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Summary 

 

Crocosphaera watsonii is an abundant organism in the tropical and subtropical ocean 

and is considered to be an important contributor to the marine nitrogen cycle due to its ability 

to fix dinitrogen (N2). Light-dark cycles were used to determine the diel variation in N2 

fixation and photosynthesis in the unicellular diazotrophic cyanobacterium C. watsonii 

WH8501. A first set of experiments showed that N2 fixation and photosynthesis were 

separated temporally with N2 fixation during the dark and photosynthesis during the light 

periods. Due to the storage of carbon reserves during the day and subsequent respiration at 

night, C. watsonii links its cellular nitrogen and carbon metabolism. N2 fixation and 

photosynthesis appear to be regulated and optimized by a circadian rhythm. Gene expression 

analysis demonstrated cyclic patterns of the major genes involved in nitrogen and carbon 

metabolism. However, the patterns of expression did not coincide with patterns of activity 

with the gene expression peaking several hours prior to the activity. This diel periodicity 

should be considered in the interpretation of environmental samples given the abundance of 

C. watsonii in the ocean. Protein analysis suggested that C. watsonii may retain functionality 

of the photosystems in the dark. This hypothesis was tested and confirmed in a second set of 

experiments using light-dark cycles and continuous- light. However, during the respective 

dark period, i.e. an artificial light period instead of a dark period, photosynthesis was also 

accompanied by N2 fixation though the magnitude was decreased. Single-cell analysis using 

nanoSIMS revealed that the co-occurrence of N2 fixation and photosynthesis at population 

level was probably due to each individual cell‟s capability of coping with the O2-sensitivity of 

the nitrogenase enzyme. In addition, single-cell rates showed large variability with the highest 

rate about six times higher than the mean rate during the normal dark N2 fixation. If all cells 

were fixing nitrogen at the maximum single-cell rate, the overall N2 fixation would be much 

higher. Single-cell variability could have originated from stochasticity in gene expression or 

protein synthesis. If stochasticity at the single-cell level is controlling the overall population 

N2 fixation, then this could imply an upper limit of N2 fixation regardless of nutrient 

sufficiency. 

The experimental work with a pure culture of a diazotroph provided the opportunity to 

compare the 15N2 stable isotope method with acetylene reduction, two methods commonly 

used both in field and laboratory studies. Within the course of this comparison, discrepancies 
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between the acetylene reduction assay (ARA) and the 15N2 tracer addition were found. A re-

assessment of the 15N2-tracer addition revealed that the currently applied direct injection of 

15N2 gas may have significantly underestimated N2 fixation rates both in culture and field 

experiments because the equilibration of the injected 15N2 gas is much slower than previously 

assumed. After an 8 h incubation, about 50% of the calculated enrichment are reached leading 

to an under-estimation of at least 50% of the real N2 fixation rate dependent on the diel 

periodicity of N2 fixation in the incubation. Shorter incubations tend to be further away from 

the real N2 fixation rate whereas 24 h incubation will be closer to the real rate, still under-

estimating though. Due to the time-dependent, slow equilibration the calculated isotopic 

enrichment assuming rapid equilibration of the bubble cannot be taken as a constant value. I 

designed a modified 15N2 method based on the addition of 15N2-enriched water. The 

application of the modified approach has the potential to diminish the gap between sources 

and sinks of fixed nitrogen in the ocean, i.e. the „missing N‟. 

 



 3 

 

Zusammenfassung 

 

Crocosphaera watsonii ist ein in den tropischen und subtropischen Ozeangebieten häufig 

vorkommender Organismus. Er wird als wichtige Komponente im marinen Stickstoffkreislauf 

erachtet, da er die Fähigkeit besitzt, molekularen Stickstoff zu fixieren. Licht-Dunkel-Zyklen wurden 

genutzt, um die Änderung von Stickstoffixierung und Photosynthese im Tagesgang in C. watsonii zu 

ermitteln. In einer ersten Reihe von Experimenten wurde gezeigt, dass Stickstoffixierung und 

Photosynthese zeitlich getrennt waren, wobei Stickstoffixierung nachts und Photosynthese tagsüber 

erfolgten. Mithilfe der tagsüber gespeicherten Kohlenstoffreserven und ihrer darauffolgenden 

Respiration bei Nacht konnte C. watsonii seine zellulären Stickstoff- und Kohlenstoffkreisläufe 

miteinander koppeln. Stickstoffixierung und Photosynthese werden scheinbar über einen zirkadianen 

Rhythmus reguliert und optimiert. Die Analyse von Genexpression zeigte zyklische Muster der 

wesentlichen Gene für den Stickstoff- und Kohlenstoff-Metabolismus. Dennoch stimmten die 

zeitlichen Muster von Genexpression und Aktivität nicht überein. Die Genexpression war zeitlich nach 

vorne verschoben mit einem Höhepunkt von mehreren Stunden Unterschied im Vergleich zur 

Aktivität. Dieser tägliche Zyklus sollte bei der Interpretation von Felddaten berücksichtigt werden, 

besonders geachtet der Häufigkeit dieses Organismus im Ozean. Protein-Analysen zeigten, dass die 

Photosysteme von C. watsonii eventuell ihre Funktionalität im Dunkeln bewahren. Diese Hypothese 

wurde in einer zweiten Reihe von Experimenten mit der Nutzung von durchgängigen Lichtphasen 

getestet und bestätigt. Dennoch wurde während einer dieser Lichtphasen, diejenige, die normalerweise 

dunkel gewesen wäre, auch eine gleichzeitige, aber reduzierte Stickstoffixierung gemessen. 

Einzelzellanalysen mittels nanoSIMS deckten auf, dass das gleichzeitige Vorkommen von 

Stickstoffixierung und Photosynthese auf der Fähigkeit jeder individuellen Zelle mit der O2-

Sensitivität der Nitrogenase umzugehen beruhte. Zusätzlich zeigten die Einzelzellraten eine große 

Variabilität, wobei die höchste Rate während der ‚normalen‟ Dunkelphase sechs Mal höher war als die 

mittlere Rate an Stickstoffixierung. Dies bedeutet, dass, wenn die Zellen ihre Aktivität steigern 

könnten, die Gesamt-Stickstoffixierung steigen könnte. Wenn diese Variabilität aber durch 

Zufälligkeit in zellulären Prozessen oder anderen internen Faktoren zustande kommt, könnte die Höhe 

der Stickstoffixierung unabhängig von Nährstoffverfügbarkeit dadurch kontrolliert sein.  

Die experimentelle Arbeit mit einer stickstoffixierenden Reinkultur ermöglichte einen 

Vergleich der in Feld- und Laborexperimenten üblich angewandten Messmethoden zur 

Stickstoffixierung. Im Rahmen dieses Vergleiches wurden Unstimmigkeiten zwischen der Acetylen-

Reduktions-Methode und der stabilen-Isotopen-Methode (
15

N2) beobachtet. Die Neubewertung der 

15
N2-Methode machte deutlich, dass die bisher angewandte, direkte Injektion von 

15
N2-Gas 

Stickstoffixierungsraten signifikant unterschätzt hat, da sich das Isotopengleichgewicht zwischen der 
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injizierten 
15

N2-Blase und dem umgebenden Wasser sehr langsam einstellt. Nach etwa 8 Stunden 

Inkubation sind nur etwa 50% der berechneten Anreicherung mit 
15

N2 erreicht. Dies führt zu einer 

Unterschätzung der Fixierungsrate von mindestens 50% abhängig vom Tagesrhythmus der fixierenden 

Organismen während der Inkubation. Kürzere Inkubationen tendieren dazu, vom tatsächlichen Wert 

weiter entfernt zu sein, während 24 Stunden-Inkubationen näher an den realen Raten sind. Aufgrund 

dieser langsamen Einstellung des Isotopengleichgewichts kann der berechnete Wert unter der 

Annahme eines schnellen Ausgleiches nicht als konstant angenommen werden. Ich entwarf eine 

modifizierte Anwendung der 
15

N2-Methode basierend auf der Zugabe von 
15

N2-angereichertem 

Wasser. Die Anwendung dieser modifizierten Methode hat das Potential, die Lücke zwischen den 

Quellen und Senken von gebundenen Stickstoff im Ozean, der ‚vermisste Stickstoff‟, zu reduzieren.  
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I. Introduction 

 

Dinitrogen (N2) fixation is the reduction of N2 gas to ammonia (NH3). Non-biological 

reduction of N2 occurs naturally by lightning or industrially by the Haber-Bosch-process. The 

latter is performed at very high temperature (400-500 °C) and pressure (200 bar). Biological 

N2 fixation (hereafter called only N2 fixation) is an enzyme-catalyzed process carried out by 

organisms called diazotrophs. Diazotrophy is found exclusively in prokaryotes containing the 

enzyme complex nitrogenase. The nitrogenase complex catalyzes the reduction of N2 to 

ammonia (NH3) at ambient conditions. However, the process is very energy-demanding due 

to the strong triple bond between the two nitrogen (N) atoms in the N2 molecule. For each N2 

reduced, 16 ATP are consumed: 

 

N2 + 8 H+ + 8 e- + 16 ATP  2 NH3 + H2 + 16 ADP + 16 Pi 

 

Nevertheless, N2 fixation can be observed in various habitats in terrestrial and aquatic 

ecosystems. Diazotrophs occupy a distinct ecological niche due to the capability of using the 

virtually un-exploitable dissolved N2 pool as compared to non-diazotrophic organisms, which 

largely depend on the availability of combined (or fixed) nitrogen compounds. Nitrogen is an 

essential element for all living organisms and is incorporated into cellular components, 

mainly proteins and nucleic acids. Diazotrophic organisms and the magnitude of N2 fixation 

in the terrestrial environment are much better known than for the ocean. Estimates of N2 

fixation in the ocean approach those of N2 fixation by the land biosphere but are less well 

constrained. The research carried out during this Ph.D. focussed on marine diazotrophic 

organisms and marine N2 fixation. Thus, only the marine environment will be considered in 

the following sections.  

 

A. N2 fixation in the marine environment 

 

Dissolved N2 gas constitutes the largest pool of nitrogen (N) in the ocean with about 1 

x 107 Tg N (Gruber 2008). Other nitrogen species in the ocean are nitrate (NO3
-), nitrite (NO2

-

), nitrous oxide (N2O), ammonium (NH4
+) and organic nitrogen, ranging in oxidation states 
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from +V in NO3
- to –III in NH4

+ and organic nitrogen compounds (Figure I-1). With the 

exception of N2, all other nitrogen species are considered „fixed N‟ in the oceanic N budget 

and sum up to about 6.6 x 105 Tg N (Gruber 2008). N2 fixation is the major source of fixed N 

in the ocean. Other sources of fixed N to the (open) ocean are atmospheric dry and wet 

deposition whereas in coastal areas riverine input may also contribute a substantial fraction.  

 

 

Fig. I-1: Overview of oxidation states of the different nitrogen species in the ocean and the processes 

of their production and consumption. Red arrows represent processes under anoxic conditions. The 

green arrow indicates the focus of this thesis, i.e. N2 fixation. Figure redrawn from: Gruber (2008). 

 

 

The main losses of fixed N from the ocean are through benthic and water column 

(pelagic) denitrification, here per definition, all processes that convert fixed nitrogen into N2 

gas. Minor sinks are the burial of organic matter in sediments as well as the loss of nitrous 

oxide (N2O) to the atmosphere. Although the fixed N pool in the ocean is much smaller than 

the N2 pool, it plays a pivotal role in the biogeochemical cycle of, for example, carbon, due to 

the coupling of carbon and nitrogen during primary production. Fixed nitrogen compounds 

are considered to be the (proximate) limiting nutrient for primary production in the euphotic 

zone of the open ocean (Tyrrell 1999) with the exception of high-nutrient- low-chlorophyll 

(HNLC) regions (i.e., the subpolar North Pacific, the equatorial Pacific and the Southern 
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Ocean). There, dissolved iron (Fe) has been suggested to be the limiting (micro-) nutrient, and 

evidence for this has been obtained during iron-fertilisation experiments (Boyd et al. 2000). 

Since both the major source and the major sink for fixed N in the ocean are coupled to 

biological processes, it will be mainly the balance or misbalance between these two processes 

that is likely to have influence on the extent of „new‟ primary prod uction and the air-sea 

exchange of atmospheric CO2 (Karl et al. 2002). „New‟ primary production is referred to as 

the primary production that is fuelled by nutrients that are physically transported into the 

euphotic zone as well as external sources, i.e. N2 fixation and atmospheric deposition. Since 

the amount of new primary production by nutrients that are physically brought into the 

euphotic zone is balanced by the export of organic matter on large spatial and temporal scales, 

N2 fixation and atmospheric deposition are the potential turning knobs for an increase or 

decrease in new primary production and hence CO2 sequestration (Duce et al. 2008; Figure I-

2). The increased atmospheric deposition of N compounds is likely to affect the surface ocean 

productivity since recent estimates of atmospheric deposition are around 67 Tg N a-1 and are 

expected to increase to about 77 Tg N a-1 in the next two decades (Duce et al. 2008). 

 

 

Figure I-2: Illustration of processes controlling surface ocean primary production and the major sinks 

and sources of fixed N (red arrows). The majority of total primary production is supported by 

remineralisation of nutrients within the euphotic zone, i.e. „regenerated‟ production (a). „New‟ 

production is maintained by physically transported nutrients into the surface ocean (b) and external 

sources of fixed N, i.e. N2 fixation (c) and atmospheric deposition (d). At large spatial and temporal 

scale, the export production (b’’) is balanced by the physical transport of remineralised nutrients from 

the deep ocean (b’). Source: Duce et al. (2008). 
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Current estimates of marine N2 fixation are in the order of 100 – 200 Tg N a-1 (Karl et  

al. 2002, Gruber 2008) yet exceeding the atmospheric deposition. On a global scale, all 

sources of fixed N sum up to ~ 250 Tg N a-1 (Table I-1). Total losses of fixed N seem to 

exceed the sources with considerable debate about the magnitude, specifically denitrification 

(Codispoti et al. 2001; Galloway et al. 2004, Gruber 2004). The discrepancy between the total 

sources and sinks of fixed N in the ocean is also referred to as the „missing N‟.  

 

 

Table I-1: Recent global estimates of nitrogen sinks and sources in the marine environment. Source: 

Gruber (2008).  

Process 
Codis poti et al. 

(2001) 

Galloway et al. 

(2004) 

Gruber 

(2004) 

 Sources (Tg N a
-1

) 

Pelagic N2 fixation 117 106 120 

Benthic N2 fixation  15 15 15 

River input 76
a
 48

a
 80

a
 

Atmospheric deposition 86 33 50 

Total sources 294 202 265 

 Sinks (Tg N a
-1

) 

Organic N export 1  1 

Benthic denitrification 300 206 180 

Pelagic denitrification 150 116 65 

Sediment burial 25 16 25 

N2O loss to atmosphere 6 4 4 

Total sinks 482 342 275 

a
 Sum of DON and PON 

 

 

Although, it is generally accepted that the availability of nitrogen limits primary 

production, there is less agreement on the nutrient(s) that limits N2 fixation, with experimental 

evidence for both the availability of phosphorus (P) (Sañudo-Wilhelmy et al. 2001) and iron 

(Fe) (Shi et al. 2007, Fu et al. 2008). The degree to which either one or both elements limits  

N2 fixation may vary between ocean basins with the Atlantic Ocean being more phosphorus-

limited and the Pacific Ocean being more iron- limited (Wu et al. 2000) although it has been 

shown that N2 fixation in the Atlantic can be phosphorus and iron co- limited (Mills et al. 
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2004). The divergence between the Atlantic and Pacific oceans is attributed to the differing 

inputs of iron through mineral dust deposition with the Atlantic receiving higher deposition 

than the Pacific (Jickells et al. 2005; Figure I-3). However, theoretical arguments suggest that 

N2 fixation by Trichodesmium could be limited by iron in 75% of the world‟s oceans 

(Berman-Frank et al. 2001a). Iron limitation is likely to result from the high Fe requirements 

of diazotrophs, especially when the prevailing diazotrophs are also photosynthetic organisms 

since both the nitrogenase as well as the photosynthetic apparatus requires iron. 

 

 

Figure I-3: Global dust deposition map. Source: Jickells et al. 2005.  

 

 

Besides phosphorus and iron as limiting nutrients, the distribution of diazotrophs in 

the ocean appears to be a result of various other factors. Langlois et al. (2008) observed 

different temperature regimes for Trichodesmium and group A cyanobacteria (UCYN-A) in 

the Atlantic Ocean. The distribution and growth of the unicellular diazotroph Crocosphaera 

watsonii in the western South Pacific has also been attributed to temperature (Webb et al. 

2009, Moisander et al. 2010). Diazotrophic cyanobacteria often comprise the majority of the 

diazotroph community (Church et al. 2005a, 2008; Langlois et al. 2008). For these 

diazotrophs, molecular oxygen (O2) plays a special role since cyanobacteria are oxygenic 

phototrophs, i.e. they fix carbon dioxide (CO2) and concomitantly evolve O2. However, the 

N2-fixing enzyme nitrogenase is inactivated upon contact with O2 (Fay 1992, Gallon 1992) 

posing a serious dilemma for diazotrophic cyanobacteria. In addition to O2 evolution by 



 12 

photosynthesis, most of the oceanic waters are well oxygenated with the exception of the 

oxygen minimum zones (e.g., the upwelling areas off South America and Africa as well as the 

Arabian Sea). The O2-production by (diazotrophic) cyanobacteria and the presence of 

dissolved O2 in most of the ocean led to the evolution of several adaptations to avoid the 

contact of nitrogenase with O2 since the nitrogenase existed well before the oxygenation of 

the atmosphere (Broda and Pescheck 1983). The different adaptations can generally be 

divided into two main strategies, spatial and temporal separation of photosynthesis and N2 

fixation. A representative example for the former is the development of cyanobacterial 

heterocysts, specialized cells that harbour the nitrogenase complex but lack the O2-evolving 

photosystem II (PSII). In addition, these cells have a thick cell wall impeding diffusion of O2 

into the cell. Due to the lack of PSII, these cells are also incapable of fixing CO 2 and thus 

depend on the transfer of fixed carbon compounds from adjacent vegetative cells. The 

occurrence of heterocysts is hence limited to filamentous cyanobacteria. Heterocystous 

diazotrophs are usually constrained to fresh and brackish waters but have been observed in 

symbiosis with marine diatoms (Carpenter et al. 1999). Temporal separation of 

photosynthesis and N2 fixation is largely carried out by unicellular, diazotrophic 

cyanobacteria. These diazotrophs photosynthesise during the light and fix N2 during the dark 

(Sherman et al. 1998). While photosynthesising, the unicellular diazotrophs accumulate fixed 

carbon visible as glycogen granules (Schneegurt et al. 1997). The accumulated carbon is then 

respired at night to serve two purposes: to support the high energy requirements for N2 

fixation and the consumption of otherwise destructive O2. This strategy allows unicellular 

diazotrophs to link the metabolism of carbon and nitrogen within one cell. A representative of 

the unicellular diazotrophic cyanobacteria, Crocosphaera watsonii WH8501, will be treated 

separately and in more detail in section B of this introduction. A combination of temporal and 

spatial separation is implemented in one of the most studied and well known diazotrophic 

cyanobacteria, Trichodesmium sp. Trichodesmium sp. is a non-heterocystous, filamentous 

organism that is very abundant in the tropical and subtropical regions of the ocean 

(Mulholland and Capone 1999; Tyrrell et al. 2003; Carpenter et al. 2004; Capone et al. 2005). 

