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Abstract

The quality of eddy flux-gradient parametrizations in models with coarse resolution depends on
whether the generated diffusivity is similar to that of reference solutions produced by eddy resolving
models. It is therefore essential to accurately describe the transport properties of eddy resolving
ocean models. This thesis is a survey of the lateral transport of passive tracers induced by mesoscale
eddies in the velocity field of a 1/12o numerical model of the North Atlantic. Statistical tools are
used to relate particle trajectories of Lagrangian floats to the effective eddy diffusivity: Both Taylor’s
theory of turbulent dispersion, which forms the foundation for the analysis, and further refinements
thereof, are discussed and used for computations. The underlying theories rely on several restrictive
assumptions about the statistics of the flow field, and one objective of this thesis is to make the
reader aware of how difficult an interpretation of the results can be.
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. . . Obviously, we must assume that each individual particle
performs a motion that is independent of the motions of
all the other particles; similarly, the motions of one and
the same particle in different time intervals will have to be
conceived as mutually independent processes so long as we
think of these time intervals as chosen not to be too small.. . .

Albert Einstein, 1905: On the Movement of Small
Particles Suspended in Stationary Liquids Re-
quired by the Molecular-Kinetic Theory of Heat.
Annalen der Physik (ser. 4), 17, 549-560

1 Introduction

1.1 Motivation

Predicting future distributions of tracers like dissolved oxygen, dissolved inorganic carbon or nitrate
in the ocean is a central problem in climate research. Changes of the distribution are caused by the
inital condition, by sources and sinks of the tracer and the evolution of the velocity field by which
the tracers are transported. Ocean components of climate models are integrated for long time-
intervals, and their spatial resolution is kept low to reduce the computational load. A model with
coarse resolution cannot resolve features of the velocity field which are present in the real ocean,
or in a model with finer resolution, and this is why a coarse resolution model predicts different
tracer distributions than a model with finer resolution. The coarse resolution model is nevertheless
considered to be useful, if it represents an average of multiple individual results produced with the
fine resolution model 1. It is therefore desireable to design a coarse model in a way that it reproduces
the average effect of the unresolved features of velocity onto the transport of tracers.
The flow by which a tracer is advected in the ocean has very different dynamical properties in
the along- and cross-isopycnal directions (Garrett, 1983); While tracer distributions in the cross-
isopycnal direction appear smooth on scales of more than a few meters, variations in the along-
isopycnal direction can be observed at much larger scales. The variability on the lowest frequencies
and the largest spatial scales which cannot be resolved by climate models is caused by a variety of
mesoscale structures; jets, intense vortices, eddies and planetary waves (Berloff & McWilliams, 2002).
Apart from the mean currents, the dominant transport mechanism along isopycnals is associated
with stirring by mesoscale eddies (Garrett, 2006). Dispersion caused by eddies affects the evolution
of large-scale patterns of every tracer; active scalar tracers like temperature and salt, passive tracers
like dissolved oxygen, dissolved inorganic carbon or nitrate, as well as dynamical quantities like
potential vorticity. Most ocean components of climate models cannot resolve mesoscale eddies.
With this work we aim to improve simple eddy-diffusivity parameterizations of isopycnal dispersion
for coarse resolution ocean models by inferring appropriate eddy-diffusivity constants from the flow
field of an eddy-permitting model of the North Atlantic. Diffusivity constants represent a growth

1The results of the individual simulations with the fine resolution model might differ because of small changes in
the initial conditions.
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rate of variance of the tracer field, and we choose to analyze the dispersal of Lagrangian particles
in the eddy-permitting model to calcualte an appropriate growth rate.
It was mentioned above that a successful parameterization of turbulent fluxes should represent the
average transport effect of unresolved velocity fluctuations. It is therefore interesting to think about
how the average result of a tracer release experiment differs from an individual result.
Stages of tracer dispersal as observed in an individual tracer-release experiment. Garrett
(2006) and Lee et al. (2009) identify various distinct stages of tracer dispersal in an individual tracer
release experiment. The numbers below are estimates and represent typical oceanic values. Let us
assume that a patch of tracer substance with diameter of about 1m is instantaneously released in
the ocean and that the patch lies on an isopycnal.

• Stage 1: Processes like shear dispersion of inertial and internal waves cause a dispersal of the
tracer along isopycnals, and dispersal across isopycnals is caused by processes such as breaking
of internal waves. These mechanisms act on scales of the order of 1-100m and they are directly
linked to mixing at the molecular level.

• Stage 2: The tracer patch is gradually deformed such that it extends over a distance of
more than about 100m. At this time it will start to be distorted and strained into streaks
by mesoscale eddies. This process is commonly referred to as stirring. In this stage, the
evolution of the tracer patch is dominated by the local strain field rather than by the small-
scale processes mentioned above. The stirring process is adiabatic with the tracer contours
stretched and gradients sharpened. This enhances molecular diffusion. While the patch is
distorted, the center of mass of the tracer patch will move away from the location of release.
From now on, the deformation of the tracer patch can be observed by seeding neutrally buoyant
floats along the tracer contours.

• Stage 3: When the length scale of the tracer is much larger than the typical eddy size, streaks
of tracer are repeatedly elongated, folded and eventually merged together by diffusion. This
leads to a smoothing, or reduction of streakiness. After some time, variations of concentration
have a spatial extent on the order of the length scale of the dominant eddies.

Consider the shape of a tracer contour (in two dimensions this would be a path along which the
concentration is constant) and its evolution in time. When the tracer is released this contour will
have the form of a circle, which will be strongly distorted by the eddies at stage 2. An ocean model
with coarse resolution is not able to reproduce this kind of streakiness; The length scale of the
streaks is about the same as the length scale of the eddies, which cannot be resolved with coarse
resolution.
Evolution of the ensemble-mean distribution. If the experiment outlined above is repeated
many times, the individual shapes of distributions can be averaged. In this work we try to extract
information about the evolution of the ensemble-mean distribution at times after stage 3 reached its
final phase: The extent of the ensemble-mean tracer distribution has grown so large that deviations
from the ensemble mean are on the order of the length scale of the dominant eddies times the mean
gradient of concentration (Davis, 1991). Davis (1987) emphasizes that it is fundamentally incorrect
to confuse the average effects of eddies onto the evolution of a tracer field with the kind of stirring
outlined above in stage 2. Imagine a turbulent flow (A) that produces very elongated streaks during
stage 2 in every individual realization, and moves the center of gravity away from its initial position.
Consider a different kind of turbulent flow (B) in which the center of gravity of the tracer patch is
moved in the same way as in flow A, but in which the velocity fluctuations distort the patch only
slightly and do not lead to elongated streaks as before. In principle, both kinds of turbulence can
lead to an identical ensemble-mean evolution of the tracer patch, because the different characteristics
dissappear in the averaging process. However, Garrett (1983) argues that the distinction between
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the ensemble averaged concentration field and the potentially streaky concentration field in a single
realization may not be important if the tracer concentrations are low.
The method we employ is based on the fact that the evolution of the ensemble-mean tracer field
is fully determined by single-particle statistics (Davis, 1987). Single-particle statistics do not yield
information about the degree to which individual tracer patches are distorted in stage 2. As the
name suggests, single-particle statistics are computed from an ensemble of releases of one particle
per experiment. Instead of repeating the experiment, we assume that the eddy-permitting model
produces stationary fluctuation-statistics and imagine that a new experiment starts each time a
particle passes the point of release.
This approach is to be distinguished from the one used by Lee et al. (2009), who apply diagnostic
methods to infer eddy diffusivity from a single point release 2 of a chemical tracer in a numerical
model. The authors note that the relationship betwen different methods of inferring diffusivity is
often not clear, which makes it difficult to interpret the meaning of eddy diffusivity. They find that
the time scales associated with the final stage of tracer evolution is different for each method.
The use of floats as opposed to chemical tracers provides an economical way of obtaining information
on material transport in the real ocean.
The rest of this chapter is divided into four parts: The first part is an outline of Taylor’s theory of
turbulent dispersion. This theory will be used in the second part to explain what Lagrangian particle
statistics have to do with turbulent diffusion. The third part explaines the concept of anisotropic
diffusion, and the fourth part outlines some problems relating to the statistical sampling of the
ocean or an ocean model.

