1	Streptomyces sparsus sp. nov., a novel member of the genus
2	Streptomyces from saline and alkaline soil in China
3	
4	Yi Jiang, ^{1*} Yan-Ru Cao, ^{1,3} Jutta Wiese, ² Shu-Kun Tang, ¹ Li-Hua Xu, ¹ Johannes F.
5	Imhoff, ^{2*} Cheng-Lin Jiang ¹
6	
7	¹ Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091
8	China
9	² Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Düsternbrooker Weg 20,
10	D-24105 Kiel, Germany
11	³ College of Resources and Environment, Northwest A & F University, 712100 Yangling,
12	Shaanxi, P. R. China
13	
14	
15	Authors for correspondence: Yi Jiang
16	Tel: +86-871-5034139; Fax: +86-871-5173878
17	E-mail: jiangyikm@hotmail.com
18	Johannes F. Imhoff
19	Tel: +49-431 600 4450; Fax: +49-431 600 4452
20	E-mail: jimhoff@ifm-geomar.de
21	
22	
23	Running title: Streptomyces sparsus sp. nov.
24	
25	
26	Category: New Taxa - Actinobacteria Actinobacteria
27	
28	The 16S rRNA gene sequences of strain YIM 90018 ^T has been deposited in EMBL under
29	the accession number AJ849545.
30	

Salt and alkaline-tolerant actinomycete strain, YIM 90018^T, was isolated from a saline 31 and alkaline soil sample collected from Qinghai, China, and was then subjected to 32 polyphasic taxonomy. Aerial hyphae of strain YIM 90018^T were not produced on most 33 media tested except YIM 82# agar and the vegetative hyphae were well developed and 34 35 did not fragmented. Straight or flexuous (*Rectiflexibiles*) spore chains are produced. The 36 strain grew well in the presence of 25 % of MgCl₂·6H₂O and at pH 10. All of these characters consistently assigned strain YIM 90018^T to the genus *Streptomyces*. Based on 37 phylogenetic analysis of 16S rRNA gene, DNA-DNA hybridization, phenotypic 38 characters and comparison with known species of the genus, strain YIM 90018^T can be 39 40 differentiated from all the validly described Streptomyces species. A novel species, 41 Streptomyces sparsus sp. nov. is proposed. The type strain of the new species is YIM 90018^{T} (CCTCC AA204019= DSM 41858^T). 42

43

The genus *Streptomyces* was proposed by Waksman & Henrici (Waksman & Herici 1943) and species of this genus have been of great interest owing to their production of various natural products with considerable commercial value. In the course of screening of actinomycetes for metabolities with bioactivity, strain YIM 90018^T was isolated from a saline and alkaline soil sample collected from Qinghai Province, China. It was determined to belong to the genus *Streptomyces* and the taxonomic results are reported in this paper.

51

52 Strain YIM 90018^T was isolated from a saline and alkaline soil sample collected from 53 Qinghai, China by using starch-casein medium with 20 % MgCl₂. This medium contained 54 (g/l): Starch 10 g, casein 0.3 g, KNO₃ 2 g, MgSO₄·7H₂O 0.05 g, NaCl 2 g, K₂HPO₄ 2 g, 55 CaCO₃ 0.02 g, MgCl₂·6H₂O 200 g and agar 20 g (pH 7.2). The strain was maintained in 56 20 % glycerol and kept at -20 °C.

57

The strain was cultivated on YIM #82 agar [starch, 5 g; asparagine, 1 g; K₂HPO₄, 1 g; vitamin mixture from HV agar (Hayakawa & Nonomura 1987), 3.7 mg; trace salts from ISP 5 (Shirling & Gottlieb 1966), 1 ml; agar, 20 g; pH 7.2 or 10.0-11.0] for microscopic observations of the sporophores, spore chains and spore surface using light and scanning 62 electron microscope (JEOL Ltd., JSM-5600LV, Tokyo, Japan). The cultural characteristics were studied on ISP media (Shirling & Gottlieb 1966), Czapek's agar, 63 64 nutrient agar (Waksman 1961), YIM #81 agar (asparagine, 1 g; glycerol, 10 g; yeast 65 extract, 0.5 g; KNO₃, 0.5 g; K₂HPO₄, 1 g; agar, 20 g; pH 7.2 or 10-11) and YIM #82 agar 66 after incubation for 14 days at 28 °C. The colour of both substrate and aerial mycelia 67 together with the production of soluble pigments were determined by comparison with 68 chips from the ISCC-NBS color charts (Kelly 1964). All tests were done at 28 °C and pH 7.2 unless otherwise specified. The production of melanin was tested on ISP 7 medium. 69 70 Carbon source utilization was examined on ISP 9 as a basal medium supplemented with 1 71 % final concentration of the tested carbon sources. Utilization of different nitrogen 72 sources, catalase production, and degradation of starch and gelatin were detected in 73 modified Bennett's agar medium (MBA) after 7, 14 and 21 days as described by 74 Williams et al. (1983). Hydrogen sulphide production was detected by the method of 75 Shirling and Gottlieb (1966). The effect of temperature and pH on the growth and the 76 tolerance to salts was determined using MBA as a basal medium.