It performs both photosynthesis and N2 fixation during the day. The N2 fixation peak occurs 

around midday and is accompanied by a decline in photosynthesis which consequently 

reduces the intracellular O2 content to allow for N2 fixation (Berman-Frank et al. 2001b). 

Additional processes such as respiration and the Mehler reaction are supposed to further 

decrease O2 concentrations. Trichodesmium sp. does not fix N2 at night suggesting a tight 

coupling of carbon and nitrogen metabolism. Indeed, it has been shown that CO2 and N2 
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fixation are tightly regulated by a so-called circadian rhythm (Chen et al. 1998). Circadian 

(daily) rhythms are internal programs that regulate and optimize processes to correspond to 

environmental cycles such as a light-dark cycles enhancing the fitness of the population (Mori 

and Johnson 2001). A set of proteins has been found to be responsible for the regulation, the 

KaiABC proteins which are encoded by the kaiABC genes. Mori and Johnson (2001) 

proposed the „oscilloid‟ model with KaiC as a key component. In this model, the 

condensation/supercoiling of the bacterial chromosome oscillates and thereby globally 

regulates gene expression. Circadian regulation has not only been shown for Trichodesmium  

but also for unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 

(Colón-López et al. 1997, Toepel et al. 2008), Synechococcus sp. RF-1 (Huang et al. 1990) 

and Gloeothece sp. 68DGA (Taniuchi and Ohki 2007). The majority of the diazotrophic 

cyanobacteria including filamentous and unicellular types appears to optimize carbon and N2 

fixation under a circadian rhythm and thus links carbon and nitrogen metabolism.  

 

B. Crocosphaera watsonii, a unicellular diazotrophic cyanobacterium 

 

Crocosphaera watsonii is a unicellular, diazotrophic cyanobacterium and the reference 

strain WH8501 (Figure I-4) was isolated in 1984 in the (sub-) tropical South Atlantic Ocean 

(Rippka et al. 2001). It belongs to the group B of unicellular, diazotrophic cyanobacteria 

(Zehr et al. 2001). This strain is an obligate autotroph (i.e. it relies on CO2 fixation as the sole 

carbon source), is between 2.5 – 4 µm in size and contains phycoerythrin in its light-

harvesting complex (Rippka et al. 2001). Growth temperatures have a narrow range from 26 

to 32 °C in C. watsonii WH8501 (Webb et al. 2009). Although this strain has been in culture 

for more than 25 years (Waterbury et al. 1988) and was known to be a diazotroph since 

isolation, only during the last decade studies started to investigate the ecophysiology and 

importance of this diazotrophic organism in more detail. The increased interest in C. watsonii 

results from the discovery of the importance of unicellular diazotrophs in the marine nitrogen 

cycle (Zehr et al. 2001, Montoya et al. 2004). As a unicellular diazotrophic cyanobacterium, 

C. watsonii fixes N2 in the dark period of a light-dark cycle (Rippka et al. 2001, Tuit et al. 

2004) to protect the nitrogenase complex from photosynthetically-evolved O2 (Gallon 1992). 

Nevertheless it links carbon and nitrogen metabolism through the accumulation of carbon 

reserves during the day and subsequent respiration at night as described above. With respect 

to the above discussed nutrient limitations of N2 fixation, C. watsonii seems to be quite well 
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adapted and competitive in the oligotrophic open ocean environment. Under iron-stress, C. 

watsonii expresses an idiA gene homologue (Webb et al. 2001). The IdiA protein is thought to 

mainly protect photosystem II from oxidative damage (Exss-Sonne 2000). Photosystem I may 

also be protected against oxidative damage although by another protein, IsiA. Transcripts of 

the isiA gene have been found to be a dominant component in the metatranscriptome of a C. 

watsonii bloom in the South Pacific (Hewson et al. 2009). In this C. watsonii bloom, isiA  

gene transcripts also showed a diel variation with higher transcripts during the day which is 

consistent with recent transcriptomic data from pure culture experiments with C. watsonii 

WH8501 although cultures were grown Fe-replete (Shi et al. 2010). Thus, the expression of 

the isiA gene may have also resulted from oxidative stress (Shi et al. 2010) rather than iron-

induced (oxidative) stress. Possibly, iron stress and oxidative stress may be interrelated. 

However, C. watsonii also appears to suffer from iron limitation as N2 fixation and growth 

rates decline in Fe-deplete cultures (Fu et al. 2008). 

 

 

Figure I-4: Electron micrographs of Crocosphaera watsonii WH8501 obtained during nanometer-scale 

secondary ion mass spectrometry (nanoSIMS). The „clumping‟ of cells in the left image was an 

artefact of preservation/filtration.  

 

 

With regard to phosphorus, C. watsonii is distinct in comparison to other 

cyanobacteria. It is not capable of using phosphonates due to the lack of the phn gene cluster 

encoding for a C-P lyase (Dyhrman and Haley 2006). Phosphonates are organic phosphorus 

compounds with a carbon-phosphorus bond which can be utilized by Trichodesmium  

(Dyhrman et al. 2006) and possibly by Cyanothece sp., a unicellular cyanobacterium. On the 
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other hand, C. watsonii may accommodate high- and low-affinity phosphate uptake systems 

whereas the latter has not been observed in other cyanobacteria (Dyhrman and Haley 2006). 

The presence of a low-affinity uptake system may render C. watsonii competitive in the 

environment (Dyhrman and Haley 2006). Some of the more recent studies on C. watsonii are 

based on genomic information. Sequencing of the C. watsonii WH8501 genome has been 

completed in 2004 and the publicly available data have been beneficial to the study of this 

diazotroph in both culture (Shi et al. 2010) and field (Hewson et al. 2009).  

Since the initial work identified the importance of unicellular diazotrophs for marine 

N2 fixation (Zehr et al. 2001, Montoya et al. 2004), a whole range of studies have quantified 

the abundance of these diazotrophs in the environment. C. watsonii (or C. watsonii-like cells 

or group B cells) have been detected in regions of the Atlantic Ocean (Falcón et al. 2004, 

Langlois et al. 2008, Foster et al. 2009) and Pacific Ocean (Falcón et al. 2004, Montoya et al. 

2004, Church et al. 2005a, Zehr et al. 2007, Church et al. 2008) as well as in the Arabian Sea 

(Mazard et al. 2004). Abundances are in the range of about 1.7 x 103 cells L-1 (Church et al. 

2005a) up to about 4 – 5 x 105 cells L-1 (Falcón et al. 2004, Zehr et al. 2007). However, 

abundances of about one order of magnitude higher (4 – 8 x 106 cells L-1) have recently been 

observed in the South Pacific at around 40 m water depth (Hewson et al. 2009, Moisander et 

al. 2010). Attempts to quantify N2 fixation by C. watsonii have until now been restricted to 

the isolation and culturing of environmental strains and the subsequent calculation of potential 

contribution to total N2 fixation by either direct measurements of N2 fixation (Tuit et al. 2004, 

Fu et al. 2008, Compaoré and Stal 2010, Webb et al. 2009) or modelling using the observed 

culture growth rates and cellular carbon to nitrogen (C:N) requirements (Goebel et al. 2007). 

Several isolated strains of C. watsonii (including strain WH8501) isolated from the North and 

South Atlantic as well as the North Pacific displayed N2 fixation rates that varied 5-fold on a 

per-cell basis but were very similar when calculated to cellular volume (Webb et al. 2009). 

These strains also occupied two different size classes, one in the smaller range (2 – 4 µm 

diameter) and one in the larger range (5 – 6 µm diameter) with strains in the larger size class 

also excreting extracellular material sometimes resulting in an apparent buoyancy effect. In 

addition, the various strains exhibited different temperature ranges explaining the widespread 

distribution of C. watsonii in the ocean (Webb et al. 2009). This study shows that there is still 

considerable need for isolation and cultivation of new strains of marine diazotrophs and their 

subsequent physiological characterization. A very beneficial contribution to the assessment of 

N2 fixation will be the application of nanometer-scale secondary ion mass spectrometry 

(nanoSIMS) to environmental samples which would yield a culture- independent direct 
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measurement of N2 fixation. This issue is the subject of manuscript C and will also be 

included in the discussion at the end of this thesis.  

 

C. Measurements of N2 fixation 

 

Presently, the determination of N2 fixation in the marine environment is achieved by a 

range of different approaches. They encompass the molecular assessment of diazotrophs, the 

indirect evaluation using geochemical estimates and direct measurements of N2 fixation. As 

described above, nitrogenase is the enzyme responsible for the reduction of N2 to bio-

available NH3. The iron subunit of the nitrogenase complex is encoded by the nifH gene 

which can be directly measured in filtered water samples using quantitative polymerase chain 

reaction (qPCR) after the extraction of total DNA from the filter. This measurement provides 

estimates of the abundance of different diazotrophic groups known today depending on the 

specific probes that are used. However, the abundance estimates rely on the assumption that 

the nifH gene is a single copy gene in each diazotroph species and that a single copy of the 

genome is present in each cell. For several marine diazotrophs, a single copy of the nifH gene 

per genome is true but there is uncertainty in the genome number present in a cell. Sequence 

analysis of published genomes suggests that Trichodesmium, Cyanothece and Crocosphaera 

contain only one nifH gene copy per genome whereas Anabaena and Nostoc, heterocystous 

cyanobacteria observed in fresh and brackish waters, appear to contain two or more nifH gene 

copies per genome. The estimates from qPCR are upper estimates, and therefore, the results 

are often presented as nifH gene copies per liter of seawater. However, the determination of 

nifH gene copies in a sample of seawater is a useful tool to describe the diazotrophic 

community and is a qualitative assessment of (potential) N2 fixation. Molecular tools can also 

be used to yield a qualitative assessment of N2 fixation activity through the determination of 

nifH gene transcripts with qPCR after the reverse transcription of RNA to cDNA. Gene 

transcripts can be detected in cells or a sample if a gene is actively transcribed indicating the 

usage of the encoded protein (Zehr and Montoya 2007). The determination of gene transcripts 

is thus a qualitative assessment of N2 fixation activity because the presence of gene transcripts 

does not provide any quantitative information on N2 fixation. Nevertheless, it is useful to 

determine which groups of diazotrophs are active in the entire community and supposedly 

contributing to N2 fixation because the abundance of diazotrophs alone (i.e. abundance 

determined from DNA or microscopic counts) does not yield any information on the activity. 
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That abundance does not necessarily reflect activity was recently demonstrated by the 

measurement of 15NH4
+ uptake using nanoSIMS combined with in situ hybridization where 

the least abundant organism (~0.3%) accounted for more than 40% of the total uptake (Musat 

et al. 2008).  

The quantitative assessments of N2 fixation can be sub-divided into indirect estimates 

and direct measurements. Indirect estimates of N2 fixation have been based on geochemical 

estimates and modelling approaches. The latter involves abundances of different diazotrophic 

groups (assessed, for example, by molecular tools or direct microscopic counts), observed 

growth rates for these diazotrophs (usually representative cultured organisms) and their 

cellular C:N requirements. N2 fixation rates (on a per cell basis) are then derived from the 

assumption of sustained cellular C:N ratios under certain growth rates. Regional or global 

estimates of N2 fixation are then obtained by considering the cellular N2 fixation rates and the 

abundances of the observed diazotrophs (Goebel et al. 2007). Cellular C:N ratios and 

elemental uptake ratios (C:N and N:P) are also of great importance for some geochemical 

estimates. Particulate material that is formed during primary production has an average molar 

C:N:P ratio of 106:16:1 (Redfield 1958, Klausmeier et al. 2004) and hence the uptake of the 

main nutrients, i.e. nitrate, the major constituent of fixed N, and phosphate must be close to 

16:1. Surface ocean nitrate and phosphate concentrations are on average close to this ratio 

(Figure I-5, Gruber 2008). Nevertheless, deviations in either one of the two directions ( i.e. 

lower or higher than 16:1) are attributed to the processes denitrification and nitrogen fixation. 

Both processes change the fixed N budget (see section A and Table I-2) by releasing or fixing 

N2 but do not alter the overall phosphate quota. To quantify the importance of denitrification 

and N2 fixation, the term N* was introduced with 

 

N* = [NO3
-] – 16 x [PO4

3-] + 2.9 µmol /kg   (Gruber 2008) 

 

where the constant 2.9 µmol/kg was added to obtain a global mean N* of zero (Gruber 

and Sarmiento 1997). Resulting positive and negative N* values denote areas of increased or 

reduced fixed N, respectively, relative to phosphate. Therefore, the balance between the main 

sink and the main source of fixed N, i.e. denitrification and N2 fixation is reflected in the N* 

values. Global distributions of N* have suggested that the Atlantic Ocean serves as a net 

source of fixed N whereas the Pacific Ocean serves as a net sink of fixed N (Gruber 2008) 

despite the fact that higher rates of N2 fixation have been proposed for the Pacific Ocean 

using a similar modelling approach of N:P stoichiometry (Deutsch et al. 2007). 
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Figure I-5: Distributions of phosphate and nitrate concentrations from all depth and selected cruises of 

the World Ocean Circulation Experiment. The line indicates the canonical Redfield ratio. Source: 

Gruber (2008).  

 

 

Table I-2: Oceanic budget for the main fixed nitrogen species. Source: Gruber (2008). 

Nitrogen species Oceanic budget [Tg N] 

Nitrate (NO3
-
) 5.8 x 10

5
 

Nitrite (NO2
-
) 160 

Ammonium (NH4
+
) 340 

Dissolved organic N (DON) 7.7 x 10
4
 

Particulate organic N (PON) 400 

Nitrous oxide (N2O) 750 

Total fixed N 6.6 x 10
5
 

Dissolved N2 gas 1 x 10
7
 

 

Other geochemical estimates of N2 fixation are based on the natural abundance of the 

stable nitrogen isotope 15N. In the atmosphere, 15N constitutes about 0.366% of all nitrogen 

atoms (i.e. atom% = 15N / (15N + 14N) ). For convenience, the isotope ratio of a sample is 

usually compared to the atmospheric isotope ratio using the δ notation with  

 

δ15N [‰] = (IRSAMPLE / IRATM - 1) x 1000  
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where IR is the isotope ratio of either the sample or the atmosphere. Most biological 

processes discriminate against the heavier 15N isotope resulting in an increase of the δ15N of 

the substrate used. The discrimination for or against the 15N isotope is generally referred to as 

fractionation. One of the main processes in the marine environment leading to increased δ15N 

of the oceanic nitrate pool is (pelagic) canonical denitrification, i.e. nitrate serves as the 

terminal electron acceptor in respiration converting nitrate into N2. In contrast, N2 fixation has 

very little fractionation (Figure I-6). Since it is these two processes that are the main sink and 

source of oceanic fixed N and hence can alter the nitrogen mass balance in the ocean but have 

very different isotopic signatures, denitrification and N2 fixation (as well as other processes) 

have been tracked using the isotopic signature of the oceanic fixed N (nitrate) pool.  

 

 

Figure I-6: Isotopic fractionation during major processes of the marine nitrogen cycle and their impact 

on the δ
15

N of oceanic nitrate. Source: Montoya (2008).  

 

 

The average δ15N of nitrate is ~ 5‰ as determined in deep-ocean nitrate (Sigman et al. 

2000). Although the assimilation of nitrate discriminates against 15N leading to higher δ15N in 

the residual nitrate and lower δ15N in the particulate material formed, if all nitrate present is 

consumed, the δ15N of the particulate material will reflect the δ15N of the nitrogen source 

used. Particulate material with a δ15N lower than average nitrate is assumed to have (at least 

partially) originated from diazotrophs since N2 fixation has very little fractionation and leads 
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to lower δ15N values. The relationships between δ15N values, fractionation and oceanic mass 

balances have been used to assess N2 fixation (Montoya et al. 2002, Bourbonnais et al. 2009) 

and the oceanic fixed N budget (Brandes and Devol 2002).  

Direct measurements of N2 fixation are mostly carried out using the acetylene 

reduction assay (ARA; Capone 1993, Capone and Montoya 2001) and the 15N2 tracer addition 

(Montoya et al. 1996, Capone and Montoya 2001). Mass balances are usually restricted to 

diazotroph pure cultures or on larger scales as isotope mass balances (Brandes and Devol 

2002). The ARA has been developed in the 1960‟s and has since been widely used to measure 

N2 fixation in laboratory and field studies. This method is based on the ability of nitrogenase 

to not only reduce N2 but also other small triple-bonded molecules such as cyanide, azide, 

nitrous oxide and acetylene (C2H2). If added at saturating concentrations, C2H2 inhibits the 

reduction of N2 but is itself reduced to ethylene (C2H4). Briefly, C2H2 is added to the 

headspace (>0.1 atm) of a closed vial containing seawater or culture (ratio of gas to liquid of 

1:1 (Capone and Montoya 2001)) and is incubated for the desired time. The produced 

ethylene is afterwards measured in a gas chromatograph equipped with a flame ionization 

detector and the amount of C2H4 produced can be related to N2 fixation with 

 

N2 fixed [mol N2] = C2H4 produced / CF [mol C2H4] 

 

where CF = conversion factor (dimensionless). The reduction of N2 to 2 NH3 requires 

one pair of electrons for each bond in the N2 molecule leading to a total of 6 electrons needed. 

The reduction of C2H2 to C2H4 requires 2 electrons which would lead to a conversion factor of 

3, i.e. 3 mol of C2H2 are reduced instead of 1 mol N2. But since N2 fixation is accompanied by 

the formation of hydrogen (H2) which requires another 2 electrons, a total of 8 electrons (and 

a conversion factor of 4) is needed for the reduction of N2 to NH3. There has been 

considerable debate (Capone 1993, Montoya et al. 1996, Zehr and Montoya 2007) about the 

use of 3 or 4 as a conversion factor and both are still applied (Czerny et al. 2009, Hamisi et al. 

2009). 

The application of 15N2 gas to measure N2 fixation was first applied in the 1940‟s 

(Burris and Miller 1941, Burris 1942). Measurements were mostly constrained to pure 

cultures or enriched samples due to the biomass needed for the mass spectrometric analysis of 

the particulate material. After the sensitivity of mass spectrometers had been improved, the 

15N2 tracer addition became a standard method for measuring N2 fixation in (often) 

oligotrophic field samples (Montoya et al. 1996). Briefly, seawater incubations are started by 



 21 

the direct injection of 15N2 gas to headspace-free filled bottles to yield an enrichment at 

around 2-5 atom% of the dissolved N2 pool and samples are incubated for about 2-36 h (Zehr 

and Montoya 2007). At the end of the incubation, the particulate material is filtered onto a 

glass fibre filter (0.7 µm GF/F filter) and the isotopic composition of the particulate material 

is measured mostly using continuous flow isotope ratio mass spectrometry. The isotopic 

composition of the particulate material and the isotopic composition of the dissolved N2 pool 

are later on used to calculate N2 fixation rates (combined equations from Capone and 

Montoya 2001): 

 

N2 fixation [mol N t-1] = (AP PNfinal – AP PNinitial) / (AP N2 – AP PNinitial) x PNfinal [mol] / Δt  

 

where AP = atom% 15N in the particulate organic nitrogen at the end (PN final) or 

beginning (PNinitial) of the incubation or in the dissolved N2 pool (AP N2). Here, all 

parameters except the AP N2 are measured components whereas the AP N2 is a calculated 

value. Thus, the rapid equilibration between the added 15N2 gas and the surrounding water and 

a uniform enrichment throughout the incubation period are of crucial importance for the N2 

fixation rates to be determined.  