1.2 Taylor’s Theory of Turbulent Dispersion

If a set of particles is released at a point into a turbulent fluid, the particles will be advected by the
large-scale mean flow and by the turbulent velocity fluctuations. In this section we consider only
the part of the transport which is caused by turbulent velocity fluctuations. To this end we assume
that the mean flow vanishes. Recall that the ultimate goal of this work is to find parameterizations
of turbulent fluxes which represent the average transport effect of unresolved velocity fluctuations.
The effects of turbulence onto changes of the distribution of a tracer are of course dependent on
its initial distribution. In this section we consider the dispersal of particles which are released at
one single point. An important characteristic of the average transport effect is the mean square
distance between the point of release and the location of a particle. It will become clear that this
mean square distance grows with time, but this is rather trivial. Further analysis show that shortly
after release, the mean square distance will grow faster than linear, but at some later time it will
grow linearly in time. The length of the time intervall after which the mean square displacement
grows linearly depends on the nature of the turbulence. One way of characterizing the nature of
a specific kind of turbulence with Lagrangian statistics is to calculate the velocity-autocorrelation
function of Lagrangian particles which are advected by the turbulent velocity; Different regimes of
turbulence will cause different shapes of velocity-autocorrelation functions. The length of the time
intervall after which the mean square displacement grows linearly in time depends strongly on the
shapes of the velocity-autocorrelation functions.
A turbulent flow is called quasi-stationary if the statistics of the turbulent fluctuations are indepen-
dent of space. Likewise, it is called homogeneous if the statistics of the fluctuations are independent
of time. The distinction of the two properties (quasi-stationarity and homogeneity) can only be
made from the perspective of an Eulerian description of the flow. In the Lagrangian frame, location
is a function of time. If a Lagrangian particle is released in a quasi-stationary, but nonhomoge-
neous flow, it will change its position with time and sample various regions that are characterized
by different Eulerian statistics. The time series of the particle’s velocity is thus a realization of a

2No ensemble averaging is involved.
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non-stationary stochastic process. Even if the Eulerian statistics are quasi-stationary and homo-
geneous in the horizontal direction, the Lagrangian statistics of the horzontal velocity may not be
stationary. The example of the Stokes Drift in wave fields illustrates this problem (Davis, 1991).
Consider a wave field that is quasi-stationary and homogeneous in the horizontal directions. If
Lagrangian particles are released at random times on the same point in the domain, their ensemble
average velocity at the time of release will be zero, like the Eulerian mean velocity at this point.
However, the nonlinearity of the flow will induce a Lagrangian mean velocity of the particle. For
the development of the theory below, it is assumed that the timeseries of the velocity of a particle
is a stationary process3.
Consider a fluid with turbulent velocity fluctuations. A particle is released into the fluid, at the
origin of coordinates, and advected by the turbulent fluctuations. Let X(t) be the position of the
particle at time t. If the experiment can be repeated, we can obtain the ensemble mean position
X(t) of the particles.
In the following, the theory is developed according to Kundu & Cohen (2002).
It is sufficient to consider a single component of the displacement, e.g. X. The other components
are treated in an analogous manner. The rate at which the mean square displacement X2 increases
is

d

dt

(
X2
)

= 2X
dX

dt
, (1)

where dX
dt is the Lagrangian velocity component of a particle. The bar denotes the ensemble

mean, so the average is constructed by an infinite number of repetitions of the experiment. For
further development let the Lagrangian velocity be defined by

ul :=
dX

dt
. (2)

The particle position X can now be written in terms of its velocity history,

X(t) =
∫ t

0
ul(t′) dt′, (3)

which yields for (1):

d

dt

(
X2
)

= 2Xul = 2
[∫ t

0
ul(t′) dt′

]
ul(t) (4)

The instantaneous velocity ul is a function of t and it is independent of t′. We can therefore put it
into the integral:

d

dt

(
X2
)

= 2Xul = 2
∫ t

0
ul(t′)ul(t) dt′ (5)

The operation of integration commutes with ensemble averaging, because∫ t

0
a(t′) dt′ =

1
N

[∫ t

0
a1(t′) dt′ +

∫ t

0
a2(t′) dt′ +

∫ t

0
a3(t′) dt′ + . . .

]
= (6)∫ t

0

[
1
N

{
a1(t′) + a2(t′) + a3(t′) + . . .

}]
dt′ =

∫ t

0
a(t′) dt′,

3In fact, we assume that it is an ergodic process. Although not every stationary process is ergodic, a distinction
between these two properties is not necessary in this context.
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where the ai are individual realizations of a. For (5) we get

d

dt

(
X2
)

= 2
∫ t

0
ul(t′)ul(t) dt′ (7)

We postulated that the particle’s velocity is the realization of a stationary process, which implies
that the expression ul(t′)ul(t) is a function of the time difference t − t′ only. We can define the
(normalized) autocorrelation function

r(τ) =
ul(t)ul(t+ τ)

u2
l

. (8)

Note that u2
l r(t

′ − t) = ul(t)ul(t′). By setting τ = t− t′ we can rewrite (7) as

d

dt

(
X2
)

= 2u2
l

∫ t

0
r(τ) dτ (9)

Integration yields

X2(t) = 2u2
l

∫ t

0

∫ t′

0
r(τ) dτ dt′. (10)

The last equation can be integrated by parts:

X2(t) = 2u2
l

([
t′
∫ t′

0
r(τ) dτ

]t
0

−
∫ t

0
t′r(t′) dt′

)
(11)

= 2u2
l

(
t

∫ t

0
r(τ) dτ −

∫ t

0
t′r(t′) dt′

)
= 2u2

l t

∫ t

0

(
1− τ

t

)
r(τ) dτ

The shape of the autocorrelation function will differ for various types of turbulence, but all auto-
correlation functions share the following property:

• r(0) = 1. This follows from the definition (8).

Furthermore it may be assumed that most autocorrelation functions of turbulent flow satisfy:

• limτ→∞ r(τ) = 0. The velocity of a particle will become uncorrelated with itself after a long
time.

If r(τ) converges fast enough to its limit at infinity, the integral

TL =
∫ ∞

0
r(τ) dτ (12)

converges and we can define TL to be the Lagrangian integral time scale. In the literature, TL
sometimes appears as a measure of the time over which ul stays highly correlated with itself. It is
important to note that this interpretation of TL is not always appropriate. We will discuss this issue
below.
Depending on the shape of r close to the origin, we can find a ta such that

r(t) ≈ 1 for t ≤ ta (13)

For t ≤ ta, Eq. (1.2) can be approximated by

X2(t) = 2u2
l t

∫ t

0

(
1− τ

t

)
dτ = u2

l t
2 t ≤ ta. (14)
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Figure 1: Two examples for autocorrelation functions.

This is as expected: Short after release, a particle’s typical excursion is its rms speed multiplied by
the time that has passed since its release (Garrett, 2006).

Depending on the speed of convergence of

TL =
∫ ∞

0
r(τ) dτ, (15)

we can find a tb such that

TL ≈
∫ tb

0
r(τ) dτ, (16)

For t ≥ tb, Eq. (1.2) can be approximated by

X2(t) = 2u2
l t

∫ t

0
r(τ) dτ = 2u2

l TLt. (17)

The mean square displacement grows linearly in time. Consider the two (artificially constructed)
autocorrelation functions in Fig. 1. Both functions are close to zero after a lag of 200, so tb ≈ 200.
However, TL ≈ 50 for the upper curve, and TL ≈ 2 for the lower curve. In the latter case it is clearly
inappropriate to interpret TL as a decorrelation time scale.

1.3 Turbulent Diffusivity and Lagrangian Particle Statistics

Recall that the goal of this work is to find parameterizations of turbulent fluxes which represent the
average transport effect of unresolved velocity fluctuations. A change in concentration at a point
during a time interval [t1, t2] due to the average effect of turbulent transport is dependent on the
tracer distribution at time t1 and the probabilities of particle displacement from the surrounding
points to the point under consideration. We are interested in finding, for every point x in the domain,
the probability that particles move from any other point x̂ to x during [t1, t2]. In the preceeding
section we described Taylor’s thought experiment and outlined the necessary assumptions about the
turbulent velocity field. It was shown that the mean square distance between the point of release and
the location of a particle grows with time. Taylor’s theory does not predict the shape of the location
probability distribution, it merely predicts its variance. The fact that the mean square displacement
grows linearly after some time tb (which depends on the nature of the turbulence) motivates the
attempt to use an analog of the mathematical model of molecular diffusion for describing turbulent
dispersion. In the next paragraph we explain some properties of the diffusion equation which are
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relevant to eddy diffusivity modeling, and proceed to outline the basic ideas behind the concept of
eddy diffusivity.
The diffusion equation. The diffusion equation is a mathematical model that describes the
spreading of a conserved quantity like molecules, heat or momentum. The spreading is driven
by spatial gradients of the quantity. Molecular diffusion is associated with a transfer of mass,
while diffusion of heat is a transfer of thermal energy and diffusion of momentum refers to the
spreading of momentum between particles. In any case, diffusion is a specific form of transport that
is conceptually associated with randomness and irreversibility. Consider the example of dispersion
of molecules in a fluid that is caused by their random4 thermal agitation. A mathematical model
for a simple case of a spreading process is formulated with the following initial value problem:

∂C

∂t
= κmol

∂2C

∂x2
, −∞ < x <∞, 0 < t <∞ (18)

C(x, 0) = δ(x) (19)

This is a model for molecular diffusion of a substance that is released at a point x = 0 in an
unbounded, one-dimensional domain. The total amount of substance is one unit of mass. Initially,
the concentration C is nonzero only at the point of release, which is expressed by the use of the
Dirac-δ function in the initial condition. The solution to the initial value problem is given by

C(x, t) =
1√

4πkmolt
exp−

x2

4kmolt (20)