77

For chemotaxonomic studies, strain YIM 90018^T was grown in potato extract-glucose 78 79 broth (fresh potato, 200g; boiling for 30 min, filtrated, utilized the broth of 1000 ml), on a 80 shaking incubator at 200 rpm and 28 °C for 7 days. The mycelia were harvested by 81 centrifugation and washed three times with distilled water and then freeze-dried. The 82 determination of diamino acid in the cell wall and analysis of the whole-cell sugars were 83 performed as described by Lechevalier et al. (1970, 1980) and Staneck and Roberts 84 (1974), respectively. Polar lipids were extracted and detected by the method of Komagata 85 and Suzuki (1987). Menaquinones were extracted, purified and identified by HPLC as 86 described by Collins (1985). The composition of cellular fatty acid was analysesd as 87 described by Sasser (1990). The DNA G+C base content was determined by HPLC (Tamaoka & Komagata 1984) with an Agilent 1100 LC system (IRIS Technologies, 88 U.S.A). DNA-DNA hybridization of strain YIM 90018^T with related species was carried 89 90 out by the method described by Christensen et al. (2000).

91

92 Genomic DNA was extracted for 16S rDNA analysis by the method described by Orsini 93 and Romano-Spica (2001). PCR-mediated amplification of the 16S rDNA, purification of 94 PCR products and sequence analysis of purified products were done as described 95 previously (Cui et al. 2001). The resultant sequence was manually aligned against 96 bacterial sequences available from public databases. A more detailed comparison was 97 performed with members of the genus *Streptomyces* and evolutionary distance matrices were calculated by the method of Jukes and Cantor (1969). Phylogenetic trees were 98 99 inferred by using the neighbour-joining (Saitou & Nei 1987) and maximum-likelihood 100 methods (Felsenstein 1981). The trees were rooted using *Streptomyces megasporus* DSM 41476^T (accession number Z68100) as outgroup. Bootstrap analysis was used to evaluate 101 102 the tree topology of the neighbour-joining data by performing 1000 resamplings 103 (Felsenstein 1985).

104

105 Morphological observation of 15-days-old culture of strain YIM 90018^{T} revealed that 106 aerial hyphae were not produced on most tested media except YIM #82. Vegetative 107 hyphae were abundant and not fragmented. Straight to flexuous (*Rectiflexibiles*) spore 108 chains were only present on YIM #82. Spores were short rod shaped and variable in size 109 (0.5-0.7×1.0-1.3 m). The spore surface was smooth (Fig. 1).

110

111 Cultural characteristics of strain YIM 90018^T are shown in Table 1. No aerial mycelium 112 was produced on most tested media, and poor and pale gray on YIM #82 agar. Substrate 113 mycelium grew well, and light or brilliant yellow. Soluble pigments were not produced 114 on any used media. Physiological and biochemical characteristics, utilization of carbon 115 and nitrogen sources, chemotaxonomic characteristics and anti-microbial activitites of 116 YIM 90018^T are described in description of *Streptomyces sparsus* sp. nov.

117

The 16S rDNA sequence (1466 nucleotides, accession number AJ849545) of strain YIM 90018^T was compared with the corresponding sequences of the representative reference strains of the genus *Streptomyces*. The neighbour-joining tree based on 16S rDNA sequences in 1000 resamplings was constructed to show relationships between the strain YIM 90018^T and 19 other related *Streptomyces* species (Fig. 2). Phylogenetic analysis revealed that YIM 90018^T is phylogenetically related to the genus *Streptomyces*, and formed a separate line in the tree. Highest sequence similarities were found with *Streptomyces rimosus* subsp. *rimosus* (98.55 %), *Streptomyces erumpens* (98.33 %), *Streptomyces sclerotialus* (98.04 %), *Streptomyces olivaceiscleroticus* (97.99 %), *Streptomyces niger* (97.99 %) and *Streptomyces kasugaensis* (97.6 %).