Simultaneous measurements of N2 fixation rates using ARA and the 15N2 tracer 

additions can be carried out to determine the conversion factor of C2H4 produced to N2 fixed. 

Several studies found a good agreement between the two methods yielding ratios around the 

theoretical conversion factors (3 or 4) but also large discrepancies between methods have 

been observed (see summary in Mulholland 2007). These discrepancies have led to the 

operational definition of net and gross N2 fixation (Gallon et al. 2002, Mulholland et al. 

2004). The former describes the actual uptake of N2 into biomass and the latter describes the 

total N2 fixation, i.e. any N2 that has been fixed and subsequently excreted as dissolved 

inorganic (DIN) or organic nitrogen (DON) in addition to the N2 incorporated into biomass. 

While net N2 fixation is obtained using the 15N2 addition, gross N2 fixation can be estimated 

by the ARA which accounts for the entire N2 fixation occurring in the system. However, DIN 

and DON cannot always account for the discrepancies (Mulholland et al. 2004; Mulholland 

and Bernhardt 2005).  

In addition to the discrepancies between N2 fixation rates determined with ARA and 

15N2 tracer addition methods, mismatches between measured N2 fixation rates and 

geochemical estimates are observed (Mahaffey et al. 2005) and the sinks and sources in the 

oceanic fixed N budget do not seem to be in balance (see section A). The use of a 
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diazotrophic culture during this Ph.D. work facilitated an inter-comparison between the two 

methods in combination with a mass balance. In a diazotrophic culture grown in N-deplete 

medium, an increase in cellular nitrogen over time can be solely attributed to N2 fixation and 

is a function of growth rate. Hence, direct measurements should balance the increase in 

cellular N over the same time. The overall result suggested that the 15N2 tracer addition 

method was yielding incorrect N2 fixation rates due to mismatches between the ARA and the 

15N2 method but also between the increase of particulate organic nitrogen and the 15N2 method 

(mass balance). The results of these laboratory culture studies led to the re-assessment of the 

currently used 15N2 tracer addition covered by manuscript A of this thesis. The results of the 

re-assessment have important practical implications.  

 

 

Figure I-7: Schematic illustration of a dynamic secondary ion mass spectrometry (SIMS) analysis of a 

bacterial community (not to scale). The bacterial cell sputtered with the primary ion beam is labelled 

with 
15

N and 
13

C. Only selected secondary ions are displayed. Note that nitrogen is detected as cyanide 

ion and that isobaric ions are formed (e.g., 
12

C
15

N
-
 and 

13
C

14
N

-
), whose differentiation requires high 

mass resolution as offered, for example, by modern NanoSIMS instruments. Source: Wagner (2009). 

 

 

In the study of N2 fixation in the marine environment, the different approaches 

described above can be combined to reveal, for example, the magnitude of N2 fixation using 

the direct measurements and the contribution by the different diazotrophic groups as 

determined by molecular methods. Nevertheless, until a few years ago, the diazotrophs 

actually fixing N2 could not be identified at the cellular level even when gene transcripts were 

detected and N2 fixation was measurable due to the lack of a link between the two. The recent 
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improvements in methodologies and protocols using nanometer-scale secondary ion mass 

spectrometry (nanoSIMS) after incubation with stable isotopes enable scientists to link the 

identity of an organism to its‟ function/activity by coupling nanoSIMS to in situ hybridization 

(Behrens et al. 2008, Li et al. 2008, Musat et al. 2008). NanoSIMS can be used to reveal sub-

cellular isotopic composition of (filtered) particulate material due to a resolution of about 50 

nm. Coupled to stable isotope incubations such as the 15N2 tracer addition, single-cell N2 

fixation rates can be assessed. During secondary ion mass spectrometry, a sample is exposed 

to a primary ion beam (e.g. Cs+ ions) and atoms or molecules are sputtered of the sample 

surface (Figure I-7). Atoms and molecules of one polarity (negative or positive) can then be 

separated in an electric field, and the secondary ion beam can be analysed by mass 

spectrometry. Since several masses can be analysed simultaneously, this gives the opportunity 

to obtain isotope ratios of the sample under investigation. The application of nanoSIMS to 

determine N2 fixation rates is the subject of manuscript C in this thesis.  

 

D. Aim of thesis 

 

Dinitrogen (N2) fixation is the major source of fixed nitrogen (N) in the ocean. It is 

hence a crucial component in the marine N cycle since the availability of nitrogen controls the 

magnitude of primary production in the surface ocean. The diazotrophic community is often 

dominated by cyanobacteria including the well-known filamentous, non-heterocystous 

Trichodesmium and a range of unicellular cyanobacteria. Most unicellular cyanobacteria 

separate N2 fixation and photosynthesis temporally to protect the nitrogenase from 

photosynthetically-evolved O2. The activity of the different diazotrophs is commonly assessed 

using molecular methods based on the expression of the nifH gene. The nifH gene expression 

varies over diel cycles and this has been shown for several cultured species, for example, 

Cyanothece sp. ATCC 51142. At the beginning of this Ph.D. work, diel patterns of gene 

expression were not known for Crocosphaera watsonii, an abundant unicellular 

cyanobacterial diazotroph in the tropical and subtropical ocean. Experiments were carried out 

to confirm the temporal segregation of N2 fixation and photosynthesis. The physiological 

characterization was complemented by gene expression and protein analysis to yield detailed 

information on temporal shifts between gene expression, protein synthesis and enzyme 

activity. This information will be helpful in the study of N2 fixation in the environment.  
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Results from the first study indicated that C. watsonii may retain functionality of the 

photosystems which could be activated upon illumination. To test this hypothesis, further 

experiments were carried out using a dark-light cycle followed by continuous light. In 

addition, single-cell analyses were carried out to reveal population dynamics in the processes 

of N2 fixation and photosynthesis. Population heterogeneity has been shown for several 

organisms at gene expression and protein level or in growth rates. Heterogeneity in metabolic 

processes, however, has been rarely shown due to methodological limitations. The application 

of nanoSIMS and stable isotope incubations (here 15N2 and DI13C) provided an excellent tool 

for the analysis of N2 fixation and photosynthesis at the cellular level.  

The simultaneous application of stable isotope incubations in a diazotroph pure culture 

and the comparison to the acetylene reduction assay (ARA) to measure N2 fixation activity in 

the previous experiments was used to carry out an inter-comparison between direct 

measurements of N2 fixation, i.e. the ARA and the 15N2 tracer addition method. Preliminary 

results indicated that the currently used 15N2 tracer addition method, i.e. the direct injection of 

15N2 gas to incubations may have severely underestimated N2 fixation rates. Upon this 

finding, a series of experiments was set up to re-assess the currently used 15N2 tracer addition 

method and to provide a modified approach to obtain real rates of N2 fixation. 
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Abstract 

The two commonly applied methods to assess dinitrogen (N2) fixation rates are the 

15N2-tracer addition and the acetylene reduction assay (ARA). Discrepancies between the two 

methods as well as inconsistencies between N2 fixation rates and biomass/growth rates in 

culture experiments have been attributed to variable excretion of recently fixed N 2. Here we 

demonstrate that the 15N2-tracer addition method underestimates N2 fixation rates significantly 

when the 15N2 tracer is introduced as a gas bubble. The injected 15N2 gas bubble does not 

attain equilibrium with the surrounding water leading to a 15N2 concentration lower than 

assumed by the method used to calculate 15N2-fixation rates. The resulting magnitude of 

underestimation varies with the incubation time, to a lesser extent on the amount of injected 

gas and is sensitive to the timing of the bubble injection relative to diel N2 fixation patterns. 

Here, we propose and test a modified 15N2 tracer method based on the addition of 15N2-

enriched seawater that provides an instantaneous, constant enrichment and allows more 

accurate calculation of N2 fixation rates for both field and laboratory studies. We hypothesise 

that application of N2 fixation measurements using this modified method will significantly 

reduce the apparent imbalances in the oceanic fixed-nitrogen budget. 
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Introduction 

Biological dinitrogen (N2) fixation is the major source of fixed nitrogen (N) in the 

oceanic N budget [1]. Current estimates of global oceanic N2 fixation are ~ 100 - 200 Tg N a-1 

[2]. N2 fixation rates can be assessed through geochemical estimates, modelling of diazotroph 

abundances and growth rates [3] and direct measurements of N2 fixation. Geochemical 

estimates rely on the measurement of, e.g., nutrient stoichiometry and estimates or models of 

ocean circulation [4, 5] or the distribution of stable isotope abundances [e.g. 6]. Direct 

measurements of N2 fixation are obtained either using the 15N2-tracer addition method [7, 8] 

or the acetylene reduction assay (ARA) [9, 8]. However, direct measurements of N2 fixation 

rates account for ≤50% of the geochemically-derived estimates [10]. Furthermore, the sink 

terms in the oceanic fixed N budget significantly exceed the current estimates of N2 fixation 

and other source terms for fixed N [11, 12]. This gap between sources and sinks of fixed N 

implies an oceanic nitrogen imbalance, which may reflect non-stationarity of the oceanic 

fixed-N inventory, or result from over-estimation of loss processes and/or under-estimation of 

fixed nitrogen inputs [13, 10]. However isotopic signatures in sediments suggest that the fixed 

N budget is in a steady-state [14]. 

The comparison of N2 fixation rates measured simultaneously using the 15N2-tracer 

addition and the ARA shows that the 15N2-tracer addition generally yields lower rates. In 

addition, mass balance analyses of 15N2-based N2 fixation rates measured in experiments with 

cultured diazotrophs, indicate that the 15N2-tracer addition method yields rates that are too low 

for sustaining the observed growth rates and biomass [15, 16]. The discrepancies between the 

two methods and the lack of mass balance in culture experiments have often been attributed to 

the excretion of recently fixed nitrogen as ammonium (NH4
+) or dissolved organic nitrogen 

(DON). The discrepancies have led to the operational definition of gross and net N2 fixation 

[17, 15] as measured by the ARA and the 15N2-tracer addition approaches, respectively. 

However, the measured release of NH4
+ or DON is rarely sufficient to balance the observed 
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growth in culture, and even invoking recycling of the dissolved fixed N rarely accounts for 

the observed discrepancies between N2 fixation rate and growth rate/biomass [15].  

The apparent oceanic N imbalance, differences between geochemical estimates and 

measured rates of N2 fixation, and the difficulties in reconciling discrepancies between ARA 

and 15N2-based estimates of N2 fixation in the field and in culture experiments, led us to re-

assess the 15N2-tracer addition method. This method is based on the direct injection of a 15N2 

gas bubble into a seawater sample [7] sufficient to yield a final enrichment of 2-5 atom 

percent (atom%) and incubation for 2-36 hours [18]. N2 fixation rates are then retrieved from 

the incorporation of 15N2 into the particulate organic nitrogen (PON). The method assumes 

implicitly that the injected gas fully and rapidly equilibrates with the surrounding water, and 

this assumption is the basis for calculation of the initial 15N enrichment of the dissolved N2 

pool. Knowledge of this enrichment is pivotal to the calculation of N2 fixation rates with this 

method as seen in equation 1 (equations combined from [8]): 

 

N2 fixation rate = 
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where A = atom% 15N in the particulate organic nitrogen (PN) at the end (final) or 

beginning (t=0) of the incubation or in the dissolved N2 pool (N2).  

In applications of the method, all parameters of the equation are measured except for 

the atom% 15N in the dissolved N2 pool (AN2). Equation 1 shows that calculation of N2 

fixation rates depends strongly on this value which is calculated from the predicted 

equilibrium dissolved N2 concentration [19, 20], its natural 15N abundance, and the amount of 

15N2 tracer added with the bubble. The calculation assumes that there is complete isotopic 

equilibration between the injected bubble of 15N2 and the surrounding water at the start of the 

incubation.  
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Here we report results of experiments that were designed to assess the rate of 

equilibration of an introduced 15N2 gas bubble with the surrounding water. Based on results of 

these experiments, we developed a modified approach involving addition of 15N2-enriched 

seawater which assured a well-defined and constant 15N enrichment of the dissolved N2 gas at 

the beginning of the incubations. We propose the application of the modified approach for 

future assessments of N2 fixation rates in natural microbial communities and in laboratory 

cultures. 
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Results 

Time-resolved equilibration of a bubble of 15N2 in seawater 

A first set of experiments (isotopic equilibration experiments) was carried out to assess 

the time required to attain isotopic equilibrium in the dissolved pool of N2 gas after injection 

of a known amount of 15N2 gas as a bubble into sterile filtered seawater. A gas bubble of pure 

15N2 was injected directly into incubation bottles which were manually inverted fifty-times (~ 

3 min agitation) and left standing for up to 24 h. Concentration of dissolved 15N2 was 

followed over the 24 h period to assess the degree of equilibration of the 15N2 gas bubble with 

the surrounding water as a function of time. Dissolved 15N2 concentrations in the seawater 

increased steadily with the incubation time (Fig. 1A). After eight hours, dissolved 15N2 

concentrations reached about 50 % of the concentration calculated assuming complete 

isotopic equilibration of the injected bubble with the ambient dissolved N2 gas in the seawater 

sample. At the end of the 24 h incubation, the dissolved 15N2 concentration had increased to 

about 75% of the calculated concentration.  

 

N2 fixation rate underestimation due to incomplete 15N2 gas bubble equilibration 

Similar results were obtained in the incubation experiments with pure culture of 

Crocosphaera watsonii (culture experiments), which confirmed the incomplete and time-

dependent equilibration of the injected bubble of 15N2 gas with the surrounding water (Fig. 

1B). These experiments also demonstrated the associated underestimation of N2 fixation rates. 

Culture experiments were conducted after 15N2 addition as a gas bubble and also after 15N2 

addition in the form of 15N2-enriched seawater (our modified method, see Methods section). 

The incubation of C. watsonii after injection of a bubble of 15N2 gas and without prior 

incubation of this bubble in algal- free media, gave a N2 fixation rate which was only 40% of 

the maximum rate measured in the incubations to which 15N2-enriched seawater had been 

added (Fig. 1B, black symbol). In other words, for the 12-h incubation period under the 
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described experimental conditions, the N2 fixation rate was underestimated by 60% when the 

15N2 was introduced as a gas bubble. In contrast, in both the isotopic equilibration and the 

culture experiments, the concentration of dissolved 15N2 remained stable at the predicted 

value throughout the 24 h in incubations to which 15N2-enriched water was added. 

 

Factors influencing 15N2 gas dissolution in N2-saturated seawater 

Continuous, vigorous shaking (50 rpm) greatly increased the concentration of 15N2 in 

the media (Fig. 2) reaching ~ 67% of the calculated concentration after 30 minutes whereas 

the initial, manual agitation, i.e. inverting bottles 50 times (~3 min), resulted in only ~ 13% of 

the calculated concentration. Information on agitation is generally not provided in the 

published literature, but this is clearly a variable factor in incubations, especially if performed 

at sea. Continuous, vigorous shaking, as tested here (50 rpm; Fig. 2), is difficult to achieve in 

field experiments and may, in addition, be detrimental to some diazotrophs (e.g. 

Trichodesmium colonies). 

Increasing the size of the incubation bottles, increasing the amount of gas injected per 

liter of seawater and the addition of dissolved organic matter (DOM) all led to slower 

equilibration of the 15N2 gas bubble with the surrounding water (Fig. 3 and 4A), even when 

bottles were shaken continuously for one hour (Fig. 4B). Only with the injection of 8 ml of 

15N2 gas per liter of water and one hour of continuous, vigorous shaking, was near-complete 

equilibration achieved (97% of calculated concentration).  

 



 36 

Discussion 

Both the isotopic equilibration and the culture experiments demonstrated clearly that 

the equilibration of 15N2 gas injected as a bubble into N2-saturated seawater is time-dependent 

and incomplete, even after 24 hours. The lack of complete equilibration causes the res ulting 

calculated N2 fixation rates to be variably and significantly underestimated (see Equation 1). 

The equilibration, i.e. the isotopic exchange between the 15N2 gas in the bubble and the 

surrounding water is controlled primarily by diffusive processes. The major variables that 

influence the rate of isotopic exchange include the surface area to volume ratio of the bubble, 

the characteristics of the organic coating on the bubble surface [21], temperature and the rate 

of renewal of the water-bubble interface [22]. The renewal of the water-bubble interface 

appears to have the greatest effect on the isotopic exchange, as continuous vigorous shaking 

of the incubation bottles generated the highest enrichment of 15N2 in the water phase. 

However, the calculated (equilibrium) enrichment in 15N2 was not attained fully even after 

one-hour of continuous shaking at 50 rpm on a rotary shaker. Incubations carried out on board 

a research vessel will provide some agitation of the bubble but this will not approach the high 

and constant agitation tested in our experiments. The implication is that variable sea-state 

conditions encountered during sea-going incubations, and the details of individual 

experiments, will lead to variable 15N2 enrichments and hence variable underestimation of N2 

fixation rates. Further, N2 fixation studies in the oligotrophic regions of the ocean usually 

require the use of large incubation volumes (e.g., 2-4 L), so that continuous shaking for one 

hour or more is not practical, and in addition would likely be detrimental to the natural 

microbial communities.  

The experiments with variable bottle sizes and DOM additions (Fig. 3 and 4) 

demonstrated that there are factors in addition to the bubble incubation time that affect the 

equilibration. On the other hand, the addition of 15N2-enriched seawater to the incubations led 
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to a stable enrichment over the 24 h incubation time which was instantaneous and 

independent of the agitation of the bottles.  

This study was motivated partly by the mismatches between the ARA and 15N2-based 

measurements of N2 fixation as well as imbalances between 15N2-fixation rates and biomass-

specific rates (~ growth rate) or C:N fixation ratios (Table 1). Such mismatches have been 

observed in environmental studies and in culture studies, mainly with Trichodesmium. 

Although it has been shown that Trichodesmium can excrete recently fixed N2 as NH4
+ or 

DON [15, 26], the excretion of 15NH4
+ or DO15N rarely accounts for the observed 

discrepancies [15, 16]. The operational definition of gross  and net N2 fixation as obtained 

through ARA and 15N2 incubations, respectively, has been mainly based on the mismatch 

between the rates measured by the two methods. Our results demonstrate that N2 fixation 

rates, as measured with the 15N2 method [7] are underestimated. Therefore, the magnitude of 

the exudation of recently fixed nitrogen and the conditions promoting this process should be 

re-evaluated, taking into account the results presented here.  

