Leibniz Institute for Baltic Sea Research Warnemünde

Energetics of mixing in a stratified basin without tides

Holtermann, Peter¹ | Umlauf, Lars¹ | Tanhua, Toste²

1: Leibniz Institute for Baltic Sea Research Warnemünde 2: Leibniz Institute IFM Geomar Kiel

Motivation/Baltic Tracer Release Experiment

• wind induced mixing (no tides) barotropic contribution to mixing near inertial wave contribution to mixing boundary/interior mixing → Mixing in the GB defines the residence time of water in the central Baltic Sea

combined approach of

 long time moorings (Temperature, Salinity, Currents) • tracer release (~1kg SF5CF3) • microstructure measurements (MSS-90)

Seasonality of mixing

· Same seasonality in the kinetic energy within the basin

• Diffusivity (Eq. (1), (2)) changes one order of magnitude between mixing/quiescent period. storm events are resolved • Volume averaged dissipation rates (Eq. (3), (4)) are in the order of 10-9 W kg⁻¹, the noise level of the microstructure probe, pointing to boundary mixing, where higher dissipations were measured

Effects of mixing: Buoyancy change of buoyancy over time · strong seasonality of the change → mixing period T_{mb} → quiescent period. T_{quie}

Budget Methods

Diffusivity The turbulent diffusivity is calculated by measuring the change of Salinity/Temperature over time and the assumption that advective fluxes are zero or neglegible:

$$\frac{d}{dt}\int_{V} SdV = -\int_{A} SwdA - \int_{A} F_{S}dA \quad (1) \quad \langle F_{S} \rangle_{A} = -\kappa_{S} \frac{\partial \langle S \rangle_{A}}{\partial z} \quad (2)$$

Dissipation rate

The volume averaged dissipation rate is calculated via the change of the potential energy in an fixed volume and the assumption of no advective fluxes

$$\frac{d}{dt}\int_{V} E_{P} dV = -\int_{V} b w dV - \int_{V} \langle w'b' \rangle dV \quad (3) \quad \gamma \varepsilon = -\langle w'b' \rangle \quad (4)$$

Tracer Analysis

SF₅CF₃Tracer Injection

first sole injection of SF5CF3 • injected in a depth of ~ 190 m · horizontally never homogeneous fitted to Gaussian curve • Diffusivities in the same order of magnitude as computed with budget methods • needs further analysis

counter clockwise (see trajectory plot above)

 decreasing to the centre and the south rim strongest on the north rim

Rotary spectrum

 Inertial (T < 1 day)
Clockwise, mostly inertial/near inertial internal waves

• Sub inertial (15 days > T > 1 day) · Highest contribution to the total energy Counter clockwise • Low (T<15 da

Eow (1<10 ddys)			
Energy	T _{low}	T _{subinertial}	Tinertial
%	9	64	27

- - \rightarrow explains 73% of the sub inertial motions
 - \rightarrow shows coherence via the same direction of the Eigenvectors (Figure above) Highly intern

Vertical Energy Flux of Internal Waves

Near inertial wave energy flux

 measurable phase shift •Near inertial internal waves R<<1 frequencies are not well known, broadband peak around

the inertial frequency

 circumvent unknown frequency via function G (Eq. (6)) and the well known phase shift · Energy is expressed via the dissipation rate (Eq. (7)), this can be compared with the budget methods and the microstructure measurements

Contact: Peter Holtermann (peter.holtermann@io-warnemuende.de)

Inflow

57 25°

(m s⁻¹) 0.00 [W kg⁻¹] 16 Oct 200 28 Oct 200 30 Ch± 200

Energy flux calculation via the phase velocity

unclear. Numerical modelling should shed some

light on the question

$$F_{z} = c_{g_{z}}E \square F_{z} = c_{z}GE \quad (5)$$

$$\langle \varepsilon \rangle = F_{z} A V^{-1}$$
 (7)

œ