128

129 Spore chains of *Streptomyces rimosus* subsp. *rimosus* are abundant and spiralthe spore 130 mass is white or yellow. Streptomyces sclerotialus and Streptomyces niger were merged 131 into S. phaeochromogenes (Locci 1989, Skerman et al. 1980, Yan 1992). Their spore 132 chain is abundant and spiral, form sclerotia, aerial mycelium is grey, vegetative hyphae 133 are yellow-brown, green or black, diffusible pigments are yellow-brown or green, 134 melanin pigment is producted, gelatin liquefaction is positive, milk coagulation and 135 peptonization are negative, and no antimicrobial activities against bacteria and fungi are 136 produced. Spore chains of *Streptomyces erumpens* are abundant and spiral, and spore 137 mass is gray. Aerial mycelium of Streptomyces kasugaensis (Yan 1992, Tresner & Bachus 1956) is abundant and white, spore chains are spiral, dark yellowish soluble 138 139 pigment is produced, gelatin liquefaction is positive, and milk coagulation is negative (Table 2). Content of fatty acids of YIM 90018^T were remarkable different from closed 140 species of the genus Streptomyces. YIM 90018^T contained 38.1 % of 18:1 w9c. 141 Streptomyces sclerotialus DSM 43032^{T} only contained 0.7 %, and S. kasugaensis and S. 142 *niger* do not. YIM 90018^T contained 16:1 w9c and 20:1 w9c. But the three species do 143 144 not contain the two fatty acids. The three species contain 25.7 % to 34.0 % of 15:0 anteiso. But YIM 90018^T only contains 6.6 %. The three species contain 4.2 % to 12.0 % 145 of 17:0 ISO. But YIM 90018^T does not have (Table 3). The results of DNA-DNA 146 hybridization of strain YIM 90018^T with closed 6 species indicate that the chromosomal 147 148 DNA homology of them is below 60 % (Fig. 3). The diagnostic properties of strain YIM 90018^T that distinguish it from the related species were the absence of aerial mycelium, 149 150 flexuous spore chains (Rectiflexibiles) when produced, spores were short rod-shaped, 151 soluble pigments are not produced, growth in the presence of MgCl₂·6H₂O concentrations 152 of 25 %, and the presence of over 38 % 18:1 w9c fatty acid in the FAME profile. Therefore, a new species of the genus *Streptomyces* with the name *Streptomyces sparsus*sp.nov. is proposed.

155

156 **Description of Streptomyces sparsus sp. nov.**

157

Streptomyces sparsus (spar'sus. L. masc. part. adj. sparsus (from L. v. spargo) scattered,
sparse; referring to streptomycete with sparse aerial mycelium).

160

161 No aerial hyphae are formed on most media tested, but extremely poor and pale grey 162 aerial mycelium formed on YIM #82 agar. Yellowish vegetative hyphae grows well and 163 does not fragment. Soluble pigments are not formed. Straight to flexuous (*Rectiflexibiles*) 164 spore chains. Spores are short rod shaped and the surface is smooth. Milk coagulation and 165 peptonization, growth on cellulose and H_2S production are positive reactions. Gelatin 166 liquefaction, starch hydrolysis, nitrate reduction and melanin formation are negative. 167 Grow occurs at 0-15 % of NaCl, 0-5 % of KCl, 0-25 % of MgCl₂·6H₂O, 0-1 % of CaCl₂ and pH 6.0-10.0. Utilize glucose, glactose, rhamnose, arabinose, xylose, raffinose, starch, 168 169 ribose, inositol, mannitol, glycine, histidine, methionine and asparagine. Acid is produced 170 from glucose. Sobitol was not utilised. Antimicrobial activity against Bacillus subtilis (ACCC 11060^T), Staphylococcus aureus (AS 1.72^T), Micrococcus luteus (ACCC 171 11001^T), Sarcina lutea (AS 1.241^T) and Xanthomonas oryzae(AS 1.843^T). The cell wall 172 173 peptidoglycan contains LL-diaminopimelic acid and glycine. The whole-cell hydrolysates 174 contain galactose and xylose. Predominant menaquinones were MK-9 (H₄) (48 %), MK-9 (H₆) (39 %) and MK-9 (H₈) (13 %). The diagnostic phospholipid was 175 phosphatidylethanolamine. The major fatty acid pattern consists of anteiso- $C_{15:0}$ (6.6 %), 176 177 iso-C_{16:0} (16.04 %), C_{16:0} (14.4 %), and w9c-C_{18:1} (38.1 %). G+C content of genomic DNA is 71.2 mol %. The typical strain is YIM 90018^{T} (= CCTCC AA204019^T = DSM 178 41858^T), which was isolated from a saline and alkaline soil sample collected from 179 180 Qinghai Province, China.