We reviewed published studies that have used the direct injection of a 15N2 gas bubble 

to assess N2 fixation rates in order to evaluate the magnitude of under-estimation. However, 

first attempts to assess the degree of underestimation of field and culture N2 fixation rates 

were obscured by a wide range of experimental conditions among the studies. Bottle sizes 

ranged from 14 ml to 10 L, the amount of 15N2 injected varied from 0.2 to 40.8 ml 15N2 per L 

seawater and incubation times ranged from 0.25 to 48 hours, with the majority of the field 

studies using 2-4 L bottles and 24 h incubations. In addition, information on agitation was, in 

general, not available. There were no obvious trends of reported N2 fixation rates with either 

bottle size, incubation time or the amount of injected 15N2 gas probably because of the large 

variability of geographic locations and environmental conditions prevailing in the individual 

studies, which would have a dominant effect on the local diazotrophic communities and their 

N2 fixation rates. An evaluation of the degree of possible underestimation of 15N2 fixation 
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rates in environmental studies is further confounded by diel periodicity of N2 fixation [27-29]. 

The lack of knowledge on the exact timing and magnitude of the individual N2 fixation 

activity of the different diazotrophs relative to the timing of 15N2 gas injection hinders back-

calculation of published N2 fixation data. This can be illustrated, for example, with a 

hypothetical diazotroph community that is dominated by unicellular cyanobacteria which fix 

nitrogen during the night period only (Fig. 5A). In this microbial community, measurements 

of N2 fixation using the direct injection of a 15N2 gas bubble during a 24 hour incubation will 

lead to a variable underestimation of the true N2 fixation rate, depending on the timing of the 

incubation start relative to the peak in the nitrogenase activity (Fig. 5C, solid lines). The 

underestimation will be more pronounced if the start of the incubation is coincident with the 

onset of the active N2 fixation period. In contrast, incubations with enriched 15N2 seawater, 

will not lead to an underestimate, regardless of the incubation start relative to the diel cycle 

(Fig. 5C, dashed lines). 

The discrepancies and mismatches/imbalances observed in field and laboratory studies 

could, in part, be explained by the variable underestimation of the true N2 fixation rate due to 

the methodological uncertainty reported here. We propose the addition of 15N2-enriched 

seawater to incubations to assess N2 fixation rates in laboratory and field studies. We suggest 

that measurements using this approach are likely to increase measurements and estimates of 

N2 fixation at species, regional and global level and lead to a reduction in the apparent oceanic 

nitrogen imbalance. 
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Experimental procedures 

Culture and growth conditions 

The diazotrophic cyanobacterium Crocosphaera watsonii WH8501 was grown in 

batch cultures in N-free YBCII media [30] at 28°C in a temperature-controlled growth 

chamber. C. watsonii was subjected to 12:12 h dark:light cycles.  

Direct injection of a 15N2 gas bubble in water 

We first examined the rate of equilibration between an injected bubble of 15N2 gas and 

seawater. Two series of incubations were started by injecting 140 µl of 15N2 into 133 ml of an 

artificial seawater media (YBCII) contained in headspace-free, septum-capped glass bottles. 

In the first series (isotopic equilibration experiments), all bottles were inverted fifty times (~ 3 

min) after injection of the 15N2 gas bubble and left at room temperature in the laboratory. One 

bottle was sampled immediately after the agitation in order to determine how much 15N2 gas 

had dissolved initially. The other bottles were opened and sampled after standing for periods 

from 1 to 24 h. Upon opening of the bottles, samples to measure the dissolved 15N2 were 

taken and stored in gas-tight glass vials (Exetainer®) until analysis. 

In the second series (culture experiments), the YBCII media was pre-heated to 28°C in 

a temperature-controlled chamber before being used to fill septum-capped glass bottles. As 

with the first series, samples were agitated and left standing for varying periods of time after 

the injection of a 15N2 gas bubble. Instead of taking subsamples for 15N2 analysis, 13 ml of 

media were replaced by C. watsonii WH8501 culture upon opening of the bottles. This series 

of experiments was timed so that the introduction of culture into the media took place at the 

start of a dark phase of the 12:12h dark:light-adapted C. watsonii culture. The samples with 

the culture were then incubated for 12 h at culture growth conditions (28°C, dark phase, i.e. 

N2-fixing) and filtered onto pre-combusted GF/F (Whatman; 450°C for 4 h) filters at the end 

of the incubation. Filters were dried immediately after (50°C, 6 h) and stored at room 

temperature until analysis. To obtain a measure of underestimation using the direct injection 
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of a 15N2 gas bubble, one bottle containing 13 ml of C. watsonii culture was incubated for 12 

h after the injection of 140 µl 15N2 gas at the start of the dark phase and without release of the 

bubble, essentially resembling a laboratory or field incubation. 

 

Direct addition of 15N2 tracer-enriched seawater 

An alternative, modified 15N2 tracer addition method was developed, which involved 

addition of an aliquot of 15N2-enriched water to incubations. This alternative method was 

based on earlier approaches used to study oxygen cycling using 18O2 [31] and the release of 

DON using 15N2 [26]. The preparation of the 15N2-enriched water was started by degassing 0.2 

µm-filtered artificial seawater (YBCII media). Degassing was carried out by applying vacuum 

(≤200 mbar absolute pressure) to continuously stirred (stir bar) media for about 30 min. The 

degassed water was transferred rapidly but gently into septum-capped glass bottles until 

overflow, and 1 ml of 15N2 gas (98 at%; Campro Scientific) was injected per 100 ml of media. 

The bottles were shaken vigorously until the bubble disappeared. Aliquots of this 15N2-

enriched water were then added to the incubation bottles, with the enriched water constituting 

no more than 10% of the total sample volume. This alternative enrichment method was 

applied to the two series of experiments described above.  

 

Assessment of additional factors contributing to variation in 15N2 enrichment 

We assessed possible effects of varying bottle size, amounts of injected gas and 

different amounts of agitation on their contribution to the equilibration between a bubble of 

15N2 gas and the surrounding seawater. For the bottle size comparison, incubations were 

performed in 0.13 L bottles and in 1.15 L bottles. The amount of injected gas varied between 

1 ml 15N2 per 1 L seawater up to 8 ml 15N2 per 1 L seawater. The incubations were agitated 

either by inverting fifty times manually (~ 3 min) or by continuous agitation on a rotating 

bench-top shaker (Biometra WT 17) at 50 rpm (rotations per minute). We also added marine 
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broth (Difco 2216; 0.2 µm filter-sterilized) to some bottles to examine the effect of dissolved 

organic matter (DOM).  

 

15N2 analysis in the artificial seawater and 15N analysis in the particulate organic nitrogen 

(PON) 

Subsamples taken during the equilibration experiments were analysed for 15N2 

concentration with a membrane- inlet mass spectrometer (MIMS; GAM200, IPI) within one 

week of subsampling. Dried GF/F filters were pelletized in tin cups and PON as well as 

isotope ratios were measured by means of flash combustion in an elemental analyser (Carlo 

Erba EA 1108) coupled to a mass spectrometer (Thermo Finnigan Delta S).  

 

Calculations 

The expected concentration of 15N2 following bubble injections was calculated 

assuming rapid and complete isotopic equilibration between bubble and surrounding seawater 

and considering atmospheric equilibrium concentrations of dissolved N2 [20]. When 15N2-

enriched aliquots were added, the amount of 15N2 originally dissolved in the degassed 

seawater and the volume of the aliquot added were taken into account. The calculations of N2 

fixation rates in the culture incubations were made according to Equation 1 and are presented 

as a percentage of the highest rate measured. For the comparison between methods, the 

measured 15N2 concentrations are presented as a percentage of the expected concentration 

calculated as follows 

 

V15N2 x MV-1 x VTOTAL
-1 = [mol 15N2 L-1] (i.e. 100%) (Equation 2) 

 

for the direct injection of a 15N2 gas bubble where V15N2 is the volume of the 15N2 gas bubble, 

MV is the molar volume and VTOTAL is the total (water) volume of the incubation. The 
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expected concentration was corrected for the amount of 15N2 gas which remains in the bubble 

at isotopic equilibrium with the surrounding water. For the addition of 15N2-enriched water the 

expected concentration is 

 

V15N2 x MV-1 x VDG
-1 x VEW x VTOTAL

-1 = [mol 15N2 L-1] (i.e. 100%) (Equation 3) 

 

where VDG is the volume of degassed water, VEW is the volume of 15N2-enriched water added 

to the incubation and VTOTAL is the total (water) volume of the incubation.  
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Figure legends 

Figure 1. Dependence of the degree of equilibration of a 15N2 gas bubble and the 

surrounding water.  Results are presented as a function of the time after bubble injection 

(white symbols). For comparison, the addition of 15N2-enriched water to samples yielded a 

constant 15N2 enrichment over 24 h (grey symbols). The immediate incubation of culture after 

the injection of a 15N2 gas bubble without pre- incubation (black symbol) was intended to 

resemble laboratory and environmental studies. (A) Measured dissolved 15N2 concentrations 

as percentage of calculated concentration assuming rapid and complete isotopic equilibrium. 

(B) N2 fixation rates by C. watsonii as percentage of the maximum rate measured during the 

experiments. 

 

Figure 2. Agitation-dependent increase in dissolved 15N2 using bubble incubations. 

Values are presented as a percentage of the calculated concentration. The manually-shaken (3 

min) sample was added to the plot for comparison (grey symbol).  

 

Figure 3. Dissolved 15N2 concentration as a function of bottle size and amount of injected 

15N2 gas. Values are presented as a percentage of the calculated concentration. Bottles were 

incubated for 1 hour. Black bars, 0.13 L bottle and white bars, 1.15 L bottle.  

 

Figure 4. Dissolved 15N2 concentration as a function of the amount of injected gas and 

agitation. Values are presented as a percentage of the calculated concentration (A) after 1 

hour incubation in manually (3 min shaking and 1 h subsequent incubation), and (B) in 

continuously (1 h) shaken samples.  

 

Figure 5. Influence of diel N2 fixation patterns on the magnitude of N2 fixation rates. 

Schematic diagram illustrating the influence of diel N2 fixation patterns on N2 fixation rates 
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when determined with the direct injection of a 15N2 gas bubble. A hypothetical diel N2 

fixation pattern is shown (A) with a duration of the N2-fixing period of 12 h. Three possible 

time periods for 24 h incubations are indicated by the solid bars. The corresponding 15N 

enrichment in the dissolved N2 pool (B) is shown for the three incubation periods using the 

direct injection of a 15N2 gas bubble (solid lines) and the addition of 15N2-enriched seawater 

(dashed line). The resulting cumulative N2 fixation in each of the incubations (C) 

demonstrates that the timing of the incubation relative to diel N2 fixation patterns introduces a 

variable underestimation in the total N2 fixation rate measured during the incubation after a 

15N2 gas bubble is injected (solid lines) as compared to the N2 fixation measured with the 

addition of 15N2-enriched seawater (dashed lines). The diagram is based on the observations 

made in the experiments described in this study.  
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Table 1: Discrepancies observed between 15N2 fixation, ARA and carbon fixation or 

biomass-specific rates a.  

Organism / area 
C2H2 : 

15N2 

C:N fixation 

ratio 

biomass-

specific rate 
[d-1] 

Reference 

Trichodesmium / Pacific, Atlantic, north of 

Australia  
 808

a
  [23] 

cyanobacterial bloom / Balt ic 3 – 20   [17] 

Trichodesmium IMS 101 3 – 22 75 – 133  [16] 

Trichodesmium IMS 101 1.5 – 6.9  0.002 – 0.011
c
 [15] 

Trichodesmium / Gulf of Mexico  10-107
b
  [24] 

Trichodesmium / Bermuda Atlantic Time 

Series station (BATS) 
 13 – 437 0.006-0.03

d
 [25] 

a C:N fixation ratio is based on 15N2-fixation measurements 

b Ratio calculated from DI13C and 15N2 fixation rates. 

c Calculated from 15N2 fixation rate divided by PON. 

d Calculated from doubling time with biomass-specific rate = ln (2) / doubling time. 
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B. Diel rhythm of nitrogen and carbon metabolism in the unicellular, 

diazotrophic cyanobacterium Crocosphaera watsonii WH8501 
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Summary

We examined the diel variation in nitrogen and carbon
metabolism in Crocosphaera watsonii WH8501 at the
physiological and gene expression level in order to
determine the temporal constraints for N2 fixation and
photosynthesis. N2 fixation and photosynthesis were
restricted to the dark and light periods, respectively,
during a 24 h light–dark cycle. All genes studied here
except one (psbA2) showed diel variations in their
expression levels. The highest variation was seen in
nifH and nifX relative transcript abundance with a
factor of 3–5 ¥ 103 between light and dark periods.
Photosynthesis genes showed less variation with
a maximum factor of about 500 and always had
high relative transcript abundances relative to other
genes. At the protein level, the photosystems
appeared more stable than the nitrogenase com-
plex over a 24 h light–dark cycle, suggesting that
C. watsonii retains the ability to photosynthesize
during the dark period of the diel cycle. In contrast,
nitrogenase is synthesized daily and exhibits peak
abundance during the dark period. Our results have
implications for field studies with respect to the inter-
pretation of environmental gene expression data.

Introduction

Diazotrophic cyanobacteria have to cope with the predica-
ment of exhibiting oxygenic photosynthesis, i.e. oxygen
(O2)-evolving, while preserving the integrity of the
O2-sensitive nitrogenase enzyme complex in order to
carry out dinitrogen (N2) fixation. Several mechanisms

have evolved to resolve this metabolic dilemma. Some
filamentous cyanobacteria carry out N2 fixation in special-
ized cells called heterocysts that lack the O2-evolving
photosystem II. This allows N2 fixation to take place con-
currently with photosynthesis during the light period (Popa
et al., 2007). Although N2 fixation and photosynthesis are
tightly regulated by a circadian rhythm in the filamentous,
non-heterocystous Trichodesmium erythraeum, both pro-
cesses take place concurrently during the light period
(Chen et al., 1996; 1998; 1999), through the spatial and
temporal separation of the two processes (Berman-Frank
et al., 2001). The peak in N2 fixation, which occurs at
midday, is accompanied by a decrease in the photo-
synthesis rate.

Most unicellular diazotrophic cyanobacteria separate
photosynthesis and N2 fixation temporally with photo-
synthesis occurring in the light and N2 fixation in the
dark when grown under light–dark conditions. Extensive
experiments on Cyanothece sp. have shown a strong diel
regulation of these two processes (Reddy et al., 1993;
Schneegurt et al., 1994; Meunier et al., 1997; Colón-
López et al., 1997; Colón-López and Sherman, 1998;
Sherman et al., 1998). Cyanothece sp. accumulates fixed
carbon from photosynthetic activity in intracellular gran-
ules (Reddy et al., 1993; Schneegurt et al., 1994). This
stored carbon is thought to serve as a depot for the
energy-demanding N2 fixation process and is degraded
during the night as indicated by high respiration rates
(Colón-López et al., 1997; Taniuchi et al., 2008). Other
metabolic pathways associated with either N2 fixation or
photosynthesis such as the synthesis of cyanophycin, a
cyanobacterial nitrogen storage molecule, might also be
under circadian control (Li et al., 2001).

Crocosphaera watsonii WH8501 was isolated in the
mid-eighties in the western tropical South Atlantic Ocean
(Waterbury and Rippka, 1989; Rippka et al., 2001). This
unicellular cyanobacterium is capable of N2 fixation and
belongs to the group B of unicellular diazotrophs (Zehr
et al., 2001). It grows at water temperatures of 26–34°C
(Waterbury and Rippka, 1989; Webb et al., 2009). The
contribution of unicellular diazotrophic cyanobacteria to
oceanic N2 fixation is still under debate (Goebel et al.,
2008). However, the numerical abundance of the unicel-
lular diazotrophs in certain areas such as the North Pacific
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subtropical gyre (Church et al., 2008) shows that they
can at times dominate the diazotroph community.
Crocosphaera watsonii cell abundance as high as
4.7 ¥ 106 l-1 were observed at a depth of approximately
40 m in the South Pacific (Hewson et al., 2009). Abun-
dances of the order of 105 nifH copies l-1 of group B
phylotype were detected in the North Pacific subtropical
gyre (Church et al., 2008).

Although C. watsonii and Cyanothece sp. are both uni-
cellular cyanobacteria, differences at the genomic level
and in their physical habitat preference (Langlois et al.,
2008) make it necessary to characterize C. watsonii given
its dominance under certain environmental conditions
(Church et al., 2008; Hewson et al., 2009). The occurrence
of N2 fixation at night in C. watsonii has been previously
demonstrated (Tuit et al., 2004), but the timing of other
physiological processes and the peak in expression of the
corresponding genes are lacking so far. The availability of
a complete genome sequence for C. watsonii makes it an
attractive organism to follow in field population (Hewson
et al., 2009). In order to study C. watsonii and other
unicellular diazotrophic cyanobacteria in environmental
samples, it is important to first establish the temporal
expression patterns for N2 fixation and photosynthesis in
culture in order to interpret information on gene expression
obtained from natural microbial populations. Unlike the
identification of nifH phylotypes and the estimation of their
abundance from environmental DNA samples, measure-
ments of nifH transcript levels are expected to vary widely
over a diel cycle. Assessing the diel pattern of nifH expres-
sion is therefore important for designing field sampling
strategies. Here we present a detailed study that demon-
strates the clear separation of photosynthesis and N2

fixation during a diel cycle in laboratory cultures.

Results

Physiological properties

Crocosphaera watsonii cultures grown at 50 mE m-2 s-1

and 28°C showed strong diel variation in photosynthesis
and N2 fixation. Photosynthetic quantum yield (Fv/Fm)
increased throughout the light period with a maximum
(0.37) at 6 h into the light period (L6) and decreased
afterwards (Fig. 1A). The minimum yield (0.08) was
reached 6–9 h into the dark period (D6–D9). Relative
cellular phycobilisome and chlorophyll a fluorescence,
measured by flow cytometry, also increased during the
light period, reaching its maximum in the middle of the
light period (Fig. 1B). Lowest phycobilisome and chloro-
phyll a fluorescence was at 3 (D3) and 9 h (D9) into the
dark period respectively. N2 fixation rates were low to
undetectable during the light period, rapidly increasing to
a maximum by 6 h in the dark (D6) and rapidly declining

(
(

(
)

(
) )

)

Fig. 1. Physiological properties in C. watsonii WH8501 in light–dark
conditions. Shaded areas correspond to the dark period. Cultures
for light and dark periods were kept in opposite light–dark regimes
to facilitate sampling. Symbols represent mean � standard error
of triplicate cultures, except for D0, which is the mean of two sets
of triplicate cultures kept in opposite light–dark regimes. All
measurements were done at the beginning of the 3 h sampling
intervals except the N2 fixation (see below).
A. Photosynthetic quantum yield (open circle) and N2 fixation [filled
circle; presented as ethylene (C2H4) production rates] as measured
by PAM fluorescence and acetylene reduction respectively. The
x-axis error bars represent the 3 h incubation time for the N2

fixation measurement.
B. Cellular chlorophyll a (open circle) and phycobilisome (filled
circle) fluorescence as measured through flow cytometry.
C. Cell size (open circle) and molar C : N ratio (filled circle) as
measured with a coulter counter and an elemental analyser
respectively.
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towards the end of the dark period (Fig. 1A). These results
demonstrate that N2 fixation is largely confined to the dark
period in a 12–12 h light/dark cycle. Consistent with this
pattern, the C : N molar ratio increased to a maximum of
8.5 at 9 h into the light period (L9), indicating a net accu-
mulation of fixed organic carbon during the day (Fig. 1C).
Conversely, the C : N ratio decreased until it reached its
minimum of 6.5 at 9 h into the dark period (D9), probably
resulting from active N2 fixation, combined with the break-
down of stored carbon compounds. Cell size of C. watso-
nii increased during the light until the beginning of the
dark period and declined subsequently (Fig. 1C). The
maximum cell diameter of 2.96 mm at the beginning of
the dark period (D0) was significantly different (P < 0.05,
paired t-test) from the minimum cell diameter of 2.84 mm
at 6 h (D6) into the dark period.