At every time ti, the solution is identical to a Normal distribution

1
σ
√

2π
exp−

(x−µ)2

2σ2 (21)

with µ = 0 and σ2 = 2kmolti The evolution of the concentration C is expressed by the linear increase
of variance of a Gaussian shape. The Normal distribution describes the probability density function
of the position of a molecule of the released substance. The variance σ2 = 2kmolt is equal to the mean
square displacement of the molecules from the point of release. Transport by means of diffusion is
caused by random movements, which is consistent with the fact that the solution of the diffusion
equation has the shape of a probability density function at every instant. The diffusion equation
does not predict the location of a molecule, it merely assigns a probability of finding it at a certain
point. The increase in variance is the result of growing uncertainty in the position of molecules
and it is this growing unpredictability which introduces the irreversible nature of diffusion (adapted
from Davis (1987)).
The advection equation. A simple form of the advection equation is

∂C

∂t
+ u

∂C

∂x
= 0. (22)

The equation models the transport of a conserved quantity which is caused by a fluid that moves
with the velocity u. As opposed to diffusion, this kind of transport is not influenced by randomness,
but it is determined by the velocity of the fluid.
Turbulent transport: Reynolds averaging of the advection equation. In a numerical ocean
model, the velocity field cannot be resolved to small scales at which viscosity becomes relevant. The
velocity and the tracer field are decomposed into average fields u,C and a part which represents
turbulent fluctuations u′, C ′. The decomposition u = u + u′ is called Reynolds decomposition and

4We call a process random, if it is either random or chaotic. Although the two words have different meanings, a
proper distinction is beyond the scope of this work. We assume that ensembles of both random and chaotic processes
can be described by a probability density functions after a certain time interval.
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the averaging can be done in various ways. In any case, for a turbulent flow the fluctuations u′ and
c′ are considered to be random and can be described, if at all, by a probability density function.
Inserting the Reynolds averaged quantities in equation (22) yields

∂C

∂t
+ u

∂C

∂x
= −∂u

′C ′

∂x
. (23)

The second term on the left hand side represents advection by the velocity at scales that can be
resolved by the model, while the term on the right hand side models the contributions of random
fluctuations to the evolution of the mean fields.
Parameterization of the turbulent flux. The turbulent flux u′C ′ must be expressed as a function
of the mean variables. In a flow with zero mean velocity, (23) reduces to

∂C

∂t
= −∂u

′C ′

∂x
. (24)

Taylor (1922) showed that, under the restrictions outlined in 1.2, the mean square displacement
of an ensemble of particles released in a turbulent fluid is a linear function of time, provided that
t ≥ tb. Recall that (

X2
1

)
= 2u2

l TLt for t ≥ tb, (25)

where tb is the time of decorrelation for a velocity fluctuation. The increase of variance of the
location uncertainty is therefore a linear function of time, just like it was in the case of molecular
diffusion. This fact is a key argument for justifying eddy diffusivity modeling. In eddy diffusivity
modeling, the probability of finding a particle at a certain location is expressed by substitution of
kmol in (19) with u2

l TL.

∂C

∂t
= u2

l TL
∂2C

∂x2
, (26)

This is a simple flux-gradient parameterization: The term −u′C ′ in (24) is substituted with u2
l TL

∂C
∂x .

Extending this idea to flows with a spatially constant mean velocity, (23) can be written as an
advection-diffusion equation:

∂C

∂t
+ u

∂C

∂x
= κ

∂2C

∂x2
κ := u2

l TL (27)

Mapping of Lagrangian statistics into an Eulerian frame. It is essential to note that Eq.
(27) is written in an Eulerian frame and contains a Lagrangian statistic u2

l TL. With the assump-
tions of section 1.2, the turbulent diffusivity u2

l TL, a statistic that must be computed from particle
displacements and therefore can not be computed at a single point, is nevertheless representative
for every point in the entire spatial and temporal domain.
Towards a more advanced justification for the use of (27). Taylor’s theory describes the
spreading of particles that are released from a concentrated point source in an idealized turbulent
flow with zero mean flow. A thorough discussion about the applicability of (27) in general circulation
models is beyond the scope of this work. However, we can strengthen our intuition by trying to
understand the appendix of the article by Davis (1987). The description of molekular diffusion from
the microscopic (as opposed to the continuous) perspective goes back to Einstein (1905). Further
information is available in Davis (1983) and Davis (1991).
In the following we use the notation a(t|x̃, t̃) to denote the property a at time t of a particle which
was found (or will be found) at the Eulerian space-time coordinate (x̃, t̃). The coordinates behind
the bar are sometimes referred to as Lagrangian label. Note that every moving particle has an infinite
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amount of labels, i.e. all Eulerian coordinates which lie on its trajectory can be used to identify the
particle in an unambiguous way.
The advection equation (22) can be written as

dc

dt
= 0, (28)

where d
dt is the total derivative of c. Assume that we know the initial concentration c(x, 0). The

solution to the advection equation is given by

c(x, t) = c{r(0|x, t), 0} =
∫
δ{x̃− r(0|x, t)}c(x̃, 0) dx̃, (29)

where r is the initial position of a particle (or ’blob of fluid’) that is found at (x, t). The blob of
fluid at (x, t) simply transported the c-stuff contained in it from its initial position to x during the
time interval [0, t]. The integral in the above equation extends over the complete spatial domain. If
we apply the ensemble average operator to the upper equation and assume that the fluid motion
is independent of the initial distribution c(x, 0), we have

C(x, t) =
∫
P (x, [0, t], x̃)C(x̃, 0) dx̃, (30)

with

P (x, [0, t], x̃) = δ{x̃− r(0|x, t)} (31)

C(x̃, 0) = c(x̃, 0). (32)

P (x, [0, t], x̃) is the transition probability, i.e. the probability that a particle which was found at
(x̃, 0) moves to the point (x, t) during [0, t].

Assume that there exists a time-interval ∆, such that

P (x, [0, t+ ∆], x̃) =
∫
P (x̂, [0, t], x̃) · P (x, [t, t+ ∆], x̂) dx̂ (33)

This important step introduces the conjecture that the time-domain can be split up into intervals
for which the transition probabilities P are statistically independent from each other. The product
P (x̂, [0, t], x̃) · P (x, [t, t+ ∆], x̂) is then the probability that a particle moves from x̃ to an arbitrary
x̂ during [0, t], under the condition that it moves afterwards from x̂ to x. (33) is equivalent to
the assumption that sequential particle displacements which are temporally separated by ∆ are
effectively statistically independent, which implies that the transport is a first-order Markov process
in the sense that the particle motion over the interval [t, t+ ∆] depends statistically only on particle
positions at t (Davis, 1987). From the assumption follows

C(x, t+ ∆) =
∫
P (x, [0, t+ ∆], x̃) · C(x̃, 0) dx̃ = (34)∫ [∫

P (x̂, [0, t], x̃) · P (x, [t, t+ ∆], x̂) dx̂
]
C(x̃, 0) dx̃ =∫

P (x, [t, t+ ∆], x̂)
[∫

P (x̂, [0, t], x̃) · C(x̃, 0) dx̃
]
dx̂ =∫

P (x, [t, t+ ∆], x̂) · C(x̂, t) dx̂.

11



Further development involves assumptions about the shape of P with respect to the spatial argu-
ments x and x̂.

Assume that P (x, [t, t+∆], x̂) is almost zero outside of an ε-neighborhood centered at x. Assume
furthermore that C is well approximated within that neighborhood by a Taylor series expansion
about x up to second order:

C(x̂, t) = C(x, t) +
∂C(x, t)
∂x

(x̂− x) +
1
2
∂2C(x, t)
∂x2

(x̂− x)2 +O((x̂− x)3) (35)

C(x̂, t) ≈ C(x, t) +
∂C(x, t)
∂x

(x̂− x) +
1
2
∂2C(x, t)
∂x2

(x̂− x)2 for |x̂− x| < ε (36)

Then

C(x, t+ ∆) ≈
∫
C(x,∆, x̂)

[
C(x, t) +

∂C

∂x
(x̂− x) +

1
2
∂2C

∂x2
(x̂− x)2

]
dx̂ (37)

The terms on the right hand side are∫
C(x,∆, x̂)C(x, t) dx̂ =

∫
C(x,∆, x̂) dx̂ · C(x, t) = C(x, t) (38)∫

C(x,∆, x̂)
∂C

∂x
(x̂− x) dx̂ = −

∫
C(x,∆, x̂)(x− x̂) dx̂ · ∂C

∂x
(39)∫

C(x,∆, x̂)(x − x̂) dx̂ is the expected value of the displacement vector pointing from the location
r(−∆|x, t) of a particle at time −∆ to the location x at time t. It also is the mean displacement
of those particles which arrive at x during the time [t−∆, t]. Let’s denote the mean displacement
with D(∆|x). Then (39) can be written as

−
∫
C(x,∆, x̂)

∂C

∂x
(x− x̂) dx̂ = −D(∆|x)

∂C

∂x
(40)

Consider now the last term in (37),∫
C(x,∆, x̂)

1
2
∂2C

∂x2
(x̂− x)2 dx̂ =

1
2

∫
C(x,∆, x̂)(x̂− x)2 dx̂ · ∂

2C

∂x2
. (41)

Let’s denote the mean square displacement
∫
C(x,∆, x̂)(x̂ − x)2 dx̂ with D2(∆|x). Then (37) can

be written as

C(x, t+ ∆) = C(x, t)−D(∆|x)
∂C

∂x
+
D2(∆|x)

2
∂2C

∂x2
(42)

or

C(x, t+ ∆)− C(x, t)
∆

+
D(∆|x)

∆
∂C

∂x
=
D2(∆|x)

2∆
∂2C

∂x2
(43)

The last equation can be interpreted as an analog to the advection-diffusion equation for finite time-
scales. Note that Eq. (A.4) in Davis (1987) is identical to (43) only in the case where no sources
or sinks are present and where D2 is spatially invariant. The term D(∆|x)

∆ , which can be interpreted
as a mean velocity, is the mean particle velocity, not the Eulerian mean velocity appearing in (27).
Despite the differences between (43) and the advection-diffusion equation, it is instructive to recall
the premises under which it was derived.
(43) can only be accurate if two conditions are fulfilled:
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1. ∆ is large enough to guarantee that the process is Markovian.