181

182 Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 30900002 and No. 30560001), International Cooperative Key Project of Ministry of Science and Technology (2006DFA33550), and Talents in University and the 'Zentrum für Marine Wirkstoffe', which is founded by the Ministerium für Wirtschaft, Wissenschaft und Verkehr des Landes Schleswig-Holstein (Germany). We thank Miss Cai Xiang-Feng and Mr. Chen Yun for their technical assistance.

- 189
- 190 **References:**
- 191 Christensen, H., Angen, Q., Mutters, R., Olsen, J. E., & Bisgaard, M. (2000).
- 192 DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA.
- 193 Int. J. Syst. Evol. Microbiol. **50**: 1059–1102.
- 194
- Collins, M. D. (1985). Isoprenoid quinone analysis in bacterial classification and
 identification. In: Goodfellow M. and Minnikin D.E. (eds), Chemical Methods in
 Bacterial Systematics. Academic Press. 267–287.
- 198
- Cui, X. L., Mao, P. H., Zeng, M., Li, W. J., Zhang, L. P., Xu,L. H. & Jiang, C. L.
 (2001). *Streptomonospora salina* gen. nov., sp. nov., a new member of the family *Nocardiopsaceae. Int. J. Syst. Evol. Microbiol.* 51: 357–363.
- 202
- Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood
 approach. J. Mol. Evol. 17: 368–376.
- 205
- Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the
 bootstrap. *Evolution*. 39: 783–791.
- 208
- Goodfellow, M., Willims, S. T. & Alderson, G. (1986^a). Transfer of Actinosporanium
 violaceum Krasil'nikov and Yuan, Actinosporanium vitaminophilum Shomura et al. and
 Actinopycnidium caeruleum Krasil'nikov to the genus Streptomyces, with emended
 descriptions of the species. Syst. Appl. Microbiol. 8: 61–64.
- 213

214	Goodfellow, M., Willims, S. T. & Alderson, G. (1986 ^b). Transfer of <i>Chainia</i> species to
215	the genus Streptomyces with emended decription of species. Syst. Appl. Microbiol. 8: 55-
216	60.
217	
218	Goodfellow, M., Willims, S. T. & Alderson, G. (1986 ^c). Transfer of <i>Elytrosporangium</i>
219	brasiliense Facão de Morais et al., Elytrospranfium carpinense Facão de Morais et al.,
220	Elytrosporangium spirale Facão de Morais et al., Microellobosporia cinerea Cross et al.,
221	Microellobosporia flavea Cross et al., Microellobosporia grisea (Konev et .al.,) Pridham
222	and Microellobosporia violacea (Tsyganov.et.al.,) Pridham to the genus Streptomyces
223	with emended descriptions of the species. Syst. Appl. Microbiol. 8: 48–54.
224	
225	Goodfellow, M., Willims, S. T. & Alderson, G. (1986 ^d). Transfer of Kitasatoa purpurea
226	Matsumae and Hata to the genus Streptomyces as Streptomyces purpureus comb.nov.
227	Syst. Appl. Microbiol. 8: 65–66.
228	
229	Hayakawa, M. & Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for
230	the selective isolation of soil actinomycetes. J. Ferment. Technol. 65: 501-509.
231	
232	Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules. In: Munro H.N.
233	(ed). Mammalian Protein Metabolism. New York, Academic Press. 21-132.
234	
235	Kelly, K. L. (1964). Inter-society color council-national bureau of standards color name
236	charts illustrated with centroid colors published in US.
237	
238	Komagata, K. & Suzuki, K. I. (1987). Lipid and cell-wall analysis in bacterial
239	Systematics Methods in Microbiology, Vol 19: 160–207.
240	
241	Lechevalier, M. P. & Lechevalier, H. A. (1970). Chemical composition as a criterion in
242	the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435-443.
243	