Relative protein abundance

Western blot analysis showed diel variation of NifH and
PsbO proteins with the maximum relative protein abun-
dance in the early dark period (Figs 2 and 3A). Minimum
abundances of PsbO were observed during the light
period. The NifH virtually disappeared during the light
period with abundances of about 0.5% of its maximum.
The PsaC and PsbA proteins were present throughout the
entire 24 h cycle with lowest abundances of 34% and 32%
of their respective maximum and generally slightly higher
abundances during the light period than during the dark
period (Figs 2 and 3B). The PsaC had its lowest protein
abundance at the end of the light and the beginning of the
dark period, and abundances were close to 100% at the
beginning of the light period. The PsbA was maximal at
the beginning of the light period (L3) and decreased until
6 h into the dark period (D6).

Gene expression patterns

Expression patterns of selected genes encoding for
components of the photosynthetic apparatus, N2 fixation

machineries, for the synthesis of the associated storage
forms of carbon and nitrogen and for the regulation of
nitrogen assimilation were assessed using reverse tran-
scription followed by quantitative PCR (RT-qPCR). Rela-
tive quantitation is represented as enrichment factor with
respect to the mean relative expression of the RNA poly-
merase rpbI throughout the diel cycle. Transcript levels of
two genes belonging to the nif operon, nifH and nifX,
coding for the nitrogenase iron protein and a protein
involved in the nitrogenase FeMo-cofactor biosynthesis,
respectively, reached a minimum at 3 h into the light
period (L3) and thereafter started to increase (Fig. 4A).
Their maximum was at the start of the dark period (D0),
slowly declining until 9 h into the dark period (D9) and
then rapidly declining to the initial level when the light
period starts (L0). nifH and nifX had almost identical
expression patterns although the relative amount of nifH

Fig. 2. Western blots from NifH, PsbO, PsbA and PsaC protein
analysis. This analysis was done on samples from a replicated
experiment (which had identical patterns for physiology and gene
expression) because protein samples from this experiment were
lost during analysis. Equal amounts of protein (total of 9 mg)
were loaded into each well on the gel and were separated in
SDS-PAGE. The corresponding protein and the estimated size are
indicated on the right side. Note that L12 and D0 as well as D12
and L0 are the same time.

(
)

Fig. 3. Densitometric analysis of Western blots showing the
abundance of protein as a percentage of the strongest band that
was manually set to 100%; the other bands were calculated
accordingly. Note that L12 and D0 as well as D12 and L0 are the
same time.
A. Densitometry for the NifH (filled circle) and PsbO (open circle)
bands.
B. Densitometry for PsbA (open circle) and PsaC (filled circle)
bands. The mean abundance of proteins from L3 to L9 and D3 to
D9 were significantly different for NifH (P = 0.005) and for PsbA
(P = 0.05). Mean abundance was not significantly different for PsaC
(P > 0.9) and for PsbO (P > 0.09).
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transcripts was about 10 times higher than for nifX. The
expression of glnA, the gene coding for glutamine syn-
thetase, also showed diel variation with maximum abun-
dances during the early dark period and a minimum at the

beginning of the light period. This was expected since
glutamine synthetase is essential for the incorporation
of newly fixed N2 by catalysing the condensation of
glutamate and ammonia to form glutamine. Three genes
coding for, respectively, the photosynthetic proteins pho-
tosystem I subunit VII (psaC), the photosystem II D1
protein (psbA1) and the photosystem II O2-evolving
complex protein (psbO) followed similar expression
patterns with higher transcript levels during the day and
lower transcript levels at night (Fig. 4B). Transcript levels
remained constant during the day until 9 h into the light
period (L9) when they started to decline. Minimum tran-
script levels were at 3 h into the dark period (D3) and
increased afterwards reaching a steady level at the point
when the light turns on. The second psbA gene (psbA2)
increased steadily from the beginning of the diel cycle (L0)
to 6 h into the dark period (D6) and declined afterwards to
the initial level when the light turns on (L0) (Fig. 4B). The
glycogen synthase encoded by the glgA gene is taking
part in the formation of glycogen by building a-1,4-glucan
chains from ADP-glucose. The glgP gene encodes a gly-
cogen phosphorylase that produces glucose-1-phosphate
through the addition of orthophosphate to the non-
reducing end in, e.g. glycogen. Both glgA and glgP genes
showed variable gene transcription during the diel cycle
(Fig. 4C). Minimum transcript level was at the start of the
light period (L0) for glgP whereas glgA transcripts had
their maximum at L0. glgP transcripts increased during
the light period with a maximum at 9 h into the light period
(L9), slowly decreased until 6 h into the dark period (D6)
and then returned to the initial level at the start of the light
period (L0). As expected, transcript levels of glgA showed
the opposite trend. The pattern in transcript levels for glgA
and glgP genes mirrored each other, suggesting that
carbon synthesis and degradation are taking place during
light and dark periods respectively. Transcript levels for
the genes encoding the cyanophycin synthetase (cphA)
and cyanophycinase (cphB) were also assessed. While

Fig. 4. Relative gene transcript abundance during the time-course
experiment shown as enrichment factor relative to the RNA
polymerase rpbI (see Experimental procedures). Symbols represent
mean � standard error of triplicate cultures except for time point
L6, which is only from duplicate samples, and D0, which is from
two times triplicate cultures kept in opposite light–dark regimes.
The relative position of the curves to each other reflect the relative
amount of transcripts between genes, i.e. the psbA1 gene was
always higher expressed than all other photosynthesis genes
studied here.
A. Relative enrichment in nifH (filled circle), nifX (filled square) and
glnA (open triangle) transcripts.
B. Relative enrichment in psbA1 (open square), psbA2 (filled
square), psbO (open circle) and psaC (filled triangle) transcripts.
C. Relative enrichment in glgA (open square), glgP (filled square),
cphA (filled circle) and cphB (open circle) transcripts.
D. Relative enrichment in ntcA (open circle) and P-II (filled circle)
transcripts.
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cphA transcripts showed a variable expression pattern,
cphB transcripts increased from 3 to 9 h into the light
period (L3 to L9) and stayed constant through a large part
of the dark period (D0–D6), declining again after 9 h in
the dark (Fig. 4C). Transcript levels of the two nitrogen
regulatory genes ntcA and glnB-like (nitrogen-regulatory
protein P-II) were also monitored throughout the diel cycle
(Fig. 4D). P-II transcript abundance had its minimum at
9 h into the dark period (D9) and its maximum at the start
of the dark period (D0) with a relatively steep increase and
decrease. ntcA transcripts peaked earlier with a smaller
amplitude in the variation of transcript abundance
throughout the 24 h cycle.

Discussion

Diazotrophic cyanobacteria evolve O2 through oxygenic
photosynthesis even though nitrogenase, the enzyme
complex responsible for N2 fixation, is O2-sensitive,
emphasizing the need to regulate these two processes.
When grown under light–dark conditions in nitrogen-
depleted medium, C. watsonii showed strong diel varia-
tions in nitrogen and carbon assimilation as well as in the
expression of the genes and accumulation of the proteins
involved in these biochemical processes.

One of the most striking results in our experiments was
the cycling of the physiological and biochemical param-
eters related to N2 fixation. N2 fixation was low to unde-
tectable during the light period and peaked at the middle
of the dark period. Our results show that the nitrogenase
protein NifH is rapidly degraded during the light period
and synthesized de novo in the dark period. However, in
contrast to Cyanothece sp. where NifH was absent for the
entire light period (Colón-López et al., 1997), some NifH is
remaining in C. watsonii at the beginning of the light
period. The nitrogen fixation results, however, suggest
that the residual nitrogenase may have been inactivated
upon contact with O2 generated at the onset of photosyn-
thesis (Fay, 1992). Similarly, an inactive form of NifH
protein was observed in Oscillatoria limosa throughout a
16:8 h light : dark cycle whereas the active NifH form was
present only during N2 fixation (Villbrandt et al., 1992).
Diel patterns in the expression of nif genes reflect the diel
cycle in N2 fixation; the peak in transcript abundance,
however, preceded the maximum N2 fixation rate. The
strongest variation in gene expression was seen in nifH
and nifX transcripts between light and dark period with a
difference of about 3–5 ¥ 103-fold in relative transcript
abundance. These were by far the strongest changes in
transcript abundance for all the genes studied here. In
Cyanothece sp. and Synechococcus sp. RF-1, nifH tran-
scripts were not detectable during the light period in
studies using Northern blot analysis (Huang and Chow,
1990; Colón-López et al., 1997). However, low transcript

abundance was detected during the light period in a
recent study of the whole Cyanothece sp. ATCC51142
transcriptome (Stöckel et al., 2008), showing nearly iden-
tical expression patterns for nifH and nifX when compared
with the results in C. watsonii from this study. The higher
nifH transcript abundance relative to nifX abundances is
also consistent with other transcriptional studies of the nif
operon. Toepel et al. (2008) consistently found higher
transcript abundances of nifH compared with other nif
gene transcripts in Cyanothece sp. ATCC51142 during the
dark period. A possible explanation might be that nifH and
nifX are arranged in two operons with the nifENX operon
downstream of the nifHDK operon. The nifX gene might
even be transcribed separately within the nifENX operon
(Huang et al., 1999). Alternatively, it is also likely that both
mRNAs have different turnover rates (for review see
Deana and Belasco, 2005). The large difference in rela-
tive expression of genes involved in N2 fixation between
light and dark phases and the degradation and de novo
synthesis of NifH during the diel cycle emphasizes the
relative importance of N2 fixation in the activity of unicel-
lular, photosynthetic diazotrophs during a diel cycle
(Toepel et al., 2008).

Physiological and biochemical measurements of photo-
synthetic activity in C. watsonii also showed diel varia-
tions but not as strong as N2 fixation. The photosystem
(PS) I protein PsaC is responsible for the electron transfer
from the core reaction centres to the stromal ferredoxin
(for review see Fromme et al., 2001) and is fundamental
for photochemical activity as well as the stable assembly
of PSI (Takahashi et al., 1991). The PsaC abundance
varied during the day with higher values during the late
dark and early light period that might be due to a structural
change of PSI in order to favour cyclic electron flow during
the dark period (Colón-López and Sherman, 1998). The
PsbA (D1 protein) is a core reaction centre protein in PSII.
Western blot analysis showed a significantly (P = 0.05)
higher abundance of the D1 protein (PsbA) during the
light period but also its persistence during the dark period.
The latter is in accordance with findings for Cyanothece
sp. where the authors found a difference between the
abundance of the two different forms of PsbA with D1 form
2 having a higher abundance during the light and D1 form
1 having a steady abundance throughout a 24 h light–
dark cycle (Colón-López and Sherman, 1998). The
relative abundance of the two known psbA genes in
C. watsonii showed a maximum of about 500-fold differ-
ence with psbA1 always having the higher transcript level.
The diel variation was different for psbA1 and psbA2 with
40-fold and eightfold differences respectively. Also, the
psbA1 transcripts showed diel variation similar to psaC
whereas psbA2 transcripts showed a slightly increased
abundance during the dark period. Detailed experiments,
beyond the scope of this study, would be needed to under-
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stand the subtle differences in the timing of the peak in
expression of a gene and the maximum abundance in its
corresponding protein. Nevertheless, both the presence
of essential photosystem proteins and continued gene
expression throughout the dark period indicate that
C. watsonii may retain functionality of the photosynthetic
apparatus in the dark that could be activated by
illumination.

The accumulation of carbon during the light period and
its degradation accompanied by N2 fixation during the
dark period was suggested by the increasing and
decreasing cell size and the molar C : N ratio (Colón-
López et al., 1997; Li et al., 2001; Tuit et al., 2004). Two
key proteins in the regulation of cellular nitrogen, NtcA
and P-II signalling protein (for review see Luque and
Forchhammer, 2008), are thought to be sensors for the
cellular C : N balance by perceiving the intracellular level
of 2-oxoglutarate (Forchhammer, 2004), which is a pre-
cursor of ammonia assimilation (for review see Leigh and
Dodsworth, 2007). Both gene transcripts showed diel
variation with maxima during the light and minima during
the dark period, suggesting the involvement of both pro-
teins in the assimilation or regulation of nitrogen in C. wat-
sonii. Further evidence for the assimilation and storage of
carbon during the light and its degradation in the dark is
provided by the reciprocal expression patterns of glgA
and glgP that encode a glycogen synthase and glycogen
phosphorylase respectively. Cyanophycin, a cyanobacte-
rial nitrogen storage molecule, has been shown to be
synthesized and degraded during dark and light phase,
respectively, in Cyanothece sp. (Li et al., 2001). The
expression patterns for the genes encoding cyanophycin
synthetase (cphA) and cyanophycinase (cphB) are similar
with respect to their maximum at the change from light to
dark periods. Although these two enzymes catalyse
opposing reactions, i.e. the synthesis and degradation of
cyanophycin, the transcript patterns indicate cotranscrip-
tion of cphA and cphB. The approximately 10-fold differ-
ence in relative expression between minimum and
maximum of the analysed glg and cph genes suggests
that the storage molecules glycogen and cyanophycin,
and hence their synthesis and degradation, are involved
in the carbon and nitrogen metabolism but may not play a
major role in the diel cycle of C. watsonii compared with
N2 fixation and photosynthesis.

Recent whole-genome microarray data for Cyanothece
sp. cultures showed that about 30% of the analysed
genes exhibit diurnal fluctuations (Stöckel et al., 2008;
Toepel et al., 2008). Metatranscriptomic analysis of
natural marine microbial assemblages enriched in
Crocosphaera-like cells and RT-qPCR analysis of nucleic
acid samples collected from depth profiles ranging from
surface to about 100 m depth, nevertheless, showed no
pronounced difference in diel expression of nitrogenase

cluster and nifH transcript abundance respectively
(Hewson et al., 2009). Besides methodological biases
mentioned by the authors, the sampling time is one of the
most crucial steps in gene expression analysis. The sam-
pling for day and night expression was about 8 and 6 h
after sunrise and sunset respectively, and thus may not
have coincided with the minimum and maximum expres-
sion of nifH for C. watsonii. Recently, Webb and col-
leagues (2009) showed that C. watsonii strains displayed
a fivefold difference in N2 fixation rate per cell, a fact that
demonstrates the need for isolation of unicellular diazotro-
phs into pure cultures as well as further physiological
characterization of isolates in order to obtain more precise
N2 fixation rates combined with environmental abundance
data for modelling studies (Goebel et al., 2007). Cro-
cosphaera watsonii can be abundant in environmental
samples and its presence can easily be assessed from
their nifH sequence in DNA samples (Falcón et al., 2004;
Montoya et al., 2004; Church et al., 2005a; 2005b; 2008;
Langlois et al., 2005; Fong et al., 2008; Hewson et al.,
2009; Webb et al., 2009). However, the design of
sampling strategies for transcriptomic studies and the
interpretation of field data related to the detection of
C. watsonii nifH transcripts are more complex given the
strong diel cycle in N2 fixation observed in this species.
Our study provides basic information on the diel cycle of
nifH transcript levels in relation to the peak in N2 fixation
and nitrogenase abundance, which should be considered
in the interpretation of field studies.

Experimental procedures

Culture conditions and experimental set-up

Batch cultures of C. watsonii WH8501 were grown at 28°C in
a 12:12 h light : dark cycle with a light intensity of approxi-
mately 50 mE m-2 s-1. Cultures were kept in YBCII medium
(Chen et al., 1996) without combined nitrogen in 1 l polycar-
bonate bottles. Only axenic cultures were used to perform the
experiments. This was ensured by inoculating an aliquot of
the culture into liquid marine broth (Difco 2216), as well as
inoculating positive and negative controls, consisting of tap-
water and sterile distilled water respectively. Bacterial growth
was monitored visually for a minimum of 1 week. Positive
controls and a (discarded) contaminated culture showed
visible growth within 1 day, and axenic cultures and negative
controls had no visible growth after 1 week (Bertilsson et al.,
2003). Microscopic verification with acridine orange stained
aliquots of controls and axenic cultures confirmed the results
of the visual test. Experiments were conducted during the
exponential growth phase, which was monitored through cell
counts using a coulter counter (Beckman). To facilitate sam-
pling both light and dark periods at the same time, two sets of
triplicate cultures were grown in incubators set with opposite
light/dark conditions during the period of 08:00–20:00. Sub-
samples were collected every 3 h from 08:00 to 20:00.
Results are reported as means with standard error of tripli-

Diel rhythm in Crocosphaera watsonii WH8501 417

© 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 12, 412–421

62



cate cultures except for the Western blots and the associated
densitometric analysis that are from a single sample of a
replicated experiment.

Cell size and abundance, pigment analysis, elemental
stoichiometry and photosystem response

Subsamples for analytical flow cytometry were preserved
with 2.0% (w/v) glutaraldehyde (final concentration) for 24 h
at 4°C and stored at -80°C until further analysis. Frozen
samples were thawed and analysed for cell abundance, and
chlorophyll a and phycobilisome relative fluorescence in a
FACScalibur (Becton Dickinson) flow cytometer equipped
with a 488 nm laser. Cell size was assessed with a Beckman
coulter counter. Cellular carbon : nitrogen (C : N) molar ratios
were determined by filtration of 50 ml subsample onto pre-
combusted (450°C, overnight) GF/F filters (Whatman) and
storage at -20°C until analysis. Thawed filters were oven-
dried for 6 h at 60°C and acid-fumed (HCl) for 24 h at room
temperature prior to measurements of particulate organic
carbon and particulate nitrogen in an Euro-EA (Hekatech)
elemental analyser. Photosynthetic quantum yield was
assessed using a PAM-fluorometer (PhytoPAM, WALZ) after
a dark adaptation of 20–30 min.

N2 fixation measurements

Rates of N2 fixation were measured using the acetylene
reduction assay (Capone, 1993). Ethylene produced was
calculated using the Bunsen gas solubility coefficients from
Breitbarth and colleagues (2004). N2 fixation is presented as
ethylene production rates. For the assay, 19 ml of culture was
placed in 20.9 ml glass vials and capped with PTFE-coated
septum caps. Gas-tight syringes were used to inject 300 ml of
acetylene into the headspace. In order to reduce the contami-
nation of background ethylene, the acetylene was cryogeni-
cally batch-purified and stored in a SilcoCan canister.
Samples were incubated for 3 h at the previously described
growth conditions. A 300 ml headspace sample was then
analysed in a Shimadzu GC14B gas chromatograph
equipped with a flame ionization detector and a Rt-Alumina
PLOT column. Headspace ethylene concentration was cali-
brated using a dilution series of pure ethylene ranging from 1
to 1000 p.p.m.

