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Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and
plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with
distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into
frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java,
however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous
décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular,
nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than
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Keywords: average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as
décollement determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of
splay fault the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006
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Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow
subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional
contact zones associated with oceanic basement relief and weak material patches of underthrust sediment
influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic
images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea

floor and which potentially contributes to tsunami generation during co-seismic activity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Active convergent margins displaying sediment accretion as the
predominant mode of mass transfer have been identified as an end-
member type of subduction zones (von Huene and Scholl, 1991; Clift
and Vannucchi, 2004). In these systems, sediment may be added to the
toe of the margin wedge forming a frontal prism (frontal accretion) or at
depth to the base of the upper plate causing uplift (underplating or basal
accretion) or both (Moore and Silver, 1987). Basal accretion requires
sediment underthrusting beyond the frontal accretionary prism along
the décollement zone. Décollements at accretionary margins form
detachments between the upper deforming accretionary prism and the
underthrusting sequence (Chapple, 1978; Davis et al., 1983) and at
some margins continuous, high-amplitude horizons have been imaged
for tens of kilometers landward of the deformation front (e.g. Barbados
(Westbrook et al., 1988; Shipley et al., 1994), and Nankai (Moore et al,,
1990; Bangs et al., 2009)).

Décollement reflection characteristics have been analyzed at the
Nankai and Barbados margins to reveal spatial variations of fault
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properties (e.g. Shipley et al., 1994; Bangs et al., 1996, 1999, 2004; Park
et al, 2002a; Tsuji et al., 2005). Underneath the northern Barbados
accretionary prism, the décollement zone encompasses a heteroge-
neously consolidating sedimentary sequence (Moore et al., 1998). Pore
fluid pressures in excess of hydrostatic within the underthrust sequence
have been predicted by e.g. Saffer (2003) and Tsuji et al. (2008) off
Muroto (Nankai) and by e.g. Bekins et al. (1995) for Barbados. Elevated
pore pressures beneath the décollement are linked to a decrease in
effective stress along the plate boundary (e.g. Skarbek and Saffer, 2009)
and are related to the onset of the seismogenic zone (e.g. Moore and
Saffer, 2001). Calahorrano et al. (2008) recently quantified physical and
mechanical property variations of the underthrusting sedimentary
sequence using seismic velocities along the southern Ecuador margin. A
common aspect of all these studies is that they reveal a complicated,
non-uniform pattern of physical properties along the décollement zone.

Here we present the detailed structure of the accretionary
convergent margin off western Java. Frontal accretion has previously
been imaged along this central segment of the Sunda margin off
southern Sumatra to western Java from refraction/reflection seismics
and bathymetric data (Kopp et al., 2001; Schlueter et al., 2002; Kopp
et al,, 2002, 2008). Mass balance calculations indicate a subduction
history dominated by accretion since the Late Eocene (Kopp and
Kukowski, 2003). In this study, based on pre-stack depth-migrated
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seismic reflection data, we resolve the anatomy of the plate boundary
fault. The 190 km long multichannel seismic (MCS) line SO137-03 is
located across the western Java forearc (Fig. 1), covering the trench,
frontal prism, active and fossil accretionary prisms (forearc high) and
forearc basin (Fig. 2). Acquired in 1998 and using a 3500 m long source-
receiver offset, these data comprise the highest quality MCS profile
available in the area and are complemented by velocity information
gained from coincident refraction data (ocean-bottom hydrophone
(OBH) line SO138-05, Fig. 1) (Kopp et al., 2001). Wide-angle velocity
information was incorporated into the pre-stack depth migration
(Fig. 3). We applied an iterative migration procedure, which uses
seismic velocities constrained by focusing analyses and common
reflection point gathers (Mackay and Abma, 1993). Seismic velocities
used during the migration process are interval velocities. The energy of a
reflection point in the subsurface is focused using a range of velocities
until an optimal image is achieved, which provides the highest energy at
zero offset. Using an ideal velocity, the reflection position will be
corrected. This in turn will yield better constraints on velocities during
the next iteration and ray paths are determined more accurately. Pre-
stack depth migration thus images complex, dipping structures even in
the presence of a strong lateral velocity gradient far better than
conventional time migration procedures (Guo and Fagin, 2002).