244	Lechevalier, M. P. & Lechevalier, H. A. (1980). The chemotaxonomy of
245	actinomycetes. In: Dietz A. and Thayer D.W. (ed.), Actinomycete taxonomy. Special
246	publications No. 6. Society For Industrial Microbiology, Arlington, Va. 227–291.
247	
248	Locci, R. (1989). Streptomyces and related genera. Vol. 4. Bergey's manual of systematic
249	bacteriology. The Williams & Wilkins Co., Baltimore. 24–77.
250	
251	Orsini, M. & Romano-Spica, V. A . (2001). Micrwave-based method for nucleic acid
252	isolation from environmental samples. Lett. Appl. Microbiol. 33: 17–20.
253	
254	Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for
255	reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
256	
257	Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty
258	acids. USFCC Newsl 20, 16.
259	
260	Shirling, E. B. & Gottlieb, D. (1966). Methods for characterization of Streptomyces
261	species. Int. J. Syst. Bacteriol. 16: 313-340.
262	
263	Skerman, V. B., Mcgowan, D. V. & Sneath, P. H. A. (1980). Approved lists of
264	bacterial names. Int. J. Syst. Bacteriol. 30: 225-420.
265	
266	Stackebrandt, E. & Woese, C. R. (1981). Towards a phylogeny of the actinomycetes
267	and related organisms. Curr. Microbiol. 5: 197-202.
268	
269	Staneck, J. L. & Roberts, G. D. (1974). Simplified approach to identification of aerobic
270	actinomycetes by thin-layer chromatography. Appl. Microbiol. 28:226–231.
271	
272	Tamaoka, J. & Komagata, K. (1984). Determination of DNA base composition by
273	reverse-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 125-
274	128.

- Tresner, H. D. & Backus, E. J. (1956). A broadened cocept of the characteristics of Streptomyces hygroscopicus. Appl. Microbol. 4: 243–250. Waksman, S. A. & Henrici, A. T. (1943). The nomenclature and classification of the actinomycetes. J. Bacteriol. 46: 337-341. Waksman, S. A. (1961). The actinomycetes, Vol. 2. Classification, identification and descriptions of genera and species. The Williams & Wilkins Co., Baltimore. Wellington, E. M. H. & Williams, S. T. (1981). Host ranges of phages isolated to Streptomyces and other genera. Zentralbl. Bakteriol. Microbiol. Hyg. I. Abt. Suppl. 1193-1198. Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A. & Sakin, M. J. (1983). Numerical classification of *Streptomyces* and related genera. J. Gen. Microbiol. 129: 1743–1813. Witt, D. & Stackebrandt, E. (1990). Unification of the genea Stretoverticillum and Sreptomyces, and amendation of Streptomyces Waksman and Henrici 1943.339^{AL}. Syst. Appl. Microbiol. 13: 361–371. Yan, X. C. (1992). Classification and identification of actinomycetes. Academic Press. Beijing.

Madium	Aerial	mycelium	Substrate	mycelium
Medium	Growth	Color	Growth	Color
Czapek's agar	-	none	+	none
Glycerol-asparagine agar (ISP* 5)	-	none	+	Brilliant
Glucose-asparagine agar	_	none	-	yellow none
Inorganic salt-starch agar (ISP 4)	-	none	++	Light yellow
Yeast extract-malt extract agar (ISP 2)	-	none	++	Brilliant yellow
Potato extract agar	-	none	+++	Brilliant yellow
Nutrient agar	-	none	++	Brilliant yellow
YIM 81# agar	_	none	++	Light yellow
YIM 82# agar	+	Pale grey	+	Pale yellow

306 **Table 1. Cultural characteristics of strain YIM 90018**^T

 307
 Description

 308
 Note: Colors taken from ISCC-NBS COLOR CHARTS Standard Samples No 2106 (Kelly 1900)

 309
 *ISP, International Streptomyces Project (Shirling & Gottlieb 1966).