Protein extractions and Western blotting

Subsamples of 107 total cells were collected by centrifugation
(10 min, 5000 r.p.m., 4°C) and cell pellets were flash-frozen
in liquid nitrogen until extraction. Whole-cell extracts were
prepared by addition of 50 ml lysis buffer (LaRoche et al.,
1993), with final concentrations of 4% sodium dodecyl sul-
phate (SDS), 68 mM Na2CO3, 0.4 nM phenylmethylsulfonyl
fluoride and subsequent sonication (2 ¥ 10 s). Samples were
centrifuged for 4 min at maximum speed and the cell debris
discarded. Protein concentrations were assessed with the
BCA Protein Assay Kit (Pierce), and remaining sample was
diluted with sample buffer with final concentrations of 50 mM
dithiothreitol, 7.5% glycerol, 1% SDS, 17 mM Na2CO3, 0.25%

bromophenol blue. The sample was then heated for 2 min at
98°C, flash-frozen in liquid nitrogen and stored at -80°C until
Western blotting. Equivalent amounts (9 mg) of extracted pro-
teins were separated in a SDS-polyacrylamide gel electro-
phoresis (SDS-PAGE; 12% Tris-HCl and 10–20% Tris-HCl
precast Ready Gels from BIO-RAD for NifH/PsbA and PsaC/
PsbO respectively) for 60 min at 130 V. Separated proteins
were transferred onto Immun-Blot PVDF (polyvinylidene dif-
luoride) membranes (0.2 mm, BIO-RAD) for 60 min at 100 V
in a Mini-PROTEAN II cell. Blots were blocked in 4% (w/v;
non-fat dry milk) milk solution for 2 h prior to each immuno-
blotting. Primary antibodies were Anti-PsaC, Anti-PsbA, Anti-
PsbO and Anti-NifH [Anti-NifH kindly provided by Paul
Ludden, all others from Agrisera AB; diluted in 1% (w/v) milk
solution prior to immunoblotting]. Anti-PsaC (1:2500 dil.) and
Anti-PsbO (1:1000 dil.) were done on the same blot as were
Anti-NifH (1:5000 dil.) and Anti-PsbA (1:1000 dil.). Secondary
antibody was rabbit Anti-IgG (1:15000 dil.; Pierce). Blots were
developed with the chemiluminescence system SuperSignal
West Pico (Pierce) and protein size was estimated using the
Spectra Multicolor Broad Range Protein Ladder (Fermentas).

RNA extraction, cDNA synthesis and RT-qPCR

RNA samples were collected by centrifugation (10 min,
5000 r.p.m., 4°C) of 107 total cells. The cell pellet was imme-
diately flash-frozen in liquid nitrogen and stored at -80°C until
extraction. RNA was extracted using the RiboPure-Bacteria
Kit (Ambion) following the manufacturer’s manual, starting
with addition of RNAwiz solution to the frozen cell pellet.
Extracted RNA was eluted in two times 25 ml (total 50 ml) of
the supplied elution solution. Eluted RNA was then treated
with TURBO DNA-free (Ambion) and reverse-transcribed
using the QuantiTect Reverse Transcription Kit (Qiagen) and
random hexamers. RNA concentrations were measured with
the RiboGreen Kit (Molecular Probes). For RT-qPCR, 15
C. watsonii specific primers (Table 1) were designed using
the software Primer Express v2.0 (Applied Biosystems) and
based on the draft genome sequence of C. watsonii (perma-
nent draft assembly 30 January 2004, last update 17 October
2007) available from the US Department of Energy Joint
Genome Institute http://www.jgi.doe.gov/. Each RT-qPCR
reaction (25 ml) consisted of 12.5 ml Platinum SYBRGreen
qPCR SuperMix-UDG with ROX (2¥), 6.5 ml PCR-H2O, 0.5 ml
of each forward and reverse primer (10 pmol ml-1) and 5 ml
template cDNA. Samples were run in duplicates and
no-template controls were included for each primer pair. At
the beginning of the analysis, RNA samples were used as
template in RT-qPCR to check for genomic DNA contamina-
tion. In most samples no genomic DNA contamination was
present and where present it contributed equal or less than
0.01% of the measured amount of total DNA (DNA and
cDNA). The RT-qPCR reactions were performed in an ABI
Prism 7000 Sequence Detection System (Applied Biosys-
tems) with the following thermal cycling conditions: 50°C for
2 min, 95°C for 2 min, 40 cycles of 95°C for 15 s and 60°C for
30 s, followed by a dissociation stage of 95°C for 15 s, 60°C
for 20 s and 95°C for 15 s. The resulting Ct values were used
to calculate the relative enrichment of transcript copies by
applying the 2–DDCt method (Livak and Schmittgen, 2001)
according to the following equations:
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ΔCt Ct CtGOI GOI S= − 16 (Eqn 1)

and

ΔΔ Δ ΔCt Ct mean CtGOI GOI= − ( )rpbI (Eqn 2)

In Eqn 1, the Ct values of the genes of interest (GOI) are
normalized to the Ct values of an endogenous reference
gene, here taken as the 16S rRNA gene, at each time point.
In Eqn 2, the DCtGOI is normalized to a calibrator that was
chosen here as the mean of DCtrpbI for the entire diel cycle.
The rpbI gene was chosen as the calibrator because it did not
vary more than twofold relative to the 16S rRNA endogenous
control within the 24 h cycle. Calculating DDCt from time-
course experiments using a specific time point (such as time
point zero) as the calibrator (Livak and Schmittgen, 2001)
results in a loss of information regarding the abundance of
transcripts of different genes relative to each other. In order to
retain this information, here we calculate DDCt with respect to
the rpbI, which enables one to see the relative expression not
just within one gene throughout the experiment, but also the
relative transcript abundance among the different genes. In
cases where Ct values were undetermined, samples were
assigned a Ct value of 40 (corresponding to the last cycle
number) to enable the calculation of DCt. Nevertheless, in
only two instances transcripts were not detectable in any of
the replicates, i.e. at D9 for P-II and at D12 for nifX, which
might lead to an overestimation of transcript abundance or
vice versa to an underestimation of variation.
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Abstract 

The unicellular diazotrophic cyanobacterium Crocosphaera watsonii is abundant in 

the subtropical and tropical areas of the Atlantic and Pacific Oceans. Due to its capability of 

fixing atmospheric dinitrogen (N2) and providing thus new nitrogen to the upper ocean it is an 

important contributor to the oceanic nitrogen cycle. Here, using nanometer-scale secondary 

ion mass spectrometry (nanoSIMS) technology, we show that a population of C. watsonii can 

be quantitatively analysed at the single-cell level demonstrating population heterogeneity in 

N2 fixation and photosynthetic rates. During a 12:12 h dark:light cycle, single-cell rates varied 

from 0 – 2.3 fmol N cell-1 h-1 and from 0 – 11.2 fmol C cell-1 h-1 for N2 and inorganic carbon 

fixation, respectively. During a subsequent 24 h continuous light period, we show that the C. 

watsonii population was capable of both inorganic carbon as well as N2 fixation within the 

respective dark period by circumventing the dilemma of an O2-sensitive nitrogenase and 

photosynthetically-derived O2 at the cellular rather than population level. Gene expression 

analysis suggested that N2-fixing activity during that period was regulated at the protein level. 

Highest rates of N2 fixation and inorganic carbon fixation were respectively 6 and 2.4 times 

higher than the bulk mean rate of the population indicating that C. watsonii has a potential for 

increased N2 fixation and photosynthesis which in turn may be controlled by yet-unknown 

factors including stochasticity. In the case of an internal control, this could limit the input of 

new nitrogen via N2 fixation into the surface ocean.  
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Introduction 

Single-cell measurements have intrigued scientists for more than a few decades. 

Numerous observations in population heterogeneity have been made using mostly flow 

cytometry or microscopic methods (e.g., Schuster et al., 2000; Elfwing et al., 2004; Ingham et 

al., 2008; Strovas and Lidstrom, 2009). Differences have been recognized in, e.g., behaviour 

(Spudich and Koshland, 1976), DNA content (Lebaron and Joux, 1994), gas vesicle volume 

(Brookes et al., 2000), growth rate (Kelly and Rahn, 1932; Strovas et al., 2007) and (m)RNA 

(Strovas et al., 2007) which encompass variation in behavioural, genetic and physiological 

properties. The scope of population heterogeneity in metabolic processes, however, is much 

smaller (Brookes et al., 2000; Lechene et al., 2007; Popa et al., 2007). The more recent 

single-cell studies used either multiple-isotope imaging mass spectrometry (MIMS) or 

nanometer-scale secondary ion mass spectrometry (nanoSIMS) to reveal sub-cellular isotopic 

composition coupled to stable- isotope incubations (Lechene et al., 2007; Popa et al., 2007; 

Finzi-Hart et al., 2009). In environmental studies, nanoSIMS is also combined with in situ 

hybridization in order to link the identity of an organism to its activity (Behrens et al., 2008; 

Li et al., 2008; Musat et al., 2008). The approach to measure single-cell dinitrogen (N2) 

fixation rates, though, has only been done very few times using cultures of, for example, 

Anabaena oscillarioides (Popa et al., 2007), Teredinibacter turnerae (Lechene et al., 2007) or 

Trichodesmium sp. (Finzi-Hart et al., 2009). However, N2 fixation rates were only presented 

as relative rates, increase in atom percent or rates relative to biomass. Variability in N2 

fixation between individual cells was shown for A. oscillarioides (Popa et al., 2007) and T. 

turnerae (Lechene et al., 2007) which are a heterocystous cyanobacterium and a symbiotic 

proteobacterium, respectively. In trichomes of Trichodesmium sp., a non-heterocystous, 

filamentous cyanobacterium, single-cell rates did not show much variation except for 

decreased rates at the centre of trichomes which may have derived from trichome splitting 

(Finzi-Hart et al., 2009). 
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The unicellular, diazotrophic cyanobacterium Crocosphaera watsonii separates N2 

fixation and photosynthesis temporally with N2 fixation occurring in the dark and 

photosynthesis in the light (Tuit et al., 2004; Mohr et al., 2010; Shi et al. 2010; this study). 

The two processes are often regulated under a circadian rhythm (e.g., Schneegurt et al., 1994; 

Chow and Tabita, 1994; Chen et al., 1998; Colón-López and Sherman, 1998), and diel 

expression of genes related to N2 fixation and photosynthesis is known for C. watsonii (Mohr 

et al., 2010; this study). C. watsonii is abundant in the tropical and subtropical areas of the 

Atlantic and Pacific oceans (Fong et al., 2008; Church et al., 2008; Langlois et al., 2008; 

Church et al., 2009; Hewson et al., 2009). It is believed to markedly contribute to total N2 

fixation, i.e. „new nitrogen‟, into the surface ocean (Zehr et al., 2001; Montoya et al., 2004; 

Goebel et al., 2007). Nevertheless, the magnitude of its contribution still remains ambiguous 

as indicated by the recent discovery of different phenotypes of C. watsonii which varied in N2 

fixation rates by a factor of five (Webb et al., 2009). Using stable isotope incubations and 

nanoSIMS technology, we show here that C. watsonii strain WH8501 displayed heterogeneity 

in single-cell N2 fixation and photosynthetic rates within a population. The single-cell rates 

presented here are, to our knowledge, the first quantitative single-cell N2 fixation rates for a 

unicellular diazotroph. The average nitrogen and carbon fixation rates calculated from more 

than 40 individual cells as well as the highest single-cell rates are compared to bulk 

measurements of N2 fixation and photosynthesis during a 12:12 h dark:light cycle followed by 

a 24 h continuous light cycle. 

 

Results and Discussion 

Bulk analysis 

N2 fixation rates in C. watsonii determined via acetylene reduction assay (ARA) 

followed the diel pattern known for this organism (Tuit et al., 2004; Mohr et al., 2010) during 

the first 24 h of the experimental period encompassing a 12:12 h dark:light cycle with N 2 
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fixation occurring during the dark period (Figure 1A). N2 fixation rates measured via the 

incorporation of 15N2 into biomass (Figure 1A) closely matched the observed reduction of 

acetylene with a ratio of 4.5:1 of ethylene produced to N2 fixed which compared well with the 

conversion factor of 4:1 (Capone, 1993). Inorganic carbon fixation as a measure of 

photosynthetic activity was constrained to the light period of the dark:light cycle (Figure 1B). 

It is very well known, that unicellular, diazotrophic cyanobacteria separate N2 fixation and 

photosynthesis temporally (Colón-López et al., 1997; Colón-López and Sherman, 1998; 

Taniuchi and Ohki, 2007; Taniuchi et al., 2008) to counteract the inactivation of the 

nitrogenase enzyme by molecular oxygen (O2) (Fay, 1992; Gallon, 1992). We exposed C. 

watsonii to a 24 h continuous light cycle just after a 12:12 h dark:light cycle to determine how 

C. watsonii regulates both N2 fixation and photosynthesis under the stress that continuous 

light poses on the population. Surprisingly, both inorganic carbon and N2 fixation rates were 

measurable concurrently at the population level (Figure 1) during the respective dark period 

in which the cells were kept in continuous light rather than returned to the expected dark 

phase. However, N2 fixation was about 86% lower than the maximum observed during the 

regular dark period. Photosynthetic rates were maintained during the respective dark period at 

about 71% of its regular light phase activity providing evidence for, at least partially, 

functional photosystems during the dark that could be activated upon illumination. Both 

processes were integrated in the molar C:N (carbon:nitrogen) ratio (Figure 1B), as indicated 

by the increase in the C:N ratio compared to the previous dark and light periods, which 

reflected the accumulation of both carbon and nitrogen in the biomass during the respective 

dark period. The accumulation of glycogen has been observed in Cyanothece sp. during a 

respective dark period as well as concurrent, but decreased N2 fixation which was attributed 

to decreased respiration leading to a shortage in energy supply (Toepel et al., 2008). Taking 

into account the rates of N2 fixation and photosynthesis measured here as well as the molar 

C:N ratio, the flattened slope in the C:N ratio (as compared to the regular light period) could 
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be attributed to the maintained but lower rate of photosynthesis and N2 fixation which 

together only account for 67% of the lowered slope. Another 33% could be contributed by 

additional respiration which supports nitrogenase activity in the light (Maryan et al., 1986). 

Expression of genes related to N2 fixation and photosynthesis was analysed to identify 

possible deviations between the regular dark and light phases and the artificial continuous 

light phase. Special emphasis was on the respective dark phase due to the co-occurrence of N2 

fixation and photosynthetic activity. However, gene expression levels for nifH abundance did 

not show any differences in peak abundance between the regular and the respective dark 

period (Figure 2A). Given the reduced N2 fixation in the respective dark period, the regulation 

of N2-fixing activity must be at the protein level (Toepel et al., 2008), resulting from the 

irreversible inactivation of the nitrogenase complex by the copious amount of O2 produced as 

a result of photosynthetic activity during the respective dark period (Fay, 1992). We cannot 

distinguish whether the slight deviations that were observed resulted from the artificial light 

period or were within the natural variation in culture experiments (Stöckel et al., 2008). 

However, all genes analysed here showed remarkable cycling as in the regular dark period 

(Figure 2) suggesting circadian regulation of N2 fixation and photosynthesis in C. watsonii 

(Pennebaker et al., 2010). We also analysed two genes coding for proteins of the 

cyanobacterial circadian clock. The kaiC gene codes for the essential circadian clock protein 

KaiC (Ishiura et al., 1998) which is involved in the setting of the circadian clock via the ratio 

of phosphorylated to unphosphorylated KaiC (Xu et al., 2003). KaiA, another essential 

circadian clock protein (Ishiura et al., 1998), promotes the phosphorylation of KaiC and thus 

the acceleration of the circadian clock (Xu et al., 2003). Both genes showed cyclic expression 

patterns throughout the entire experimental period giving further evidence for circadian 

regulation. The circadian clock proteins appear to globally regulate gene expression through 

the condensation status of the DNA (Mori and Johnson, 2001a) and are assumed to play a role 

in the gene expression patterns in C. watsonii (Pennebaker et al. 2010). Detailed expression 
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studies supplemented with protein analysis would give further insight into the possible 

deviations in expression patterns observed here and regulatory processes but are beyond the 

scope of this manuscript. 

Eventually, all of these measurements including the gene expression analysis only 

represented the population average.  

 

Single-cell analysis 

The co-occurrence of N2 fixation and photosynthesis during the respective dark period 

indicates that the population was heterogeneous with assemblages of cells that either fixed N2 

or photosynthesized due to the incompatibility of both processes. The development of 

nanoSIMS protocols to measure single-cell isotopic composition after stable isotope 

incubations provided the means to determine single-cell N2 fixation as well as photosynthetic 

rates and to yield further evidence for population heterogeneity in metabolic processes. N2 

fixation rates within the regular dark period varied from 0 to 2.3 fmol N cell-1 h-1 (Figures 3 

and 4) with a mean of 0.4 fmol N cell-1 h-1. Regarding total N2 fixation of the population, 37% 

of the cells with higher than average rates contributed about 88% of the total N2 fixation. 

