodological differences, Alkire et 

al. (2010) results support our conclusions. While there are indications that Laptev Sea waters 

are net-denitrifying and NH4 concentrations are generally low (Nitishinski et al., 2007), no 

direct measurements are available to confirm or contradict this notion. 

 

4.3 Combined interpretation of fr and fi 

While fractions of brine influence (neg. fi) in water parcels may be similar, their salinities can 

be rather different due to different contributions of river water. If the origin of the brine-

enriched layer found in the Arctic Ocean halocline is to be constrained, the signal of brine 

influence (neg. fi) together with the corresponding fraction of river water fr has to be 

considered. The calculated fractions are net values over the mean residence time of the water. 

Therefore, both fractions fi and fr can be treated as conservative tracers when off the shelves 

and below the surface mixed layer.  

4.3.1 Correlation between fr and fi 

Brine influence (neg. fi) and river water (fr) are roughly linearly correlated (Fig. 9). An 

approximately constant ratio between inventories of fi and fr has been observed before, e.g. in 

the region of export of Arctic Ocean halocline waters within the western Fram Strait areas 

(Dodd et al., 2009; Rabe et al., 2009; Meredith et al., 2001; Bauch et al., 1995). However, the 

correlation between fi and fr is absent or weak in the Canadian Basin as indicated by our data 

over the Alpha Ridge and clearly demonstrated in the freshwater assessment of 2005 by Jones 
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et al. (2008). This study shows correlated maxima in brine influence and river water close to 

the Lomonosov Ridge and the Eurasian Basin, but the dominant river water maximum in the 

central Canadian Basin is accompanied by melting of sea-ice (pos fi) near the surface, and 

only at about 50 m water depth it is weakly correlated with brine influence (neg. fi) (Jones et 

al., 2008). Sea-ice meltwater fractions and inventories in the Canadian Basin changed 

considerably and independently from meteoric water between 2003 and 2007 (Yamamoto-

Kawai et al., 2009). This independent change further demonstrates the contrast between the 

Canadian Basin and the Eurasian Basin in respect to the fi and fr correlation. 

The whole 2007 dataset from the Eurasian and Makarov basins shows a wide range of fi to fr 

ratios, which depend on salinity and corresponding depth level within the halocline (Fig. 9), 

and on the regional origin too (Fig. 10). However, there are two clusters with similar gradients 

in fi versus fr, but with an offset in fr values that have salinities of roughly 30-32 and 32-34. 

We propose that the correlation between brine influence (neg. fi) and river water (fr) is caused 

by sea-ice formation, which transports river water from the surface into layers below the 

surface mixed layer. Moreover, the division into the two clusters is caused by the two main 

mechanisms of sea-ice formation within the Arctic Ocean, which can be either in coastal 

polynyas or in open ocean convection. The salinity range within each cluster reflects slight 

variations in fi / fr ratio and also a varying degree of contribution and thereby dilution by 

marine waters.  

The correlation between fi and fr is similar when PO*-based and N/P-based fractions are used, 

and no significant differences are seen in the two clusters described (compare Fig. 9 a and b). 

4.3.2 fr / fi ratios at high river water fractions  

The linear correlation between brine influence and river water at relatively high fr values and 

consequently also relatively low salinity of ~30-32 (Fig. 9, upper grey line), originates from 

the coastal polynyas on the Eurasian shelves in the Laptev Sea and the Kara Sea, where the 

river mouths are in close proximity. The so called “Great Siberian Polynya” is a recurrent 

flaw lead, which is opened by wind forcing mainly in autumn and late winter and is present 

on the Siberian shelves over ~30 m water depth at the border between the land-fast ice and the 

pack ice (Zakharov, 1966; Martin and Cavalieri, 1989; Bareiss and Görgen, 2005). On these 

shallow Siberian shelf regions the fraction of river water fr and the brine influence (neg. fi) are 

correlated in locally formed bottom waters (Bauch et al., 2003, 2005). The coastal polynyas 

are partly wind-driven and transport river water into the shelf’s bottom layer. Therefore 

bottom waters from the Kara and Laptev shelf areas with enhanced influence of local polynya 

activity had a salinity of about 30 (Bauch et al., 2005), compared to a salinity of about 32 in 
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bottom waters of the Laptev Sea, which had a reduced imprint of local polynya activity 

(Bauch et al., 2010). The spatial distribution of river water on the Siberian shelves shows 

strong gradients and interannual variations within the surface layer (Bauch et al., 2009). 