2. ∆ is small enough to yield sufficiently short particle displacements (x̂− x), so that the Taylor
series approximation (36) is accurate.

According to Davis (1987), ∆ has to be much larger than the time scale of the Lagrangian covariance
TL. The flux-gradient parameterization in Eq. (27) can only be useful if the change of concentration
depends only on the present value of concentration, i.e. the average particle motion over the time
step ∆ depends statistically only on particle positions at its start. If ∆ is not large compared to
TL, then the processes of small-scale transport cannot be viewed as being constant during the time
increment ∆. In this case, the ’nature’ of small scale transport evolves during ∆. Davis (1987)
generalizes Eq. (27) and derives an equation which is, in its finite difference approximation, valid
for arbitrarily small time-increments ∆.
The mixing length scale: Mixing by large eddies. The mixing length approach leads to
a parameterization of turbulent Reynolds stresses in the momentum equations. The formalism
cannot be derived from fundamental physical principles, it rather is a formal description of empirical
observations. In the remaining part of this section we outline why it may be useful to adopt the
concept of a mixing length scale for tracer flux parameterizations, and we explain how Lagrangian
particle statistics have been linked to the mixing length scale in the literature.
In the final stage of tracer dispersal (see Sec. 1), deviations from the ensemble mean are on the
order of the length scale of the dominant eddies times the mean gradient of concentration. Consider
a mean tracer field C, for which a turbulent fluctuation at the point x0 is expressed as

C ′(x0, t) = −l ∂C(x0, t)
∂x

, (44)

where l is a vector pointing from a previous position of the particle to x0. Formally, there always
exists an l such that (44) holds, provided that ∂C(x0,t)

∂x 6= 0. However, mixing length theory teaches
that (44) only leads to useful parameterizations as long as l is much smaller than the scales at which
C varies. We anticipate that if Lagrangian particle statistics are used to back up the idea of a
mixing length scale, this restriction will follow from the assumptions leading to (36). Using (44),
the turbulent tracer flux is

u′C ′(x0, t) = −u′l ∂C(x0, t)
∂x

. (45)

Extension of (27) to weakly inhomogeneous flows. Davis (1987) argues that the concept of
mapping Lagrangian statistics into an Eulerian frame can be extended to weakly inhomogeneous
flows. Recall that (27) contains a single Lagrangian statistic that describes the growth of tracer
variance at all points in the domain. In the case of inhomogeneous turbulence, the statistics of the
turbulent fluctuations vary in space, and so κ must also vary in space:

∂C

∂t
+ u

∂C

∂x
=

∂

∂x

(
κ(x)

∂C

∂x

)
. (46)

Davis (1987) suggests to use

κ(x0) = −

(
u′(x0, t)

∫ 0

−∞
u
′
l(t+ τ |x0, t) dτ

)
. (47)

Compare this with the purely Lagrangian statistic −u2
l TL in (27):

κ = −u′2l TL = −

(
u′l(t)

∫ ∞
0

u′l(t+ τ) dτ

)
(48)
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The point here is that κ in (47) is still a Lagrangian statistic, but it can be mapped to a point in
space, which is generally not the case for Lagrangian statistics.
The variable κ(x0) can be computed from an ensemble of individual particles passing through the
point (x0, t0) (see Sec. 1.5), and this is why it is called a single-particle statistic. The limits of
integration in (47) indicate that it is relevant where the particles arriving at (x0, t0) came from.
To calculate the spatial variation of κ(x), the complete spatial domain can be divided into sub-
regions. Let the centers of the subregions be denoted by (x0, x1, . . .). Assume that the degree of
inhomogeneity in the domain is such that each subregion is characterized by approximately constant
fluctuation statistics. Then the statistic (47) can be computed for each point (x0, x1, . . .), and it
will be representative for the subregion provided that particle displacements are contained within
the subregion long enough so that the integrand of (47) is close to zero outside the subregion. Note
that this assumption is necessary, otherwise the limits of integration in (47) do not make sense: ul
will not be defined at times prior to initialization, but the integrand u′(x0, t0)u′l(t) is assumed to
vanish at some point between initialization and t0.
At this point it is interesting to look at (47) from the perspective of the mixing length approach:

u′
∫ t

−∞
u
′
l(t+ τ |x0, t) dt ! u′l (49)

Let the vector pointing from the position r(t0− tb|x0, t) to (x0, t) of a particle causing a velocity per-
turbation u′(x0, t) be denoted by l. Recall that tb is the time that a particle’s velocity typically stays
correlated with itself. Assume that the velocity fluctuation has been observed, but l is unknown.
Davis (1987) shows that, under certain restrictive assumptions, l is optimally predicted by

l !
u′
∫ t
−∞ u

′
l(t+ τ |x0, t) dt
u′

. (50)

A detailed outline of the necessary assumptions is given in Davis (1987).
To conclude this section, we present a simple flow-chart in Fig. 2. The chart is a (somewhat naive)
answer to the question: When can we use eddy diffusivity in ocean models?
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Grid-spacing
Reynolds averaging

Time T during which mean
velocity changes mean tracer

concentration significantly

Do these fluctuations lead
to multiple statistically independent
particle displacements during T?

 

Das k reach its asymptotic value 
at a time which is much shorter than T? 

Yes: Eddy Diffusivity
describes unresolved
transport well (more 
precisely: it yields the
correct increase of
tracer variance)

No: Eddy Diffusivity is not an
appropriate model for describing
unresolved transport

Nature of 
unresolved fluctuations

Steepness of mean
tracer gradients

Magnitude of
resolved velocity

Figure 2: The grid-spacing of an ocean component in a numerical climate-model determines the
resolution of the model-velocity. This velocity field is a Reynolds-averaged field, where the average
is a time- or space-average. The resolved velocity has a certain magnitude which advects the
tracer. Depending on the steepness of the tracer’s gradient, the mean-velocity will induce changes
of mean-concentration at a point by means of advective transport. The intervall T during which the
concentration is changed significantly by advection, depends therefore on the mean-velocity field
and the mean-tracer’s gradient. A flux-gradient parameterization of unresolved turbulent tracer
transport will only make sense if the nature of the fluctuations is such that it causes multiple,
statistically independent sequential particle displacements during the intervall T .
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Q1
2Q

Figure 3: The vectors Q1 = κsymmaj ·E1 and Q2 = κsymmin ·E2

span an ellipse.

1.4 Anisotropy

Previous studies (Rhines & Schopp, 1996) indicate that the diffusivity estimated from eddy-permitting
ocean models is characterized by a dominant zonal component. This means that the growth of a
tracer patch induced by turbulent velocity fluctuations is faster in zonal than in meridional direc-
tion, which is referred to as anisotropic turbulent transport. The growth of variance by diffusive
processes in two dimensions is described by a diffusion tensor. In this section we introduce the
two-dimensional diffusion equation and explain how anisotropic diffusive transport can be expressed
mathematically.
Let the three degrees of freedom of a two-dimensional, positive definite symmetric scalar matrix
κsym be denoted by σx, σy, ρ. Choose the degrees of freedom such that the matrix can be written as

κsym =
(

σ2
x ρσxσy

ρσyσx σ2
y

)
. (51)

Then the initial value problem

∂C

∂t
= −∇ · κsym∇C, −∞ < x <∞,−∞ < y <∞ 0 < t <∞ (52)

C(x, y, 0) = δ(x, y) (53)

has the solution

C =
1

2πσxσy
√
t (1− ρ2)

exp
(
− 1

2t(1− ρ2)

(
x2

σ2
x

+
y2

σ2
y

− 2ρxy
(σxσy)

))
. (54)

The shape C is Gaussian at every instant. The matrix κsym can be decomposed in its principal
components:

κsym = E

(
κsymmaj 0

0 κsymmin

)
ET , (55)

where E is a matrix whose first column is the normalized Eigenvector corresponding to the Eigen-
value κsymmaj and whose second column is the normalized Eigenvector corresponding to the Eigenvalue
κsymmin. κsym is positive definite and so both Eigenvalues are positive. We call the diffusive process
modeled by Eq. (53) anisotropic, if κsymmaj 6= κsymmin.
In two spatial dimensions, Eq. (23) is written as

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= −∇ ·

(
u′C ′

v′C ′

)
. (56)
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Introducing mixing length scales, we can write(
u′C ′

v′C ′

)
= −κ∇C with κ =

(
u′X ′ u′Y ′

v′X ′ v′Y ′

)
. (57)

The components of κ are

κij = u′i(x0, t0)
∫ t0

−∞
u
′
jl(t) dt. (58)

The matrix κ can be split into a symmetric part (κsym) and an antisymmetric part (κantisym):

κ = κsym + κantisym where κsym =
1
2
(
κ+ κT

)
, κantisym =

1
2
(
κ− κT

)
(59)

It can be shown (Davis, 1991) that only κsym leads to a growth of variance, and it is this part that
appears in the two dimensional diffusion equation. A discussion of how κantisym can be physically
interpreted is beyond the scope of this work.