Single-cell photosynthetic rates in the regular light period also showed variability ranging 

from 0 to 11.2 fmol C cell-1 h-1 with a mean of 4.6 fmol C cell-1 h-1 (Figures 3 and 4B) but not 

as pronounced as for N2 fixation. These results demonstrated high cell-to-cell variability 

within the population in both N2 fixation and photosynthesis. Average values of the single-

cell rates compared well to the bulk measurements (Figure S1) and likewise N2 fixation was 

restricted to the regular and respective dark periods, and photosynthesis was measurable 

throughout all periods receiving light. In the regular and the last light period, only cells 

carrying out inorganic carbon fixation were found. In the regular and respective dark periods, 

some cells showed a labelling with 13C and 15N (Figure 4A and C) suggesting uptake of 

inorganic carbon and N2 fixation within the same cell. For the regular dark period, we believe 
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this represents a true intracellular uptake of H13CO3
- but that the carbon was not further 

incorporated in complete darkness. In the respective dark period, the dual- labelling could also 

result from the incubation such that N2 fixation was carried out at the beginning of the 

incubation and inorganic carbon uptake towards the end of the incubation because nitrogenase 

may have been inactivated by O2 produced within the population. Anyhow, the simultaneous 

measurement of both N2 fixation and inorganic carbon uptake in individual cells revealed 

different assemblages of cells. In the regular dark period (Figure 4A) there were mainly three 

clusters of cells: 1) cells that carried out N2 fixation and did not take up carbon, 2) cells that 

did not fix N2 but had a varying uptake of carbon and 3) cells that showed labelling with both 

isotopes (which was already discussed above). When compared to the respective dark period, 

the first assemblage (almost) disappeared suggesting that the N2-fixing assemblage of the 

population had to suffer from the photosynthetically-evolved O2. In agreement with this is the 

fact that cells with the highest inorganic carbon fixation did not fix N2 and vice versa (Figure 

4C). Taken together, these results show that C. watsonii circumvented the dilemma of the O2-

sensitivity of the nitrogenase at the cellular rather than population level. The definite 

mechanisms behind this stay elusive, though. The assemblage of cells that did not fix N2 

during the regular dark period accounted for about 36% of the total population. If we assume, 

for example, that these 36% of the population were cells undergoing division, then this would 

reveal a growth rate between 0.2 and 0.3 d-1 depending on whether it is assumed that cells are 

about to divide or have just divided. In the latter case, the growth rate would be 0.2 d-1 which 

is close to the observed growth rate in the culture (0.17-0.2 d-1). Hence, the non-N2-fxing 

assemblage could have consisted of cells that had just divided especially because C. watsonii 

does not seem to divide equally within the day. Shi et al. (2010) though suggested that C. 

watsonii would most likely divide during the early light period due to up-regulated genes that 

are involved in cellular division. Lechene and colleagues (2007) suggested that differences in 

the physiological state could explain individual N2 fixation rates. These differences in 
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physiological state are often attributed to stochastic processes (for review see Kærn et al., 

2005; Davidson and Surette, 2008) including gene expression (Chabot et al., 2007; McAdams 

and Arkin, 1997) and protein synthesis (Cai et al., 2006). Stochastic processes influencing 

gene expression and protein synthesis are also likely to have occurred in C. watsonii since 

stochasticity preserves the population‟s capability to react to environmental perturbations 

(Booth, 2002; Kærn et al., 2005). Also, since global gene expression regulation by circadian 

control appears to be independent of cellular division (Mori and Johnson, 2001b), it is even 

more likely that stochastic processes contributed to the cell-to-cell variability. We could here 

show that the decrease in N2 fixation and the concurrent photosynthesis in the population is 

the result of each individual cells‟ capacity to cope with the incompatibility of N2 fixation and 

photosynthesis as a response to a short-term change in the environment (during the respective 

dark period). The comparison of single-cell rates to bulk measurements of N2 and inorganic 

carbon fixation shows that nanoSIMS measurements can be a useful tool in quantifying 

absolute contributions of diazotrophic groups to total N2 fixation due to the consistency of 

both measurements.  

 

Environmental impact 

During the regular dark period, the highest single-cell N2 fixation rate was almost six 

times higher than the mean rate of the population illustrating that some cells are capable of 

comparatively high N2 fixation. This was even more pronounced in the respective dark period 

where the maximum N2 fixation rate was nine times higher than the population mean of the 

regular dark period. The ratio between highest rate and mean rate was only 2.4 for 

photosynthetic rates but still showed that C. watsonii has a potential for increased 

photosynthesis. These results suggest that: 1) if every cell could be as active as the most 

active one, total N2 fixation and photosynthesis would increase. There may hence be a 

potential for an increase in these processes in the environment leading to an increased input of 
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“new nitrogen” into the surface ocean as well as increased carbon sequestration, and 2) if it is 

an internal (population- inherent) factor controlling the N2 fixation and photosynthetic rates of 

a population, then there could be a limit on how much these populations contribute to “new 

nitrogen” and CO2 sequestration into the surface ocean independent of iron- and phosphorus 

sufficiency. Iron- and phosphorus fertilization (Mills et al., 2004) as well as increased carbon 

dioxide concentration (Fu et al., 2008) may increase N2 fixation but in case of an internal 

control in diazotrophic populations, there may be an upper limit of N2 fixation and carbon 

sequestration by unicellular, diazotrophic cyanobacteria.  

 

Materials and Methods 

Experimental Setup 

Axenic batch cultures of Crocosphaera watsonii WH8501 were kept at 28°C in YBCII 

medium (Chen et al., 1996) without combined nitrogen in a 12:12 h dark:light cycle for 

several generations followed by a 24 h continuous light cycle leading to an experimental 

period of 48 h. Cultures were kept in temperature- and light-controlled incubators with 

opposite dark:light regimes to facilitate sampling. Subsamples for stable isotope incubations  

and acetylene reduction assay to assess N2 fixation rates were taken every 4 and 3 h, 

respectively. Samples for gene expression analysis were taken every four hours during the 

experimental period. Cell abundance for calculations of cell-based rates was assessed at the 

beginning of each experimental dark or light phase using analytical flow cytometry. 

Subsamples for nanoSIMS analysis were taken from the stable isotope incubations at the end 

of the following incubation periods: the middle of the regular dark period, the middle of the 

regular light period, the middle of the respective dark period and the end of the continuous 

light period. 

 

Acetylene reduction assay (ARA) 
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N2 fixation rates were assessed by incubating 3 ml of culture in 8.65 ml septum-

capped vials containing 650 µl of acetylene in the headspace. Incubations lasted for ~ 3 h and 

ethylene (C2H4) concentrations were then measured in a 250 µl headspace sample using a GC-

14B gas chromatograph equipped with a flame ionization detector (FID) and a RT Alumina 

Plot column. C2H4 concentrations were calibrated with a dilution series ranging from 1 to 

1000 ppm C2H4. C2H4 production was converted to N2 fixation with a conversion factor of 4:1 

(C2H4 produced:N2 fixed) (Capone, 1993). 

 

Gene expression analysis 

RNA extraction, cDNA synthesis and real-time quantitative PCR were carried out as 

described previously (Mohr et al. 2010). Transcripts levels of genes related to N2 fixation, 

photosynthesis and the cyanobacterial circadian clock were detected using C. watsonii-

specific primers (Table S1). Transcript levels were calculated according to the 2-ΔΔCt method 

(Livak and Schmittgen, 2001; Schmittgen and Livak, 2008) and are presented as enrichment 

factor relative to the expression of rpbI (RNA polymerase) which was chosen as the 

calibrator. 

 

Stable isotope incubations 

N2 and inorganic carbon fixation rates were determined by simultaneous incubation of  

133 ml of culture with 280 µl 15N2 and NaH13CO3 (1% of ambient bicarbonate) every 4 h 

during the 48 h experimental period. Aliquots for elemental stoichiometry and bulk stable 

isotope analysis as well as for nanoSIMS (nanometer-scale secondary ion mass spectrometry) 

analysis were taken at the end of each ~ 3-h incubation. Samples for bulk stable isotope 

analysis were filtered onto pre-combusted (450°C, 4h) GF/F filters (Whatman), oven-dried 

(60°C for 6h) and stored until analysis. Filters were pelletized in tin cups and analysed using 

isotope ratio monitoring mass spectrometry. Samples for nanoSIMS were preserved with 
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formaldehyde (1% (v/v) final) for up to 24 h at 4°C and subsequently filtered onto Au/Pd-

sputtered GTTP filters (Isopore, 0.22 µm pore size, 25 mm). Filters were rinsed with sterile-

filtered (0.2 µm) phosphate-buffered saline solution (PBS buffer), air-dried for 20 min and 

stored at -20°C until analysis. 

 

NanoSIMS analysis 

NanoSIMS samples from the stable isotope incubations were analysed using a 

NanoSIMS 50L (CAMECA). Analysis was done according to Musat et al. (2008) except that 

we did not record the 19F- ion and the image fields varied in size. Thirty to fifty consecutive 

images were recorded for each image field, and several image fields were analysed per 

sample. A single sample from each dark or light period was selected for analysis.  

 

Calculation of N2 fixation and inorganic carbon uptake rates 

Biomass-specific N2 fixation and inorganic carbon uptake rates were calculated based 

on the atom percent of 15N and 13C within either the bulk or the single-cell measurements as 

well as the enrichment achieved by the addition of 15N2 and NaH13CO3 within the ~ 3-h 

incubation. Cellular rates were based on the bulk nitrogen and carbon content of the 

population. 
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Figure legends 

Fig. 1: N2 fixation and photosynthesis during the dark:light and continuous light periods. A. 

N2 fixation measured via acetylene reduction assay (ARA; filled circle) and 15N2 incubation 

(open circle). B. Photosynthesis measured via H13CO3
- incubation (filled circle) and molar 

C:N ratio (open circle). The grey bars indicate the regular dark period and the striped grey 

bars indicate the respective dark period. Symbols and error bars represent mean ± SE of 

triplicate cultures. 

 

Fig. 2: Gene expression analysis shown as enrichment factor of relative transcript abundance. 

The genes are indicated in the top right corner of each panel. Filled circles represent the 

experimental data during the 48 h period. The open circles are data superimposed onto the 

respective dark and continuous light period and are the same data from the first 24 h to 

facilitate the display of deviations in gene expression versus the regular dark:light cycle. The 

grey bars indicate the regular dark period and the striped grey bars indicate the respective dark 

period. Symbols and error bars represent mean ± SE of triplicate cultures. 

 

Fig. 3: Enrichment in 15N (15N/14N images, colour scale: absolute ratio of 15N / (15N + 14N)) 

due to N2 fixation by individual C. watsonii cells. The aggregation of cells was an artefact of 

filtration. A. Regular dark period. B. Regular light period. C. Respective dark period. (Scale 

bars: 5µm). The continuous light period (last 12 h of the experiment) displayed the same 

results as shown in panel B for the regular light period.  

 

Fig. 4: 15N2 fixation and H13CO3
- uptake rates as calculated from the isotopic enrichment of 

individual cells (each symbol represents one individual cell). The corresponding dark or light 

period is indicated in the upper right corner of each panel.  
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Fig. S1: Comparison of bulk mass spectrometric analysis (black bars) and nanoSIMS analysis 

(white bars) of inorganic carbon fixation (upper panel) and N2 fixation (lower panel). D1: 

regular dark period, L1: regular light period, D2: respective dark period, L2: continuous light 

period. 
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Table legends 

Table S1: Primer sequences used in real-time quantitative PCR (RT-qPCR). The CwatDraft # 

of the permanent draft genome assembly (30 Jan 04, last update 17 Oct 2007) is as reported 

on the Integrated Microbial Genomes website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) 

provided by the Joint Genome Institute, U.S. Department of Energy.  

 

Table S1 

Target gene CwatDraft # Forward 

Reverse 

Primer sequence (5' – 3‟) 

16S R0029 F 
R 

CAT CAA ACC CAG CCT CAG TTC 
TTC ATG CTC TCG AGT TGC AGA 

kaiA 4942 F 

R 

TGG CGA AGA TGC CGA CAT TA 

CGT CCA TCA GTT CCA TGT GCA 

kaiC 4944 F 
R 

TCC ATC GAT TCG GTT ACT GCA 
GCG AAA AAT CTC CCG TCT CAC 

nifH 3818 F 

R 

TGC TGA AAT GGG TTC TGT TGA A 

TCA GGA CCA CCA GAT TCT ACA CAC T 

ntcA 0834 F 
R 

TGG TTC AAC CCG TGT GAC AGT 
TCT TGG CGT AAA TCT CCG AGA 

P-II 5924 F 

R 

TCG CGG TTC GGA ATA TAC G 

AGC CCC TCT CAG CTT GTC AAT 

psaC 5974 F 
R 

TTG CTT CCT CCC CTC GTA CA 
TTT CGC ATC GCT TAC AGC C 

psbA1 1423 F 
R 

CTT CCT TCA ACA ACA GCC GTG 
CAG GCC ATG CAC CTA AGA AGA 

psbO 4858 F 
R 

AAC ACC GGA ATT GCC AAC A 
TTG CAA GCA CAG ATC GTC AAC 

rbcL 2714 F 
R 

CTT CCG CAT GAC TCC CCA 
TGC TGC ACC GGC TTC TTC 

rpb1 3959 F 

R 

ACC GAA GCG GCT ATT GAA GGT 

TCC GGC AGG AAT CAA ACG A 
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III. Discussion 

 

N2 fixation in unicellular diazotrophs and emerging issues 

 

Unicellular diazotrophs have been recognized as important contributors to the marine 

nitrogen cycle (Zehr et al. 2001, Montoya et al. 2004). They are abundant in oceanic regions, 

however, only a few organisms have been isolated and are in culture (e.g., Synechococcus sp. 

RF-1, Cyanothece sp. ATCC 51142, Crocosphaera watsonii WH8501). An abundant 

unicellular diazotroph in the open ocean is Crocosphaera watsonii. C. watsonii is a 

diazotrophic cyanobacterium, i.e. it carries out inorganic carbon fixation under O2-evolution 

and N2 fixation. Since the nitrogenase enzyme is very sensitive to oxygen, C. watsonii 

separates CO2 and N2 fixation temporally with CO2 fixation during the light and N2 fixation 

during the dark in light:dark cycles. Dark N2 fixation in C. watsonii has been known since the 

strain WH8501 was isolated in 1984 and circadian regulation has been suggested (Pennebaker 

et al. 2010). In manuscript B, I could show that photosynthesis and N2 fixation were indeed 

temporally separated and that the nitrogenase enzyme was synthesized de novo each dark 

period as hypothesized earlier (Tuit et al. 2004). 

The abundance of C. watsonii in field samples is often determined using molecular 

methods (Church et al. 2005a, 2008; Langlois et al. 2008). But also the relative activity of C. 

watsonii and other diazotrophs in field samples is assessed using molecular methods based on 

the expression of the nifH gene (Church et al. 2005b). Manuscript B demonstrated that gene 

expression for the major nitrogen and carbon metabolic processes ( i.e. N2 fixation and 

photosynthesis) exhibits diel cycling with the peak abundance of the nifH gene at the 

beginning of the dark period. However, gene transcripts are already measurable during the 

day whereas declining transcript abundances can be observed at the end of the dark period. 

This diel periodicity is important for the assessment of N2-fixing activity in field samples. 

Due to ship schedules, it may not always be possible to sample at the minimum and maximum 

of diel gene expression in the field but knowledge of the diel variation may hence be taken 

into account when determining C. watsonii nifH gene transcripts. The diel variation in gene 

transcripts also raises further evidence for a circadian regulation of CO2 and N2 fixation and 

thus optimization of the cellular metabolism in C. watsonii. Circadian rhythms are 
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characterized by three criteria: 1) oscillating patterns of ~ 24 h duration, 2) patterns are 

temperature-compensated, i.e. the oscillating behaviour is sustained at different growth 

temperatures and 3) rhythms can be entrained by environmental cycles such as light-dark 

cycles. The entrainment by environmental cycles is probably the most important characteristic 

for the optimization of cellular metabolism. However, C. watsonii may retain the ability to 

photosynthesize during the night (upon illumination) because essential proteins are not 

entirely degraded as is, for example, the nitrogenase for N2 fixation (manuscript B). This 

hypothesis was tested and confirmed by exposing C. watsonii to a continuous light period 

following a dark:light cycle (manuscript C). N2 fixation and photosynthesis rates using stable 

isotope incubations as well as gene expression were followed throughout the experimental 

period. The gene expression analysis confirmed the diel cycling of genes involved in nitrogen 

and carbon metabolism even throughout the continuous light period yielding further evidence 

for a circadian regulation of N2 fixation and photosynthesis. Surprisingly, concurrent, though 

decreased, N2 fixation and photosynthesis were measurable in that part of the continuous light 

period that would have otherwise been a dark period (respective dark). Generally, these two 

processes should not occur at the same time (or at least not in the same cell) due to the 

incompatibility of the nitrogenase with O2 (Gallon 1992). The use of stable isotope 

incubations gave the opportunity to measure N2 fixation (N2 incorporated into biomass) and 

inorganic carbon fixation at the single-cell level by employing nanoSIMS technology. The 

results suggested that cells either fixed N2 or CO2 but in general not both at the same time. 

The discrimination between N2 and CO2 fixation was likely a result of the O2-dilemma of the 

nitrogenase and the photosynthetically-evolved O2 during the respective dark period. 

Combining gene expression analysis and single-cell measurements showed that N2 and CO2 

fixation appear to be regulated by a circadian rhythm for optimization of the cellular 

metabolism in general but can be influenced by deviations from the „normal‟ light-dark 

cycles, i.e. environmental perturbations (Pennebaker et al. 2010). A striking feature of the 

single-cell measurements by nanoSIMS was the high variability of the single-cell N2 fixation 

and photosynthetic rates. The highest single cell rate was up to 9-fold higher when compared 

to the mean of the single-cell rates. This high variability has two important implications for 

N2 fixation measurements in the field: 1) If every cell could be as active as the most active 

one, then N2 fixation could be several- fold higher and 2) if, for example, stochastic processes 

are the cause for the high variability they may hence constrain the magnitude of N2 fixation in 

the environment independent of sufficient nutrient availability such as iron and phosphorus. 

The results of culture experiments like the ones carried out during this Ph.D. work are helpful 
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tools in the study of environmental N2 fixation and will contribute to the determination of 

limiting factors which may otherwise not be discovered if not studied in culture. The results 

(manuscript B and C) also emphasize the necessity of isolating and culturing environmental 

diazotrophic strains for their physiological characterization. 

However, isolation and culturing are not straightforward. Abundant diazotrophs in the 

ocean designated the group A cyanobacteria (UCYN-A) have not yet been successfully 

isolated although this group seems to be widespread in the ocean (Church et al. 2005a; Zehr 

et al. 2008; Moisander et al. 2010). Until recently, the UCYN-A cyanobacteria had only been 

described by their nifH gene sequence. Using analytical flow cytometry, Zehr and colleagues 

(2008) sorted small-sized cells with a dim autofluorescence and shot-gun sequencing of the 

sorted cells yielded complete genomic information on the UCYN-A. The metagenome 

analysis of the UCYN-A indicates that although this group can carry out N2 fixation and thus 

should contribute to fixed N, they cannot directly contribute to CO2 sequestration because 

they lack genes for oxygenic photosynthesis and carbon fixation (Tripp et al. 2010). Due to 

the high abundance of UCYN-A and their potential contribution to total N2 fixation but the 

lack of contribution to CO2 sequestration, this phenomenon should be incorporated into 

biogeochemical models of oceanic carbon and nitrogen cycles. 

The discovery of the UCYN-A diazotrophs (which are non-O2-evolving), the presence 

of heterotrophic diazotrophs in the ocean and the O2-sensitivity of the nitrogenase draw the 

attention to distinct regions, the oxygen minimum zones (OMZs). There, the low oxygen 

content, the low concentrations of fixed N or low N:P ratios due to denitrification could 

provide potential hot spots for N2 fixation. To my knowledge, there are no direct 

measurements of N2 fixation within the OMZs but geochemical estimates suggest high N2 

fixation rates, for example, for the Eastern South Pacific, i.e. the OMZ and upwelling region 

off South America (Deutsch et al. 2007). An expansion of the oceanic OMZs is predicted in 

the course of global change (Stramma et al. 2008). If increased N2 fixation would be a general 

phenomenon in OMZs, global inputs of fixed N could increase due to the expansion. 

