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SUMMARY 
Global warming has already and is continuing to impact the global oceans and its 

inhabitants in various ways. Half of the global primary production is performed by 

phytoplankton in the oceans and about half of this marine primary production is 

utilised by heterotrophic bacteria. This way the heterotrophic marine bacteria 

channel a substantial amount of primary organic carbon through the microbial 

loop and hence represent an important part of the marine carbon and nutrient 

cycles. Understanding the influence of climate change on these important 

processes is therefore essential for an assessment of the vulnerability of the 

carbon cycle and possible feedbacks.  

 

The presented work was conducted as part of the Kiel AQUASHIFT mesocosm 

cluster, which set out to investigate the impacts of climate change on the spring 

succession of plankton communities in moderately deep, well mixed water bodies 

such as the Kiel Bight. This thesis reports results from investigations on the 

temperature dependent coupling between phytoplankton and bacterioplankton, 

with respect to additional effects of light intensity and inorganic nutrient 

concentrations. During four consecutive years, mesocosm experiments with 

natural Kiel Fjord winter plankton communities investigated the influences of 

increasing water temperatures of up to ∆T +6°C and different light intensities 

between 16 and 100% of natural incident light. In an additional microcosm 

experiment with a single algal species and the natural bacterial community, a full 

factorial combination of three different temperatures and two inorganic nutrient 

concentrations was used, in order to evaluate the combined effects of both 

parameters on the algal-bacterial coupling. In all experiments the process of 

autotrophic carbon dioxide assimilation was assessed by primary production 

measurements. Heterotrophic bacterial organic carbon utilisation was measured 

by different parameters such as cell abundance, biomass production and 

respiration. The coupling of both processes was evaluated on the basis of timely 

overlap of the occurring peak development during the spring bloom succession, 

and by the ratios of heterotrophic to autotrophic quantities.  
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Summarising the results from all experiments it can be concluded, that increasing 

temperatures generally lead to an increased heterotrophic bacterial organic 

substrate utilisation relative to primary production through a combination of 

decreased time-lag between the two peaks and a stronger increase in the 

bacterial activity parameters. If a future warming trend would be accompanied by 

a further brightening, the supplemental promotion of primary production would 

increase the absolute amounts of cycled organic matter. Future increasing 

precipitation, leading to increased P-limitation in coastal waters would lead not 

only to an increased absolute amount of cycled carbon through increased primary 

production, but additionally to an increased relative amount of remineralised 

organic carbon through the microbial loop. 

 

The results described in this work on changes in the relationship between 

autotrophic carbon fixation and its utilisation by heterotrophic bacteria under 

warmer, brighter and more P-limited marine environments demonstrate how the 

marine organic matter cycling could be substantially altered in a future climate. An 

increased organic matter transfer through the microbial loop has the potential to 

alter the whole structure and functioning of the marine food web and the biological 

sequestration of carbon to depth. In essence, an increase in the trophic levels 

facilitates a reduced transfer of energy and matter to higher trophic levels and, 

together with a generally increased respiration, leads to a substantial 

enhancement of CO2 emissions and hence represents a positive feedback loop to 

the global climate change problem. 
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ZUSAMMENFASSUNG  
Die globale Klimaerwärmung hat die Ozeane der Welt bereits in vielfältiger Weise 

beeinflusst und dieser Einfluss dauert an. Die Hälfte der globalen 

Primärproduktion findet in den Ozeanen statt und wiederum circa die Hälfte dieser 

Primärproduktion wird von heterotrophen Bakterien genutzt. Auf diese Weise 

schleusen die heterotrophen marinen Bakterien eine erhebliche Menge an 

primärproduziertem organischen Kohlenstoff durch die mikrobielle Schleife und 

repräsentieren daher einen wichtigen Teil der marinen Kohlenstoff- und 

Nährstoffkreisläufe. Es ist daher von enormer Wichtigkeit, den Einfluss des 

Klimawandels auf diese wichtigen Prozesse zu verstehen, um eine Einschätzung 

der Anfälligkeit des Kohlenstoffkreislaufes und mögliche 

Rückkopplungsmechanismen geben zu können.  

 

Die hier vorgelegte Arbeit wurde als Teil des Kieler AQUASHIFT Mesokosmen 

Clusters durchgeführt, welches die Einflüsse des Klimawandels auf die 

Frühjahrssukzession des Planktons in mäßig tiefen, durchmischten 

Wasserkörpern, wie der Kieler Bucht, untersucht. Diese Dissertation legt die 

Ergebnisse von Untersuchungen über die temperaturabhängige Kopplung 

zwischen Phytoplankton und Bakterienplankton dar, unter zusätzlicher 

Berücksichtigung der Einflüsse unterschiedlicher Lichtintensitäten sowie 

verschiedener anorganischer Nährstoffkonzentrationen. In vier aufeinander 

folgenden Jahren wurden Mesokosmosexperimente mit natürlichen überwinterten 

Planktongemeinschaften aus der Kieler Förde durchgeführt und die Einflüsse 

einer Erwärmung um bis zu +6°C und von Lichtverhält nissen zwischen 16 und 

100% der natürlichen Lichteinstrahlung untersucht. In einem zusätzlichen 

Mikrokosmosexperiment, mit einer einzelnen Algenart und einer natürlichen 

Bakteriengemeinschaft, wurde in einer faktoriellen Kombination der kombinierte 

Einfluss von drei Temperaturen und zwei anorganischen 

Nährstoffkonzentrationen auf die Algen-Bakterien Kopplung beurteilt. In allen 

Experimenten wurde der Prozess der autotrophen Kohlenstoffassimilation als 

Primärproduktion gemessen. Die heterotrophe Kohlenstoffverwertung durch 

Bakterien wurde anhand verschiedener Parameter, wie der Bakterienabundanz, 
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Biomasseproduktion und Respiration bestimmt. Die Kopplung beider Prozesse 

wurde auf Basis der zeitlichen Überlappung der Peaks während der Entwicklung 

der Frühjahrsblüte beurteilt, sowie über die Verhältnisse von heterotrophen zu 

autotrophen Quantitäten. 

 

Zusammenfassend für alle Experimente kann abgeleitet werden, dass steigende 

Temperaturen im Allgemeinen zu einer erhöhten heterotrophen bakteriellen 

Verwertung organischen Materials führte, relativ zur Primärproduktion, folgernd 

aus einer Kombination aus verringerter Zeitversetzung der beiden Peaks und 

einer relativ stärkeren Förderung bakterieller Aktivitätsparameter. Würde ein 

zukünftiger Trend zur Erwärmung von einem weiteren Anstieg der Lichtintensität 

begleitet, würde eine zusätzliche Förderung der Primärproduktion die absolute 

Menge an organischem Kohlenstoff im Kreislauf erhöhen. Eine erhöhte 

Niederschlagsmenge, wie vorhergesagt, könnte zu steigender P-limitation in 

Küstengewässern führen. Dadurch würde nicht nur, über erhöhte 

Primärproduktion, die beschriebene absolute Menge an Kohlenstoff im Kreislauf 

steigern, aber zusätzlich auch die relative Menge dieses organischen Materials 

erhöhen, die in der mikrobiellen Schleife remineralisiert würde. 

 

Die in dieser Arbeit beschriebenen Ergebnisse zu den Veränderungen im 

Verhältnis zwischen autotropher Kohlenstofffixierung und heterotropher 

Verwertung unter wärmeren, helleren und stärker P-limitierten Verhältnissen in 

marinen Lebensräumen demonstriert, wie der marine organische 

Kohlenstoffkreislauf in einem zukünftigen Klima substantiell beeinflusst sein 

könnte. Ein verstärkter Fluss organischen Materials durch die mikrobielle Schleife 

hat das Potential die gesamte Struktur und Funktion des marinen Nahrungsnetzes 

zu verändern, ebenso wie die biologische Sequestration von Kohlenstoff in die 

Tiefen der Ozeane. Im Wesentlichen bewirkt eine Erhöhung der trophischen 

Ebenen einen reduzierten Transfer von Energie und Material zu höheren 

trophischen Ebenen und führt, zusammen mit einer generell verstärkten 

Respiration, zu einer erheblichen Ausweitung der CO2 Emissionen und damit zu 

einer positiven Rückkopplung der globalen Klimawandelproblematik.  
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INTRODUCTION 
 

The World Ocean comprises the bulk of the global hydrosphere and covers about 

71% of the earth’s surface. The oceans govern global water balance and climate, 

control the global nutrient matter cycles and contribute essentially to mankind’s 

livelihood through their abiotic and biotic resources. Global warming has already 

impacted the global oceans and its inhabitants in various ways and is continuing 

to do so. The direct and indirect influences of warming on processes like the 

ocean’s currents, stratification and nutrient supply are widely unknown and 

feedback loops complicate the situation. Concerning the biotic resources, about 

50 % of the total global annual primary production is performed by phytoplankton 

in the oceans. The phytoplankton spring bloom is the major and most important 

biological event in the temperate climate zones, giving the essential seasonal 

pulse of primary production at the base of the whole marine food web. However, 

phytoplankton C-fixation is counteracted by degradation processes, as marine 

heterotrophic bacteria utilise up to 50% of this marine primary production, thereby 

channelling a substantial amount of organic carbon through the microbial loop 

(Azam et al. 1983, Hagström et al. 1988). This demonstrates impressively the 

relevance of marine heterotrophic bacteria for the marine carbon and nutrient 

cycles. Understanding the influence of climate change on these fundamental 

processes is therefore essential for the evaluation of the vulnerability of the 

carbon cycle and possible feedback reactions. The presented work is part of a 

large study on the impact of increasing temperatures and light variability on the 

Baltic Sea spring bloom succession. In this introduction I will therefore describe 

the framework for the presented studies, concerning global warming, the marine 

microbial world and interacting processes between carbon fixation and CO2 

recycling processes. 

 

Global warming – background of the study 

It is now widely accepted that human greenhouse gas emissions (mainly carbon 

dioxide, but also methane, nitrous oxide and halocarbons) due to fossil fuel 

burning, changes in land use and deforestation are responsible for the global 
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temperature increase the Earth is currently experiencing (IPCC 2007). The 

present CO2 concentration of 380 ppm is the highest compared to the last 

420,000 years as inferred from ice-cores (Petit et al. 1999). Also the speed of 

increase in greenhouse gases caused by human activities is faster than any time 

before, with a rise of 70% between 1970 and 2004 (IPCC 2007). Due to the 

response time of the Earth’s climate, the observed warming is predicted to 

continue for centuries to come, even if emissions would be stabilised at the 

current levels (IPCC 2007). Hansen et al. (2006) report a rise in global mean 

temperature of approximately 0.8°C during the last century, with a recent increase 

in the speed of warming to 0.2°C per decade for the  last 30 years. Furthermore, 

the global average temperature increase in the upper 3000 m of the oceans is 

estimated to be 0.037°C for the years 1955 - 1998 ( Levitus et al. 2005). The 

changes in the abiotic and biotic world as a consequence of global warming can 

already be observed manifold and there is worldwide effort in trying to predict 

future consequences to the natural world and ultimately human livelihood. In this 

sense, the presented work is part of this effort, assessing possible consequences 

for a future oceanic carbon cycle. 

 

Abiotic changes 

In any case, abiotic and biotic changes in the oceans will directly and indirectly 

influence the marine microbes and their interaction. For example, abiotic changes 

include thermal expansion of the oceans and progressive sea-ice melt, which lead 

to rising sea levels. Changes in atmospheric circulation (due to differing 

temperature changes over land and oceans) can have consequences for storm 

frequencies, precipitation patterns and increased upwelling events. High-latitude 

oceans usually exhibit a deep winter mixing, which represents a light limiting 

situation for phytoplankton that is only released through the thermal stratification 

occurring in spring. Global warming is expected to lead to increased stratification, 

which is likely to enhance primary production by increased light availability and by 

prolonging the growing season (Behrenfeld et al 2006). The expansive stratified 

low-latitude oceans on the other hand, are expected to show the opposite 

reaction, because increased thermal stratification and a deepening of the 
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thermocline prevent necessary nutrient input into the light-saturated euphotic 

layer, hence reducing primary production (Behrenfeld et al 2006, Harley et al. 

2006). In this context, the results from the presented study on the different effects 

of light intensities and inorganic nutrient concentrations might reveal general 

response patterns of the planktonic microbial community, which are important and 

applicable to different oceanic regions and the oceans in general.   

Increased CO2 does not only act as greenhouse gas, but also leads to ocean 

acidification. About 50% of the increased CO2 between 1800 and 1994 has 

already been taken up by the oceans (Sabine et al. 2004), leading to a decrease 

in ocean pH by 0.1 units (IPCC 2007). Estimates of future development suggest 

pH to drop for a further 0.3 to 0.5 units (0.14 – 0.35, IPCC 2007) until the end of 

the century, changing the saturation horizons of aragonite, calcite and other 

minerals essential to calcifying organisms (Feely et al. 2004).  

As light is the primary energy source for primary production, possible future 

changes of solar radiation on Earth have to be considered in the context of global 

warming and its consequences. Changes in global solar radiation can have 

profound effects on surface temperature, the hydrological cycle and ecosystems 

via primary production. In the literature, two different periods of solar radiation 

variability are described, namely the “dimming” period before 1990 and the 

“brightening” period since 1985 (Wild et al. 2005, Norris & Wild 2007, Wild 2009). 

Global solar radiation decreases during the dimming period are estimated to have 

been 1.6 - 5.1 W m-2 per decade between 1960’s and 1990’s, values for Europe 

between 2.0 and 10.0 W m-2 per decade are reported (Wild et al. 2005, Wild 2009 

and references therein). Global increases on the other hand, between 1980’s and 

2000’s range between 2.2 and 6.6 W m-2 per decade, for Europe between 1.4 and 

4.9 W m-2 per decade (Wild 2009 and references therein). Absolute solar radiation 

at Stockholm station, for example, was 112 – 119 W m-2 between 1980 and 2000. 

The recent increase is attributed to a decrease in aerosol burden due to more 

effective clean-air regulations and, for Europe, in the decline in economy 

connected to the political changes in the late 1980’s. The described trends in 

brightening are valid for all-sky as well as for clear-sky conditions, supporting the 

notion that cloud cover did not substantially contribute to the observed changes in 
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solar radiation (Wild et al. 2005, Wild 2009). It is suggested, that the dimming 

period might have balanced some of the global warming trends, while the 

brightening might actually contribute to increasing temperatures (Wild et al. 2005). 

Wild et al (2009) also showed how increased surface net radiation is quantitatively 

consistent with the observed substantial increase in land precipitation (3.5 mm y-1 

between 1986 – 2000) and the associated intensification of the land-based 

hydrological cycle. As described, solar radiation variability is mainly dependent on 

anthropogenic air pollution and hence will future changes depend on future 

anthropogenic emissions. These in turn are mainly dependent on global socio-

economic development and predictions are afflicted with great uncertainties. 

Possibilities include a future global dimming through increased emissions in 

Southeast Asia (Stier et al. 2006), no change over Europe due to stabilised 

aerosol levels since about 2000, or an increased global brightening due to globally 

effective air pollution regulations (Wild 2009 and references therein). Very recent 

measurements still show a brightening trend at the moment (A. Macke, personal 

communication). On the background of recent brightening events, light variability 

was considered as a variable in our experiments. 

 

Biotic changes 

Biotic changes in consequence of the described changes in the physical and 

chemical environment can be assessed on different levels and the IPCC (2007) 

states that there is high confidence that observed changes in marine and 

freshwater systems are associated with rising water temperatures and related 

physico-chemical parameters. Direct effects of changes in temperature are 

influencing individual’s performance at various stages in their life cycle (Harley et 

al. 2006). On the population level climate change affects recruitment and 

dispersal, while on the community level abundances and species interactions are 

affected. In effect, climate change alters species distributions, biodiversity, 

productivity and microevolutionary processes (Harley et al. 2006). The IPCC 

report  (2007) attributes shifts in ranges and changes in algal, plankton and fish 

abundance in high-latitude oceans, increases in algal and zooplankton abundance 

in high-latitude and high-altitude lakes and range changes and earlier fish 
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migrations in rivers with high confidence to rising water temperatures and related 

physico-chemical parameters.  

Responses to temperature are different between and within species. Generally, 

the closer a species or an ontogenetic stage already lives to their physiological 

temperature limit, the more susceptible it is. Reef-building corals for example 

react very sensitively to increasing temperatures, which leads to coral bleaching 

and mortality (McWilliams et al. 2005). Temperature induced shifts in the timing of 

life-cycle events can lead to temporal mismatches with predators or prey. 

Temperature induced earlier spawning of Macoma balthica for example has led to 

a mismatch of larvae with their food, as phytoplankton did not show earlier blooms 

(Philippart et al. 2003). On the community level, the sea star Pisaster ochraceus 

could eliminate large sections of mussel beds through temperature induced 

increased abundance and increased consumption rate (Sanford 1999). The 

possible changes in the timing of events of the spring plankton succession, 

together with temperature induced shifts in species ranges and consequences for 

activity patterns are described in this study.    

 

Predictions 

The latest IPCC report (Intergovernmental Panel on climate change, 4th 

assessment report, 2007) makes predictions on future global warming based on 

different CO2 emission scenarios. All of the different scenarios have in common, 

that CO2 levels will either stabilise at current levels or continue to rise and 

consequently global warming will progress, reaching increases of between +1.1°C 

(B1 scenario) and +6.4°C (A1Fl scenario) until the end of this century (Figure 1). 

The applied temperature scenarios described in this study are based on these 

predictions and therefore include experimental warming of between ∆T +2°C and 

∆T +6°C on top of the in situ baseline. 
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Figure 1. Atmosphere-Ocean General Circulation Model projections of surface warming. 
Solid lines are multi-model global averages of surface warming (relative to 1980-1999) for 
the SRES (Special Report on Emission Scenarios, 2000) scenarios A2, A1B and B1, 
shown as continuations of the 20th century simulations. The orange line is for the 
experiment where concentrations were held constant at year 2000 values. The bars to 
the right of the figure indicate the best estimate (solid line within each bar) and the likely 
range assessed for the six SRES marker scenarios at 2090-2099 relative to 1980-1999.  
 