2. Margin architecture
2.1. Structural segmentation of the forearc

The central Sunda margin off western Java to southern Sumatra
marks the transition from orthogonal convergence in the east to
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oblique subduction to the northwest (Fig. 1) (e.g. Hamilton, 1979;
Lelgemann et al., 2000). The broad-scale margin architecture (Fig. 2),
which is predominantly characterized by the evolution of an
asymmetrical bivergent wedge (Willet et al., 1993; Hoth et al,
2007), arises from a compressive regime related to the active
subduction of the Indo-Australian plate underneath Eurasia since
the Eocene (Hall and Smyth, 2008). Initial formation of the wedge
occurred against the original arc rock framework, which is of
continental origin off Sumatra and its character changes to an
oceanic-type basement rock off western Java, as inferred from seismic
and gravity data (Kieckhefer et al., 1980; Grevemeyer and Tiwari,
2006). The seaward tapering terminus of this original margin wedge is
located under the forearc basin and during the early phases of
subduction served as backstop to the juvenile accretionary wedge.
This deep-lying boundary previously remained unresolved in con-
ventional processing (Kopp et al., 2001), but is now imaged in the pre-
stack depth-migrated section as a highly reflective transition zone
(Fig. 4). It coincides with a decisive increase in seismic velocities as
revealed by refraction models (Kopp and Kukowski, 2003).

The now quiescent, >80 km wide accretionary wedge (Schlueter
et al,, 2002), termed the inner wedge' (Fig. 1) fronts the forearc basin
and forms the forearc high with vertical dimensions exceeding 15 km
between the seafloor and the subducting plate (Kopp and Kukowski,
2003). Accretion rates are sufficiently high for a landward slope to
develop at the transition from the inner wedge to the forearc basin
(Fig. 4), similar to corresponding structures offshore Sumatra (Moore
et al., 1980; Karig et al., 1980a) or offshore Bali/Lombok (Planert et al.,
in review). Continued wedge growth results in thrusting at the rear
(km 125-140), causing progressive deformation of the lower forearc
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Fig. 1. Shaded bathymetry map of the Sunda trench offshore western Java. Global relief (Amante and Eakins, 2008) is overlain by high-resolution ship track data acquired by RV
SONNE (cruises SO137, SO138, SO139, SO176, SO179). Morphotectonic interpretation is based on high-resolution swath data as well as existing seismic data (Schlueter et al., 2002;
Kopp and Kukowski, 2003). Thick black line: coincident seismic reflection and refraction profile SO137-03/SO138-05. Forearc segmentation correlates with structural domains: a =
Inner Wedge, b = Outer Wedge, ¢ = Frontal Prism. Yellow stippled line tracks surface trace of splay fault system. Star shows epicenter of 2006 Java tsunami earthquake. White circles
show western Java volcanoes for which magma geochemical data exist: 1= Mt. Salak, 2 = Mt. Guntur, 3 = Mt. Gallunggung. Inset shows study area on the Sunda margin.
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Fig. 2. Structural interpretation (upper panel) and depth-migrated seismic images of the décollement zone (lower left) and seaward limit of the forearc basin (lower right). Colored
boxes in the upper panel indicate location of seismic data examples displayed below. The margin macrostructure consists of a >6000 m deep trench adjacent to a frontal prism
characterized by imbricate thrusting. The large bivergent wedge is composed of an outer wedge (Neogene accretionary prism) and an inner wedge (Paleogene accretionary prism)

(compare Fig. 1).

basin sediment infill as imaged along the seaward margin of the basin
in the MCS data (Fig. 2 inset). The upper strata onlap the inner wedge
and are only moderately warped.

The internal seismic structure of the inner wedge exhibits limited
coherency (Fig. 4), probably due to late stage deformation dismem-
bering former accreted sediment slices, as also seen in the Nankai
margin (Moore et al., 1990). Internal deformation of the inner wedge
is, at least episodically, persistent, as documented by active out-of-
sequence thrusting, which offsets the seafloor (Fig. 2, e.g. around
profile km 70-80 and 100). The internal deformation documented by
inner wedge thrusting compensates geometry re-arrangements to
adjust to boundary conditions and wedge strength (Davis, 1996). Due
to limited resolution, the depth extent of these thrust faults remains
undetermined.