Salinity and river water fractions may, therefore, vary considerably in the surface layer within 

the coastal polynyas. Surface waters with a higher river water percentage and lower salinity 

need more brine influence before they become dense enough to sink to the shelf’s bottom 

layer as is reflected in the roughly linear correlation within the fi / fr cluster. Bottom layer 

salinities on the other hand vary between 30 to 32 only and determine the salinity range of the 

fi / fr cluster formed in the coastal polynyas (Fig. 9, upper grey line).  

4.3.3 fr / fi ratios at low river water fractions  

The linear correlation between brine influence and river water at relatively low levels of fr 

with salinities of ~32-34 (Fig. 9, lower cluster, dashed line), originates from sea-ice 

production over the Arctic Ocean basins or within the polynyas at the continental slope (e.g., 

at Severnaya Zemlya or in the northern Kara or Barents Sea), where relatively small amounts 

of river water are found in the surface layer. The Lower Halocline Water (LHW) has salinities 

between 34.2 to 34.4 (Jones and Anderson, 1986) and is assumed to be formed by similar 

processes affecting the inflowing Atlantic Water over the Barents Sea shelf (Rudels et al., 

2004). Only the upper part of the LHW is therefore included in our discussion (Fig. 9) since 

we discuss a lower salinity range.  

 

4.4 Geographical analysis of fr / fi signatures 

Since the general circulation regime in the Arctic Ocean is from west to east along the 

Eurasian continental slope, the geographical distribution of the fi to fr ratios in the southern 

Eurasian Basin shows the evolution of the different layers of the Arctic Ocean halocline (Fig. 

10). The Transpolar Drift transports ice and surface waters from the eastern Makarov Basin in 

opposite direction across the pole and the propagation and eventual modification of the Arctic 

Ocean halocline can be investigated along this transport path farther downstream. 

4.4.1 Atlantic Regime fr / fi  

At the Barents Sea and Kara Sea slopes, relatively low river water fractions fr are found and 

strong melting of sea-ice is observed at the surface due to the inflow of warm Atlantic Water.  

Because of the transport of frozen river water as part of the ice, there is also a weak fi to fr 

correlation in surface waters with positive sea-ice meltwater signals (see Fig. 2 and diamonds 

in Fig. 10). Within the central Eurasian basin river water fractions remain below 10% (Fig. 

10, see squares), and there is a correlation between river water and brine influence at salinities 
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of about 32 to 34 (Fig. 10, 9) attributed to sea-ice formation in open ocean convection or in 

polynyas at the continental slope of the Barents and northern Kara seas (see 4.3). River runoff 

increases only at the shelf break of the western Laptev Sea (see triangles in Fig. 10 and Fig. 

3).  

4.4.2 Laptev Sea fr / fi  

Waters with constant fi / fr at ~32-34 salinities formed west of the Laptev Sea are overlain with 

waters of constant fi / fr at the eastern Laptev Sea margin. These contain considerably higher 

river water fractions and thereby have lower salinities of ~30-32. We attribute the formation 

of this second layer to sea-ice formation within the coastal polynyas of the Laptev Sea and 

also the southern Kara Sea. Since brine-enriched bottom waters with a salinity of about 30 are 

found in the southern Kara Sea (Bauch et al., 2003), but not at the Kara Sea continental slope 

(Figs. 10, 8 and compare also Figs. 2b, 3a), a release of brine-enriched bottom water must 

occur through Vilkitsky Strait directly into the Laptev Sea.  

4.4.3 New Siberian Islands and East Siberian Sea fr / fi  

At the continental slope near the New Siberian Islands (~140°E), relatively high brine (neg  fi) 

and river fractions fr are found in surface waters (see closed pink diamonds in Fig. 10 and 

compare Fig. 4a). Exactly at the slope, a pronounced brine signal is found at about 20 m water 

depth and 30 salinity (Fig. 4a) similar to the fi / fr regime in the south-eastern Laptev Sea 

bottom waters (see closed pink diamonds and closed triangle in Fig. 10 at fr of 30% and fi of 

-16%). This is in agreement with a bathymetry-steered export of Laptev Sea bottom water at 

the north-eastern border of the Laptev Sea (Bauch et al., 2009) and is also in accordance with 

a shift in freshwater storage between the Laptev and the East Siberian seas (Dmitrenko et al., 