 

…in the Baltic Sea 

Biotic and abiotic changes are also expected in the boreal seas like the Baltic, 

which is where this study is based. The Baltic Sea formed as a consequence of 

the retreating border of the ice-shield after the last glacial time, creating small 

Fjords like the Kiel Fjord, with relatively shallow water depths (Kiel Bight average 

depth of 17 m). The Kiel Bight is characterised by low salinity surface water 

influxes from Fehmarn Belt and high salinity bottom water, average salinity ranges 

between 14 and 24 psu.   

While the global temperature increase during the last century was 0.4 – 0.8°C 

(IPCC 2007), the rise was higher for the Baltic Sea Region with 0.85°C (BALTEX 

2007). The additional increase for this region can possibly be attributed to an  

enhanced solar radiation due to the decreasing air pollution over Europe. Also, 
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the Baltic Sea is a relatively small boarder-sea, which is surrounded by land 

masses which themselves are prone to increased warming compared to water 

masses. Also, as predicted in the IPCC report (2007), winter and spring 

temperatures have been shown to increase stronger, compared to the other 

seasons. The predictions for further increases until the end of the century range 

between 3 and 6°C (BALTEX 2007) and 4 – 10°C (IPCC 2007), again 

prognosticating increases to be relatively stronger during winter/spring compared 

to summer. Hence we can expect influences of increasing temperatures to be 

especially pronounced on the sensitive event of the spring bloom succession, 

which is assessed in the work at hand. 

 

Variability in precipitation can influence inorganic nutrient availability for 

organisms in border-seas like the Baltic. Between 1900 and 2005 precipitation 

over Northern Europe has increased significantly (IPCC 2007). Regional 

projections foresee increased amounts of precipitation very likely in high-latitudes 

(~ 10-20% increase in 2090-2099 relative to 1980-99 period), continuing observed 

patterns in recent trends (IPCC 2007). Runoff is projected with high confidence to 

increase by 10 to 40% by mid-century at higher latitudes. This will have 

consequences for the nutrient input also for the Baltic Sea. Generally N (nitrogen 

in form of nitrate, nitrite and ammonium) is the limiting nutrient for phytoplankton 

primary production in most oceanic areas, as found in the Baltic Proper 

(Andersson et al. 1996). However, some coastal regions can also be P-limited 

(phosphorus in form of phosphate) as documented for example for the Finnish 

and Botnian Bay (Andersson et al 1996, Rivkin & Anderson 1997, Zweifel et al. 

1993). Coastal regions are strongly influenced by riverine inflow and land-runoff. 

Rivers carry a high load of N through the extensive use of N-fertilisers plus 

atmospheric input (Jickells 1998). The P-load is mainly based on chemical 

weathering of rocks and aeolian dust deposition as well as detergents. In an effort 

to reduce nutrient loads of rivers it was possible to reduce P-fluxes significantly, 

but not so much for N, resulting in increased N:P ratios of river runoff reaching 

coastal areas (Jickells 1998). Hence in the light of future increasing precipitation 

and consequently increased high-N freshwater inflow, it can be expected that the 
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spread of P-limited border-sea regions will increase in the future. Therefore the 

possible consequences of changing inorganic nutrient availability are also 

considered as part of this study. 

 

The microbial loop 

The above described processes and developments impact substantially on the 

organisms at the base of the food web, which are the focus of this work. Primary 

production by phytoplankton is the process of assimilation of dissolved inorganic 

carbon (DIC) in form of CO2 and build-up of particulate organic carbon (POC). 

This autotrophic process forms the basis for all life in the oceans and provides the 

organic matter for all further trophic levels. DIC represents the largest of the 

carbon pools in the oceans and the equilibrium between the water surface and the 

air is sustained by CO2 diffusion. The model of the classical food chain describes 

the grazing of POC by zooplankton and further by higher trophic levels. The 

biological pump concept describes the transformation of POC aggregates into 

sinking particles, which are exported into depth, together with faecal material from 

zooplankton grazing (Longhurst 1991). This export process supplies all organisms 

in the aphotic zone with substrate. However, this classical food chain and export 

process is complemented by the so called “microbial loop” (Azam et al. 1983, 

Figure 2). This concept describes the direct utilisation of a fraction of the dissolved 

organic matter from primary production by heterotrophic bacteria (Sherr & Sherr 

1988). The so formed particulate organic matter is subsequently re-entered into 

the classical food chain via grazing by heterotrophic nanoflagellates and/ or 

ciliates. Viruses influence the viability of all trophic levels. Considering that about 

95% of total organic carbon is of the dissolved fraction (Wetzel 1984), the 

importance of this loop for marine organic matter cycling becomes evident. 

Actually up to 50% of primary production is channelled through the microbial loop 

(Longhurst 1991, Williams 2000). Dissolved organic matter becomes available to 

the heterotrophic bacteria via direct exudation by healthy growing cells (Björnsen 

1988) and indirect processes like sloppy feeding by zooplankton, lysis by viruses 

and disintegration of dying cells in the late phase of a phytoplankton bloom 

(Nagata 2000, Chrost et al 1989, Middelboe et al 1995).  
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Figure 2. The marine microbial loop. Simplified illustration of the marine microbial loop. 
On the left hand side the classical food chain of phytoplankton, zooplankton and fish, 
which all contribute to the formation of the organic matter pool. This pool is utilised by 
bacteria, forming the basis of the microbial food web. Bacteria are grazed upon by ciliates 
and heterotrophic flagellates. Ciliates graze upon heterotrophic flagellates, while all 
groups are ingested by various members of the zooplankton, forming the link back to the 
classical food chain. Viruses operate on all members of the food chain. The simplified 
illustration does not account for further complexities within the food web, like for example 
auto- and mixotrophy of heterotrophic flagellates.  
 
 
The exudation as percent extracellular release (PER) of dissolved components by 

living phytoplankton cells can have large ranges and depend on, for example, 

species specific differences, nutritional status of the cells and external influences 

like for example light intensity and temperature (Baines & Pace 1991). The 

authors summarised available data into an average PER of 13%. The importance 

of the microbial loop for the utilisation of organic matter is thought to be lower in 

highly productive areas with large spring blooms, where the classical food chain 

dominates and export is large due to a temporal decoupling of phytoplankton and 
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their grazers. The microbial loop is more important in low-latitude oligotrophic 

oceans where heterotrophic bacteria constitute the main consumers of DOM and 

hence dominate organic matter fluxes (Gasol et al. 1997). Additionally a second 

pathway via heterotrophic bacteria becomes obvious here, namely the utilisation 

of the particulate organic carbon pool. Through extracellular enzyme activity, 

particle-attached bacteria (and free-living bacteria) are able to utilise large organic 

molecules (Hoppe et al. 1988) and hence actually become the key mediators of 

particle solubilisation and decomposition and hence directly control the efficiency 

of the biological carbon pump (Cho & Azam 1988, Smith et al. 1992). Considering, 

that only 10-20% of the dissolved organic matter pool is directly utilisable 

monomers, the importance of extracellular enzyme activity also for the remaining 

80-90% of DOC is highlighted. With all the organic material going into the 

microbial loop it has to be kept in mind however, that the efficiency of the organic 

matter transfer to higher trophic levels is also directly dependent on the bacterial 

growth efficiency. This parameter describes the amount of carbon that is assigned 

to bacterial secondary production relative to the total amount that is assimilated. 

The remains are simply respired and hence leave the system as inorganic CO2, 

which contributes to the CO2 pool in the water and consequently influences air-

sea exchange of this important greenhouse gas. The BGE is typically < 30%, 

showing that most of the primary production that is channelled through the 

microbial loop is actually respired (Del Giorgio & Cole 1998, Bjornsen 1986, 

Reinthaler & Herndl 2005).  

The overall efficiency of the microbial loop is dependent on a variety of abiotic and 

biotic factors, which directly or indirectly impact bacterial survival and 

performance. In coastal regions with high productivity top-down factors are more 

important, while in low productivity regions the influence of bottom-up factors is 

larger. Top-down factors include the grazing pressure by zooplankton (Wright & 

Coffin 1984) and the infection by viruses (Weinbauer & Höfle 1998). Bottom-up 

factors are for example the quantity and quality of the organic matter available 

from phytoplankton and the availability of additional inorganic nutrients (Kuparinen 

& Heinänen 1993). Several authors have demonstrated, that organic substrates 

like organic carbon and organic nitrate are limiting factors for bacteria (Sala et al 



INTRODUCTION 
 

 
 

17 

2002, Thingstad et al 2005, Kirchman 1990). Inorganic phosphorus and nitrogen 

have also been shown to stimulate bacterial growth (Zweifel et al. 1993) and 

heterotrophic bacteria can even outcompete phytoplankton for inorganic nutrients 

(Rhee 1972, Currie & Kalff 1984, Suttle et al 1990). In the Mediterranean Sea 

there is evidence that P limitation affects both primary production and bacterial 

uptake of dissolved organic carbon (Thingstad & Rassoulzadegan 1995) and 

Obernosterer & Herndl (1995) demonstrated that exudates released from P-

limited algae could not be utilised by bacteria due to their own P-limitation for 

growth. On theoretical grounds it has been suggested that substrate concentration 

should not be limiting to heterotrophic bacteria in the upper mixed layer but 

Nedwell (1999) argued that heterotrophic bacteria in natural waters are often 

presented with sub-optimal concentrations of substrates (and limiting temperature 

extremes).  

Based on the above described relationships within the marine microbial food web, 

we tried to assess the direct and indirect influences of abiotic factors like 

temperature, light intensity and inorganic nutrient concentrations on the 

phytoplankton and heterotrophic bacteria compartments. We did this by assessing 

activity and quantification parameters like PER and BGE as is described in detail 

in the respective Chapters of this work. 

 

Bacteria and temperature 

One of the most important abiotic factors influencing bacterial performance is 

temperature (Wiebe et al. 1993, Pomeroy & Deibel 1986), and in the light of 

current and future global warming an important factor to investigate. The positive 

correlation of bacterial metabolic processes like bacterial secondary production 

and respiration with temperature, in temperate waters, has been described 

manifold (e.g. Pomeroy & Wiebe 2001, Kirchman et al. 2005, Felip et al. 1996, 

Lopez-Urrutia et al. 2006). As a measure for the temperature dependence of 

different processes the Q10 value is generally used, which represents the increase 

in a rate for an increase in temperature by 10°C. P ublished Q10 values for 

heterotrophic bacterial processes are between 2 and 3 (Pomeroy & Wiebe 2001). 

However, the influence of increasing temperatures is not the same for bacterial 
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production compared to bacterial respiration. As Rivkin and Legendre (2001) 

reviewed, there is an inverse relationship between temperature and growth 

efficiency (BGE), demonstrating that the temperature effect is stronger on 

bacterial respiration, which increases more than bacterial production with 

increasing temperatures. Investigations from Chesapeake Bay (USA) support 

these results, showing a strong negative temperature response of bacterial growth 

efficiency due to significantly different temperature dependences of bacterial 

production and respiration (Apple et al 2006).  

Vazquez-Dominguez et al. (2007) on the other hand, showed in the 

Mediterranean, that an increase in temperature by 2.5°C did increase the bacterial 

carbon demand (bacterial production + respiration), but left the bacterial growth 

efficiency unchanged. The influence of temperature increase was hence the same 

for both parameters, but due to the generally low BGE (< 30 %, see above), 

according to the authors this would mean increased CO2 emissions under future 

warming conditions. Reinthaler & Herndl (2005) report from the North Sea, that 

while bacterial production varied over 1 order of magnitude over the seasonal 

cycle, bacterial respiration varied only 2-fold, resulting in a higher mean BGE at 

increased temperatures in spring and summer. Jiménez-Mercado et al (2007) 

demonstrated in continuous cultures of marine bacterioplankton maximum BGE 

values at higher temperatures. Del Giorgio and Cole (1998) show in their review 

contrasting results of increased, decreased or unchanged BGE at increasing 

temperatures and argue that environmental factors such as substrate quality and 

quantity are more important in determining growth efficiencies. 

Notwithstanding the described temperature-activity relationships with a focus on 

temperate areas, values of >10 are reported from arctic bacterial strains 

(Pomeroy & Deibel 1986), demonstrating that substantial bacterial activity is 

possible even at very low temperature. Rapid bacterial growth was found at 

temperatures below 2°C in Antarctic waters (Fuhrman  & Azam 1980) and several 

other studies in polar seas and sea ice communities revealed high bacterial 

activities, with normal Q10 factors, even at subzero temperatures (Li & Dickie 

1987, Robinson & Williams 1993, Rivkin et al. 1996). Several authors described, 

how substrate supply could partly compensate temperature limitation at low water 



INTRODUCTION 
 

 
 

19 

temperatures in cold water bacterial strains and how algal production during arctic 

phytoplankton blooms met enhanced substrate requirements and hence 

overcame temperature limitation (Nedwell & Ruttner 1994, Pomeroy et al. 1991, 

Pomeroy & Wiebe 2001, Wiebe et al. 1992). Nedwell (1999) proposed that 

decreased membrane fluidity and efficiency of membrane transport proteins 

decreases the affinity of bacteria for substrates below their optimum growth 

temperature. These studies suggest, that temperature seems to be one important 

factor in the regulation of the structure of the bacterial assemblage, with bacteria 

with lower temperature optima forming communities at the respective 

temperatures. Global warming can therefore be expected to promote a shift from 

more cold-adapted species to a community of warmer-adapted species. Different 

species will display different enzymatic features and hence different organic 

matter decomposition properties can be expected (Martinez et al 1996). These 

prospects highlight that the temperature response of a bacterial assemblage 

cannot be fully assessed without knowledge on the community composition. 

Altogether it can be stated that the effect of temperature on bacteria is complex 

and cannot be generalised, which is why it is a special focus in the work at hand. 

 

Coupling of phytoplankton and bacteria in the Balti c Sea spring 

bloom – now and in the future 

As described above, the marine microbial loop is an important part of the marine 

carbon cycle and its relative importance is dependent on abiotic factors like 

temperature, light and nutrients. The so-called coupling between the heterotrophic 

bacteria and the substrate-delivering phytoplankton is interpreted in terms of the 

relative carbon flow between the two compartments in this study. Timing 

dependent overlap of peaks of phytoplankton and heterotrophic bacteria 

determine this coupling, as well as the direct influences of the investigated factors 

on the relative quantities of the peaks. As described above, heterotrophic bacteria 

show a strong response to temperature. Phytoplankton on the other hand is 

mainly controlled by light (and nutrient availability) and light limited photosynthesis 

is even temperature independent (Tilzer et al. 1986). While the Q10 values of 

heterotrophic processes are typically between 2 and 3 (see above), autotrophic 
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primary production Q10 displays values between 1 and 2 (Tilzer et al. 1986). 

Generally in aquatic systems the phytoplankton bloom can start as soon as light 

conditions are favourable (Sommer & Lengfellner 2008, Sommer 1996, Sommer 

et al. 1986). According to Sverdrup’s critical mixing depth concept (Sverdrup 

1953), the temperature stratification in deep waters in spring restricts 

phytoplankton to an upper water layer, where they receive on average enough 

light to trigger the phytoplankton bloom. This way the influences of temperature 

and light for the start of the phytoplankton bloom are coupled. In moderately deep 

water bodies like the Kiel Bight, phytoplankton is restricted to a shallow water 

depth anyway, so that increasing light levels in spring alone are responsible for 

the start of the phytoplankton bloom, independently of the temperature conditions. 

Consequently, the spring bloom in Kiel Fjord occurs at usually very low water 

temperatures (10 year average for early February is 2.4°C). At these low 

temperatures heterotrophic bacterial activity is still very restricted, representing a 

mismatch situation and leading to a decoupling of autotrophic carbon assimilation 

and heterotrophic organic carbon utilisation, leaving a large portion of the algal 

derived organic carbon unused (Pomeroy & Wiebe 2001 and references therein).  

Future increasing winter/ spring temperatures (see above) can have profound 

effects on this decoupled situation. Bacterial growth is expected to increase earlier 

at higher water temperatures, decreasing the contemporary time lag to the peak 

of primary production. Also an increase in bacterial growth and respiration can be 

predicted. Together this will likely lead to an increasing amount of organic carbon 

being channelled through the microbial loop, consequently reducing 

sedimentation and export to depth (Hoppe et al. 2002, Kirchman et al. 1995, 

Legendre & Lefevre 1995).  

 

The AQUASHIFT experimental model system 

The above descriptions show the complexity of ecosystems, of the interactions on 

different levels of organisation and with the abiotic environment. We can deduce 

from this knowledge that it is of major importance to assess possible effects of 

future climate change on as many levels as possible. The ideal way of doing so 

would be the ability to experimentally manipulate only one factor, as for example 
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temperature, and keep all other factors as naturally as possible. Because the 

experimental temperature manipulation within oceanic areas is not feasible, we 

have switched to a more manageable system. Large (1500 L) mesocosms give us 

the advantage of maintaining the natural overwintering plankton population of the 

Kiel Fjord and at the same time conducting experiments under clearly defined 

conditions of interest, like temperature or light intensity. The disadvantage 

however, is the restricted transferability of results to the field, because of the 

artificial components in the experimental system and natural factors that just can’t 

be mimicked in an experimental setup. Nevertheless, experiments are a vital tool 

in order to study and explain basic processes and connections.  

 

As part of the DFG priority program AQUASHIFT, the Kiel cluster conducted 

mesocosm experiments in annual intervals since 2005. The Kiel AQUASHIFT 

mesocosm facility (IFM-GEOMAR, Kiel) consists of four climate chambers, which 

were each stocked with two to three 1500 L mesocosms. The mesocosms were 1 

m in height and consisted of food safe polyethylene. A sophisticated lighting 

system provided natural day light considering quality and quantity, with day 

lengths and sunrise / sunset regulated according to outside real conditions. 

Temperature in the four different chambers could be regulated to within ± 0.5°C, 

but it has to be mentioned however, that due to an inherent variance in the cooling 

system the mesocosms in one chamber differed slightly in temperature from each 

other. One problem we encountered in some of the experiments was the 

substantial development of wall-growth after a certain experimental period, usually 

after the bloom development. A biofilm of benthic algae and its influence on 

nutrient cycling and bacterial utilisation was not quantifiable satisfactorily and 

hence experiments were either stopped at that time point or data was excluded 

from this time on for the presented work. On the other hand, due to the relatively 

low height of the mesocosms, sinking aggregated material from the collapse of 

the phytoplankton bloom sank to the bottom and was not out of the water column 

as it would be in nature. Hence it has to be kept in mind, that for example 

heterotrophic recycling processes by bacteria might have occurred and in turn 

have influenced processes in the water column, but again only at a very late time 
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point in the experiment. This work mainly focuses on the peak bloom period and 

hence this problem can be neglected for our analyses.  