Fronting the inner, fossil wedge is the outer, Neogene wedge, which
is characterized by landward-dipping, thrust-bound sheets each
approximately 4-6 km wide (Fig. 3). The imbricate thrusting results in
an arcward thickening from 5.5 km at the seaward limit to over 7 km at
the transition to the inner wedge (i. e., over a distance of less than
25 km). Tectonic thickening by imbrication is a commonly observed
process in accretionary subduction zones where the wedge becomes
progressively more consolidated and cemented towards the arc (e.g.
von Huene et al., 2009). The outer wedge represents a compressive zone
with discrete localization of deformation along the thrust faults. The
transition from the outer wedge to the inner wedge is marked by a splay
fault system, whose surface trace is recognized in multibeam bathym-
etry for at least 600 km along strike of the margin (Fig. 1) (Kopp and
Kukowski, 2003). A megasplay fault system forming a comparable
structural segment boundary and mechanical discontinuity has recently
been imaged along the Nankai subduction zone in 2-D and 3-D seismic
data (Park et al,, 2000, 2002b; Moore et al., 2007; Bangs et al., 2009),
along the Ecuador-Colombia margin (Collot et al., 2008) and offshore
Bali-Lombok (Lueschen et al., in review).

The internal structure of the inner and outer wedges reflects their
evolution history: the lateral growth of the inner wedge is mainly
attained by tectonic addition of material from the outer wedge (von
Huene et al.,2009). Both wedges are uniformly developed from Sumatra
to western Java (compare Fig. 1). They form a characteristic feature
along those margin segments dominated by accretionary processes. Off
central Java (110°E), however, where underthrusting of an oceanic
plateau is occurring, inner and outer wedges cannot be uniquely
distinguished and a frontal prism, which is present trenchward of the
outer wedge off western Java (Fig. 1), is missing entirely owing to recent
and ongoing erosion (Kopp et al., 2006). A structural segmentation
similar to our seismic line, however, is also observed along the erosion-
dominated Ecuador-Colombia margin, as described by Collot et al
(2008), implying that this general segmentation is not a direct function
of material flux (i.e. accretion or erosion).

2.2. Décollement zone and plate boundary structures

Approximately 1.9 km of sediment is found at the deformation
front in the sector of the Java trench (Fig. 3) covered by our seismic
line. Normal faulting of the lower trench sediment sequence precedes
the compressional deformation in the ~13 km wide frontal prism.
Normal faulting in the incoming hemipelagic sediments has also been
observed in the Nankai subduction zone (Heffernan et al., 2004),
where polygonal fault patterns are attributed to differential compac-
tion above irregular oceanic basement.

Seaward growth of the frontal prism occurs by tectonic addition of
detached lower plate sediment (Kopp et al, 2001, 2002). Trench
sediment uplift is initiated by displacement along a frontal thrust,
abruptly truncating the upper portion of the stratified trench sequences
at the deformation front and marking the onset of horizontal shortening
and contractive deformation of the frontal prism (Fig. 3). Imbricate
thrusting is the dominant structural style of the frontal prism, similar to
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Fig. 3. Pre-stack depth-migrated seismic images of MCS profile SO137-03 (location shown in Fig. 1). A: seismic image of the trench, frontal prism and outer wedge overlain by the interpretive linedrawing of Fig. 2. Thick red lines trace velocity-
based boundaries of the corresponding wide-angle model. Numbers are seismic velocities in km/s. Blue triangles denote ocean-bottom hydrophone positions. B: corresponding seismic image. Shortening is accommodated by imbricate
thrusting of the frontally accreted sediment in the frontal prism. Approximately 1/3 of the trench material is underthrust beneath the frontal prism in a 500-900 m thick décollement zone, characterized by discontinuous high amplitudes. An
upward bulging of the reflective band indicates the location of two subducted oceanic basement highs between 25-29 km and 41-44 km offset, likely small seamounts of approximately 1.4 km and 0.8 km height, respectively. The v-z function
of OBH 56 is displayed, showing the seismic velocity inversion in the décollement zone.
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of the forearc basin (around km 125-140). The highly reflective zone below the basin at ~150 km offset corresponds to a first-order velocity boundary observed in the refraction data. This transition from the inner wedge to the original margin
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the folding and thrusting observed off Nias Island offshore Sumatra
(Moore and Curray, 1980; Karig et al., 1980b; Franke et al., 2008). The
intense deformation observed here is common for prisms experiencing
mass transfer by sediment accretion (e.g. Cascadia (MacKay et al., 1992;
Cochrane et al., 1994) or South Chile (Polonia et al., 2007)), though the
deformation pattern off Java is more complex than e.g. the classical fold-
and-thrust belt with hanging wall anticlines observed in Nankai (Taira
et al., 1991; Moore et al., 2001). However, the increase in thickness and
length of the imbricate sequences from the frontal prism to the outer
wedge as seen off Java has also been observed in the Muroto transect of
the Nankai subduction zone (Bangs et al., 2004).