2008). This layer may also be formed in the East Siberian Sea, but if so the fi / fr signature and 

salinity would be identical to that of the south-eastern Laptev Sea waters, therefore it is not 

discussed separately here. This relatively high fr water from the south-eastern Laptev Sea may 

be deflected northward along the Lomonosov Ridge, but is also found eastward in a rather 

thin layer at the continental slope of the East Siberian Sea in the Makarov Basin (~158°E, 

~30 m water depth; see large open pink diamonds in Fig. 10; Fig. 4b). It can also be seen in 

N/P signatures (Fig. 7b; see 3.1). Above this thin Laptev Sea-derived layer, a different regime 

is present, which contains Pacific-derived water fractions of up to about 30% and 75% as 

determined by the PO*-based and N/P-based methods, respectively. It also contains a strong 

signal from melting of sea-ice (Figs. 4b, 8, 10). This forms a third fi / fr regime, with even 

lower salinity (~25), but due to addition of sea-ice melting rather than due to additional river 

water.  This layer may be a summer phenomenon only and possibly it may be a feature 
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restricted to 2007, which was characterized by an exceptionally low summer sea-ice cover 

and a breakdown of the sea-ice cover especially in the western Canadian Basin (Serreze et al., 

2009).  

4.4.4 Central Arctic Ocean fr / fi  

In the central Arctic Ocean fr / fi signatures similar to the central Laptev Sea are observed at 

about 30 to 32 salinity (circles in Fig. 10). We attribute these to a transport of Laptev Sea 

bottom waters within the Transpolar Drift. A local maximum of this brine-influenced layer is 

observed in the Transpolar Drift over the Lomonosov Ridge (Fig. 3a; with values of brine 

maximum and stations highlighted by filled circles in Fig. 10), with values of about -7% in 

the section perpendicular to the Lomonosov Ridge, which is closer to Fram Strait (Fig. 3a). In 

the section perpendicular to the Lomonosov Ridge, which is more distant from Fram Strait, 

fractions of sea-ice meltwater fi remain at about -4% (Fig. 3b). The geographical limitation of 

the maximum in brine influence with the direction of the Transpolar Drift indicates the rapid 

release and transport of this signal from the shelf regions upstream (see 4.1). An outflow of 

brine-enriched bottom waters from the Laptev Sea has been described at about 30-50 m water 

depth and about 30 to 32 salinity (Bauch et al., 2009). Also, it has been inferred that the 

release of shelf waters occurs preferably in years with cyclonic atmospheric wind forcing 

(Guay et al., 2001; Dmitrenko et al., 2005) and may be rather rapid under certain local wind 

patterns (Bauch et al., 2011). A pulse of shelf waters was observed at the Laptev Sea 

continental margin in 2005 related to pronounced off-shore winds, while a similar signal was 

absent in summer 2006 (Bauch et al., 2011). Annual average current velocities of 2.2 and 

2.1 cm/s at about 100 m water depth were estimated from moored instruments at the 

continental slope east of the Laptev Sea and over the Lomonosov Ridge, respectively 

(Woodgate et al., 2001). A travel time of 1.8 to 2 years is inferred when applying these 

velocities for a transport of shelf waters (at slightly shallower depth) over the distance of 

about 1300 km from the Laptev Sea along the continental slope to the position of the observed 

maxima in brine influence over the Lomonosov Ridge. This scenario is therefore in agreement 

with observations, though speculative in respect to vertical velocity variations.  

 

5. Summary and conclusions 

In the Eurasian Arctic, a west to east oriented front between net melting of sea-ice and net 

production of sea-ice is observed concurrent with the occurrence of river water. The 

Transpolar Drift system is observed at the North American side close to the Lomonosov 

Ridge. A pronounced layer influenced by brine released during sea-ice formation is present at 
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about 30-50 m water depth north-east of the Laptev Sea and all over the central Eurasian 

Basin. A geographically distinct maximum within the Transpolar Drift demonstrates the rapid 

release and transport of this signal from the Laptev Sea shelf region. It may be speculated that 

this brine maximum is linked to a release of shelf waters from the Laptev Sea in summer 2005 

(Bauch et al., 2011) and transported about 1300 km to the central Arctic Ocean within 2 years 

in agreement with direct current measurements (Woodgate et al., 2001).   