As described in detail in Sommer et al (2007), we can confidently say that the 

mesocosm experiments are a suitable tool for the assessment of climate change 

impacts on the spring succession in the Kiel Fjord. This way Kiel Fjord can serve 

as a model system for moderately deep water bodies as in the Baltic Sea, the 

North Sea and shallow lakes. The basic phytoplankton – bacterioplankton 

interactions can however also be transferred to situations of the restricted upper 

water layer in the open ocean. 

 

Thesis outline 

The presented work was conducted as part of the Kiel AQUASHIFT mesocosm 

cluster, which set out to investigate the impacts of climate change on the spring 

succession of plankton communities in moderately deep, well mixed water bodies 

such as the Kiel Bight. A series of five mesocosm experiments, and one additional 

bottle experiment, were conducted between 2005 and 2008 at the mesocosm 

facility and a collaboration of several working groups engaged on answering the 

question on different levels. The investigation presented in this thesis focussed on 

the phytoplankton – bacterioplankton coupling and how this is affected by 

increasing water temperatures. Additional factors investigated included the 

influence of different light intensities as well as inorganic nutrient levels. We 

assessed the quantity of autotrophic primary production and bacterial secondary 

production, bacterial abundance, as well as respiration. In order to assess the 

influence of the described factors on the relative importance of the microbial loop 

for the total carbon flow and hence CO2 emissions and particle segmentation, a 

special focus was put on the relations of bacterial to autotrophic activities.    

The first chapter  (“Temperature dependence of the coupling between phyto- and 

bacterioplankton during early spring bloom conditions in the western Baltic Sea – 

a mesocosm study”) focuses on the results from one mesocosm experiment, 

which was conducted under relatively high light conditions. Four different 

temperature settings were applied and the development of a phytoplankton bloom 

succession was followed for 30 days. The light and temperature settings were 
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kept constant throughout the course of the experiment, which is different from the 

experiments described in chapter 3. Primary production as well as bacterial 

abundance, production and respiration were measured. The coupling between the 

autotrophic and heterotrophic compartments was assessed on a timing and on a 

quantitative level. 

The second chapter  (“The influence of temperature and light on phytoplankton- 

bacterioplankton interactions during the spring bloom – recurring patterns from 

four years of mesocosm experiments”) summarises the recurring patterns of 

phytoplankton- heterotrophic bacteria interactions that were found in different 

mesocosm experiments. Four different experiments in four years were conducted, 

all encompassing the same temperature conditions, but differing in the light 

intensities that were applied. In all cases the light and temperature settings 

followed the natural development over the experimental period. A special focus is 

on the 2008 experiment, which represented a full factorial combination of two 

temperature and three light treatments. 

Chapter three  (“The combined effects of temperature and nutrients on the 

phytoplankton-bacterioplankton coupling”) describes an additional bottle 

experiment, that was conducted in the summer of 2007. A full factorial setting of 

three temperature and two inorganic nutrient levels (constant settings) was set up 

in 25 L carboys, in order to assess the influence of different nutrient levels on the 

coupling between a typical spring bloom phytoplankton species and a natural 

bacterial community. 

Finally the results of the thesis will be summarised, conclusions drawn and future 

implications of this work will be outlined. 
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Introduction 

The relationship between autotrophic production and heterotrophic microbial 

degradation of organic matter is an important regulating factor of the marine 

carbon cycle. Heterotrophic microorganisms recycle up to 50% of organic matter 

(dissolved, DOM and particulate, POM) produced by phytoplankton via the 

microbial loop (Azam et al. 1983) through a combination of biomass production 

and respiration (CO2 recycling) and form the basis of the heterotrophic food chain 

in the oceans (Azam 1998, Ducklow 1999). 

 

The seasonal timing of events is a species specific response to environmental 

conditions like for example temperature or photoperiodicity. The right timing is 

vital to maximise synchronisation of predator and prey and species-specific shifts 

in phenology can result in so called mismatch situations with temporal asynchrony 

(Cushing 1972). These mismatch situations can consequently lead to a reduction 

in energy flow through the food web.  

The spring bloom of phytoplankton in aquatic systems is initiated by favourable 

light conditions (Sommer & Lengfellner 2008, Sommer 1996, Sommer et al. 

1986). In deeper water bodies these conditions are dependent on the thermal 

stratification (e.g. Lake Constance; Scheffer et al. 2001), which limits the algae to 

an upper water layer with an overall sufficient light dose (“critical mixing depth 

concept” sensu Sverdrup 1953) hence coupling the influence of light and 

temperature. In moderately deep water bodies like the Kiel Bight, the onset of the 

spring bloom is independent of thermal stratification and can hence occur at very 

low water temperatures as soon as the light conditions are favourable in late 

winter/early spring. And while the light limited photosynthesis is basically 

independent of temperature (Tilzer et al. 1986), the general temperature 

dependence of planktonic bacterial growth and activities is well documented 

(White et al. 1991, Hoch & Kirchman 1993, Shia & Ducklow 1994). Several 

authors have been able to show that bacterial production and respiration are 

highly temperature dependent (Felip et al. 1996, Pomeroy & Wiebe 2001, 

Kirchman et al. 2005). As it is known from published Q10 values, autotrophic 

processes such as primary production are less affected by temperature increases 
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(Q10 1-2) than are heterotrophic processes (Q10 2-3, Pomeroy & Wiebe 2001, 

Tilzer et al. 1986).  

So due to the low temperatures at the spring bloom, as usually found in Kiel Bight, 

heterotrophic processes are thought to be initially low, leaving a large portion of 

the algal derived carbon unused (Pomeroy & Wiebe 2001 and references therein). 

The two processes of autotrophic carbon fixation and heterotrophic bacterial 

utilisation are mostly decoupled, representing a mismatch situation. Increasing 

winter water temperatures, as predicted by the IPCC (IPCC 2007), can be 

expected to increase heterotrophic processes relative to autotrophic processes, 

changing this mismatch situation. Hence, while the onset of the spring bloom is 

dependent on light, bacterial growth will increase earlier, when temperatures are 

favourable. An earlier bacterial production peak decreases the lag time with the 

peak of primary production, resulting in more organic matter being available for 

remineralisation before sinking out of the photic zone, reducing sedimentation 

(Hoppe et al. 2002, Kirchman et al. 1995, Legendre & Lefevre 1995). This effect is 

supposedly combined with a quantitative increase in bacterial production and 

respiration rates, again resulting in more utilisation of the available organic matter 

pool.  

 

Additionally we know from previous studies, that the influence of increasing 

temperatures is not the same on bacterial respiration compared to bacterial 

production. Rivkin and Legendre (2001) reviewed the available literature and 

found a significant inverse relation between temperature and growth efficiency. 

Also, Apple et al. (2006) revealed significantly different temperature dependences 

of bacterial production and respiration in Chesapeake Bay (USA), which lead to a 

strong negative temperature response of bacterial growth efficiency. Hence an 

increased coupling of phyto- and bacterioplankton and the relatively higher 

respiration rates would represent a positive feedback loop to the greenhouse gas 

problem.  

Combined with this is the effect of increasing temperatures on the rest of the food 

web. Micro-zooplankton directly profits from the warmer temperatures and 

consequently increases the grazing pressure on phytoplankton (Sommer & 
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Lengfellner 2008, Lengfellner 2008), contributing to a reduction in sedimenting 

organic matter. Keller et al. (1999), in a similar mesocosm experiment in 

Narraganset Bay, found a low standing stock of phytoplankton associated with 

high zooplankton abundance and low sedimentation, at warmer temperatures. 

Indirectly, zooplankton can profit from increased availability of bacteria through an 

increased carbon transfer through the microbial loop, via heterotrophic 

nanoflagellates and ciliates and back into the classical food chain.  

 

In view of the predicted temperature increase we hypothesise that increasing 

temperatures will lead to an increased organic matter transfer via the microbial 

food web through a combination of two factors: (1) a shift in the timing of events, 

leading to a reduction in the time lag between autotrophic production and 

heterotrophic microbial degradation of organic matter, (2) an increase in the 

quantity of bacterial organic matter utilisation relative to its production. In order to 

test our hypotheses, temperature dependent changes in plankton communities 

were investigated by indoor mesocosms at between 2.5°C (in situ) and 8.5 °C. 

Water from Kiel Fjord was incubated under artificial light conditions to induce 

phytoplankton bloom development. The coupling of phytoplankton and 

heterotrophic bacteria was assessed under the aspects of timing of events (1) and 

quantity of carbon flow through the different compartments (2). This setup has 

been shown to be feasible for reproducing the typical pattern of in situ spring 

bloom succession and evaluating the influence of future water temperature 

changes (Sommer et al. 2007, Hoppe et al. 2008).  

 

 

Material and Methods  

Experimental setup 

The experiment was performed between 6th January and 5th February 2006. Eight 

mesocosms were setup pair wise in four climate chambers. The in situ treatment 

was run at 2.5°C which corresponds to the ten year mean (1993 – 2002) for the 

Kiel Fjord for this time of year. The other three climate chambers were adjusted to 

4.5, 6.5 and 8.5°C (for the realised temperatures s ee Table 1 and Fig. 1). The 
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mesocosms were allowed to adapt to the chosen temperatures for four days 

before the first sampling. Temperatures were kept constant throughout the 

experiment.  

The mesocosms were synchronously filled with 1400 L of unfiltered Kiel Fjord 

water from 6 m depth outside the IFM-GEOMAR (salinity 18 psu), containing the 

over-wintering populations of phytoplankton, bacteria and protozoa. 

Mesozooplankton from net catches was added in natural over-wintering densities 

(~ 10 ind. L-1). The water was gently stirred at all times, preventing light particles 

to sink down to the bottom, while at the same time allowing heavier particles to 

drop out of the water column. Due to the unusually low nitrate concentration of 8 

µM,  a further 13 µM of nitrate was added at the beginning of the experiment in 

order to achieve similar nutrient conditions of 21 µM compared to a previous 

experiment in 2005 (Sommer et al. 2007, Hoppe et al. 2008) and in order to 

ensure bloom development.  

Water samples were taken daily or every other day by siphoning approximately 

ten litres of water through a silicone tube from the middle of each mesocosm 

directly into 20 L pre-washed carboys. Withdrawn water was not replaced in order 

to prevent nutrient pulses and the addition of organisms. Subsamples for the 

determination of the different parameters were taken from the carboys after gentle 

mixing. Only for the determination of respiration rates, water was taken directly 

from the mesocosms in order to prevent mixing and stirring influence on oxygen 

content of the samples. 

Light was provided by fluorescent tubes (a mixture of JBL Solar Tropic and JBL 

Solar Natur) from the top of the mesocosms. The daily light cycle followed a 

triangular curve between 6 am and 6 pm, with the maximum light intensity at 12 

noon, hence providing a constant 12:12 hour light:dark cycle throughout the 

experiment. The integrated daily light intensity was calculated to be 29 kWh m-2, 

which is comparable to a cloudless day at the beginning of April (according to the 

model of Brock 1981 for Kiel).  
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Particulate and dissolved primary production 

Particulate primary production measurements were performed using 14C 

bicarbonate incubations following the methods of Gargas (1975) and Steeman 

Nielsen (1952). For each mesocosm three aliquots of 30 ml each were incubated 

with 100 µl of a 4 µCi / 100 µl 14C-bicarbonate solution. The blank treatment was 

kept dark during incubation. Incubation took place at approximately half depth 

inside the respective mesocosm, ensuring a mean light exposure and in situ 

temperature conditions. After 4-5 hours of incubation, aliquots of 10 ml were 

filtered onto 0.2 µm cellulose nitrate filters. The filtrate was collected for 

measurement of dissolved primary production. The filters were subsequently 

fumed with 37 % HCl fumes in a closed box for 5-10 min and then measured in 4 

ml of Scintillation cocktail (Lumagel Plus) using a Packard Tricarb counter. 

The filtrate received 100 µl of 1 N HCl and was stored in an exsiccator under 

vacuum for 8 days. For collecting the expelled CO2 the exsiccator contained 1 N 

NaOH. Preliminary experiments had shown that this treatment guaranteed 

maximum outgassing of remaining inorganic 14C from the samples. After this 

storage time 10 ml of Scintillation cocktail (Aquasol) was added and the 

radioactivity of the samples counted. 

Particulate and dissolved primary production were calculated for the 12 hour light 

day by considering the amount of light received during the incubation period 

relative to the total daily light quantity. The two variables are presented as           

µg C L-1 d-1.  

The original CO2 concentration of the water sample was determined according to 

the method and dissociation constants described in Stumm & Morgan (1981).  

 

Bacterial production  

Bacterial protein production 

Bacterial protein production measurements were conducted following the protocol 

of Simon & Azam (1989). Four aliquots (3 replicates and one blank) of 10 ml of 

water were each incubated with 50 µl of a 1 µCi / 10 µl 3H-leucine solution 

(specific activity: 160 µCi nmol-1) plus 50 µl of a 2 nmol / 100 µl unlabeled leucine 

solution. This resulted in a total concentration of 103 nmol L-1 of leucine in the 
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sample, which is known to be saturating under the conditions found in the Kiel 

Fjord (Giesenhagen, unpublished data). 

All samples were incubated in the respective climate chambers at in situ 

temperature in the dark for 1.5 - 3 hours. Incubation was terminated by the 

addition of formaldehyde (1 % v / v) and 5 ml aliquots were separately filtered 

onto 3.0 µm (particle-attached bacteria) and 0.2 µm (total bacteria) polycarbonate 

filters. The filters were subsequently rinsed with ice cold 5 % TCA (trichloro acetic 

acid) solution, before being radio-assayed in 4 ml of scintillation cocktail (Lumagel 

Plus). Results in terms of pM h-1 bacterial protein production were transferred into 

µg C L-1 d-1 biomass production using a theoretical conversion factor of 3.091 x 

10-3 kg C mol-1 leucine (Simon & Azam 1989).  

 

Bacterial Cell Production 

Incorporation of 3H-methyl-thymidine for the determination of bacterial cell 

production was done slightly modified after Fuhrman & Azam (1982). For each 

sample, three replicates and one blank (treated with 1 % v / v formaldehyde) of 10 

mL of water were each incubated with 50 µL of a 1 µCi / 10 µL 3H-methyl-

thymidine solution (specific activity: 63 µCi nmol-1), resulting in a final and 

saturating concentration of 8 nmol L-1.  

Samples were treated as described for 3H-leucine above (including fractionated 

filtration onto 3 µm and 0.2 µm filters). Results in terms of pM h-1 bacterial 

production were transferred into µg C L-1 h-1 biomass production using a self-

determined empirical conversion factor of 30.87 kg C mol-1 thymidine. 

The conversion factor for 3H-methyl-thymidine incorporation was determined by 

adding 400 ml of unfiltered water to 1600 ml of 0.2 µm filtered water. The 

determination was performed between day 9 and 15 of the experiment, for one of 

the coldest (2.5 °C) and one of the warmest (6.5 °C ) mesocosms. Samples for 

bacterial abundance and bacterial production measurements were taken at  8 – 

24 h intervals (depending on the development of the bacterial abundance) and 

treated as described above for the respective parameters. The calculations are 

based on assuming a mean cell volume of 0.045 µm3 (average cell volume in the 

actual experiment was 0.032 µm3, but because it was not determined separately 
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for the conditions during the conversion factor experiments we decided to stick to 

the literature values, also for comparability) and cell carbon calculation of cell 

carbon (fg C cell-1) = 218 x V0.86 (Loferer-Krößbacher et al. 1998), resulting in 

15.14 fg C cell-1. 

 

Respiration 

Respiration was determined using Winkler Titration (Winkler 1888) with 

automated photometrical endpoint detection. For each mesocosm six 100 ml 

glass bottles were filled with unfiltered water for determination of total community 

respiration, another six bottles were filled with 3 µm pre-filtered water (always < 

200 mbar) for determination of respiration assigned mainly to bacteria. Total 

community respiration (unfiltered water) incorporates dark phytoplankton 

respiration, respiration by zooplankton and total bacteria. Bacterial respiration 

represents free-living bacteria and bacteria attached to particles <3µm but does 

exclude bacteria attached to particles >3µm. Three flasks of each set were 

immediately fixed and the other three replicates were incubated for 48 h at in situ 

temperature in the climate chambers, in the dark and submersed in water. 

Respiration in terms of O2 uptake (mg L-1 h-1) was multiplied by a recommended 

factor of 0.32 (based on RQ of 0.85, Ogura 1972) to calculate C-utilisation for 

respiration in terms of mg C L-1 d-1.    

  

Total bacterial number 

For determination of bacterial abundance (cells ml-1) aliquots of 100 ml of water 

were fixed with formaldehyde to a final concentration of 2 % (vol / vol) and stored 

at 4°C until filtration. Filtration of 6 ml aliquot s onto black 0.2 µm polycarbonate 

filters was performed within 7 days of fixation. Cells were stained using DAPI (4´-

6-diamino-2-phenylindole) to a final concentration of 100 µg ml-1 and frozen at -

20°C until being counted under an epifluorescence m icroscope (Axioskop2mote 

plus, Zeiss, Germany). At 1000x magnification, using a NewPorton G12 Grid, 20 

grids or at least 400 cells were counted. 
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Data analysis and statistics 

The timing of the peaks in relation to temperature was computed from the 

regression between the days when these peaks occurred and the temperatures of 

the respective mesocosms. The slopes of the linear regressions between the day 

of peak and the temperature correspond to the acceleration that the respective 

parameter experiences in days per each 1°C warming.  The slopes were 

compared using ANCOVA. 

In order to examine the relationship between temperature and the quantities of the 

measured parameters during the algal bloom, we quantified each individual peak 

(for bacterial abundance and bacterial production this meant focussing on the first 

peak). Quantification was achieved by calculating the area formed by three 

measuring points: one before the peak, one after and the peak itself – covering a 

time period of seven days around the peak. For dissolved primary production the 

measuring point of the peak and one after were chosen, to ensure continuity for 

all mesocosms. Each calculated area value was plotted against its respective 

temperature and linear regression lines fitted through the data using SigmaPlot. 

Increases in percent for a temperature increase of 6 °C was calculated by using 

first 2.5 °C (in situ = 100%) and then 8.5 °C in th e linear equations.  