1.5 Inferring Eddy Diffusivities from Oceanic Drifters: Strategy and Caveats.

• Random-deployment statistics vs. random-encounter statistics. In a quasi-stationary
flow, single particle statistics at a point x can be calculated by repeatedly releasing the same
particle at the point between time-intervals of random length. Since the statistics of the
flow do not evolve, each individual deployment time can be viewed as being the start of an
individual experiment, i.e. each deployment time can be interpreted as time 0 after release.
The method of continuously releasing particles at random times into a flow is called random-
deployment (Davis, 1991). Alternatively, one or more particles can be released at a single
instant. The times at which any particle passes the point x can again be viewed as being
the start of an individual experiment. If a nondivergent flow is sampled with particles, then
random-encounter statistics and random-deployment statistics are equal, provided that the
density of particles is uniform within the flow (Davis, 1991).

• Ensemble-averaging vs. spatial averaging over a finite area. The Lagrangian statistics
in the previous sections are obtained by ensemble-averaging particles which depart from the
same point, or , in a quasi-stationary flow, particles which occupy the same location at different
times . Such techniques are impractical for sampling the ocean. Floats in the ocean are usually
released at a certain location and then drift in the ocean for years; They are not recollected
and set out on the same point again. It is therefore impossible to obtain random-deployment
averages from most of the available observational data. Furthermore, floats in the ocean
never occupy the exact same location at any point in time. Random-encounter statistics
can therefore not be obtained from observational data. A simple solution is to partition the
domain into small regions Ωi and calculate spatial averages within these regions. The region
over which the average is taken, is then interpreted as a ’point’ of finite extent. The method
of random-encounter statistics at a point can be extended to a region of spatial averaging;
Instead of averaging over floats which occupy the exact same point, the average is taken over
floats which are located anywhere within the region. We will call this type of average FARE-
average (finite-area random-encounter average). It might be expected that spatial averaging
introduces problems when the Eulerian mean properties of the flow vary within the region of
averaging. This issue will be discussed below.

• Eulerian mean velocity vs. Lagrangian mean velocity. Differences between the mean
velocity of particles and the Eulerian mean velocity can be caused by:
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– Stokes drift

– Diffusion bias: Assume that κ is spatially variant. Drifters which are released at a single
point will generate a mean particle motion towards regions of high κ. A point release
of drifters is an example of a highly nonuniform distribution of drifters. In the case of
uniform distribution, all fluid particles are represented by drifters and there is no diffusion
bias.

– Array bias: If the ensemble mean concentration within an area of averaging is nonuniform,
then an Lagrangian estimate of the space-averaged Eulerian velocity may be biased. As
in the case of diffusion bias, a uniform distribution of drifters leads to statistics that are
unaffected by array bias.

If the Stokes drift is zero, the Lagrangian mean particle velocity of particles with nonuniform
distribution can be interpreted as a concentration-weighted area average of the Eulerian ve-
locity U plus a diffusion bias proportional to the spatial gradient of κ. The difference between
Lagrangian mean velocity and Eulerian velocity, which is caused by Stokes drift, arises wether
or not the particle distribution is uniform. We will address this issue briefly and compoare
the Eulerian mean velocity calculated by time-averaging the 5.5 year model data and estimate
of Eulerian mean velocity by means of Lagrangian sampling. Furthermore, we calculate the
Lagrangian mean particle velocity.

• Horizontally sheared mean flow and spatial averaging. It was mentioned above that
spatial averaging introduces difficulties when the mean properties of the flow vary within
the region of averaging. To illustrate the problem, consider a quasi-stationary flow with
a horizontally sheared Eulerian mean. Assume that, due to the shear, the Eulerian mean
velocity varies substantially within a certain averaging region Ωm. The FARE-average for Ωm

is a constant within Ωm, and does not contain information about the sheared Eulerian-mean
flow. Since fluctuations u′ for an individual float are computed by subtracting an average from
the instantaneous velocity, the fluctuation computed from the FARE-average will be different
to the one computed from the Eulerian mean field.

If fluctuations u′ computed from the FARE-average are biased by mean shear, then κsym in
(59) is also biased by the mean shear. κsym is in this case not completely determined by the
growth rate of variance caused by random fluctuations, but it is modified by a mean property.

• Isobaric vs. nonisobaric floats. The pressure along trajectories of oceanic floats is approx-
imately constant. Consequently, isobaric subsurface floats do not accurately follow vertical
flow and this causes floats to disperse differently from particles and to be differently advected
by generalized Stokes Drifts (Davis, 1991).

• Lateral vs. horizontal transport While it is critical to separate vertical and diapycnal
transport, lateral and horizontal transport can generally be interchanged (Davis, 1991).

• Quasi-stationarity The theory developed so far is founded upon the conjecture that the
general circulation is quasi-steady. However, few information is available on the variability of
the ocean circulation on low frequencies.