However, OMZs are also regions of high denitrification rates and the balance between 

denitrification and N2 fixation suggests that the Pacific is a net sink for fixed N (Gruber and 

Sarmiento 1997). Therefore, an expansion of the OMZs and a resulting increase in 

denitrification may counterbalance an increase in N2 fixation. However, the expansion of the 

OMZs is not the only proposed change associated with global climate change. Transitions in 

the Saharan mineral dust deposition over the Atlantic could change the availability of iron to 

the surface ocean (Rijkenberg et al. 2008) and result in an increase or decrease in N2 fixation. 
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But mineral dust also carries nitrogen and phosphorus compounds (Baker et al. 2007) which 

could alter the impact of dust on N2 fixation and overall new primary production.  An increase 

or decrease in N2 fixation would in return influence the oceanic fixed N budget and result in 

changes of new primary production and CO2 sequestration. Although increasing CO2 itself 

may promote N2 fixation (Hutchins et al. 2007; Fu et al. 2008), the availability of iron may 

diminish this effect (Shi et al. 2007, Fu et al. 2008). 

 

The ‘missing N’ challenge 

 

Current estimates of sources and sinks of fixed N in the ocean deviate by up to ~ 200 

Tg N a-1. However, isotopic analysis of sediments suggests that the oceanic N cycle is in 

balance (Altabet 2007). Thus the difference between sinks and sources of fixed N in the ocean 

is also termed the „missing N‟. The divergence could result from over-estimation of the sinks, 

mainly denitrification, as well as under-estimation of the sources, mainly N2 fixation. 

Estimates of N2 fixation range between 100 – 200 Tg N a-1 (Karl et al. 2002, Gruber 2008). 

However, direct measurements of N2 fixation do not match N2 fixation determined through 

biogeochemical estimates (Mahaffey et al. 2005). Part of this discrepancy may have been 

introduced by the lack of temporal and spatial coverage of direct measurements but even at 

regional scale where N2 fixation has been measured, the rates do not correspond to 

biogeochemical estimates (Orcutt et al. 2001). Furthermore, N2 fixation rates in laboratory 

and field studies do not meet N requirements as calculated by growth rate or C:N ratio (see 

manuscript A). There are often large discrepancies between the two direct methods to 

determine N2 fixation rates, i.e. the acetylene reduction assay (ARA) and the 15N2 tracer 

addition (Gallon et al. 2002). In laboratory studies carried out during this Ph.D. work I 

observed discrepancies between the ARA and the 15N2 tracer approach. Since the experiments 

were carried out with a diazotrophic pure culture, mass balance calculations were applied 

resulting in a mismatch between N2 fixation rates determined with the 15N2 tracer addition and 

the increase in cellular N during the experiment. In natural environments, mass balance 

approaches for discrete samples is often not possible because an increase in cellular N could  

result not only from N2 fixation but also from other sources of fixed N, e.g. nitrate, 

ammonium or organic N compounds. However, comparisons of direct measurements of N2 

fixation in the natural environment with geochemical estimates suggest an under-estimation 

of N2 fixation (Mahaffey et al. 2005). In addition, imbalances between sources and sinks of 
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fixed N, i.e. the „missing N‟ are observed and together with the other discrepancies point to 

the need to evaluate the direct methods further. Taken together, the discrepancies in the 

published literature as well as the discrepancies between my own 15N2 tracer addition and 

mass balance calculations from culture experiments led to the re-assessment of the 15N2 tracer 

addition method. The existing method relies on the rapid equilibration of the injected 15N2 gas 

bubble with the surrounding water to yield a uniform 15N2 enrichment of the dissolved N2 

pool (see Introduction section C). Laboratory experiments showed that the equilibration of the 

injected 15N2 is strongly time-dependent spanning incubation times generally applied in 

laboratory and field studies of N2 fixation (manuscript A). The direct injection of 15N2 gas into 

a diazotrophic culture and subsequent incubation for 12 h (here the N2-fixing dark period with 

a peak activity) yielded only 40% of the actual rate, i.e. the N2 fixation rate was 

underestimated by 60%. The magnitude of the underestimation, though, varies with the 

incubation time. Due to the slow equilibration of the 15N2 gas bubble, shorter incubations tend 

to be further away from the real N2 fixation rate. To determine real N2 fixation rates, an 

improved 15N2 tracer addition was carried out. This approach relies on the addition of sterile-

filtered, 15N2-enriched water to the incubations. The 15N2-enriched water had previously been 

degassed, and 15N2 gas was dissolved in it. I could show in direct measurements of dissolved 

15N2 as well as N2 fixation rates by C. watsonii that the addition of 15N2-enriched water 

yielded a uniform enrichment of dissolved 15N2 throughout 24 h incubations. Also, the highest 

rates were achieved using this improved tracer addition. Therefore, I suggest the addition of 

15N2-enriched water to determine N2 fixation rates in laboratory and field studies. The results 

of this study imply that the application of the conventional 15N2 tracer approach, i.e. the direct 

injection of a 15N2 gas bubble, may have severely underestimated N2 fixation rates both in 

culture and field experiments. Attempts to correct for the underestimation in published N2 

fixation data were not successful for several reasons. The enrichment of 15N2 in the dissolved 

N2 pool is strongly dependent on the incubation time but also on the amount of agitation, the 

amount of 15N2 injected, dissolved organic matter and the bottle size used for the incubation. 

However, even if several parameters would be known, the amount of agitation is mostly an 

uncontrolled parameter especially when incubations are carried out on board a ship. In 

addition, and maybe most importantly, rates of N2 fixation are substantially influenced by diel 

periodicity (Colón-López et al. 1997; Chen et al. 1998; manuscript B). These factors will 

prevent an accurate determination of the magnitude of underestimation.  The application of the 

method described here may contribute significantly to increase the global estimates of N2 
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fixation and thereby diminish the „missing N‟ especially when combined with a larger spatial 

and temporal coverage of direct measurements of N2 fixation.  
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IV. CONCLUSIONS AND OUTLOOK 
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IV. Conclusions and outlook 

 

The laboratory experiments carried out during this Ph.D. work using Crocosphaera 

watsonii demonstrated evidence for a tight (circadian) regulation of nitrogen and carbon 

metabolism in unicellular, diazotrophic cyanobacteria. The timing of metabolic processes 

does not coincide with the corresponding gene expression which has practical implications for 

the interpretation of gene expression data obtained from field samples. The magnitude of N2 

fixation in C. watsonii may be (partially) controlled by population-inherent factors such as 

stochastic processes in gene expression and protein synthesis. If an internal factor, such as 

stochasticity, (partially) controls the magnitude of N2 fixation within the population then this 

may imply an upper limit of N2 fixation in the environment independent of nutrient 

sufficiency. Stochastic processes lead to unequal distributions of, for example, transcript 

abundances per cell within a population. Thus, not each cell will be able to produce the same 

amount of enzyme needed and will hence have differing enzyme activities. These activities 

may be independent of available nutrients because they will be limited by gene expression or 

protein synthesis. Whether stochasticity in gene expression or protein synthesis actually 

applies in C. watsonii, still needs to be tested. Respective experiments have already been 

carried out in conjunction with the Max Planck Institute for Marine Microbiology in Bremen 

(MPI Bremen) and are awaiting analysis. Furthermore, variability in single-cell N2 fixation 

rates may have been regulated or influenced by the capability of each individual cell to cope 

with the incompatibility of nitrogenase and O2. The single-cell measurements with a 

diazotroph culture demonstrated that stable isotope incubations linked to nanoSIMS can be 

used to quantitatively analyse single-cell N2 fixation rates and hence could be very useful in 

determining the contribution of different phylotypes to total N2 fixation in field experiments.  

The realization that the most commonly used method (N2fixation rates determined by 

the direct injection of 15N2 gas) to assess N2 fixation in the field under-estimates the true rate 

by a variable amount led to the design of a more reproducible method. The subsequent 

improvement of the 15N2 tracer addition method has the potential to diminish the gap between 

sources and sinks of fixed N in the ocean, i.e. the „missing N‟. If our proposal proves to be 

true then this study will have a significant influence on current global estimates of N2 fixation 

and subsequent biogeochemical modelling of the marine nitrogen cycle. A protocol for the 
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application of the 15N2-enriched water addition to determine rates of N2 fixation will be 

provided at the end of this section.  
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Field experiments at the Cape Verde Islands 

 

Besides the culture experiments presented above, I participated in two large field 

campaigns at the Cape Verde Islands to study the „Ecosystem effects of dust deposition (iron 

and nitrogen) on phytoplankton productivity and nitrogen fluxes‟ as part of the German 

SOPRAN project (Surface Ocean PRocesses in the ANthropocene). The Cape Verde Islands 

are located in the eastern tropical North Atlantic Ocean off the coast of Mauretania and 

Senegal, western Africa. The area around Cape Verde is characterized by a sub-surface 

maximum of chlorophyll a, typical for tropical open ocean regions (Figure IV-1). 
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Figure IV-1: Vertical profiles of chlorophyll a at various stations CV02-04 in July 2008. 
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Figure IV-2: Map of the Cape Verde Islands and the surrounding bathymetry. Red symbols indicate 

the stations which were sampled in July/August 2008. Tenatso indicates the ocean site of the Tropical 

Eastern North Atlantic Time-Series Observatory. 

 

 

The first field campaign was carried out in July/August 2008, including four b ioassay 

experiments (Figure IV-2; CV01-CV04). Seawater was collected trace metal-clean on board 

R/V Islandia and distributed into 4.5 L polycarbonate bottles. Samples were transported back 

to the onshore laboratory in Mindelo, Sao Vicente. Upon arrival, seawater samples were 

prepared and incubated as described in Mills et al. (2004) to determine rates of primary 

production and N2 fixation under the influence of nutrient and dust additions. Preliminary 

results showed that primary production and N2 fixation were nitrogen and phosphorus- iron 

co-limited, respectively (Figure IV-3). Additions of Saharan dust stimulated N2 fixation but 

not primary production indicating that the added dust did not release s ignificant amounts of 

nitrogen to promote phytoplankton growth. The dust was most likely a source of iron or 

possibly iron and phosphorus although the magnitude of N2 fixation was more similar to the 

N2 fixation in the Fe-only treatment. The addition of phosphorus and iron resulted in the 

highest N2 fixation rate among treatments but also in the highest abundance of diazotrophs as 

measured by nifH gene copies (Figure IV-3, lower panel). The enormous increase in 

diazotroph abundance was due to a „bloom‟ of UCYN-A (data not shown). Furthermore, 

UCYN-A were the dominant phylotype in all four experiments carried out in 2008 (Figure 

IV-4) suggesting that these unicellular cyanobacteria are an important component of the 

nitrogen cycle in the eastern tropical North Atlantic.  
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Figure IV-3: Primary production (given as chlorophyll a concentration), N2 fixation and diazotroph 

abundance (as nifH gene copies L
-1

) from bioassay experiment CV01. Treatment colour codes are the 

same in each panel. N amendments were + 1 µmol L
-1

 NH4NO3, P + 0.2 µmol L
-1

 NaH2PO4, Fe + 2 

nmol L
-1

 FeCl3, Dust1 + 2 mg L
-1

 Saharan dust. 
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Figure IV-4: Initial diazotroph community composition in the four bioassay experiments carried out in 

July/August 2008. CR = Crocosphaera; CY = Cyanothece; AO = γ-proteobacterium AO; FIL = 

filamentous cyanobacteria; grA = UCYN-A. 

 

 

Samples taken during the 2009 campaign will be processed this year but preliminary 

chlorophyll a data suggested that nitrogen was limiting primary productivity as in the 

previous experiments 2008. In 2009, additional experiments were carried out to determine the 

magnitude of light- and dark-dependent N2 fixation. In April/May of this year, I will 

participate in the ANTXXVI-4 cruise of R/V Polarstern from Punta Arenas, Chile to 

Bremerhaven, Germany. On this 6-week transect, I will take regular surface water samples for 

molecular analysis of the nifH gene at abundance and gene expression level. In addition, 

regular seawater incubations using stable isotopes (15N2 and NaH13CO3) will be performed to 

assess N2 fixation and primary production. Data from this cruise will provide information on 

the spatial and temporal variation of N2 fixation in the North Atlantic Ocean especially since 

previous cruises followed the same transect but have been conducted during different seasons. 

The combination of these data with future cruises on the same transect will give insights into 

the interannual variability of both N2 fixation and diazotrophs abundances throughout the 

Atlantic Ocean. Data from the Cape Verde Islands will hopefully provide information on 

“who is out there” and especially on “who does how much”. The question on “who does how 

much” is very intriguing but has been largely un-answered due to the lack of methods that 

couple the identity of an organism to its activity. Method developments, e.g., the combination 

of microautoradiography with in situ hybridization (Micro-FISH), have provided insights into 

this question but require the use of radioisotopes (Micro-FISH). I could show in manuscript C 

that single-cell N2 fixation rates can be quantitatively determined and related to bulk N2 
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fixation rates which will constrain the magnitude of N2 fixation by the different phylotypes if 

combined with in situ hybridization (HISH-SIMS). A recent HISH-SIMS study on NH4
+-

uptake showed that the most abundant organism does not have to be responsible for the bulk 

activity (Musat et al. 2008). And even though the question on “who is out there” has been 

addressed by molecular studies, both questions still remain widely open especially with 

respect to the spatial and temporal variation and the response to Saharan dust deposition in the  

North Atlantic Ocean. 
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Protocol for the addition of 
15

N2-enriched water to determine N2 fixation rates 

 

The principal of this protocol is based on previous methods to study the cycling of 

oxygen using 18O2 (Kana 1990) and the exudation of DON using 15N2 (Glibert and Bronk 

1994). The use of specific equipment and the application of this protocol were designed by 

me. 

The protocol is divided into several stages (for a schematic diagram see Figure IV-5): 

(1) preparation of seawater, (2) degassing of seawater, (3) the addition and dissolution of 15N2 

gas and (4) the addition of the 15N2-enriched water to incubations.  

 

(1) Preparation of seawater: On-site collected seawater is 0.2 µm filtered and pumped 

through a ≤10 µm pre-filter (a). This pre-filter is incorporated into the system to 

protect the subsequent membrane. The use of a peristaltic pump or membrane pump is 

suggested but care has to be taken that no air bubbles are introduced into the line 

(tubing). After pre-filtration, the seawater line is leading into a „degassing membrane‟ 

(b). Instead of 0.2 µm filtering the seawater and applying a 10 µm pre- filter, an in- line 

0.2 µm filter could also be used prior to the degassing. The preparation of this water 

should at best be done with the same water that is used for the incubations. If this is 

not possible, seawater with the same nutrient concentrations should be used in order to 

not contaminate the incubations.  

(2) Degassing of seawater: The „degassing membrane‟ is a membrane contactor made of 

Celgard® microporous polypropylene hollow fibers housed in a polycarbonate shell. 

Here, the seawater flows on the lumen side of the fibers and vacuum is applied on the 

shell side of the membrane. The use of a vacuum of ≤70 mbar (absolute) pressure is 

recommended which can be achieved by the use of a diaphragm vacuum pump or, 

alternatively, a water jet pump if sufficient water flow is available. The outflow of the 

membrane, i.e. the degassed seawater, is transferred into Tedlar® gas sampling bags 

(fitted with a septum port and an inlet/outlet port or a dual po rt system; evacuated 

prior to filling with seawater) using gas-tight tubing (e.g. Tygon® SE 200; clear tubing 

to assure that any contaminating air bubbles in the line are visible) (c).  

(3) No air bubbles should enter the Tedlar® bag while filling with seawater. When the 

Tedlar® bag is filled, 15N2 gas is injected through the septum port at a ratio of 1 ml 

15N2 gas per 100 ml seawater (d). This amount corresponds roughly to the maximum 

amount of N2 gas which can be dissolved taking into account that the degassing 
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efficiency will probably never reach 100%. Dissolve the 15N2 gas by breaking up the 

large bubble into smaller bubbles (e.g. clapping with a ruler) but great care should be 

taken not to damage the Tedlar® bag (e).  

(4) Once the 15N2 gas has dissolved, aliquots of the water can be taken out of the Tedlar® 

bag through the inlet/outlet port. Add an aliquot of the 15N2-enriched water to the 

incubation bottle which has been filled with on-site collected seawater (f) leaving a 

small headspace for mixing (g). Invert the incubation bottle with the added 15N2-

enriched water several times. Try to keep the time as short as possible but also gently 

handle the seawater. After mixing, fill the incubation bottles to the rim and cap leaving 

no headspace in the bottle (h). Samples can now be incubated for the desired 

incubation time and processed as routinely done for mass spectrometric analysis.  

 

 

Figure IV-5: Schematic diagram (not to scale) for the preparation and addition of 
15

N2-enriched water 

(for details see protocol). Source of Tedlar
®
 bag icon: Operation manual 

http://www.skcinc.com/instructions/3781.pdf  

 

 

The addition of 50 ml 15N2-enriched water to 1 L seawater will lead to an enrichment 

of roughly 5 atom% 15N2 depending on salinity and temperature of the ambient water. The 
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rough calculation is based on the addition of 1 ml 15N2 gas to 100 ml of degassed seawater 

during the preparation. Thus, as a rule of thumb, a replacement of 1% of the original seawater 

in the incubation with 15N2-enriched seawater will lead to an increase in 15N2 enrichment of ~ 

1 atom% independent of the bottle size used. If 5% of the seawater are replaced by 15N2- 

enriched water, the final enrichment in the dissolved N2 pool will hence be ~ 5 atom% which 

is sufficient for N2 fixation measurements in the oligotrophic regions of the ocean (Zehr and 

Montoya 2007). The most accurate determination of 15N2 that has been added to the 

incubations by 15N2-enriched water, though, would be the direct measurement of 15N2 in the 

enriched water or the incubation by, e.g., membrane-inlet mass spectrometry (MIMS). 

However, the subsequent calculations of N2 fixation rates remain the same as for the direct 

injection of 15N2 gas (Capone and Montoya 2001).  

 

The application of this protocol using the membrane contactor and the Tedlar® bags is 

still under investigation in field experiments. If I can demonstrate that this protocol is 

satisfactory for the use of incubations with 15N2 for N2 fixation measurements, we will publish 

a user-friendly protocol for public access. For information on the membrane and its 

technology, please visit www.liqui-cel.com or www.membrana.com 

The membrane contactor that we are currently testing is a 1.7 x 5.5 MiniModule®. 

This membrane has a maximum flow rate of ≤2500 ml/min. We determined that a flow rate of 

500-600 ml/min is sufficient for the proposed application. An increase in the flow rate of the 

membrane results in a decreased degassing efficiency. Thus, a compromise between flow rate 

and degassing efficiency has to be taken. The production of ~ 500 ml degassed water per 

minute should be adequate for ship-based large scale experiments encompassing about fifty 

4.5 L bottles. To reach an enrichment of about 5 atom%, a total of 10 L (degassed) and 15N2-

enriched water would be needed for such an experiment. This could be achieved within ~ 20 

min at the above mentioned flow rates. The dissolution of the 15N2 gas will take about 5-10 

minutes (T. Grosskopf, pers. comm.). The application of this protocol does not disturb the 

simultaneous incubation with other stable isotopes such as NaH13CO3 for determination of 

photosynthetic rates in the same bottle. The isotope can be added at the same time as the 15N2-

enriched seawater. Larger membranes are available if the experiment requires a higher 

amount of 15N2-enriched water. Therefore, I consider this protocol practicable for field assays 

of N2 fixation.  
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