The total amount of carbon required by bacteria for growth and respiration 

(bacterial carbon demand, BCD) was calculated by adding bacterial production 

and bacterial respiration (BCD = BP + BR). Because BP incorporates all bacteria 

while BR does not take into account the respiration of bacteria attached to 

particles >3 µm, the relative amount of particle-attached bacteria was calculated 

from the BP >3µm measurement and added to the BR measurements accordingly 

(“corrected BR”, only for BCD and BGE). Also, in cases where the peaks of BP 

and BR were not at the same time, the BP peak was chosen as the shared time 

period. Due to the two described calculation methods for BCD, the integrated 

BCD peak value can be different to the sum of the individual BR and BP values. In 

order to assess the relative amount (percentage) of carbon being used by bacteria 

for growth in relation to the total carbon demand, the bacterial growth efficiency 

(BGE) was calculated by dividing bacterial production by BCD and multiplying by 

100 (BGE = BP/ BCD). 
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The ratios were calculated from the areas described above, thus comparing each 

individual peak, excluding the effect of different peak timings. For ratios including 

dissolved primary production, the area was adjusted to the shorter peak length of 

this parameter. 

Linear regressions were performed using SigmaPlot software (Systat Software 

Inc., USA), statistical analyses was performed using Statistica data analysis 

software (StatSoft Inc., USA). 

 

 

Results 

Physico-chemical parameters 

Temperatures were fairly constant during the course of the experiment, except for 

some slightly stronger fluctuations in the coldest treatment (Figure 1).  

 
 
Table 1.   Temperature treatments and realised temperatures during the experiment in the 
eight mesocosms.  
 

Mesocosm No. 

 

Treatment 

(°C) 

 

Realised Temperature 

(°C, mean ± sd) 

1 
2.5 

2.1 ± 0.2 

2 2.4 ± 0.3 

3 
4.5 

4.1 ± 0.2 

4 4.8 ± 0.2 

5 
6.5 

5.9 ± 0.1 

6 6.5 ± 0.2 

7 
8.5 

7.0 ± 0.2 

8 8.0 ± 0.2 

 
 
 

Deviations between the temperatures of the two replicate mesocosms were due to 

the temperature regulating system emitting cold air in the front of the large room 

and resulting in slightly warmer conditions for the mesocosm, which was situated 
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in the back of the room. Therefore, for all statistical analyses the realised 

temperatures for each mesocosm were taken (Table 1). 

 

 

Figure 1.  Time series of temperatures in 
the eight mesocosms during the course of 
the experiment. 
 

Nutrient concentrations at the start of 

the experiment were as follows: 

phosphate 0.9 µM, nitrate 21 µM, 

ammonium 5.6 µM, silicate 20 µM. 

None of the nutrients was the single 

limiting factor at one point, as N, P 

and Si always fell below detection limit on the same days for each mesocosm. 

These were day 17-18 for mesocosm 1, day 13-17 for mesocosm 2 & 3, day 11-

12 for mesocosm 4, day 10 for mesocosm 5 & 6, day 11-12 for mesocosm 7 and 

day 9-10 for mesocosm 8 (Wohlers et al. 2009). 

 

Time courses and quantities 

Autotrophic and heterotrophic parameters 

The time courses of the particulate primary production (PPP) data show the 

development of a phytoplankton bloom in all 8 mesocosms (Fig. 2, A). The bloom 

was mainly composed of the diatom Skeletonema costatum in all mesocosms (U. 

Sommer, personal communication). Peak values ranged from 475 (mesocosm 7, 

6.5 °C treatment) to 776 µg C L -1 d-1 (mesocosm 1, 2.5 °C treatment), with no 

apparent temperature effect. Peaks were reached earlier in warmer treatments 

compared to the colder ones: mesocosms 7 and 8 (8.5 °C) reached their peak 

value on day 17, mesocosms 5 and 6 (6.5 °C) on days  14 and 11 respectively, 

while mesocosms 3 and 4 (4.5°C) peaked on day 11 an d the two warmest 

mesocosms (1 and 2, 2.5 °C) on day 13 and 10.  
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Figure 2.  Development of particulate primary production (A) dissolved primary production 
(B), community respiration (C), bacterial respiration (D), total bacterial numbers (E) and 
bacterial production from 3H-thymidine (F) and 3H-leucine (insert, F) over the course of 
the experiment. Same colours represent the two replicate mesocosms run at the same 
temperature: blue: in situ temperature (2.5°C), gre en: 4.5°C, orange: 6.5°C, red: 8.5°C. 
Bars represent ±1 SD. 
 
 
Measurement of dissolved primary production (DPP) started on day 10, and from 

the development we can see, that it followed the dynamics of PPP closely (Fig. 2, 
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PPP, we can confidently assume that the remaining mesocosms also peaked at 

the same respective days. DPP maxima ranged from 27.2 (mesocosm 2) to 49.3 

µg C L-1 d-1 (mesocosm 1) and the peaks showed a highly significant positive 

relationship with PPP (linear regression of peak period, R2=0.9, p<0.0001, data 

not shown). The percent extracellular release (PER = DPP / DPP+PPP) ranged 

between 2.4 and 7.9 % during the bloom (days 10-18) and increased up to 28.4% 

(mesocosm 6) during the degradation phase of the bloom (overall average 8.7%, 

data not shown). There was no effect of temperature apparent on PER (repeated 

measures ANOVA: F=3.5, p=0.13, data was marginally not normally distributed). 

The total community respiration (CR) development was closely associated with 

the primary production peaks (Fig. 2, C), concerning the timing. Here, higher 

maximal values were observed in the warmer treatments compared to the colder 

ones, ranging between 129 µg C L-1 d-1 (mesocosm 2) and 210 µg C L-1 d-1 

(mesocosm 6). Community respiration levels were still elevated at between 40.4 

and 79.3 µg C L-1 d-1 towards the end of the experiment. The decrease was higher 

in the community respiration compared to bacterial respiration, where in some 

cases the values were actually rising again when the experiment was terminated. 

Bacterial respiration (BR) increased in the two warmer treatments, forming a peak 

on day 11 (mesocosms 5 and 6) and on days 13 and 10 (mesocosms 7 and 8, 

respectively, Fig. 2, D). The development was slower in the two colder treatments 

(mesocosms 1 - 4), showing peaks on days 20, 17, 18 and 18 for the respective 

mesocosms. The height of the peaks did not seem to be influenced by the 

temperature treatments. Peak values ranged from 53.9 (mesocosm 4) to 84.4 µg 

C L-1 d-1 (mesocosm 3) and remained on a relatively high level during the 

degradation phase of the bloom at 33.9 – 62.3 µg C L-1 d-1, with higher values in 

the two warmer treatments compared to the two colder ones. The average 

contribution of bacterial to community respiration was 58%. This contribution was 

higher before and after the peak of community respiration (41 - 100%), while 

being lower during the maximum of community respiration (21 - 72%). At the 

respiration peak the contribution of bacterial to community respiration was highest 

in the coldest treatments (53 and 59% at 2.5°C, com pared to 35% at 8.5°C). 
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Total bacterial numbers (TBN) showed an initial decline, before increasing 

towards a first peak, which coincided with the phytoplankton bloom (PPP). Peak 

values were reached on day 17 for the coldest treatments, on day 14 for 

mesocosms 3 & 4, day 11 and 10 for mesocosms 5 & 6 and on day 10 for the 

warmest treatments (Fig.2, E). Higher peak numbers of bacteria were counted in 

the warmer treatments compared to the colder treatments (maximum 2.54 x 106 

cells ml-1 at 8.5 °C, 1.46 x 10 6 cells ml-1 at 2.5°C for the first peak). During the 

degradation phase of the phytoplankton bloom bacterial numbers increased 

again, forming a second peak in the two warmer treatments, the same 

development was indicated but not completed for the two colder treatments within 

the time frame of the experiment. Peak values of the second peak were higher 

compared to the first peak for mesocosms 3 – 6. 

The development of bacterial secondary production (BP) was very synchronous 

for both methods and showed a first peak on day 13 and 14 for the two colder 

treatments and on day 11 and 10 for the two warmer treatments for both 3H-

thymidine (Fig.2, F) and 3H-leucine (Fig.2, F insert) incorporation methods. 

Maximum values of 12.0 – 42.6 µg C L-1 d-1 (mesocosms 2 and 8) for 3H-

thymidine incorporation and between 26.3 and 67.3 µg C L-1d-1 (mesocosms 1 

and 8) for 3H-leucine incorporation were calculated, and the higher values were 

always reached in the warmer treatments. In both cases the development of a 

distinct second peak was detected in the two warmer treatments, while the 

development was not completed in the two colder treatments by the end of the 

experiment. For 3H-leucine incorporation similar quantities were reached by the 

end of the experiment, compared to the first peak. Results from the 3H-thymidine 

incorporation method showed much higher values for the second peak for 

mesocosms 5 and 6 (157 and 112 µg C L-1d-1) as well as mesocosms 3 and 4. 

The contribution of particle-attached bacteria to total bacterial production (% 3.0 

µm in 0.2 µm, data not shown) increased from values between 1.4 and 11.1 % 

during the peak to values between 15 and 39 % during the degradation phase 

(3H-thymidine). 

There was a highly significant linear relationship between the results of both 

methods (linear regression, R2=0.21, p=0.0001) and repeated measures ANOVA 
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confirmed that there was no significant difference between the two methods 

(F=2.43, p=0.14). The ratio of 3H-leucine to 3H-thymidine (based on pM raw data) 

was on average 19 and showed a general tendency to decrease during the 

course of the experiment (data not shown). Starting values ranged between 28-46 

(mean: 34) and end values ranged between 3 and 29 (mean: 12), with no peak 

developments. Ratios in the colder treatments were significantly larger than ratios 

in the warmer treatments for most of the course of the experiment (repeated 

measures ANOVA, F=7.04, p=0.045).  

As we determined a conversion factor for the 3H-thymidine incorporation method 

for the actual experiment, but have to rely on literature values for the 3H-leucine 

incorporation method, all further calculations related to the carbon flow in the 

experiment are based on the results of the 3H-thymidine incorporation method 

only (if not stated otherwise).  

 

Bacterial carbon demand and growth efficiency 

Concerning the performance of the microbial community under increased 

temperature conditions, two derived values are of special interest, the bacterial 

carbon demand (BCD) and the bacterial growth efficiency (BGE). BCD is a 

combination of bacterial respiration and production measurements and hence 

reflects a combination of both parameters (Fig. 3, A). A first peak was observed 

with maxima on day 10 and 13 for the warmest mesocosms, day 11 for the 4.5°C 

treatment, day 18 for mesocosms 6 and 7 respectively and on days 17 and 20 for 

the coldest treatments (significant peak acceleration with temperature, R2=0.76, 

p=0.004). Peak values ranged between 78 and 127 µg C L-1d-1 and showed no 

response to temperature (linear regression, R2=0.01 , p=0.84 ). As BR shows 

about double the quantities during the first peak compared to BP, the BCD time 

course reflects mostly the development of BR. A second peak was observed in 

the two warmer treatments, the same development was indicated but not 

completed in the two colder treatments. The peak values of the second peak were 

higher for the 4.5 and 6.5°C treatments. The time c ourse of the second peak was 

mainly determined by the quantity of BP because BR was on relatively low levels 

during the degradation phase of the bloom (see Fig. 2).  



CHAPTER 1 
 

 
 

41 

First peaks of BGE occurred between days 6 and 14, with no temperature 

influence (linear regression, R2=0.21, p=0.25) (Fig. 3, B). Maximal values between 

27 and 41% were not significantly related to temperature (linear regression, 

R2=0.32, p=0.14). Values increased towards a second peak, which displayed 

large values compared to the first peak in all treatments, especially in the 4.5 and 

6.5°C treatments. As described for BCD above, BP wa s much higher than BR 

during the degradation phase of the bloom, leading to the very high BGE values in 

this phase of the experiment. 

 

 

Figure 3. Dynamics of bacterial carbon demand (A) and bacterial growth efficiency (B) 
during the course of the experiment. Same colours represent the two replicate 
mesocosms run at the same temperature: blue: in situ temperature (2.5°C), green: 4.5°C, 
orange: 6.5°C, red: 8.5°C. 
 

 

Peak timings 

In order to assess the influence of increased temperatures on the timing of events 

we focused on the first peak of each parameter. The development of a second 

peak in bacterial abundance and bacterial secondary production could only give 

an indication of the influence on the further development but was not sufficient for 

a quantitative assessment because the experiment was terminated before the 

peak was reached in all temperature treatments. When plotting the day of each 

first peak against its respective temperature, the slope of the regression line 

indicates the acceleration of the development of each parameter. The negative 
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slope value equals the number of days the peak moves forward in time for one 

degree Celsius of warming.  

All of the parameters showed a significant acceleration of development at 

elevated temperatures (Figure 4). The influence of increasing temperatures was 

similar for all the parameters (ANCOVA: comparison of slopes, F=1.9, p=0.14), 

accelerating the peak between – 1.13 and –1.60 d per °C (Table 2), with the 

acceleration for bacterial production being somewhat smaller, only reaching –0.62 

d per °C. 

 

 

Table 2 . Linear regression between each parameter’s peak and its respective 
temperature, for particulate primary production, total bacterial number, community and 
bacterial respiration, and bacterial production (for 3H-thymidine and 3H-leucine alike, see 
text). The negative slope of the linear regression line (see Figure 3) corresponds to the 
acceleration of the parameter’s peak (day of peak, DOP) in days for each 1°C increase in 
temperature (DOP+1), n=8. 
 

Parameter Equation R 2 p 

Particulate primary production DOP+1 = -1.13 DOP + 18.77 0.76 0.004* 

Total bacterial number DOP+1 = -1.38 DOP + 19.89 0.94 <0.0001* 

Community respiration DOP+1 = -1.29 DOP + 21.21 0.69 0.01* 

Bacterial respiration DOP+1 = -1.60 DOP + 22.89 0.76 0.004* 

Bacterial production DOP+1 = -0.62 DOP + 15.17 0.62 0.02* 

 
 

 
 
Figure 4.  Linear regression between 
each parameter’s peak and its 
respective temperature, for particulate 
primary production, total bacterial 
number, community and bacterial 
respiration, and bacterial production 
(for 3H-thymidine and 3H-leucine alike, 
see text). For equations see Table 2, 
all relationships were significant at the 
p<0.05 level 
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Temperature effects on integrated quantity of autot rophic and hetero-

trophic parameters 

The areas defined by each parameter’s peak show the quantitative responses of 

the determined parameters to increasing temperatures. Particulate primary 

production showed a trend towards decreasing values with increasing 

temperatures, while dissolved primary production quantity was only weakly 

affected by temperature (+19% and +10% decrease respectively from 2.5°C to 

8.5°C, with the value at 2.5°C taken as 100%, Fig. 5, A). All other parameters 

(community and bacterial respiration, bacterial abundance, bacterial production) 

increased with increasing temperatures (Fig. 5, B, C). This increase was 

statistically significant for bacterial abundance (+46 %) and bacterial production 

(+148 % for 3H-thymidine and +73 % for 3H-leucine incorporation, Table 3), while 

it was only trend for community respiration (+32 %) and very weak for bacterial 

respiration (+3 %). 

Specific bacterial respiration (bacterial respiration divided by bacterial numbers) 

was little affected by temperature change (-8 %, Table 3). Specific bacterial 

production (bulk production divided by total bacterial numbers) showed a 

significant increase with increasing temperatures (+53 %) for 3H-thymidine 

incorporation and an insignificant decrease by –15 % for 3H-leucine incorporation 

(Table 3). 

The BCD increased significantly by 68 % (3H-thymidine) and 75 % (3H-leucine), 

the BGE increased by 43 % for 3H-thymidine incorporation and was unaffected (-2 

%) for 3H-leucine incorporation (Table 3). The bacterial growth efficiency 

displayed values between 19 and 27 % and between 34.4 and 33.7 %, 

respectively. 
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Figure 5.  Relationships between temperature and particulate – and dissolved primary 
production (PPP & DPP) (A), bacterial production and total bacterial number (BP & TBN) 
(B), community – and bacterial respiration (CR & BR) (C) and bacterial carbon demand 
(BCD) and bacterial growth efficiency  (BGE) (D) integrated over the first peak period (for 
description of calculations refer to material and methods section). Significant relationships 
(p< 0.05) are indicated by asterisks, fitted lines represent the linear regression, for 
equations see Table 3. 
  

 

Table 3.  Relationships between temperature and particulate – and dissolved primary 
production, bacterial production and specific bacterial production, total bacterial number, 
community – and bacterial respiration and specific bacterial respiration, bacterial carbon 
demand and bacterial growth efficiency integrated over the first peak period (for 
description of calculations refer to material and methods section), n=8. 
 

Parameter Equation R 2 p 

Particulate primary production PPP = -94.17 T + 3227.12 0.18  0.29 

Dissolved primary production DPP = -1.35 T + 95.22  0.02 0.72 

Bacterial production (3H-thymidine) BP = 17.24 T + 26.39  0.81 0.002* 

Bacterial production (3H-leucine) BP = 22.22 T + 126.73 0.69 0.01* 

Specific bacterial production (3H-thymidine) BPs = 4.61 T + 40.26 0.59 0.02* 

Specific bacterial production (3H-leucine) BPs = -3.85 T + 160.05 0.20  0.26 

Total bacterial numbers TBN = 0.76 T + 7.91 0.95 <0.0001* 

Community respiration CR = 45.37 T + 725.86  0.47 0.06 

Bacterial respiration BR = 2.10 T + 394.52 0.01 0.8 

Specific bacterial respiration BRs = -8.09 T + 649.39 0.03 0.66 

Bacterial carbon demand (3H-thymidine) BCD = 44.03 T + 280.2  0.64 0.02* 

Bacterial carbon demand (3H-leucine) BCD = 66.70 T + 369.94 0.87 0.0008* 

Bacterial growth efficiency (3H-thymidine) BGE = 1.35 T + 15.51 0.45 0.07 

Bacterial growth efficiency (3H-leucine) BGE = -0.12 T + 34.70 0.002 0.91 

 

 

Ratios 

For a further assessment of the influence of temperature on the relative carbon 

flow between phytoplankton and bacteria during the bloom period, ratios of 
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bacterial production (BP) and bacterial carbon demand (BCD) to primary 

production (particulate and dissolved, PPP and DPP) were calculated from the 

individual area values used in Fig. 5. The ratios were then plotted against the 

respective temperatures (Fig. 6). A significant increase of the BP to PPP and BCD 

to PPP ratios with temperature was found (Table 4). The BP : PPP ratio for 3H-

thymidine incorporation increased from 2.2 to 6.1% (from 2.5 to 8.5°C, +177% 

with the value at 2.5°C taken as 100%) (Fig. 6) and  from 6.0 to 11.7 % for 3H-

leucine incorporation (+95%, Table 4), while the BCD : PPP ratio increased from 

12.9 to 23.5 % (+82%) and from 17.7 to 34.0 % (+92%), respectively, albeit these 

ratios are rather low. Compared to that, the ratios resulting from dividing BP and 

BCD by DPP are much higher. Here we see an increase from 48.3 to 93.2 % for 
3H-thymidine incorporation (+93%, Fig. 6) and from 121.1 to 147.4 % for 3H-

leucine incorporation in the BP : DPP ratio (+22%, Table 4). The BCD : DPP ratio 

decreased from 348.7 to 324.6 % (-7%) and from 445.4 to 439.4 % (-1.3%), 

respectively. All ratios with DPP only show a trend, as they are not statistically 

significant (Table 4). 