The floor sediment sequence in the proto-thrust zone of the trench is
bound on top by a proto-décollement located approximately 700 m
above the oceanic basement (Fig. 3). It is in the proto-thrust zone that
slip along the décollement is initiated (Tsuji et al., 2005). The
stratigraphic level of the décollement is typically governed by changes
in physical properties (e.g. Le Pichon et al., 1993; Moore et al., 1998;
Bangs et al., 2004) or may be controlled by lithology (MacKay, 1995).
Whereas in Nankai (e.g. Moore et al., 1990; Bangs et al., 2006; Moore
et al,, 2007), Barbados (e. g. Bangs and Westbrook, 1991; Shipley et al.,
1994), Ecuador (Calahorrano et al,, 2008), and Costa Rica (e.g. Saffer,
2003) a distinct, sharp décollement reflector forms above a minimally
deformed subducted section that still retains a stratified structure, a
band of semi-continuous, high-amplitude, low-frequency landward-
dipping reflections delineates the interplate boundary off Java (Fig. 3)
and coincides with the plate interface observed in the corresponding
wide-angle data. A moderate strength contrast between overlying,
accreting sediment and the underthrusting sequence landward of the
deformation front may explain why a sharp décollement reflection
similar to Nankai or Barbados is not observed off Java (Tsuji et al., 2008).

The ~500-900 m thick, high-amplitude reflective zone overlying the
oceanic basement is resolved to a depth of 15 km underneath the frontal
prism and the outer wedge (Fig. 3), but loses its distinct seismic
character underneath the inner, fossil accretionary wedge. The
interpretation as a décollement zone is supported by the velocity
information gained from the wide-angle data, which reveal a low
velocity zone associated with the underthrust sediment (Fig. 3). A
similar velocity inversion has been identified from pre-stack depth-
migrated data e.g. at Nankai (Costa Pisani et al.,2005) and Ecuador (Sage
etal., 2006; Calahorrano et al., 2008), where comparable velocity values
(2.6 km/s - 2.8 km/s) have been determined. Subducting oceanic
basement relief modulates the thickness of the décollement zone,
which thins above two subducting seamounts identified between
profile km 25-29 and km 41-44, while adjacent lows (at km 19-22, km
37-40 and km 47-53) carry thicker than average sediment. An
analogous pattern has also been observed along the Ecuadorian margin
(Sage et al., 2006). In addition, differential subduction rates and
sediment supply to the trench will result in a variable thickness of the
décollement zone, as observed off Java (Fig. 3).