2 Method

We calculate Lagrangian single-particle statistics from the velocity field of an eddy-permitting model
of the North Atlantic and aim to extract information that is relevant to eddy-diffusivity parameter-
izations for turbulent dispersion.
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We use two distinct methods to infer timeseries of κ. In the first experiment (EXP1), we adopt
the computational techniques of Swenson & Niiler (1996) to compute particle statistics. Swenson
& Niiler (1996) analyze observational data from surface drifters in the California Current. Their
method is based on the work of Davis (1991). The region of interest is partitioned into subdomains
in which statistics are computed by spatial averaging, as outlined in Section 1.5. In particular,
the velocity fluctuations of an individual particle u′ in (47) are computed with respect to a spatial
average.
We compare the results obtained in EXP1 with an experiment (EXP2) in which the velocity fluc-
tuations u′ are computed with respect to the high resolution Eulerian time-mean field. In this case
there is no spatial averaging involved in obtaining u′. It was mentioned above that spatial averaging
(used in EXP1) introduces difficulties when the mean properties of the flow vary within the region of
averaging. Oh et al. (2000) perform a numerical simulation of idealized turbulent particle motion to
show that estimates of diffusivity based on the minor principal component are, in contrast to other
estimates, insensitive to ensemble averaging over particles taken from a finite area in a shear mean
flow. In their numerical experiment, the two-dimensional turbulent velocity field is a homogeneous
and stationary random field. The random particle motion is a stochastic process characterized by
an exponential particle velocity autocorrelation. The diffusivity can be determined from the param-
eters of the stochastic model and is therefore known a priori. Oh et al. (2000) compare different
Lagrangian sampling methods and compare their sensitivity to shear of the mean flow. They con-
clude that ensemble averaging over particles taken from a finite area in a shear mean flow leads
to an anisotropic diffusion tensor, and demonstrate that the minor principal component converges
towards the a priori known value of diffusivity. The question arises whether this result applies not
only to the idealized turbulent field in the work of Oh et al. (2000), but also to turbulence in the
real ocean.
Oh et al. (2000) analyze drifters in the East Sea, drogued at 15m depth. They compute the time-
evolution of the diffusivity tensor’s principle components with various averaging techniques and note
that the minor principle compenent attains in most cases an asymptotic value within the first 40
days, while the major principle component does not converge. Based on the hypothesis that this
phenomena is caused by the shear of the mean flow, as in their theoretical study, they conclude
that the best chance to obtain reliable estimates of diffusivity is from the time-series of the minor
principal component. Lagrangian data from a realistic ocean model can provide a test for this
hypothesis (Kamenkovich et al., 2009). In principle, the bias resulting from the mean shear can be
determined in the model, since the Eulerian mean velocity field is known. After correction of the
bias, the two principle components should have either the same value in case of isotropic diffusion,
or a different value indicating anisotropic diffusion. We therefore try to correct the bias by the mean
shear in EXP2 by including the Eulerian mean velocity field in the analysis.
The model. We use a mesoscale-eddy-permitting model of the North Atlantic Ocean with hor-
izontal resolution of 1/12o cos(φ) × 1/12o (where φ denotes latitude) ranging from about 10 km
at the equator to about 5 km in high latitudes. The model domain extends from 20o S to 70o N
with open boundaries at the northern and southern boundaries, with a restoring zone in the east-
ern Mediterranean Sea and with climatological surface forcing (Barnier et al., 1995). There are 45
vertical geopotential levels with increasing thickness with depth, ranging from 10m at the surface
to 250m near the maximal depth of 5500m. The model is based on a rewritten version2 of MOM2
(Pacanowski, 1995) and is described in detail in Eden & Greatbatch (2008).
Initial particle distribution. The initial position of every particle is contained within a box
spanning the width of the Atlantic Ocean in zonal direction and ranging from −20◦S to 65◦N in
meridional direction, with a depth of ranging from 100m to 6000m. Initially, particles are distributed
within this box with a constant spacing of about 1.8◦ in latitudinal and longitudinal direction. This
corresponds to a distance between two neighboring floats of about 200km in latitudinal direction.
In zonal direction the distance ranges from 85km in high latitudes to 200km in low latitudes. The
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spacing in the vertical direction is 125m throughout the water column. Floats are initially distributed
in depths ranging from 100m to 6000m. The array contains land, and the number of wet floats is
about 50000.
Particle trajectories. Floats are assumed to be of zero mass, neutrally buoyant and move with
the local three dimensional flow during each time step (Pacanowski, 1995). For the numerical
integration, the simple Euler forward timestepping scheme is modified to take account of convergence
of meridians. The Eulerian velocity field is integrated with a timestep of 5 min. Snapshots of the
Eulerian velocity field are available in intervals of 3 days and are linearly interpolated with an
interpolation interval of 2 hours. We integrate the particles for 2 hours, during which the Eulerian
velocity field is time-independent. After two hours we update the Eulerian velocity field to the
interpolated value and continue the integration. For further analysis we write down the position of
the floats every 3 days. This results in about 3 · 50000 timeseries for zonal, meridional and vertical
position that span 5.5 years with a temporal resolution of 3 days. For each float we also write down
the Eulerian velocity at each position. In this respect the extracted data differs from real float data,
in which the Eulerian field is unknown and the velocity at each position has to be calculated with
finite differences from the particle positions and the time interval between the positions.
Pseudo-trajectories. Multiple pseudo-trajectories are formed from a single individual 5.5-year
trajectory by dividing it into several subsections. After 60 days of integration, a floats (let’s call
it float A) position is marked. The mark corresponds to the end-point of a pseudo-trajectory
(pseudo-float B1). After another 60 days of integration, float A’s position is marked again and this
mark corresponds to the end-point of the next pseudo-trajectory B2. The number of wet pseudo-
trajectories amounts to about 1.5 million.
Binsize. The particle statistics are mapped to a grid with dimensions of 30 points in longitudinal
direction, 74 points in the zonal, and 19 points in the vertical direction. Gridbox dimensions span
1.2◦ in meridional direction and 2.8◦ in zonal direction. This corresponds to a meridional edge
length of about 130km and a zonal edge length of 200km (high latitudes) to 315km (low latitudes)
for each gridbox. The extent in vertical direction is 300m.
Efficient sampling. For each gridbox, we aim to obtain a set of pseudo-trajectories with statisti-
cally independent floats, i.e. floats that do not exhibit similar motions due to spatial or temporal
proximity in the Eulerian velocity field. We assume that the gridbox size is equal or larger than the
decorrelation length. If we assume that one statistically independent float is observed per month
and per bin, then it is desireable to observe about 70 floats in a single bin during the 5.5 years of
integration. This estimate depends on the decorrelation length and decorrelation time of the flow
and can vary strongly within the domain.
Mapping of Lagrangian statistics to Eulerian data. Every gridbox is associated with a set
of pseudo-trajectories. A pseudo-trajectory is part of this set if its endpoint is located within the
gridbox. Lagrangian statistics that are mapped to a grid box are computed from this set of pseudo-
trajectories.
Experiment 1 (EXP1).

• Eulerian mean velocity. The estimate for the Eulerian mean velocity is estimated by averaging
the particles’ velocity at their endpoints.

• Eulerian velocity fluctuation. The estimate for the velocity fluctuation u′(x0, t0) in Eq. (47) is
calculated by subtracting the particle’s velocity at its endpoint from the estimate for Eulerian
mean velocity.

• Mean displacement. For each position within a pseudo-trajectory, the distance between the
position and the end-point is calculated. This yields a timeseries of distances, or displace-
ments, for each pseudo-trajectory. The distance equals 0 at the endpoint. The mean dis-
placement is the time series of average distances, whereby the average is calculated over the
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pseudo-trajectories that are contained in the gridbox set. We cut off the time-series of mean
displacement at the time when either the zonal component of mean displacement exceeds half
of the gridbox width in zonal direction or the analogous event happens in the meridional or
vertical direction.

• Displacement perturbation. For each pseudo-trajectory, the time-series of displacement pertur-
bation is computed by subtracting the time-series of mean displacement from the time-series
of displacement.

• Diffusion tensor. The covariance between velocity perturbation and displacement perturbation
is calculated, yielding a time-series of tensors with four components.

Experiment 2 (EXP2).

• Eulerian mean velocity. The Eulerian mean velocity is calculated by time-averaging the 5.5
year Eulerian velocity with high spatial resolution.

• Mean displacement. The mean displacement for each pseudo-trajectory is calculated by
backward-integrating the time-averaged 5.5 year Eulerian mean velocity from the endpoint
of each trajectory. We cut off the timeseries for the mean flow at the same points as in EXP1.

The other manipulations are the same as in EXP1.

Error bars. We outline the variant of the bootstrapping method which was used to obtain the
errorbars in Fig. 5-7. The bootstrapping method is described in Efron (1979). We construct 50
resamples of the observed dataset (the pseudo-trajectories) in every bin, each of which is obtained
by random sampling with replacement from the original dataset. The resamples contain the same
number of pseudo-trajectories as the original dataset. Timeseries for κsym are computed from each
of the 50 resamples, and we compute error bars by calculating the standard deviation of the 50
data-points at each time lag.

What must be considered before interpreting the results.

• Array bias and diffusion bias. In our numerical integration, particles are distributed
with a constant spacing 200km along the zonal direction. The spacing in the meridional and
vertical directions are 200km and 300m. The particle density is therefore initially lower in low
latitudes. The domain is not closed and no drifters are seeded into the water entering from
the boundaries. On the other hand, water exiting the domain contains drifters and this leads
to a loss of about 50000 floats during the 5.5 year simulation, which corresponds to about 3
percent of the total number of inital wet pseudo-particles. We have not been able to quantify a
possible bias arising from the non-uniform initial particle distribution and the non-uniformity
caused by particle loss, but we believe that the variations of density within a grid cell are too
small to affect the results significantly.

• We assume that the statistics of the flow field produced by the numerical model are stationary.

21



  80oW   60oW   40oW   20oW    0o    20oE 
  18oS 

   0o  

  18oN 

  36oN 

  54oN 

Figure 4: 9 Stations at 50, 32o West. Latitudes are: 12.39o N, 18.33o N, 24.28o N, 30.23o N, 36.18o