 

 

Figure 6.  Relationships between 
temperature and the ratios (in %) of 
bacterial production (3H-thymidine) 
to particulate and dissolved primary 
production (BP : PPP, BP : DPP) (A) 
and of bacterial carbon demand (3H-
thymidine) to particulate and 
dissolved primary production (BCD : 
PPP, BCD : DPP) (B) during the 
bloom period. Significant 
relationships (p< 0.05) are indicated 
by asterisks, fitted lines represent 
the linear regression, for equations 
see Table 4. 
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Table 4.  Relationships between temperature and the ratios (in %) of bacterial production 
to particulate and dissolved primary production and of bacterial carbon demand to 
particulate and dissolved primary production during the bloom period, n=8. 
 

Parameter  Equation  R2 p 

Community respiration :                    

particulate primary production 

 

 

CR:PPP = 2.31 T + 21.56 

 

0.41 

 

0.08 

Bacterial production (3H-thymidine):               

particulate primary production 

 

BP:PPP = 0.65 T + 0.62 0.94 p<0.0001* 

Bacterial production (3H-leucine):                   

particulate primary production 

 

BP:PPP = 0.95 T + 3.58 0.53 0.04* 

Bacterial production (3H-thymidine):                

dissolved primary production 

 

BP:DPP = 7.48 T + 29.59  0.35 0.12 

Bacterial production (3H-leucine):                    

dissolved primary production 

 

BP:DPP = 4.38 T + 110.20 0.04 0.61 

Bacterial carbon demand (3H-thymidine):        

particulate primary production 

 

BCD:PPP = 1.76 T + 8.53  0.70 0.01* 

Bacterial carbon demand (3H-leucine):           

particulate primary production 

 

BCD:PPP = 2.71 T + 10.94 0.79 0.003* 

Bacterial carbon demand (3H-thymidine):       

dissolved primary production 

 

BCD:DPP = -4.01 T + 358.7 0.01 0.83 

Bacterial carbon demand (3H-leucine):           

dissolved primary production 

BCD:DPP = -1.0 T + 447.91 0.0004 0.96 

 

 

Discussion 

The presented study has shown that the advanced mesocosm setup is able to 

reproduce a typical spring succession pattern with a phytoplankton bloom 

accompanied by bacterial degradation of organic matter, demonstrating that 
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mesocosm experiments of this type can be used to assess biological phenomena 

associated with future climate change (Sommer et al. 2007, Hoppe et al. 2008). 

Our mesocosm approach with water from the Kiel Bight served as a model system 

for moderately deep water bodies, where the spring bloom can start before the 

onset of thermal stratification and hence the influence of temperature and light are 

decoupled. In this respect our results are directly transferable to moderately deep 

water bodies in the temperate and boreal climate zone. Nevertheless, even in the 

open ocean of the temperate and high latitude regions, where high nutrient levels 

after winter sustain the typical spring blooms, autotrophic and heterotrophic 

processes are to some extent decoupled due to the different temperature 

responses of the two compartments. The interplay of the direct temperature 

effects, as demonstrated here, with indirect effects via increased surface layer 

stratification is expected to have a strong impact especially in these regions 

(Wohlers et al. 2009). Still, as described by Sommer & Lengfellner (2008), our 

experiment can only mimic the typical spring bloom of temperate and boreal 

waters, where the primary trigger for the phytoplankton spring bloom is the 

release from physical controls (light, temperature, stratification). 

 

Time courses and quantities 

There was no significant influence of temperature on the composition and the 

quantity of the phytoplankton bloom development, which was similarly dominated 

by the diatom Skeletonema costatum in all mesocosms. The exudation of 

dissolved organic carbon by the growing phytoplankton followed the bloom 

development closely. Baines and Pace (1991) estimated PER to be on average 

13% of total fixation, Maranon et al. (2004) measured an average PER of 19 % in 

a coastal system off Spain and values between 7 and 20 %, in a comparison of 

different oceanic regions, were reported by Moran et al. (2002). Our results for the 

bloom period are at the lower end of these values (2.4 – 7.9 %), but increase to 

higher values during the degradation phase of the bloom, when PPP is low. Due 

to methodological reasons, DOC production might have been underestimated. 

Concerning the determination of dissolved primary production it has to be kept in 

mind that the measurement cannot take into account the amount of labelled 
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photosynthate that is taken up by bacteria during the incubation period. Banes 

and Pace (1991) reviewed the available literature and calculated that on average 

about half of the radioactivity released during 14C incubations is found in the 

bacteria. On the other hand one has to consider that probably not the entire DOC 

released is readily available for bacteria to utilise and that a fraction will remain 

unused due to its refractory nature. 

The timing of the first peaks of all bacterial parameters (TBN, BP, BR) coincided 

with that of primary production (PPP and DPP) which indicates the direct 

utilisation of dissolved organic matter (DOM) from phytoplankton. Authors like 

Cole et al. (1988), White et al. (1991) and Gasol & Duarte (2000) have proposed 

that the covariation between biomass and activity of phytoplankton and 

bacterioplankton is based on the direct bacterial use of algae-produced labile 

dissolved organic carbon (DOC). The second peak in bacterial numbers and 

production, which developed during the degradation phase of the bloom, indicates 

increased utilisation of particulate organic material (POM) of dying phytoplankton 

cells, together with DOM, which is released through sloppy feeding by 

zooplankton and disintegration of dying cells. Pomeroy & Wiebe (2001) proposed 

viral lysis, nutrient deficiency lysis and the excretion, defecation and sloppy 

feeding by micro-zooplankton and protists as additional connections for organic 

matter transfer from auto- to heterotrophs. In 1988, Cho and Azam demonstrated 

that bacteria, rather than the particle-feeding zooplankton are the principal 

mediators of organic particle decomposition in the mesopelagial. The switch from 

utilisation of mainly dissolved to more particulate organic carbon is supported by 

the results of bacterial production in the >3 µm fraction (particle-attached 

bacteria), which increased during this degradation phase of the bloom. 

Becquevort et al (1998) and Middelboe et al (1995) demonstrated the relevance of 

particle-attached bacteria in the collapse of phytoplankton blooms through the 

degradation of particulate organic material via the use of extracellular enzymes 

(Hoppe et al. 1993). During this phase the bacterial respiration was still at 

elevated levels, but the dramatic increase in bacterial production lead to rather 

high values of bacterial carbon demand and consequently also of bacterial growth 

efficiency. 
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Although both incorporation methods for the determination of bacterial production 

can be expressed in carbon equivalents, they differ in the growth processes they 

assess. Because 3H-thymidine is incorporated into DNA, it is used as a proxy for 

DNA replication and consequently cell division (Fuhrman & Azam 1982). The 

incorporation of 3H-leucine into proteins, on the other hand, can be used as an 

indication for cell growth through the build-up of protein and hence cell biomass 

(Simon & Azam 1989). The second peak of bacterial production from 3H-

thymidine incorporation shows much larger values than the first peak for most of 

the mesocosms, indicating the increasing importance of cell division during the 

degradation phase of the bloom. The increase in 3H-thymidine bacterial 

production for the second peak is directly reflected in the bacterial numbers (see 

especially the two medium temperature treatments), which supports the proxy 

value in terms of cell division. The rate of 3H-leucine bacterial production was 

similar for the first and the second peak, although it has to be noted, that for most 

of the mesocosms values were still increasing by the end of the experiment. This 

could be an indication that bacterial protein production was less affected by the 

different conditions (i.e. switch from more DOC to more POC utilisation) than was 

cell division, or, was reacting slower. 

When directly comparing the results of both methods in terms of carbon-turnover, 

one has to keep in mind that the choice of the conversion factor influences the 

absolute results and hence hampers comparability. Our empirical conversion 

factor for 3H-thymidine is higher compared to the frequently used factor of 17.86 

kg C mol-1 thymidine by Riemann et al. (1987) but is in the range of the factors for 

nearshore and offshore waters of 25.74 and 36.34 kg C mol-1 thymidine 

respectively, proposed by Fuhrman & Azam (1982) and Ducklow & Carlson 

(1992) who proposed a factor of 30.28 kg C mol-1. Wikner & Hagström (1999) 

found a conversion factor of 22.71 kg C mol-1 thymidine for an estuary in the 

Northern Baltic Sea, Carlson et al. (1996) found a value of 25.35 kg C mol-1 

thymidine in the Sargasso Sea, Li et al. (1992) determined 24.98 kg C mol-1 

thymidine in the North West Atlantic, and Ducklow et al. (1992) an average CV of 

19.20 kg C mol-1 thymidine in the North East Atlantic. Nevertheless, as the factors 

do not change, comparison is feasible and showed that the results of both 
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methods were significantly positively correlated and showed no significant 

differences over the course of the experiment.  

Direct comparisons, as in the leucine: thymidine ratio, are based on the pM raw 

data. When rates of protein- and DNA-synthesis are uncoupled (i.e. a change in 

the ratio over a given time) growth is unbalanced (Chin-Leo & Kirchman 1990) 

and variability in the ratio has been interpreted as a change in the growth state of 

bacteria by several authors (Chin-Leo & Kirchman 1990, Shia & Ducklow 1997, 

Pomroy & Joint 1999). These changes can occur over temporal and spatial scales 

and are influenced by environmental factors such as substrate supply and 

temperature (Chin-Leo & Kirchman 1990, Shia & Ducklow 1997, Pomroy & Joint 

1999, Tibbles 1996). 

In our experiment, the rates of thymidine and leucine incorporation were 

significantly correlated, although the correlation was not very high (R2=0.21, 

p=0.0001). Previous studies have shown that there is usually a high correlation 

between the two incorporation rates (Chin-Leo & Kirchman 1988, Kirchman & 

Hoch 1988), which suggests balanced growth of bacterial assemblages. Other 

authors (e.g. McDonough et al. 1986) have found a lack of covariance due to 

unbalanced growth, but also methodological problems like non-specific 

incorporation of thymidine into protein have to be taken into account. Although not 

statistically significant, we did detect a change in the ratio over the course of the 

experiment suggesting a tendency towards unbalanced growth towards the end of 

the experiment, where DNA incorporation increased faster than protein 

incorporation, suggesting a response of the bacterial assemblage to changing 

environmental conditions (like substrate availability) (Chin-Leo & Kirchman 1990). 

Shiah & Ducklow (1997) suggest a lower ratio to occur under favourable 

environmental conditions, when bacteria optimise DNA production to maximise 

reproduction. This same process could explain the differential response to 

temperature which was also detected in our experiment, with significantly higher 

leucine: thymidine incorporation rates in the cold compared to the warm 

treatments. The same pattern was found by Shiah & Ducklow (1997) in both 

temperature manipulation experiments and in situ. On the other hand, Tibbles 

(1996) observed positive correlations between temperature and leu: thy ratios.   
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Potential top-down effects 

The decreases in bacterial numbers (TBN) and bacterial production (BP) in 

between the two peaks might be explained by grazing due to heterotrophic 

nanoflagellates (HNF). Indeed, low bacterial abundance always coincided with 

peak values in HNFs and vice versa, so that a significant negative linear 

relationship could be established between TBN and HNF (data in Walther 2009). 

These results have to be taken into account when interpreting the development of 

the bacterial parameters. It emphasises, that temperature and nutrients (DOC + 

POC from phytoplankton) might have significant bottom-up effects on the bacterial 

community, but that grazers might also influence the development in a top-down 

manner. Due to the nature and complexity of the experiment, we cannot conclude 

on the relative importance of both effects.  

When considering top-down effects, one has to take into account also the 

influence of viruses. Walther (2009) reported higher numbers of virus-like particles 

(VLP) at colder temperatures, which might eventually have contributed to lower 

TBN in these conditions.  

In contrast to bacterial respiration the total community respiration showed a 

response to increased temperatures. This measurement incorporates the 

respiration by zooplankton, which might have been responsible for the 

temperature response. Walther (2009) does indeed report significantly higher 

meta-zooplankton numbers in the warmer treatments. At the peak of respiration 

the contribution of bacteria <3µm to community respiration was highest in the 

coldest treatments because of decreased community respiration in the cold. 

Respiration as a loss process for primary produced organic carbon has been 

shown to be dominated by heterotrophic bacterioplankton. Blight et al (1995) 

report a contribution of up to 70% by heterotrophic bacteria to total respiration 

measurements, Williams (1981) attributes a substantial contribution (> 50 %) of 

plankton respiration to organisms < 5 µm and Harrison (1986) also found over 

50% of respiration associated with organisms < 1 µm. These values correspond 

well with the 53 – 59 % of bacterial contribution to total community respiration in 

our cold treatments (2.5°C). The smaller proportion  of only 35 % in the warm 
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treatments (8.5°C) can be attributed to generally h igher community respiration 

due to increased zooplankton activity as described above. 

 

Peak timings 

A similar acceleration of around 1 day per 1 °C tem perature increase indicates a 

close association of autotrophic and heterotrophic development. This is 

contradictory to our hypothesis, that primary production would be less affected 

than bacteria. Both processes are affected in a similar way by increasing 

temperature, concerning the timing of events. This could be due to the high light 

levels in this experiment, which were saturating for photosynthesis, hence making 

primary production temperature dependent. Tilzer et al. (1986) found that light 

saturated photosynthesis exhibited a Q10 value of 4.2, while showing a Q10 of 2.6 

under light-limited conditions, at temperatures between –1.5 and +2°C. These 

differences in Q10 might explain the different results, concerning the effect on the 

timing of events, between the two experiments. On the other hand this would not 

explain the different responses to temperature concerning the quantity of the 

described parameters’ rates. But still, temperature-dependent primary production 

does not necessarily mean we would see higher production at warmer 

temperatures, if we take increased grazing and increased phytoplankton 

respiration (i.e. reduced growth efficiency) into account. Lengfellner (2008) could 

show in similar experiments, that reduced phytoplankton biomass at warmer 

temperatures coincided with increased copepod abundance and Aberle et al 

(2007), in a similar study from 2005, demonstrated increased grazing rates on 

phytoplankton by ciliates and copepods at warmer temperatures. 

There are only few reports concerning the temperature-dependent changes in the 

temporal coupling between phytoplankton and bacteria (Hoppe et al. 2008 and 

references therein). In a previous experiment, which was performed at low light 

levels, Hoppe et al. (2008), found no influence of increasing temperatures on the 

peak timing of primary production and an acceleration of approximately 2 days per 

1°C warming for bacterial secondary production. The  increased temporal coupling 

in this case can be assumed to contribute to increased carbon cycling through 

bacteria. The difference to our experiment can partially be explained by the 



CHAPTER 1 
 

 
 

54 

different light conditions for the algae, as well as different starting conditions 

concerning the quality and quantity of the overwintering phytoplankton population 

(Sommer & Lengfellner 2008, Gaedke et al. 2009). Wohlers et al. (2008), for the 

same experiment, confirmed our results for the phytoplankton timing from Chl a 

measurements. Sommer & Lengfellner (2008) also found a peak acceleration of 

around one day per 1°C temperature increase for phy toplankton biomass in 

similar experiments.  

 

Temperature effects on integrated quantity of autot rophic and heterotrophic 

parameters during the bloom 

There occurred no significant change in integrated primary production for the 

bloom period at the different temperature regimes. The trend towards higher 

particulate primary production in colder treatments may be due to increased 

grazing in warmer treatments as was already observed in a similar experiment 

(Lengfellner 2008, Sommer et al. 2007) as well as by other authors (Wiltshire et 

al. 2008, Keller 1999). Lengfellner (2008) showed that phytoplankton production 

based on biomass measurements was indeed significantly diminished at warmer 

temperatures, likely due to enhanced grazing by ciliates and copepods. 

Dissolved primary production showed no response to temperature, providing the 

same amount of exudates for bacterial utilisation in all treatments. Hence 

increased bacterial parameters at warmer temperatures were probably not linked 

to increased or decreased DOC availability, but rather a temperature response. 

The significant increases in bacterial parameters like BP (148 % and 73 %, for 3H-

thymidine and 3H-leucine respectively), TBN (46 %) and BCD (68 % and 75 %) for 

a temperature increase of +6 °C indicate an increas ingly heterotrophic system, 

compared to the autotrophic compartment, which was not influenced by 

temperature. This may have an important impact on the total amount of carbon 

being cycled through the microbial loop. Also the increasing community 

respiration (33 %) indicates an increased heterotrophy in the system, which 

means that more organic carbon is being respired, leading to increased CO2 

emissions, possibly creating a positive feedback effect concerning the effect of 

CO2 on global temperature. Berglund et al (2007), in mesocosm experiments with 
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northern Baltic Sea water, demonstrated that a bacteria-based foodweb displays a 

significantly reduced food-web efficiency due to the extra trophic levels in the 

microbial loop. They conclude that such a foodweb, which will be favoured by 

increased organic nutrient supply in a future climate, through increased 

precipitation and river runoff, will reduce pelagic productivity at higher trophic 

levels. Considering the results from our study for increased temperatures, this 

effect would be enhanced even further. 

The results confirm the expectations, concerning the different effect of 

temperature on autotrophic and heterotrophic processes. According to Pomeroy 

and Wiebe (2001), at the lower limits of growth, which was given here at the low 

temperature treatments, Q10 values for heterotrophs can even reach double digits. 