 310
 +: weak; ++: modrate; +++: good; -: none

 311
 312

 313
 314

 315
 316

 317
 318

 319
 320

 321
 321

322 Table 2. Comparison of some morphological and cultural characteristics of YIM 90018^T with related species of the genus

323 Streptomyces

	Streptomyces rimosus subsp. rimosus	Streptomyces sclerotialus	Streptomyces niger	Streptomyces erumpens	Streptomyces kasugaensis	Streptomyces olivaceiscleroticus	YIM 90018
Aerial hyphae	Abundant, white, yellow	Abundant, bsclerotia, white, yellowish red, pale yellow green	Abundant, grey	Abundant, grey	Abundant, white	Abundant, pale white, grey black	Sparse, pale grey
Spore chain	Spiral	Spiral	Spiral	Spiral	loops and spiral	Spiral	Straight to flexuous (Rectiflexibiles)
Spore shape	Oval	Oval	Oval	/	/	Oval	Short rod
Substrate hyphae	Brown, red brown	Orange yellow, green, yellowish brown	Black	Brown	Brown, red brown	Black, brown	Yellow
Diffusible pigments	Yellow, yellowish brown	Yellowish brown, green	Brown	Yellow	Dark yellow, yellowish brown	Olive yellow, pale red	Non

324 Note: / = No test

Name of fatty acid 13:0 ISO				
	1	2	3	4
				0.6
13:0 ANTEISO			0.3	0.6
14:0 ISO	1.2	5.2	2.8	4.2
14:0	0.9		0.4	0.8
15:0 ISO	2.0	17.6	7.4	13.0
15:0 ANTEISO	6.6	25.7	34.0	31.5
15:0		1.0	1.7	1.9
16:0 ISO	16. 0	8.9	14.8	13.3
16:0 ANTEISO	1.4			
16:0	14.4	19.1	5.9	10.0
16:1 ISOH	4.0		0.8	
16:1 w9c	1.1			
17:0 ISO		12.0	4.2	6.8
17:0 ANTEISO	4.8	8.1	17.7	13.5
17:0 CYCLO				0.5
17:0			0.9	1.1
ote: 1 Streptomyce	s sparsus sp nov ($(\mathbf{VIM} \ 90018^{\mathrm{T}}) \cdot 2 \ 5t$	rentomices kasugaer	usis (DSM 4)
			reptomyces kasugaen tomyces niger (DSM	

325 Table 3. Comparison of fatty acids of YIM 90018^T with related species of the genus

326 Streptomyces

- 341 Fig. 1. Scanning electron micrograph showing spores and spore chains of strain YIM
- 342 90018^T after growth on YIM 82# agar at 28 °C for 15 days.

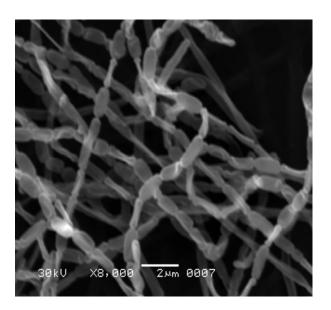
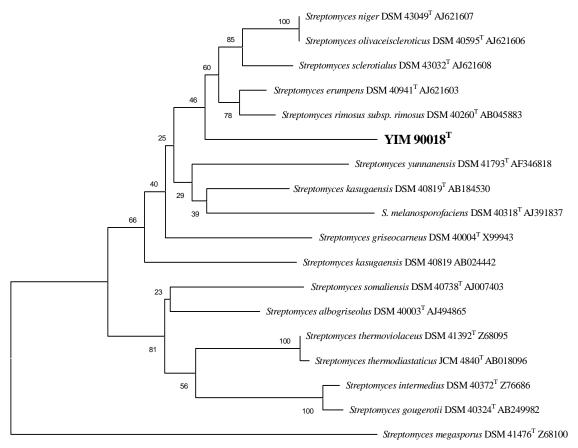
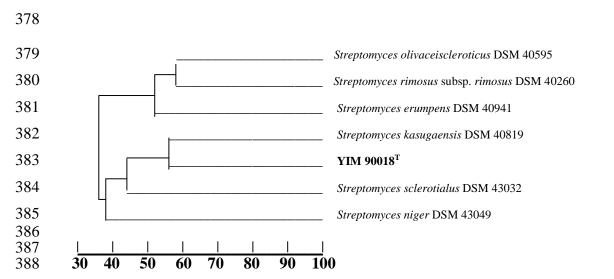




Fig. 2. Phylogenetic dendrogram obtained by distance matrix analysis of 16S rDNA
sequences, showing the position of strainYIM 90018^T among phylogenetic neighbours.
Numbers on branch nodes are bootstrap values (1000 resamplings). Bar indicated 0.5%
sequence divergence.

367

377 Fig. 3. Homology values of DNA-DNA hybridization of YIM 90018 with related species