N, 42.12o N, 54.02o N, 56.4o N, 58.78o N,

3 Results

In this section we show the results of our calculations for the transect at 50o W (Fig. 5 to Fig. 13)
and for z ≈ 650m (Fig. 14(a) to Fig. 14(d))
In Fig. 5- 10 we plot timeseries of κsymmax and κsymmin for selected latitudes and depths. The coordinates
of the stations are plotted in Fig. 4. Fig. 5- 7 show results from EXP1 with a pseudo-trajectory
length of 60 days, and we repeat the same calculation with pseudo-trajectorie of 200 days, the
results of which are shown in Fig. 8- 10. The computational method we use, forces us to make
a compromise between statistical accuracy and information at longer lags. For a given number
of independent float trajectories, we can increase the timelag only at the cost of lower statistical
significance. This is because the analysis of longer lags requires longer pseudo-trajectories, which
results in a lower number of total pseudo-trajectories due to the fixed number of available 5.5-year
trajectories. In the calculation with the 200-day pseudo-trajectories, the lower number of pseudo-
trajectories results in larger error bars also at lags shorter than 60 days, simply because there are
less observations available for each timelag. In this section we discuss how results obtained with
60-day pseudo-trajectories differ from those obtained with 200-day trajectories. However, we only
use results from the former calculation for the rest of this work, since we believe that the statistical
significance of the results obtained from the latter calculation (200-day pseudo-trajectories) is too
low to lead to any conclusions. Although we do this at the cost of having available only a relatively
short timelag for analysis, we think that two months can be regarded as a reasonable timespan
for the relevance of unresolved tracer transport with relatively steep mean-gradients in a transport
equation, especially in regions with strong mean flow (e.g. western boundary currents). Since our
analysis aims to be of relevance for parameterizing unresolved transport in ocean-components of
climate models, the time-interval for which statistical transport properties are to be analyzed is
bounded; If a transport equation consists of an advective part governed by the mean flow, and
a flux-gradient parameterization part which is determined by statistical properties of unresolved
velocity fluctuations, then the time-lag for which the statistics are observed must be smaller than
the typical time during which the mean flow changes the mean tracer field significantly. The typical
time during which the mean flow changes the tracer concentration depends not only on the mean
velocity but also, and especially in the case of a stationary mean flow, on the steepness of the tracer’s
gradients.
The figures show that at 650m depth and above, the timeseries of κsymmax and κsymmin ends before 60
days in some gridboxes, because the mean displacement of the floats is not contained whithin the
gridbox after that time. The timeseries which represents the mean over the 50 bootstrap results
ends at the lag at which the mean displacement of more than 25 resamples exit the grid-box volume.
κsymmin and κsymmax overlap at lag zero and after some variable time, the difference between κsymmin and
κsymmax becomes significant in almost all the gridboxes until the end of the 60-day lag. However, in
the lower left plot of Fig. 5 we see that the eigenvector which initially corresponds to the small
eigenvalue ends up to become the eigenvector to the larger eigenvalue. The length of the interval
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Figure 5: Evolution of κsymmax and κsymmin in time at different latitudes and depths. The left column
refers to the southernnmost point in Figure 4, at 12.39o N. The columns to the right describe the
points 18.33o N and 24.28o N. Timeseries of κsymmax (κsymmin) for various depths are plotted in solid
(dashed) red. Black lines and grey shading are the mean and standard deviation of 50 bootstrap
samples.
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Figure 6: Evolution of κsymmax and κsymmin in time. The left column refers to the fourth point count-
ing from South in Figure 4, the columns to the right describe the points in northward direction.
Timeseries of κsymmax (κsymmin) for various depths are plotted in solid (dashed) red. Black lines and grey
shading are the mean and standard deviation of 50 bootstrap samples.
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Figure 7: Evolution of κsymmax and κsymmin in time. The left column refers to the third point countint from
North in Figure 4, the columns to the right describe the points in northward direction. Timeseries
of κsymmax (κsymmin) for various depths are plotted in solid (dashed) red. Black lines and grey shading
are the mean and standard deviation of 50 bootstrap samples.
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Figure 8: Evolution of κsymmax and κsymmin in time at different latitudes and depths. The left column
refers to the southernnmost point in Figure 4, at 12.39o N. The columns to the right describe the
points 18.33o N and 24.28o N. Timeseries of κsymmax (κsymmin) for various depths are plotted in solid
(dashed) red.
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Figure 9: Evolution of κsymmax and κsymmin in time. The left column refers to the fourth point count-
ing from South in Figure 4, the columns to the right describe the points in northward direction.
Timeseries of κsymmax (κsymmin) for various depths are plotted in solid (dashed) red.
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Figure 10: Evolution of κsymmax and κsymmin in time. The left column refers to the third point countint
from North in Figure 4, the columns to the right describe the points in northward direction. Time-
series of κsymmax (κsymmin) for various depths are plotted in solid (dashed) red.
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during which the principal components usually overlap ranges between 1 to 10 days.
The major principal component is significantly different from zero during the entire 60-day lag in all
plotted gridboxes. For the minor principal component, this is only the case outside of the tropical
and the subpolar regions. At latitudes south of 18.33o N and north of 54.02o N, κsymmin reaches a
value that is rarely significantly different from zero at the end of the 60-day lag. A value of zero
for κsymmin indicates that the variance of a tracer patch does not continue to grow in direction of the
eigenvector corresponding to κsymmin. In situations where κsymmin = 0 and κsymmax > 0, a released tracer
patch increases only in direction of κsymmax. Between 24.28o N and 42.12o N, the value of κsymmin is
significantly different from zero in almost all plotted gridboxes.
At times before κsymmin attains its maximum, the values of κsymmax in most plotted gridboxes are either
larger than κsymmin by a fraction of κsymmax, or several times larger than κsymmin. The same applies to a
certain time after max(κsymmin) is reached. κsymmax exceeds κsymmin by not more than the 10-fold during this
time. Of course, κsymmax is orders of magnitude larger than κsymmin in those cases where κsymmin approaches
values that are not significantly different from zero, because κsymmax is significantly different from zero
in every plotted gridbox.
The value of max(κsymmax) and max(κsymmin) generally decreases with depth (see also Fig. 11(a) and Fig.
11(b)). At every latitude except the lowest, there are depths in which κsymmax increases monotonically
until the end of the 60-day lag. The data at 54.02o N is likely to be biased (see discussion below).
In most cases κsymmin is not monotonically increasing during the 60-day lag. Exceptions occur at
24.28o N, 30.23o N and 36.18o N. At the four southernmost stations, the time at which max(κsymmin)
is reached grows in poleward direction for most depths. In the two northernmost stations, κsymmin

attains its maximum during the first 20 days in most depths.
Some of these figures suggest that the value of κsymmax at τ = 60d might be representative for an
asymptotic value, because the curves are flat at the end. Other figures show that the slope is still
positive for τ = 60d. However, there is no reason to believe that κsymmax has reached a constant value
at the end of the 60-day lag, or continues to grow and reach a constant value at later lags. The
60-day lag is too short to reveal a possible oscillation at lower frequencies. The figure provokes
the impression that monotonicity of κsymmax is especially prominent in the Subtropics. Low frequency
oscillations of κsymmax in the Subtropics could be explained by a longer eddy turnaround time if the
flow is in frozen field regime, or by long Eulerian time scales if the flow is in fixed float regime.
A similar consideration is required for cases where κsymmin reaches values which are not significantly
different at the end of the 60-day lag. The question arises whether this is also true for times after the
60-day lag. At 12.39o N, κsymmin oscillates around zero at depths below 1500m, and lower frequency
oscillations could occur in other regions. The spatial averaging used in EXP1 causes κ to be biased
by small variations of the mean properties of the flow. We try to correct the bias by the mean shear
in EXP2 by including the Eulerian mean velocity field in the analysis (EXP2). The timeseries of
κsymmax and κsymmin are almost identical in EXP1 and EXP2, with the exception of gridboxes located at
54.02o N (see discussion below).
Fig. 8 - 10 show the results obtained from 200-day pseudo-trajectories. In some gridboxes, the
evolution of κsymmax and κsymmin differs strongly between the 60-day and the 200-day calculation. An
example is shown in the upper left corners of 5 and 8. In Fig. 8, κsymmax increases monotonically
throughout the first 60-days, which is not the case in 5. In the third row of the left column in Fig.
8 we see that the eigenvector which initially corresponds to the small eigenvalue ends up to become
the eigenvector to the larger eigenvalue. This does not seem to be the case in Fig. 5.
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(a) Maximum of κsymmax (m2/s) over the 60-day
lag. Colorbar is logarithmic.
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(b) Maximum of κsymmin (m2/s) over the 60-day
lag. Colorbar is logarithmic.
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(c) Eddy kinetic energy (EKE) (m2/s2) of the
Eulerian velocity field, calculated from fluctua-
tions around the 5.5 year mean velocity. Colorbar
is logarithmic.
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(d) EXP2: Maximum of κsymmax (m2/s) over the
60-day lag. Colorbar is logarithmic.
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(e) Curl (1/s) of the Eulerian mean horizontal
velocity. The high resolution velocity field was
averaged within each gridbox. The partial deriva-
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ues of κsymmax were taken from EXP2

Figure 11: 50o W
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(a) EXP2: max(κsymxx ) (m2/s)
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(b) EXP2: max(κsymxx ) (m2/s)

Latitude

D
ep

th

10 20 30 40 50 60

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1 2 3 4 5 6 7 8 9

(c) The ratio of max(κsymmax) calculated in EXP1
to max(κsymmin) calculated in EXP2.
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(d) EXP1: (κsymxx − κsymyy )/κsymxx .

Figure 12: 50o W

Fig. 11 and 12 show that max(κsymmax) and max(κsymmin) are surface intensified and generally decrease
with depth. This is also the case for EKE, which is defined as 1