This would even enhance the possible differences in responses and increase 

possible temperature effects. 

 

Temperature effects on bacterial growth efficiency (BGE) 

The integrated calculation of BGE for the bloom period showed the percentage to 

vary between 19 and 27 % (34.4 – 33.7 % for 3H-leucine). This is in accordance 

with values of 10 – 30 % as reported by Bjornsen (1986) from continuous plankton 

cultures and values of 20 – 27 % as reported by Bell & Kuparinen (1984) from 

freshwater systems, or the median ocean value of 22 % given by del Giorgio and 

Cole (1998). Reinthaler & Herndl (2005) report a mean annual BGE of 20% for the 

North Sea.  

The maximal values of the first peak of BGE, as shown in the development over 

the course of the experiment, ranged between 27 and 40% and are in accordance 

with the integrated bloom period values. The higher values, which were observed 

for the second peak of BGE, reflect the development of bacterial production, 

which was increasing towards the end of the experiment, while bacterial 

respiration (BR as well as “corrected BR”) showed elevated but lower than peak 

values. 

In contrast to our expectations the BGE did not show any significant response to 

increases in temperature, neither for the peak maxima, nor for the integrated 

bloom period values. If any, there was a trend towards increasing integrated 
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bloom period values with increasing temperature for the results from the thymidine 

incorporation, which is in contrast to published results by authors such as Rivkin & 

Legendre (2001) or Apple et al (2006). On the other hand Reinthaler & Herndl 

(2005) report from the North Sea, that while BP varied over 1 order of magnitude 

over the seasonal cycle, BR varied only 2-fold, resulting in a higher mean BGE at 

increased temperatures in spring and summer. Jiménez-Mercado et al (2007) 

demonstrated in continuous cultures of marine bacterioplankton maximum BGE 

values at higher temperatures. Del Giorgio and Cole (1998) show in their review 

contrasting results of increased, decreased or unchanged BGE at increasing 

temperatures and argue that environmental factors such as substrate quality and 

quantity are more important in determining growth efficiencies. Our results can be 

attributed to the missing effect of temperature increase on bacterial respiration 

(the original BR as well as the “corrected” BR, which incorporated bacteria 

attached to particles >3µm). This shows that increasing temperatures lead to 

more carbon being transferred into bacterial biomass, rather than being respired. 

This could be an indication, that bacteria were in a favourable condition at higher 

temperatures, rather than being stressed. Organic carbon utilisation is more 

efficient and less respiration is necessary for the same amount of growth at higher 

temperatures, respectively. This discussion highlights that parameters like BGE 

can not solely be assessed by looking at temperature effects only and ideally 

other environmental factors have to be taken into account (del Giorgio & Cole 

1998). 

We can confidently assume that the determination of BGE was based on good 

quality parameter measurements. In general, as can be seen from the raw data in 

Fig. 2, standard deviations were relatively low and replicate mesocosms showed 

similar patterns. Nevertheless, BCD and BGE were finally based on calculated 

BR, to account for particle-attached bacteria. The calculations were based on BP 

measurements and hence presume a constant relationship between bacterial 

production and respiration, which is clearly not the case. Still, we assume a more 

realistic and correct illustration of BGE development, correcting for this bacterial 

fraction. Still, during the relevant bloom phase, particle-attached bacteria only 
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accounted for a few percent to total BR, and increased only during the 

degradation phase of the bloom. 

One has to also take into account that our measurements were obtained within a 

very narrow temperature frame, in contrast to authors such as Rivkin & Legendre 

(2001), who assessed BGE for temperatures between 1.7 and 29°C. Probably the 

temperature differences in our experiment were not large enough to detect 

possible effects on bacterial respiration and hence BGE. 

 

Ratios 

The ratios of the heterotrophic rates (CR, BR, BP, and BCD) in relation to primary 

production were calculated to assess the degree of coupling between autotrophic 

and heterotrophic processes. The strong increase of the community respiration to 

particulate primary production ratio indicates a strong transition towards a more 

heterotrophic system, with 51% more carbon being respired (relative to 

production) and released as CO2 for an increase of 6°C in temperature (see Table 

4). 

Also, bacterial production and bacterial carbon demand increase relative to 

primary production (PPP and DPP), supporting the observation of a higher relative 

amount of organic carbon being utilised at higher temperatures, compared to the 

amount produced. Nevertheless the ratios of BP: PPP between 2 and 6% (and 6 – 

12 %) are very low and do not allow the conclusion of a serious impact on organic 

carbon cycling. However, other authors have found similarly low values. Hoppe et 

al. (2002) reported a ratio of 2 – 10 % for cold and temperate regions and Moran 

et al. (2002) measured consistently low BP: PP (total primary production) ratios of 

between 0.3 and 4.1 % in different oceanic regions. It also has to be taken into 

account that our numbers arise from calculations of a very narrow time frame 

during the maximum of particulate primary production and not over a longer time 

period (in our case, the average ratio over the whole time of the experiment is 

100%!). Under the controlled experimental conditions phytoplankton can be 

expected to be in healthy and active condition, releasing relatively little DOC, 

while under field conditions a mixture of algae in different metabolic conditions 

with increased DOC release are more realistic. Also, obviously the ratio changed 
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dramatically during the degradation phase of the bloom, when bacterial production 

was high and primary production decreased. 

For further analysis we chose an additional way of looking at the topic by 

comparing the bacterial production and bacterial carbon demand with dissolved 

primary production, because bacterial production is mainly dependent on 

dissolved organic matter from phytoplankton especially during the bloom phase 

(Norrman et al. 1995). For the BP: DPP ratio from 3H-thymidine incorporation an 

increase up to a ratio of 93 % does indeed show the relevant impact of higher 

temperatures. For 3H-leucine incorporation the ratio was also always above 100 

%, showing that in this case the demand for protein production was not sufficiently 

supplied by DOC (see also below). The BCD: DPP ratio seemed unaffected by 

temperature, but the ratio always lay above 100%, revealing that exudation was at 

no point able to satisfy the carbon demand by bacteria. The DPP: BCD ratio (3H-

thymidine incorporation) showed, that on average, the fraction of bacterial carbon 

requirements, which extracellular release can meet, was only 32%. Cole et al. 

(1982) reported the fraction of bacterial carbon requirements, which extracellular 

release (i.e. dissolved primary production) can meet, to be around 40 %. Banes 

and Pace (1991) calculated the fraction to be 32% on average, assuming a BGE 

of 50% (and only 13% for a BGE of 20%). If BCD is much higher than DPP, then 

bacteria must have other sources of carbon for maintenance and growth (Moran 

et al. 2002, Banes and Pace 1991). Pomeroy & Wiebe (2001) have described that 

the potentially rapid transfer of dissolved organic carbon from auto- to 

heterotrophs usually falls short of the demand of bacteria for growth. Hence 

additional connections have been proposed, such as viral lysis, nutrient deficiency 

lysis and the excretion, defecation and sloppy feeding by micro-zooplankton and 

protists. Although measurements of dissolved primary production cannot 

distinguish between exudation of labelled DOC by healthy cells and via cell lysis 

by viruses or due to cells dying, it can be assumed that the effect of zooplankton, 

via sloppy feeding and excretion is underestimated due to the small sample sizes 

(it would only be by chance to have included copepods in the samples). 

Additionally the dissolved organic matter is not the only source for bacteria, which 
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also use extracellular enzyme activity in order to degrade and utilise particulate 

organic matter, such as dead phytoplankton cells. 

In this context, one has to be aware, that the influences of substrate quantity and 

quality and temperature on the planktonic food web cannot be assessed 

sufficiently if considered separately. Further studies, which disentangle the 

combined effects of nutrient supply and temperature, are needed and one 

example will be presented as part of this thesis. Additionally the influences of 

shifts in the bacterial community composition have to be taken into account. Hall 

et al (2008) showed how the often unclear relationships between temperature and 

bacterial metabolism can be understood by allowing for changes in the relative 

contributions of thermally differently adapted species to the total community 

reaction. The influence of temperature on the bacterial community composition 

was assessed as part of this experiment and is described in the thesis by Walther 

(2009). 

 

 

Summary and Conclusions 

We hypothesised that increasing temperatures would lead to an increased 

transfer of organic matter via the microbial food web due to a decreased lag time 

between the autotrophic production and heterotrophic microbial degradation in 

combination with an increased heterotrophic microbial activity.  

 

Our results show that the lag time between carbon fixation by phytoplankton and 

its utilisation by bacteria was not influenced by the temperature increase. Both 

processes were closely coupled and bacteria utilised dissolved and particulate 

organic carbon from phytoplankton during the bloom and then again increasingly 

during the degradation phase of the bloom. Additionally all bacterial parameters 

were significantly quantitatively increased at elevated temperatures, while primary 

production was unaffected by the temperature increase. BGE showed a trend 

towards increased values with increasing temperatures, revealing that bacterial 

production increased stronger than bacterial respiration under warmer conditions, 

indicating improved growth conditions rather than a stressful environment for 
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bacteria. Ratios of bacterial parameters to primary production revealed the 

increasing organic carbon transfer via bacteria with increasing temperatures. It 

also demonstrated that dissolved primary production did not suffice to supply 

enough readily available organic carbon for bacterial carbon demand, with an 

increasing deficit under warmer conditions.  

 

In summary, relative to the autotrophic production, more organic matter was 

transferred through the microbial loop and respired to CO2. In a future scenario of 

winter warming conditions, these results predict an increasing importance of the 

microbial loop in organic carbon cycling, leading to an overall more heterotrophic 

planktonic system. More CO2 will be released directly by bacteria and indirectly by 

the members of the complex food web, leaving less organic carbon for 

aggregation and sinking and representing a positive feedback loop for the CO2 

climate problem. 
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Introduction  

Oceanic phytoplankton primary production contributes to about 50% of global CO2 

fixation from the atmosphere. This autotrophic process of organic matter build-up 

is directly dependent on the availability of light and inorganic nutrients. Indirectly it 

depends on temperature via stratification, which regulates mean light and nutrient 

availability in the photic zone (Behrenfeld et al. 2006). The resulting particulate 

organic matter is ingested by zooplankton and subsequently higher trophic levels, 

leaving the remains for aggregation and sinking (classical food chain). Up to 50% 

of primary production, however, is cycled through the microbial loop in temperate 

waters (Azam et al. 1983), up to 102 – 188% for example in the equatorial Indian 

Ocean and this process is mainly dependent on temperature (Pomeroy & Wiebe 

2001). This important link between the physical environment and biological 

functions in the ocean highlights the urgency of studying the effects of predicted 

climate change in terms of solar irradiance and temperature on the coupling 

between phytoplankton carbon fixation and heterotrophic carbon remineralisation 

and hence the marine carbon cycle. Also, the combined effects of temperature 

and light on the marine carbon cycle have rarely been considered together 

(Rochelle-Newall et al. 2008). 

 

Current situation 

In moderately deep water bodies like the Kiel Bight, the influence of temperature 

and light on the onset of the spring bloom are decoupled. All plankton is physically 

restricted to a shallow water depth and as soon as light conditions are favourable, 

this triggers the phytoplankton spring bloom (Sverdrup 1953, Sommer et al 1986, 

Sommer & Lengfellner 2008). Because of this light-dependence of phytoplankton, 

the spring bloom is usually associated with cold water temperatures (2.4°C as the 

10 year mean in early February). At these temperatures, heterotrophic activity is 

still very low, so that the autotrophic carbon fixation by phytoplankton and the 

heterotrophic bacterial utilisation are mainly decoupled during this time. 

Consequently the remineralisation of organic matter is low and a large portion is 

lost to sedimentation (Pomeroy & Wiebe 2001).  
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Climate predictions 

The IPCC report (IPCC 2007) predicts an increase in winter temperatures for 

north-central Europe of up to 8.2 °C until the end of the century (annual mean: 2.3 

– 5.3°C). At the same time, confirmed prognosis on the development of light 

conditions is not available (Wild 2009). However, a tendency towards increasing 

irradiation between the 1980s and 2000s by 1.4 and 4.9 W m-2  per decade was 

observed for Europe, which was mainly attributed to changes in anthropogenic 

aerosol emission leading to less scattering and adsorption of radiation (Wild 

2009). Predictions on future irradiation changes are associated with great 

uncertainties because they have to account for future development of 

anthropogenic aerosol emissions, which is coupled to economic advancement as 

well as the effectiveness of air pollution regulations. Recent measurements 

however, still confirm the continuing brightening trend at the moment (A. Macke, 

personal communication). Apart from the global irradiance, an indirect effect of 

water column warming is predicted to be an increased light availability in the 

temperate climate zone (Behrenfeld et al 2006). In deep water columns, 

increasing winter water temperatures are expected to increase thermal 

stratification and hence increase the light availability for phytoplankton as well as 

prolonging the growing season (Behrenfeld et al 2006). As described above, our 

mesocosm system represents a model for moderately deep water bodies. 

Nevertheless, the basic mechanisms, as found for example for future increasing 

light availabilities, might well be transferable to deep water bodies.   

 

Possible future changes 

While light-limited phytoplankton is mainly independent of temperature (Tilzer et al 

1986), the temperature dependence of bacterial processes like bacterial 

secondary production and bacterial respiration has been described manifold (e.g. 

Shia & Ducklow 1994, Pomeroy & Wiebe 2001, Kirchman et al. 2005). Published 

Q10 values of 1 - 2 for auto- and 2 - 3 for heterotrophic processes (Pomeroy & 

Wiebe 2001, Tilzer et al. 1986) suggest that a temperature increase would mainly 

favour bacteria over phytoplankton. For phytoplankton on the other hand, 

increasing light availability would result in earlier phytoplankton blooms, as the 
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critical light quantum for the onset of the bloom is reached earlier in the year. Also 

the process of carbon fixation is expected to be enhanced at higher light 

availabilities.  

For predictions on a future phytoplankton-bacterioplankton coupling and the 

associated carbon cycling through the microbial loop, several different possibilities 

can be devised. These possibilities can be considered on two different levels: a. 

the absolute amount of organic carbon that is fixed and consequently cycled 

through the microbial loop and b. the relative amount of primary produced organic 

matter that is utilised by heterotrophic bacteria. In the context of a predicted future 

warming and possible continuing brightening, the current situation is termed as a 

“cold” and “dim” spring situation. 

Considering the above-described current time-lag between autotrophic carbon-

fixation and heterotrophic carbon remineralisation, future warming can be 

expected to shift bacterial activity forwards in time, diminishing the time-lag und 

creating a (increasing) timely overlap with the phytoplankton bloom, thereby 

increasing the substrate availability for bacteria. Because phytoplankton would not 

be affected in their timing by the increased temperature, the relative amount of 

organic carbon going through the microbial loop would increase. A closer timely 

coupling of bacteria to phytoplankton will hence increase bacterial production and 

consequently favour the degradation of organic matter in the euphotic zone and 

the recycling of CO2 to the atmosphere and leave less matter for sedimentation 

processes. In the case of future brightening, however, it can be expected, that the 

phytoplankton spring bloom will start even earlier in the year, this way increasing 

the time-gap to bacteria, hence decreasing the relative amount of recycled 

carbon. The combined effects of “warming” and “brightening” cannot be deduced 

from this scenario as the result depends on the relative effects of light on 

phytoplankton and temperature on bacteria. If both effects are the same for the 

timing of the bloom, then no change compared to the current situation will be 

expected. Also, the consequences of a timely overlap are obviously directly 

dependent on the effects of temperature and / or light on the primary and 

secondary production quantities.  
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For the quantity of primary and secondary production a similar basic scenario can 

be devised. Increasing temperatures are expected to increase the quantity of 

bacterial activity, while it will affect phytoplankton to a lesser extent. This will lead 

to an increased relative amount of primary produced organic matter (i.e. increased 

BP:PP). Increasing solar irradiance on the other hand will enhance primary 

production while it will not affect bacterial activity and hence the relative amount of 

organic carbon going through the microbial loop will diminish (i.e. decreased 

BP:PP ratio). In a future scenario of both “warming” and “brightening”, where both 

processes are positively affected, we can expect the absolute amount of primary 

produced organic matter that is recycled by heterotrophic bacteria to increase. 

However, we cannot predict how the relative amount will change, because the 

effect of light on phytoplankton and temperature on bacteria might not be the 

same.  

Obviously these considerations are a simplification of the much more complex 

food-web interactions. Temperature can have small effects on primary production 

(Q10=1 - 2) while there is no direct effect of light on heterotrophic bacteria. Other 

trophic levels have to be taken into account, like for example increased 

zooplankton grazing on phytoplankton can reduce phytoplankton primary 

production in warmer conditions (Lengfellner 2008).  

 

The research questions which follow up from these considerations are the 

following: 

1. Will there be an increased coupling of phyto- and bacterioplankton at 

higher temperatures? 

2. What will be the influence of light on this coupling? 

 

We will draw conclusions from indoor mesocosm experiments, which were 

conducted under different experimental settings over the course of four years. In 

each year, winter water from Kiel Fjord, containing the overwintering plankton 

communities, was exposed to different temperature settings, including the current 

in situ “cold” situation and warming scenarios of up to ∆T +6°C (future “warming” 

scenario).  In the subsequent experiments different natural light scenarios were 
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chosen, representing current “dim” and future “brightening” of light conditions. 

Autotrophic and heterotrophic parameters were determined during the 

development of the spring phytoplankton bloom in order to assess the coupling 

between phytoplankton and bacteria and to interpret the results in terms of a 

possible future “warming” and “brightening” scenario. 

 

 

Materials and Methods 

Experimental setup 

The experiments were performed in early spring in the years 2005, 2006, 2007 

and 2008. For the experiments in 2005 – 2007, eight mesocosms were set up 

pairwise in four climate chambers, thus creating two replicates per temperature 

treatment. The in situ treatment was run at 2.4°C ( ∆T+0°C). This corresponds to 

the ten years mean (1993 – 2002) for the Kiel Fjord for the 4th of February (Julian 

day 35), which was chosen as the virtual starting point. The other three climate 

chambers were adjusted to 4.4, 6.4 and 8.4°C ( ∆T+2°C, +4°C and +6°C, 

respectively). In 2008 two climate chambers were run at ∆T+0°C and the other 

two at ∆T+6°C (see Table 1 for an overview over the differe nt experimental 

settings). 