The two clusters seen in the correlation between sea-ice derived brine influence and river 

water can be assigned to the two main mechanisms of sea-ice formation within the Arctic 

Ocean. Over the open ocean or polynyas at the continental slope where relatively small 

amounts of river water are found, sea-ice formation results in a linear correlation between 

brine influence and river water at salinities of about 32 to 34. In coastal polynyas in the 

shallow regions of the Laptev and southern Kara seas, sea-ice formation transports river water 

into the shelf’s bottom layer due to the close proximity to river mouths. This process therefore 

results in waters that form a linear correlation between brine influence and river water at a 

salinity of about 30 to 32. 

With the decline in Arctic sea-ice cover, large areas especially on the shelves are free of sea 

ice for prolonged periods of time and changes in the seasonal evolution of the coastal 

polynyas and in the amount of sea-ice formed here are likely. Studies from the south-eastern 

Laptev Sea already revealed unusually wide and late polynya openings in April 2007 

(Willmes et al., 2011), which were not effective in the formation of brine-enriched bottom 

water (Bauch et al., 2010) usually observed with salinity of about 30 (Bauch et al., 2005). 

Further studies have to investigate which pattern will be more prominent in the future and 

how this may affect the Arctic Ocean halocline. With the ongoing climate change the 

freshwater balance and the fluxes from the Arctic Ocean are also expected to change (Dickson 

et al., 2007; Rabe et al., 2011). In respect to analyzing freshwater changes and predicting their 

impact on the structure and stability of the Arctic Ocean halocline our study provides process-

oriented information. Our study identifies (1) the layers of the Arctic Ocean halocline 

influenced by sea-ice formation in coastal polynyas, which are primarily wind-driven and 

contain larger amounts of river water and (2) the layers of the Arctic Ocean halocline 

influenced by sea-ice formation over the open ocean, where convection is more dominant. In 

addition, our study indicates how very rapid signals from the shelves are transported in pulses 

within the Transpolar Drift system. With the ongoing changes in sea-ice coverage in the 

Arctic Ocean, it can be expected that the processes of sea-ice formation will change and that 
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the relative contributions from coastal and open ocean sea-ice formation to the Arctic Ocean 

halocline will change accordingly.   
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8. List of Tables: 

 

 PO*-based 

PO* (mol·kg-1) 

N/P-based 

PO4 (mol·kg-1) endmember salinity 18O (‰) 

Atlantic Water (fa) 34.92(5) 0.3(1) 0.70(5) 0.0596*[NOx] + 0.1139 ±0.02 

river water (fr) 0 -20(1) 0.1(1) 0.1(1) 

sea-ice meltwater (fi) 4(1) surfacea+2.6(1) 0.4(1) 0.4(1) 

Pacific water (fp) 32.7(2) -1.1(2) 2.4(3) 0.0653*[NOx] + 0.9400 ±0.02 

 

Tab. 1: Endmember values used for the three component (bold outline) and PO*-based and 

N/P-based four component mass-balance calculations. Numbers given in parentheses are the 

estimated uncertainties within the last digit in our knowledge of each endmember value. 

Analytical errors are all considerably smaller. a Average Arctic surface water 18O of -2‰ 

was used and within the southern Eurasian Basin the surface value of each station was 

applied. For further explanation see text.
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9. List of Figures 

 

 

Fig. 1: Map of the Arctic Ocean with geographical distribution of stations with 18O data 

taken during expeditions PS07 (circles) and VB07 (triangles) in 2007. Also indicated are the 

positions of the sections A-C shown in Figs. 2-4, respectively. 
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Fig. 2: Hydrographic and derived parameters within the upper 150 m water depth on sections 

A as indicated in Fig. 1 from (a) the Atlantic regime across the continental margin at the 

Barents Sea at ~35°E and (b) Franz Josef Land/St. Anna Trough at ~60 to 69°E. In the upper 

panels color shading show potential temperatures and salinities are superimposed in white 

contour lines. Middle panels show fractions of river water fr and lower panels show fractions 

of sea-ice meltwater fi based on the 3-component mass balance. The small dots within the 

sections show the position of the samples in the water column. Inventory values for the upper 

150 m are given as pure river water or sea-ice meltwater in m on top of each station or 

average of stations between asterisks and highlighted by gray shading.  
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Fig. 3: Hydrographic and derived parameters within the upper 150 m water depth on sections 

B as indicated in Fig. 1 from (a) the central Arctic Ocean across the Eurasian basin towards 

Voronin Trough and (b) towards the Laptev Sea. The parallel parts of the sections are 

highlighted by gray shading. In the upper panels color shading show potential temperatures 

and salinities are superimposed in white contour lines. Middle panels show PO*-based 

fractions of river water fr and sea-ice meltwater fi (3-component when PO*-based fp is absent), 

with fractions of Pacific-derived water fp shown in white contour lines. In the lower panels 