Similar reflective zones have been attributed to subduction erosion
involving underthrust sediment and upper plate material fragments
disintegrated by hydrofracturing and fluid-induced erosive processes,
causing enhanced reflectivity (Sage et al., 2006; Ranero et al., 2008).
However, instead of subsidence of the forearc as commonly associated
with subduction erosion (von Huene et al., 2004), the Java forearc is
experiencing uplift (Schlueter et al., 2002). We thus speculate that basal
accretion of trench sediment underthrust beyond the frontal prism and
the outer wedge contributes to the vertical growth of the forearc high.
Active underplating has previously been observed in pre-stack depth-
migrated data e.g. underneath the Nankai accretionary wedge (Park
etal., 2002a), where a down stepping of the décollement at ~25 km and
at ~45 km landward of the deformation front is resolved in 3-D data
(Bangs et al., 2004) and is associated with material transfer to the base of
the upper plate, resulting in complete underplating of the entire
underthrust sequence. Offshore Alaska, underplating of long, unde-
formed sheets is observed (Gutscher et al., 1998).

Underthrust sediment that is not underplated but transported to
mantle depths of magma generation (~100 km) is often recognized by
its imprint on arc magma chemistry (Plank and Langmuir, 1993; Stern,
2002).Underplating is not clearly resolved in our depth section, partially
due to multiple interference. Minimal sediment recycling to mantle
depth, however, is supported by geochemical data from western Java
volcanoes Mt. Guntur and Mt. Gallunggung (Fig. 1), which indicate a low
Th/La ratio (Plank, 2005). Other volcanic centers in western Java,
however, show more complex differentiation and contamination
processes. Mt. Salak is the best-studied volcano today in western Java
(Fig. 1) (Handley et al., 2008). Geochemical evidence from Mt. Salak
indicates the incorporation of subducted sediment with Nd-Hf isotopic
data suggesting a high terrigenous component (Handley et al., 2008).
However, the young sediments in the trench and underneath the frontal
prism today do not interact with the source of present-day Sunda arc
magmas (Gasparon and Varne, 1998) due the potential recycling period
of 4Ma (based on a convergence rate of 6.7 cm/a and a magma-
generating depth of 100 km). The geochemical variability and isotopic
heterogeneity observed along the Sunda margin (Handley, 2006) reflect
the variability of near-trench subduction processes. Reflection seismic
data acquired along the Sunda margin (Moore and Curray, 1980; Karig
et al,, 1980b; Moore et al., 1980, 1982; Schlueter et al., 2002; Franke et
al., 2008; Mueller et al, 2008; Singh et al., 2008; Lueschen et al., in
review) in combination with refraction data (Kopp and Kukowski, 2003,
Kopp et al,, 2006; Shulgin et al.,, 2009; Planert et al., in review) show a
remarkable variation in the amount of sediment accreted to the frontal
prism or underthrust in the décollement zone. The existence of a large
bivergent accretionary wedge implies, however, that only a small
fraction of the underthrust sediment is subducted to mantle depth. The
marked differences in the deformational framework along strike of the
Sunda margin have also been documented for other subduction zones,
e.g.at Nankai (Moore et al.,2001) or southern Chile (Polonia et al., 2007)
and have been attributed to variations in lithology, physiography of the
incoming plate and physical property variations of the prism and
décollement zone.

3. Seismogenic processes

Our seismic profile is located approximately 100 km west of the
2006 Java tsunami earthquake epicenter (Fig. 1). Co-seismic strain
release of this event involved the shallow portion of the megathrust
and triggered a tsunami, which caused more than 630 casualties
(Ammon et al,, 2006). In the shallow subduction environment, the
anatomy of the décollement zone regulates the friction behavior of
the megathrust fault, which is influenced by the thickness and
physical properties of the underthrust sediment as well as by lower
plate basement relief (Bilek, 2007). Based on the model by Bilek and
Lay (2002), several authors have speculated that the 2006 Java
earthquake involved rupture of regions of unstable friction embedded
in areas of conditionally stable material, resulting in the observed slip
heterogeneity (Ammon et al., 2006; Bilek and Engdahl, 2007).
Subducted high-relief features, including seamounts, ridges or
fracture zones, may account for locally enhanced frictional contacts
(e.g. Bilek, 2007; Lay and Bilek, 2007) along the Java margin, which
otherwise shows low seismic coupling (Newcomb and McCann, 1987;
Pacheco et al.,, 1993). Direct evidence for features causing strong
coupling patches for the 2006 event is missing so far due to lack of
seismic data. The 1994 Java tsunami earthquake off eastern Java is
associated with a subducted seamount, which can be identified in the
bathymetric data (Abercrombie et al., 2001). Our seismic line shows
two moderate sized seamounts subducted beneath the outer wedge
whose passage has left no surface trace. Though our seismic line lies
east of the slip region, the tectonic setting of the 2006 rupture area is
comparable and we speculate that similar subducted lower plate relief
will influence seismogenesis there. The heterogeneous plate interface
off western Java is characterized by marked morphological structure,
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which potentially serves as an asperity and nucleus to an earthquake.
Energy would subsequently be transferred into weaker material
patches, as imaged along our profile, thus slowing energy propagation
(Bilek and Engdahl, 2007). A retreat of the deformation front seaward
of the epicenter location as well as the local morphological structure
in the vicinity of the epicenter are indicative of subducted seafloor
relief deforming the upper plate (Fig. 1).