2(u′2 + v′2) where u and v are the
Eulerian velocities. Values of max(κsymmax) range between O(1000) m/s and O(10000) m/s in the
gridboxes above 1000m depth, whereas values of max(κsymmin) range from O(100) to O(10000) m/s in
the same depth layers. At 2000m depth, values range from O(100) m/s to 20000 m/s for max(κsymmax)
and O(10) to O(1000) for max(κsymmin). The spatial structure of max(κsymmax) and max(κsymmin) are
similar , apart from 50o N to 55o N, where max(κsymmax) exhibits a pronounced local maximum
throughout the water column. This feature is not present in the fields of max(κsymmin) and EKE.
Fig. 11(d) shows max(κsymmax) from EXP2. We compare the results for max(κsymmax) calculated with
two different methods. In the first method (EXP1), velocity and displacement fluctuations are
computed with respect to mean variables that are estimated from Lagrangian data. Oh et al. (2000)
suggested that this method leads to a sensitivity of the results for max(κsymmax) to shear mean flow.
The second method involves mean variables which are computed from the 5.5 year Eulerian mean
velocity field. A comparison of the differences between the results from EXP1 and EXP2, and the
curl of the horizontal velocity shows that the differences are associated with large-scale shear mean
flow. In Fig. 11(d) there is no local maximum in the region from 50o N to 55o N, and the local
maxima between 7o N to 10o N and between 60o N to 63o N are less pronounced. Apart from this
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difference, the spatial structure looks similar to the results from EXP1. Fig. 11(e) shows that regions
which are characterized by a strong shear in the horizontal Eulerian mean velocity coincide with the
regions where EXP1 and EXP2 yield different results for max(κsymmax). We conclude that horizontal
large-scale mean shear causes anisotropy of the diffusivity tensor obtained by FARE-averaging. A
comparison between Fig. 11(f) and Fig. 12(c) indicates that large-scale mean shear is not the only
cause for anisotropy. In Fig. 11(f) we see that the magnitude of max(κsymmax)/max(κsymmin) is of order
O(1), with the exception of the region between 48o N to 51o N. Higher values are also found at
the boundaries, where our method is likely to produce dubious results. Fig. 12(d) indicates that
the difference of the zonal and the meridional component of κsym, scaled by the value of the zonal
component. For each gridbox, the data is calculated at the time when κsymmax is maximal. There are
regions which are characterized by a higher zonal component, e.g. 25o N to 35o N above 3000m
Depth. There are also regions with a higher meridional component. Fig. 11(f): The asymptotic
limit of κsymmax/κ

sym
min is sometimes used as a measure of anisotropy. In our analysis, the asymptotic

limit cannot be calculated and we have the choice of comparing the principal components either at
the same time-lag or at the same stage of evolution (note that κsymmax and κsymmin reach their maximum
at different lags). Fig. 12(d): We compare the magnitudes of κsymxx and κsymyy at the time when κsymmax

is maximal.
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(a) Tmax = max(κsymmax)/EKE (days). For
max(κsymmax), the results of EXP2 are used.
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(b) Lmax = max(κsymmax)/
√
EKE (km). For

max(κsymmax), the results of EXP2 are used.
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(g) The lag (in days) at which κsymmax is maximal.

Figure 13: 50o W
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Fig. 13(a) shows Tmax, which is a scalar field in units of time that relates the 5.5 year time-averaged
Eulerian velocity field to the maximum of the major principal component during the 60-day lag.
Tmax ranges from 3 to 25 days between 7o N and 13o N. In some parts of this region (e.g. at 10o

N), the value of Tmax does not vary more than 15 days throughout the watercolumn. Between 15o

N and 40o N, values for Tmax generally increase with depth until about 2500m depth, and then
decrease towards the ocean bottom. Around 28o N, Tmax ranges from about 15 to 90 days. In the
region between 12o N and 44o N, there is a symmetry around 28o N. Form 47o N and 64o N, Tmax
ranges from 2 to 60 days. Tmax generally decreases to in northward direction. Values of Lmax are
generally surface intensified and decrease with depth in the region south of 45o N.
For calculation of TLmax we use u′2l instead of EKE. For calculation of u′2l , we use 120-day tra-
jectories. This is probably not long enough to capture u′2l in regions which are characterized by a
long eddy-turnaround time. This has to be considered when interpreting Fig. 13(f). The spatial
pattern of TLmax is similar to that of Tmax, but not identical. Fig. 13(f) shows that the ratio of u′2l
to EKE is of order O(1) and approximately constant with depth almost everywhere south of the
subpolar region. Between 10o N and 25o N the ratio is higher than between 25o N and 35o N. In the
subpolar region, there is a pronounced maximum of u′2l /EKE, with values on the order of O(103).
The location of the maximum and the region of strong horizontal mean shear largly coincide.
Fig. 13(g): The time at which κsymmax and Tmax do not have identical spatial distributions.
For the entire region, max(κsymmax) is neither a linear function of EKE, nor of

√
EKE. However, a

linear relationship to EKE in the vertical direction fits better in some latitudes (e.g. 10o N) than in
others (e.g. 28o N).
In Fig. 14 we show the horizontal structure of some variables. In Fig. 14(a) we see that large values
of max(κsymmax) occur at the Equator, along the western boundaries, at the location where the West
Greenland current separates from the continental shelf and west of the Strait of Gibraltar. The
pattern is similar to that of EKE (Fig. 14(b)) Fig. 14(c) shows a region of high TLmax in the center
of the Subtropical Gyre that spans about 10 degrees in latitudinal direction and almost across the
whole width of the ocean basin, excluding the region close to the western boundary. It has values
about twice as high than north and south of the region. High values are also found at the equator
and south of the equator. Fig. 14(d) suggests that low values are found in the Shadow Zones and
above 50o N.
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(a) max(κsymmax) (m2/s) between 500m and 800m
depth.
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depth.
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(c) TLmax = max(κsymmax)/EKE (days) between
500m and 800m depth.
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(d) LLmax = max(κsymmax)/
√
EKE (km) between

500m and 800m depth.
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(e) The ratio max(κsymmax)/max(κsymmin) between
500m and 800m depth.

Figure 14: z ≈ −650m
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4 Discussion

In the final part of this thesis we summarize the results and relate it to some previous studies.
Diffusion is the commonly used model for representing eddy-induced passive tracer transport in
Ocean General Circulation Models (Berloff & McWilliams, 2002), although its usefulness has been
questioned by many authors (e.g. Davis (1987), Berloff & McWilliams (2002)). One problem
associated with eddy diffusivity modelling is that the components of the diffusivity tensor do not
converge to a constant value within a short time lag. A slow convergence of the diffusivity tensor
is caused by the slow memory loss of velocity fluctuations induced by mesoscale structures. Eddy
diffusivity modelling is only appropriate if the tracer field is not changed substantially by the mean
flow during an interval in which sequential particle displacements are statistically independent from
each other (see Berloff et al. (2002), Berloff & McWilliams (2002) and Berloff & McWilliams (2003)
for an up-to-date discussion of the problem).
In this work we analyze the timeseries of κsym up to a lag of 60 days, although previous studies
suggest that κsym does not reach an asymptotic value within this period. We choose to restrict
our study to the 60-day length for two reasons: Most importantly, the computational method we
use forces us to compromise statistical accuracy if longer lags are analyzed. Furthermore, since our
analysis aims to be of relevance for flux-gradient parameterizations of unresolved transport in ocean-
components of climate models, the time-interval for which statistical transport properties are to be
analyzed is bounded by properties of mean-advection. We think that two months can be regarded
as a reasonable timespan in oceanic flows with relatively steep mean-tracer gradients in regions with
strong mean flow (e.g. western boundary currents), because eddy-diffusivity modeling only yields
a correct increase of mean-tracer variance if multiple, statistically independent particle displace-
ments occur within an interval during which the mean advection changes the tracer concentration
significantly.
We use two distinct methods to infer timeseries of κ. In EXP1, we use a method which is similar to
the one used by Oh et al. (2000). In contrast to the findings of Oh et al. (2000), κsymmin does not reach
an asymptotic value during the first 60 days in our study. In EXP2, we include the high-resolution
Eulerian mean field with the intention to reduce the bias caused by mean shear. The evolution of
κsymmax in EXP1 and EXP2 differs strongly in regions with high horizontal mean shear, but in regions
with no mean shear it is almost identical. Like in EXP1, the diffusivity tensor does not converge in
EXP2 within the first 60 days. The difference between κsymmax and κsymmin in EXP2 is significant and
their ratio is of O(1) in most regions of the ocean. We conclude that large-scale mean shear is not
the only cause of an anisotropic κsym obtained from FARE-averaging. This is in agreement with
the observations made by (Kamenkovich et al., 2009). We observe that, in the regions which were
analyzed, κsymmin often attains values which are not significantly different from zero within the first
60 days after deployment.
It may be insightful to compare diffusive properties along orthogonal axes other then the pair
of eigenvectors. A possible explanation for an anisotropic κsym are different transport proper-
ties in zonal and meridional direction. Our results show that max(κsymxx ) is generally larger than
max(κsymyy ).
LaCasce (2000) computes streamlines of the mean flow and analyzes the components of diffusivity
with respect to the along- and cross-stream direction. He finds that diffusivity is more anisotropic
with respect to this local coordinate frame than with respect to the zonal and meridional direction.
This observation has also been made by Griesel (pers. comm.), who assessed the time series of the
diffusivity tensor’s components from the velocity field of a 1/10o numerical model of the Antarctic
Circumpolar Current. Griesel obtains timeseries with lengths of up to several years for the along-
and cross stream components. She applies methods to reduce dispersion by mean shear, and notes
that along-stream diffusion is several times higher than cross stream diffusion. The cross-stream
component reaches a pronounced global maximum within the first 50 days and then converges to
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a depth-independent value. The along-stream component increases rapidly within the first 90 days
and keeps this maximal value for longer lags, showing a depth dependece also at long lags. The
horizontal distribution of the two components does not seem to be correlated.
This work aimed to improve simple eddy-diffusivity parameterizations of isopycnal dispersion for
coarse resolution ocean models by inferring appropriate eddy-diffusivity constants from the flow field
of an eddy-permitting model. Despite the failure to find appropriate constants, which might in part
be rooted in the fact that eddy-diffusivity modelling itself is inadequate, our results contribute to
the understanding of the evolution of the single-particle diffusivity tensor for time lags up to 60
days.
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