N/P-based fractions are shown for fr and fp. The small dots within the sections show the 

position of the samples in the water column. Inventory values in the upper 150 m (or bottom 

depth) are given as pure river water or sea-ice meltwater in m on top of each station or as 

average of stations between asterisks and highlighted by gray shading.  
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Fig. 4: Hydrographic and derived parameters within the upper 150 m water depth on two 

sections (marked C in Fig. 1) from the Makarov Basin across the continental margin of (a) the 

New Siberian Islands at ~141°E and (b) the East Siberian Sea at ~158°E. In the upper panels 

color shading show potential temperatures and salinities are superimposed in white contour 

lines. Middle panels show fractions of river water fr and sea-ice meltwater fi. When present, 

fractions of Pacific-derived water fp are shown in white contour lines. PO*-based fractions 

(middle rows; 3-component when PO*-based fp is absent) and N/P-based fractions fr and fp are 

shown (lower row). The small dots within the sections show the position of the samples in the 

water column. Inventory values for the upper 150 m (or bottom depth) are given as pure river 

water or sea-ice meltwater in m on top of each station or as average of stations between 

asterisks and highlighted by gray shading.  
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Fig. 5: Property plot of 18O values versus salinity for the upper 150 m of the Arctic Ocean 

water column in 2007. The geographical distribution of each sample is indicated by different 

symbols according to the legend and is also shown in the map included in Fig. 10. Also 

indicated is the mixing line between the endmember values of Atlantic Water in the Arctic 

Ocean and average river water as used in the mass balance calculations. For further 

explanation see text. 
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Fig. 6: NOx (NO2+NO3) versus PO4 for stations taken during PS07 and VB07. The “pure-

Atlantic water line” (thick red line) is defined by linear correlation of all station data in the 

Atlantic regime between 80-85°N and 30-90°E (diamonds) as [NOx] = 16.785*[PO4] -1.9126. 

Also indicated are the “pure-Pacific water line” as defined by Jones et al. 1998 (gray stippled 

line), Yamamoto-Kawai et al. 2008 (black stippled line) and Jones et al., 2008 (solid black 

line). 
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Fig. 7: NOx (NO2+NO3) versus PO4 for stations taken during (a) PS07 and (b) VB07. Middle 

panel in (a) shows selected stations from PS07 in the central Arctic Ocean (open symbols as 

indicated in map) and the Laptev Sea continental slope (closed symbols as indicated in map). 

Middle panel in (b) shows selected stations from VB07 at the Laptev Sea continental slope 

(open symbols as indicated in map) and the East Siberian Sea continental slope (closed 

symbols as indicated in map; for orientation open dots indicate also PS07 station positions). 

Right hand side panels show scatter plots for all samples from each expedition with salinity 

indicated by coloring. Also indicated are the “pure Atlantic water line” (thick gray line, as 

defined in Fig. 6) and the “pure Pacific water line” (black line, as defined by Jones et al., 

2008). For further explanation see text. 
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Fig. 8: Map of the Arctic Ocean with geographical distribution of inventory values of the 

upper 150 m for stations in 2007. Inventory values are a) PO*-based and 3-component and b) 

N/P-based. Inventory values are given as pure river water, sea-ice meltwater and Pacific-

derived water in m. The color bar for Pacific-derived water also shows the freshwater 

equivalent relative to S=34.92 (salinity of Atlantic endmember). Note that scales for Pacific-

derived inventory N/P-based and PO*-based are different. 
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Fig. 9: Property plots of sea-ice meltwater fraction fi versus river water fraction fr for the 

upper 150 m of the water column in the Arctic Ocean in 2007. The corresponding salinity of 

each sample is indicated by colored dots. Fractions are calculated a) PO*-based and 3-

component and b) N/P-based. For further explanation see text. The dashed and solid gray 

lines mark the clusters at salinities of about 32-34 and 30-32, respectively.  
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Fig. 10: Property plot of sea-ice meltwater fraction fi versus river water fraction fr (PO*-based 

and 3-component) for the upper 150 m of the water column in the Arctic Ocean in 2007. The 

geographical distribution of each sample is indicated by different symbols as shown in the 

map. Within the stations in the central Arctic Ocean (open circles) the maximum of the brine 

layer over the Lomonosov Ridge is highlighted by filled symbols.  

 

 

  