The 1992 Nicaragua tsunami earthquake was a comparable event
(Ammon et al., 2006; Lay and Bilek, 2007). At least three moderately-
sized subducted seamounts (1-2 km high) have been identified from
seismic data in the zones of enhanced moment release (McIntosh
et al., 2007). The Java and Nicaragua margins, however, show
fundamental differences: igneous oceanic crust extents close to the
trench off Nicaragua, while an accretionary prism characterizes the
upper plate off Java. This may be the cause why subducted seamounts,
which are present in both margins, modify upper plate seafloor
morphology off Nicaragua, whereas off Java, though comparable in
size along our profile, they cannot be unambiguously identified from
seafloor deformation.

Another difference regards the splay fault system, which separates
the outer and inner wedges off western Java. The splay fault is an out-
of-sequence thrust (Kopp and Kukowski, 2003) associated with strain
localization and the onset of seismic behavior (Moore et al., 2007).
Splay faulting is not observed off Nicaragua (McIntosh et al., 2007), but
has been associated with tsunamigenic earthquakes along the Nankai
margin (Moore et al, 2007; Bangs et al, 2009). Splay faults are
ubiquitous along the northern and central Sunda margin (Kopp and
Kukowski, 2003; Sibuet et al., 2007) as well as offshore Bali and
Lombok (Lueschen et al., in review). According to the ‘dynamic
Coulomb model’ of Wang and Hu (2006) co-seismic velocity
strengthening of the shallow décollement during enhanced compres-
sive deformation of the outer wedge will stimulate upward slip
diverged along the splay fault. The splay fault system imaged in our
seismic line thus is an attractive candidate for slip to the seafloor,
causing tsunamigenesis.

4. Conclusions

The re-processed and newly pre-stack depth-migrated profile
across the western Java margin images the structural segmentation of
the forearc and provides an account of the kinematic evolution of the
subduction complex. The complex plate interface is characterized by
local morphologic structure and underthrust sediment patches, which
likely influence the frictional properties of the shallow megathrust
zone. Compared to other décollement zones in large accretionary
systems (e.g. Barbados (Westbrook et al., 1988), Cascadia (Adam et al.,
2004) or Nankai (Bangs et al., 2004)), the Java case shows a non-
uniform character of irregular thickness (Figs. 2 and 3). Unlike for the
well-studied Barbados or Nankai margins, for which a remarkable
imaging quality has been documented (e.g. Bangs et al., 1999, 2009),
the western Java data are not sufficient to quantify physical property
changes along the décollement. The seismic images of the spatially
variable, nonlinear pattern of the décollement zone, however, support
the inference that differential friction along this margin segment may
influence earthquake seismogenesis. The splay fault system, which
serves as a mechanical boundary between the inner and outer
wedges, potentially transfers slip to the seafloor (Kame et al., 2003).
This thrust fault connects to the décollement at a depth of
approximately 12 km, rising to the seafloor where it reaches its
steepest slope, thus potentially causing significant vertical displace-
ment of the seafloor as often associated with tsunami generation. The
2006 tsunami earthquake occurred 100 km east of our line and
underscores the persistent seismic and tsunamigenic hazard of this
margin (e.g. Abercrombie et al., 2001; Bilek and Engdahl, 2007; Brune
et al., in review).
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