The mesocosms were allowed to adapt to the chosen temperatures before the 

first sampling. Temperatures were adjusted according to the decadal mean 

temperature model (Fig. 1). 

 
 
 
Figure 1 . Spring temperature model. The 
blue line represents the baseline treatment 
(∆T+0°C) and corresponds to the decadal 
mean of the Kiel Bight water temperatures 
between 1993 – 2002. Climate warming 
regimes were elevated by ∆T+2°C (green), 
∆T+4°C (orange) and ∆T+6°C (red). 
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The mesocosms were synchronously filled with 1400 L of unfiltered Kiel Fjord 

water from 6 m depth outside the IFM-GEOMAR, containing the overwintering 

populations of phytoplankton, bacteria and protozoa. Mesozooplankton from net 

catches was added in natural overwintering densities. The water was gently 

stirred at all times, preventing light particles to sink down to the bottom, while at 

the same time allowing heavier particles to drop out of the water column. The 

starting mesozooplankton concentrations and nutrient conditions for all years can 

be found in Table 1.  

 

Water samples were taken in regular intervals into 20 L pre-washed carboys. 

Subsamples for the determination of the different parameters were taken from the 

carboys after gentle mixing. Only for the determination of respiration rates, water 

was taken directly from the mesocosms in order to prevent mixing and stirring 

influence on oxygen content of the samples. 

Light was provided by fluorescent tubes (a mixture of JBL Solar Tropic and JBL 

Solar Natur) from the top of the mesocosms. The light units were computer 

controlled (GHL Groß Hard- und Softwarelösungen, Lamp unit HL3700 and 

ProfiluxII). Daily light cycles (i.e. sunrise and sunset) were adjusted according to 

the natural light conditions in the Kiel Bight and were transformed to triangular 

light curves with integrated daily intensities. These daily intensities were 

calculated according to the geographical position of Kiel after the model described 

in Brock (1981). Therein I0 represents the natural daily integrated solar irradiation 

reaching the water surface on a cloudless day. This theoretical 100% I0 level was 

subsequently reduced to levels of between 16 and 64% in the different 

experiments, in order to simulate current natural dim spring situations as well as 

possible future brightening scenarios. In the three experiments in 2005, 2006 and 

2007, one light level each was applied (with four temperature levels), while in 

2008 a combination of two temperatures with three different light levels was 

applied (repeating light levels were termed “b” ,see Table 1). The theoretical 100 

% I0 light level ranges between 1.40 kWh m-2 on the 4th February and 9.08 kWh m-

2 for example on the 28th February (average: 4.16 kWh m-2). Measurements of 

solar irradiation actually reaching the surface, performed at IFM-GEOMAR for 
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February 2008, showed values of between 0.30 and 2.25 kWh m-2 (average: 1.05 

kWh m-2). Calculated for the entire year, on average only about 20 % of the 

theoretical irradiance actually reaches the surface. Hence the performed 

experiments with 16 and 32% I0 can be conceived as representing current dim 

spring situations, while the other treatments (48% and 64% I0) represent possible 

future brightening scenarios.  

 

Table 1 : Overview over the different experiments and their respective experimental 
settings. I represents the % of natural light intensity without cloud cover (I0). ∆T is the 
initial temperature elevation relative to the long-term mean (1993-2000). 
Mesozooplankton was added from net catches in actual over wintering densities. Natural 
starting nutrient conditions were different between the different years.  
 

 2005 2006 2007 2008 
 
Light (I in % I 0) 

 
16 

 
64 

 
32 

 
32 b, 48, 64 b 

 
Temperature        
(∆T +°C) 

 
0, 2, 4, 6 

 
0, 2, 4, 6 

 
0, 2, 4, 6 

 
0, 6 

 
Mesozooplankton 
(individuals L -1) 

 
12 - 20 

 
7 - 10 

 
3 - 6 

 
10 

 
Nutrients (µM) 

    

 
Phosphate 

 
0.8 

 
0.7 

 
1.1 

 
0.9 

 
Nitrate 

 
21.5 

 
8.7 

 
31.9 

 
10.6 

 
Ammonium 

 
2.2 

 
1.7 

 
4.4 

 
1.3 

 
Silicate 

 
24.7 

 
18.9 

 
32.5 

 
30 

 
 

Particulate primary production 

Particulate primary production (PPP) measurements were performed using 14C 

bicarbonate incubations following the methods of Gargas (1975) and Steeman 

Nielsen (1952) (in 2008 primary production was conducted by Aleksandra 

Lewandowska). For each mesocosm three aliquots of 30 ml each were incubated 

with 100 µl of a 4 µCi / 100 µl 14C-bicarbonate solution. The blank treatment was 

kept dark during incubation. Incubation took place at approximately half depth 

inside the respective mesocosm, ensuring a mean light exposure and in situ 

temperature conditions. After 4-5 hours of incubation, aliquots of 10 ml were 
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filtered onto 0.2 µm cellulose nitrate filters. The filters were subsequently fumed 

with 37% HCl fumes in a closed box for 5-10 min and then measured in 4 ml of 

Scintillation cocktail (Lumagel Plus) using a Packard Tricarb counter. 

Particulate primary production were calculated for the light day by considering the 

amount of light received during the incubation period relative to the total daily light 

quantity. The variable is presented as µg C L-1 d-1. In the text the term “primary 

production” will be used with reference to particulate primary production. 

The original CO2 concentration of the water sample was determined according to 

the method and dissociation constants described in Stumm & Morgan (1981).  

 

Bacterial production 

Bacterial protein production 

Bacterial protein production (BP) measurements were conducted following the 

protocol of Simon & Azam (1989). Four aliquots (3 replicates and one blank) of 10 

ml of water were each incubated with 50 µl of a 1 µCi / 10 µl 3H-leucine solution 

plus 50 µl of a 2 nmol / 100 µl unlabeled leucine solution. This resulted in a total 

concentration of >100 nmol L-1 of leucine in the sample in all years, which is 

known to be saturating under the conditions found in the Kiel Fjord (Giesenhagen, 

unpublished data). 

All samples were incubated in the respective climate chambers at in situ 

temperature in the dark for 1.5 - 3 hours. Incubation was terminated by the 

addition of formaldehyde (1 % v / v) and 5 ml aliquots were separately filtered 

onto 3.0 µm (particle-attached bacteria) and 0.2 µm (total bacteria) polycarbonate 

filters. The filters were subsequently rinsed with ice cold 5 % TCA (trichloro acetic 

acid) solution, before being radio-assayed in 4 ml of scintillation cocktail (Lumagel 

Plus). Results in terms of pM h-1 bacterial protein production were transferred into 

µg C L-1 d-1 biomass production using a theoretical conversion factor of 3.091 x 

10-3 kg C mol-1 leucine (Simon & Azam 1989).  
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Bacterial Cell Production 

Incorporation of 3H-methyl-thymidine for the determination of bacterial cell 

production (BP) was done slightly modified after Fuhrman & Azam (1982). For 

each sample, three replicates and one blank (treated with 1 % v / v formaldehyde) 

of 10 mL of water were each incubated with 50 µL of a 1 µCi / 10 µL 3H-methyl-

thymidine solution resulting in a final and saturating concentration of 8.2 nmol L-1 

(2005) and 7.9 nmol L-1 (all other years). 

Samples were treated as described for 3H-leucine above (including fractionated 

filtration onto 3 µm and 0.2 µm filters). Results in terms of pM h-1 bacterial 

production were transferred into µg C L-1 h-1 biomass production using empirical 

conversion factors of 30.87 kg C mol-1 thymidine (2006) and 12.12 kg C mol-1 

(2007) – for a description of the determination of conversion factor see Chapter 1. 

In 2005, no conversion factor was established, so a literature value of 17.32 kg C 

mol-1 (Riemann et al. 1987) was used. 

 

Respiration 

Respiration was determined using Winkler Titration (Winkler 1888) with 

automated photometrical endpoint detection. For each mesocosm six 100 ml 

glass bottles were filled with unfiltered water for determination of total community 

respiration, another six bottles were filled with 3 µm pre-filtered water (always < 

200 mbar) for determination of respiration assigned mainly to bacteria. Total 

community respiration (CR, unfiltered water) incorporates dark phytoplankton 

respiration, respiration by zooplankton and total bacteria. Bacterial respiration 

(BR) represents free-living bacteria and bacteria attached to particles <3µm but 

does exclude bacteria attached to particles >3µm. Three flasks of each set were 

immediately fixed and the other three replicates were incubated for 48 h at in situ 

temperature in the climate chambers in the dark, and submersed in water. 

Respiration in terms of O2 uptake (mg L-1 h-1) was multiplied by a recommended 

factor of 0.32 (based on RQ of 0.85, Ogura 1972) to calculate C-utilisation for 

respiration in terms of mg C L-1 d-1.    
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Total bacterial number 

For determination of bacterial abundance (TBN) (cells ml-1) aliquots of 100 ml of 

water were fixed with formaldehyde to a final concentration of 2 % (vol / vol) and 

stored at 4°C until filtration. Filtration of 6 ml aliquots onto black 0.2 µm 

polycarbonate filters was performed within 7 days of fixation. Cells were stained 

using DAPI (4´-6-diamino-2-phenylindole) to a final concentration of 100 µg ml-1 

and frozen at -20°C until being counted under an ep ifluorescence microscope 

(Axioskop2mote plus, Zeiss, Germany). At 1000x magnification, using a 

NewPorton G12 Grid, 20 grids or at least 400 cells were counted. 

 

Data analysis and statistics 

The timing of the peaks in relation to temperature (and for 2008 also light 

intensity) was computed from the regression between the days when these peaks 

occurred and the temperatures (∆T) or light intensities (% I0) of the respective 

mesocosms. The slopes of the linear regressions between the day of peak and 

the temperature or light correspond to the acceleration that the respective 

parameter experienced in days per each 1°C warming or 1% increase in light 

intensity. The slopes were compared using ANCOVA. 

In order to establish the relationships between temperature and the quantities of 

the measured parameters I quantified each individual peak by calculating its 

mean. The individual peaks were determined from the start until the end of 

exponential increase. Where no exponential increase occurred, the first and last 

days of a substantial increase in the respective parameter was determined by 

eye. The mean value allows for the direct comparison of the different parameters 

from different experiments, irrespective of different length and height of the 

individual peaks. Each calculated mean value was plotted against its respective 

temperature and linear regression lines fitted through the data using SigmaPlot.  

The total amount of carbon required by bacteria for growth and respiration 

(bacterial carbon demand, BCD) was calculated by adding bacterial production 

and bacterial respiration (BCD = BP + BR). Because BP incorporates all bacteria 

while BR does not take into account the respiration of bacteria attached to 

particles >3 µm, the relative amount of particle-attached bacteria was calculated 
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from the BP >3µm measurement and added to the BR measurements accordingly 

(“corrected BR”, only for BCD and BGE). The relative amount (percentage) of 

carbon being used by bacteria for growth in relation to the total carbon demand, 

the bacterial growth efficiency (BGE) was calculated by dividing bacterial 

production by BCD and multiplying by 100 (BGE = BP/ BCD).  

 

Percent increases in any of the parameters with temperature were assessed from 

the equations of the linear regressions by using first 2.4°C (in situ = 100%) and 

then 8.4°C in the equations. For light intensity, I  used first 32 % or 48 % (where 

appropriate) and then 64% in the linear equations. 

 

Because the experiments with different light treatments were performed in 

different years, a joint statistical analysis is not possible. When comparing the 

results it has to be kept in mind that different starting conditions, concerning the 

relative quantities and compositions of the planktonic community, were present in 

the different years. Due to the full factorial combination of temperature and light 

treatments in the 2008 experiment, an analysis of the above described 

parameters (timing, mean quantity, BCD, BGE and ratios BP: PPP and BCD: 

PPP) in relation to light additionally to temperature was feasible. Multiple linear 

regression was performed in order to assess the relative influences of light and 

temperature on the parameters. In the results section the experiments from 2005 - 

2007 are therefore always described separately from the 2008 experiment.   

 

Linear regressions were performed using SigmaPlot software (Systat Software 

Inc., USA), statistical analyses (ANCOVA comparison of slopes, multiple linear 

regression) was performed using Statistica data analysis software (StatSoft Inc., 

USA). 
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Results 

Time courses 

In order to give an overview over the development of autotrophic and 

heterotrophic parameters, the time courses of primary production (PPP) and 

bacterial production (BP) at the two extreme temperature regimes (∆T +0°C and 

+6°C) are displayed in Figures 2 and 3. The results  for PP show, that in each 

single experiment, i.e. treatment, a phytoplankton bloom developed.  

 

 

Figure 2.  Time courses of 
particulate primary production 
(PPP) and bacterial production 
(BP) at the two extreme 
temperature treatments (∆T 
+0°C and +6°C) separately for 
the different light conditions in 
2005 - 2007. For each 
measuring point the mean of the 
two replicates is displayed, error 
bars represent the deviation 
from the mean. Note the 
different scales on both axes. 
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47 µg C L-1d-1 at 16% I 0 and 20 – 50 µg C L-1d-1 at 32 % I0. At 64% I0, PPP 

reached between 289 and 410 µg C L-1d-1. As seen for PPP, the lowest maximal 

values of BP were found at 16% and 32% I0, with between 6.6 - 7.8 and 7.4 – 8.9 

µg C L-1d-1 (3H-leucine incorporation) respectively. For 3H-thymidine incorporation, 

at 32% I0, between 18.8 and 19.8 µg C L-1d-1 were measured. At 64%, 

measurements with 3H-leucine incorporation showed a production of 29.4 – 42.6 

µg C L-1d-1.  

 

The beginning of the 

phytoplankton bloom was the 

earlier in the experiment the 

higher the light treatment. For 

both parameters, within each 

single experiment, the peaks 

were always earlier in the 

warmer treatment. BP followed 

the peak of PP, the time gap 

was larger at the higher light 

treatment. 

 
 

 
Figure 3.  Time courses of 
particulate primary production 
(PPP) and bacterial production 
(BP) at the two extreme 
temperature treatments (∆T +0°C 
and +6°C) separately for the 
different light conditions in 2008. 
For each measuring point the 
mean of the two replicates is 
displayed, error bars represent 
the deviation from the mean. Note 
the different scales on the y-axis. 
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2008 

PPP in 2008 (32 % b, 48% and 64% b I0) was higher than in 2005 and 2007 

(lower light treatments), but at a comparable level as in 2006 (64% I0). However, 

here also the maximal values increased with increasing light intensities, with 

between 213 and 340 µg C L-1d-1 at 32% b I 0, between 301 and 326 µg C L-1d-1 at 

48 % I 0 and between 362 and 417 µg C L-1d-1 at 64% b I 0.  

In all light treatments of the 2008 experiment (32% b, 48% and 64% b I0) only BP 

measurements using 3H-leucine incorporation were performed, yielding increasing 

maximal values with increasing light intensity at the warmest temperature (64.3 - 

65.3 µg C L-1d-1 at 32% b I0, 55.6 - 71.1 µg C L-1d-1 at 48% I0 and 72.9 - 94.6 µg C 

L-1d-1 at 64% b I0). 

In all light treatments the peaks of the two parameters were always earlier in the 

warmer treatments. BP peaks were always after the peaks of PPP. 

 

Summary 

- Absolute maximal values of both parameters, PPP and BP, differed 

between the different years, values were generally higher in the 2008 

experiment 

- PPP and BP maximal values increased with increasing light intensity in the 

2005-2007 and within the 2008 experiment 

- Peaks in the warmer treatments were always earlier than in the colder 

treatments (both parameters) 

- The peaks of BP occurred after the PPP in most cases 

- Peaks of BP were always higher in the warmer treatments, there was no 

such pattern for PPP 

 

A detailed assessment of the influence of light and temperature on the timing and 

quantity of the measured parameters can be found in the following sections. 

 

Timing  

In order to assess the influence of temperature and light on the timing of the 

bloom event dynamics, I plotted the day of each peak against its respective 
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temperature. As above there is a plot for each light treatment and the 2008 

experiment separately from the other years. The equations for the linear 

regressions can be found in Annex Table 1, where the slope of the equation 

represents the number of days acceleration (or retardation) of the peak for a 

temperature increase of 1°C, and the difference of each parameters’ peak relative 

to the peak of autotrophic carbon fixation (PPP) is displayed.  

 

2005 - 2007 

A comparison between the different light levels revealed a large difference in the 

timing of the bloom (PPP). At the highest light treatment (64% I0) the peak started 

almost immediately at the beginning of the experiment, while it was around day 22 

for the 32% I0 treatment and only around day 51 at the lowest light level (16% I0). 

Within the 16% I0 light experiment (Figure 4, A) PPP was slightly accelerated by 

0.8 days by increasing temperature, while BP was accelerated by 2.2 days, which 

would lead to a decrease of the gap between autotrophic and heterotrophic 

production by over 8 days for a total temperature increase of ∆T +6°C. Bacterial 

abundance (TBN) showed basically no correlation with temperature (R2 = 0.02). 

Statistically the accelerations were not significantly different from each other 

(ANCOVA comparison of slopes, F=0.92, p=0.42). 

PPP was significantly but only very weakly accelerated by the temperature 

increase at 32% I0 (0.35 days) (Figure 4, B). Bacterial and community respiration 

(BR and CR) were basically unaffected. BP (3H-leucine: 1.6, 3H-thymidine: 2.42 

days) and TBN (2.35 days) were (significantly) stronger accelerated, so that the 

gap between the bacterial parameters and PPP was reduced by 7 and 12 days, 

respectively. All bacterial parameters even “overtook” the PPP peak. Statistically, 

CR and BR accelerations were similar (ANCOVA, F=0.39, p=0.54), TBN and BP 

(both methods) were similar (F=0.91, p=0.42) and PPP was different from all the 

others (for CR+BR: F=3.55, p=0.05; for all other parameters: F=5.34, p=0.006).   

There was no influence of temperature on the timing of the PPP peak at 64% I0 

(Figure 4, C). All measured bacterial parameters were significantly accelerated at 

warmer temperatures, similarly around 1.8 days for TBN and BP and stronger for 

BR (3.8 days). These accelerations would lead to a reduction of the gap between 
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auto- and heterotrophs of 11 and 22 days for a temperature increase of ∆T +6°C. 

ANCOVA comparison of slopes revealed that BP (3H-thymidine), BR and TBN 

accelerations were statistically not significantly different from each other (F=2.59, 

p=0.10), while PPP was different from all of these (F=5.96, p=0.002).  

 

 

Figure 4 : Acceleration of peaks of the different parameters for the temperature increase 
of ∆T +0°C to +6°C at the respective light treatments f rom the 2005 – 2007 experiments. 
The day of each peak is plotted against its respective temperature and the relationship is 
assessed by linear regression. For equations see Annex Table 1. Note the different 
scales on the y-axis. 
 

2008 

For the 2008 treatments (32% b, 48% and 64% b I0) there were only data 

available for two temperature treatments (∆T +0 and +6°C). The patterns of peak 

accelerations for the light treatments in this experiment were very similar (Figure 

5). PPP and both respiration parameters (BR, CR) were always only little affected 

by the temperature increase (all ≤ 1 day). BP showed a strong acceleration (1.4, 
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1.6 and 3.1 days respectively), leading to a reduction of the gap to PPP of 4.5, 7 

and 15 days at the different light settings. TBN showed the strongest peak 

acceleration with increasing temperatures, which was also very similar between 

the different light treatments (4.5 - 4.7 days). The strong acceleration led to a 

decrease in the difference of the peak timing to PPP of  23-25 days, so that the 

peak of TBN would even be earlier than that of the algae. ANCOVA comparison of 

slopes shows for the two lower light levels, that TBN acceleration was statistically 

different from all other parameters (F=19.17, p=0.002 and F=24.52, p=0.00). At 

64% b I0 the accelerations were similar for BR, CR and PPP (F=0.95, p=0.44) and 

TBN and BP (3H-leucine) were additionally also different from each other (F=17, 

p=0.001).   

 

Figure 5 : Acceleration of peaks of the different parameters for the temperature increase 
of ∆T +0°C to +6°C at the respective light treatments f rom the 2008 experiment. The day 
of each peak is plotted against its respective temperature and the relationship is 
assessed by linear regression. For equations see Annex Table 1. 
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Due to the full factorial experimental design in 2008, a direct and statistical 

comparison of the different influences of temperature (∆T +0°C and +6°C) and 

light (32% b, 48% and 64% b I0) was feasible. Hence I plotted all data points of 

each parameter at the same temperature together in Figure 6. This graph shows 

that the overall acceleration of peak timing of PPP, irrespective of the light 

intensity, only measured a total of 0.56 days per 1°C temperature increase (Annex 

Table 2). CR and BR peaks coincided with the peak of PPP and were only slightly 

stronger accelerated by 0.8 and 1 day. The difference in acceleration to BP was 

stronger (2 days), leading to an overall reduction in the gap to PPP by almost 9 

days (original difference 14 days at ∆T +0°C). The strongest acceleration was 

seen for TBN with 4.6 days and a difference to the acceleration of the algae of 24 

days for a temperature increase of ∆T +6°C, leading to an overall earlier peak of 

TBN compared to the algae (PPP). All accelerations were statistically significant 

and ANCOVA comparison of slopes showed that PPP, CR and BR showed 

statistically the same acceleration (F=1.89, p=0.18), while TBN and BP were 

different from the others as well as different from each other (F=50.7, p=0.00). 

 

 

Figure 6 : Acceleration of peaks of the 
different parameters for the 2008 
experiment. All data points of each 
parameter for one temperature (∆T 
+0°C or +6°C) are plotted together, to 
assess the overall influence of 
temperature on the timing irrespective 
of the light treatment. The relationship 
is assessed by linear regression, for 
equations see Annex Table 2.  
 
 
 
 

 
 
Figures 7 and 8 show the influence of the different light treatments of the 2008 

experiment on the timing of the different parameters. In Figure 7 separately for the 

two temperature treatments (∆+0°C and ∆+6°C), and in Figure 8 all data points of 

the same light treatments are plotted together, in order to assess the overall 

influence of light intensity on the timing, irrespective of temperature. 
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Figure 7 : Correlation of peak  timing of the 2008 parameters with light. Acceleration of 
peaks is assessed for primary production, total bacterial number, bacterial production (3H-
leucine), community and bacterial production at ∆ +6°C (A) and ∆ +0°C (B) by linear 
regression. For equations see Annex Table 3.   
                                                                                        
 

Figure 7 shows that there was little influence of the light treatment on the timing of 

PPP, CR and TBN at both different temperatures. Annex Table 3 displays the 

slope values, which represent the acceleration of peaks in days for an increase in 

the light intensity of 1% I0. Hence, although the slope values seem low at first 

sight, the acceleration of BP at ∆T +6°C of 0.17 days per 1% I 0 increase mean an 

overall difference of 5.4 days for an increase in light between 32% and 64% I0. 

The acceleration of BR was 4.2 days at ∆T +6°C, but only 1.9 days at ∆T +0°C. At 

∆T +0°C BP was even slightly retarded by 4.5 days. N evertheless, in comparison 

to the accelerations seen above for the temperature range, these influences of 

light intensity are rather low. None of the relationships were statistically significant, 

and ANCOVA comparison of slopes revealed that in both cases (i.e. both 

temperatures) all slopes and hence all accelerations were statistically similar 

(F=1.13, p=0.38 at +6°C and F=1.40, p=0.28 at +0°C) . 
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Figure 8 : Correlation of peak timing of the 2008 parameters with light. All data points of 
one light treatment are plotted together, irrespective of the temperature. Acceleration of 
peaks is assessed for primary production, total bacterial number, bacterial production (3H-
leucine), community and bacterial production by linear regression. For equations see 
Annex Table 4.   
 

 

The summarised depiction in Figure 8 demonstrates, that there was basically no 

overall influence of the light intensity on the timing of any of the parameters 

(Annex Table 4). The slopes were all zero or close to zero and hence not 

statistically significant. ANCOVA comparison of slopes confirmed that they were 

not different from each other (F=0.02, p=0.99). 

 
 
 
Table 2.  Partial correlation of light and temperature with the timing of the different 
parameters in the 2008 experiment. Relationships statistically significant at the p<0.05 
level are marked with an asterisk. 
 

 Light  Temperature  
Parameter  R2 p R2 p 
 
Particulate primary production 

 
0.12 

 
0.30 

 
0.59 

 
0.006* 

Total bacterial number 0.00 1.00 0.98 <0.0001* 
Bacterial production 0.004 0.85 0.77 0.0003* 
Community respiration 0.00 1.00 0.94 0.0002* 
Bacterial respiration 0.20 0.31 0.74 0.01* 
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Summary 

- PPP was not or only little accelerated by increasing temperatures 

- In 2005 – 2007, bacterial parameters were accelerated to different 

degrees, mostly stronger than phytoplankton, leading to decreases in the 

time lag of up to 22 days 

- In 2008, BR was only very weakly accelerated, while the other bacterial 

parameters showed strong accelerations, decreasing the time lag up to 25 

days 

- Light intensity did not show any influence on the timing of any of the 

parameters, even PPP was unaffected 

  

Multiple linear regression confirmed the results. Partial correlations revealed that 

the impact of temperature on the parameters’ timing was in all cases highly 

significant and explained most of the variability seen in the peaks, while light did 

not show any significant influences. 

 

Quantities 

In Figure 9 and 10 the peak quantities of each parameter are plotted versus their 

respective temperature, in separate plots for each light treatment and separate for 

the 2008 experiment. As described in the Material and Methods section each 

individual peak was quantified separately by calculating its mean. 

 

2005-2007 

At 16% I0 primary production (PPP) showed a significant decrease of peak 

quantity with increasing temperature by 69%, from 12.9 µg C L-1d-1 at 2.4°C to 4.0 

at 8.4°C, while bacterial abundance (TBN) and bacte rial production (BP, 3H-

thymidine incorporation) were not influenced by temperature at all (Figure 9, A; 

see Annex Table 5 for equations and Table 17 for percentage changes), ranging 

around 1.7 x 106 cells ml-1 for TBN and 3.9 µg C L-1d-1 for BP. Only respiration 

measurements (CR, BR) showed an influence of temperature, with increasing 

values at increasing temperatures, for BR this meant an increase by 32% from 22 

to 29 µg C L-1d-1, and for CR a significant increase by 50% from 26.4 to 39.8 µg C 
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L-1d-1. The influence of temperature on the mean quantity was statistically the 

same for BP and TBN (ANCOVA comparison of slopes, F=0.02, p=0.88) and for 

CR and BR (F=2.31, p=0.15). 

The experiment at 32% I0 showed a quite similar pattern (Figure 9, B). Again PPP 

quantity was significantly reduced at higher temperature. Theoretically, at the rate 

of decrease I found, PPP would decrease from 24.2 µg C L-1d-1 at in situ 

temperature to zero at 8.4°C. TBN and BP ( 3H-thymidine and 3H-leucine 

incorporations) even showed a slight (and for 3H-thymidine significant) decrease 

of quantity at warmer temperatures. TBN decreased by 12% from 1.5 to 1.32  x 

106 cells ml-1, while BP decreased by 35 and 53 % (for 3H-leucine and 3H-

thymidine incorporation, respectively) from 12.5 to 8.1 µg C L-1d-1 and from 4.6 to 

2.2 µg C L-1d-1, respectively. Again respiration (CR and BR) was significantly 

increased at higher temperatures. BR increased by 48% from 18.9 to 28 µg C L-

1d-1, while CR increased by 49% from 22.9  to 32.9 µg C L-1d-1. As described for 

the 16% I0 treatment, the influence of temperature was similar for BP and TBN 

(ANCOVA, F=2.69, p=0.09), as was the case for BR and CR (F=0.15, p=0.71), 

while the influence on PPP was different from all others.  

PPP and TBN were basically unaffected by the temperature increase at 64% I0, 

both only displaying a slight trend towards increased values (Figure 9, C). PPP 

showed an average value of 161 µg C L-1d-1, while TBN was overall on average 

2.1 x 106 cells ml-1. BP (3H-thymidine incorporation) showed a trend towards 

increasing values with increasing temperature with an increase by 32% from 21 to 

28 µg C L-1d-1. Only the increase for BR was significant, displaying values 

between 34 and 49 µg C L-1d-1, which corresponded to an increase by 47%. 

Nevertheless ANCOVA comparison of slopes showed that the influence of 

temperature increase was similar for all parameters (F=0.41, p=0.75). 
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Figure 9 : Relationship of quantities of the different parameters with temperature. The 
mean of each individual peak period is plotted against the respective temperature, 
separately for each light treatment of the 2005-2007 experiments. The different 
parameters are highlighted by different colour according to the legend, total bacterial 
number is on the right y-axis, and all other parameters are on the left y-axis. The 
relationship between the mean quantities and temperature is assessed by linear 
regression, for equations see Annex Table 5. Note the different scales on the y-axis. 
 

 

2008 

In the 2008 experiment, at all light levels PPP was not significantly affected by the 

temperature increase, showing a trend towards decreased values at the two lower 

light levels (32% b I0 and 48% I0) and a trend towards increased values at the 

highest light level (64% b I0) (Figure 10, see Annex Table 5 for equations and 

Table 17 for percent changes). Decreases meant a reduction by 11 and 9 %, from 

144.5 to 128.6 µg C L-1d-1 and from 152.8 to 138.6 µg C L-1d-1, respectively. The 

trend at 64% b I0 showed an increase in the mean values from 170.3 to 206.3 µg 
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C L-1d-1, which corresponds to 21%. Overall the highest PPP mean bloom values 

were found at the combination of highest light and highest temperature. Bacterial 

parameters showed increasing quantities with increasing temperature, except for 

TBN, which was not affected or slightly reduced. TBN increased by 19% from 1.7 

to 2.0 x 106 cells ml-1 at 32% b I0, the decrease was 11% from 1.6 to 1.5 x 106 

cells ml-1 at 48% I0, while an average of 1.5 x 106 cells ml-1 at 64% b I0 was 

unaffected by temperature. BP was increased by 16 % from 48.6 to 56.4 µg C L-

1d-1 at 32% I0, by 25% from 47.2 to 58.9 µg C L-1d-1 at 48% I0 and by 19% from 

58.2 to 69.4 µg C L-1d-1 at the highest light intensity. Hence the strongest increase 

in BP was seen at 48% I0, while the highest absolute values were on average (of 

the two replicates) at the warmest temperature and the highest light, same as for 

PPP. The mean quantities showed an increase of CR by 7% from 81.0 to 86.9 µg 

C L-1d-1 at 48% I0 and a significant increase by 33% from 98.6 to 130.8 µg C L-1d-1 

at 64% I0. BR at the 64% b I0 treatment showed a positive relationship with 

temperature, with an increase by 36% from 39.7 to 54.0 µg C L-1d-1 and an 

increase by 18% from 50.3 to 59.5 µg C L-1d-1 at the 48% I0 light treatment.  

At all light levels in the 2008 experiment the influence of increasing temperature 

on the mean quantity was similar between the different parameters (32% I0: 

F=0.58, p=0.59; 48% I0: F=1.47, p=0.28; 64% I0: F=0.55, p=0.70).  
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Figure 10 : Relationship of quantities of the different parameters with temperature. The 
mean of each individual peak period is plotted against the respective temperature, 
separately for each light treatment of the 2008 experiment. The different parameters are 
highlighted by different colour according to the legend, total bacterial number is on the 
right y-axis, and all other parameters are on the left y-axis. The relationship between the 
mean quantities and temperature is assessed by linear regression, for equations see 
Annex Table 5. 

 

 

Summarising the influence of temperature on the mean bloom quantity of the 

parameters in the 2008 experiment, I plotted all data points of each temperature 

together, irrespective of the light treatment (Figure 11). The data shows that the 

only significant temperature influence was an increase in BR by 45% (Annex 

Table 6 and Table 17). CR showed an increase with temperature by 21%, but the 

relationship was not significant. BP showed a trend towards increasing values at 

warmer temperatures (+ 20%), while TBN (-7%) and PPP (+1.3 %) were almost 

unaffected by the temperature increase. Overall the ANCOVA comparison of 

slopes revealed that the slopes and hence the influence of temperature on the 
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mean quantity was not statistically different between the different parameters 

(F=0.65, p=0.63). 

 

 
 
Figure 11 : Relationship of mean bloom quantities of the different parameters of the 2008 
experiment with temperature. All mean values of each parameter for one temperature (∆T 
+0°C or +6°C) are plotted together, irrespective of  the light treatment. The relationship 
between the mean quantities and temperature is assessed by linear regression, for 
equations see Annex Table 6. 
 

 

In order to assess the influence of different light intensities on the mean 

quantities, the results from the 2008 experiment were plotted versus light in Figure 

12 (for equations see Annex Table 7 and for percent changes see Table 17). At 

∆T +0°C all parameters showed insignificant trends t owards increased mean 

values with increasing light intensity, except for TBN which displayed a significant 

decrease by 18%. PPP increased by 3%, while CR and BR increased by 20 and 

29%, respectively. BP was positively influenced by light intensity and increased by 

19%. ANCOVA comparison of slopes confirmed that there was no significant 

difference of the light influence on the parameters. The pattern was slightly 

different at ∆T +6°C. PPP was much stronger and nearly significan tly enhanced 

with increasing light intensity by 43%. CR was even stronger and significantly 

enhanced by 131%, while BR actually decreased slightly by 10%. TBN also 

showed a small decrease by 6%, while bacterial production was enhanced by 

22% at the highest light level. ANCOVA comparison of slopes showed that the 

influence of increasing light on the mean bloom quantities was similar for CR and 
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PPP (F=0.06, p=0.81) and, separately from that, also similar for the remaining 

parameters (F=1.15, p=0.36). 

 

 

 
 
Figure 12 : Correlation of mean 
quantity of the 2008 parameters 
with light. Influence of light 
intensity on the mean bloom 
quantity of peaks is assessed 
for primary production, total 
bacterial number (y-axis), 
bacterial production (3H-
leucine), community and 
bacterial respiration at ∆T +6°C 
(A) and ∆T +0°C (B) by linear 
regression. For equations see 
Annex Table 7.   
 

 

 

 

With respect to mean bloom quantities, increasing light intensities had no effect 

on BR (+2%). However, a trend towards increased values of BP (+21%), and a 

strong but insignificant increase in CR (+66%) and PPP (+22%) was found (Figure 

13, Annex Table 8). Only TBN was significantly negatively affected (-11%). 

Statistically, all slopes were similar (ANCOVA comparison of slopes, F=1.41, 

p=0.25). 
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Figure 13.  Correlation of mean quantity of the 2008 parameters with light. All mean 
values of each parameter at one light treatment are plotted together, irrespective of the 
temperature treatment. Influence of light intensity on the mean bloom quantity of peaks is 
assessed for primary production, total bacterial number, bacterial production (3H-leucine), 
community and bacterial production by linear regression. For equations see Annex Table 
8. 
 

 
 
Table 3.  Partial correlation of light and temperature with the mean bloom quantity of the 
different parameters in the 2008 experiment. Relationships statistically significant at the 
p<0.05 level are marked with an asterisk. 
 

 Light  Temperature  
Parameter  R2 p R2 p 
 
Particulate primary production 

 
0.19 

 
0.18 

 
0.002 

 
0.91 

Total bacterial number 0.40 0.04* 0.23 0.14 
Bacterial production 0.26 0.10 0.36 0.05* 
Community respiration 0.67 0.02* 0.64 0.03* 
Bacterial respiration 0.004 0.89 0.81 0.005* 
 

 

Summary 

2005 – 2007 

- PPP decreased with increasing temperature at the two lower light levels 

and increased with temperature at the highest light level � the highest 

PPP was found at the highest light and warmest temperature 

- BP showed no clear trends in response to increasing temperature or light 

- Respiration (BR and CR) showed the strongest and often significant 

increases with temperature 
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2008 

- PPP decreased with increasing temperature at the two lower light levels 

and increased with temperature at the highest light level (which also 

showed in increasing values with light at the warm treatment) � the 

highest PPP was found at the highest light and warmest temperature  

- BP increased with increasing temperature and with increasing light, 

resulting in the highest values at the highest light and highest temperature 

treatment 

- Respiration (BR and CR) showed the strongest and often significant 

increases with temperature 

- CR showed strong increases with light only in the warm treatment, whereas 

TBN was significantly reduced overall 

 

Partial correlations from multiple regression showed that overall light was 

responsible for a significant part of variability in TBN (40%) and CR (67%) in 

2008, while it had no significant influence on the other parameters, including PPP. 

Temperature on the other hand revealed a significant partial correlation with BP, 

CR and BR, in the latter to an amount of 81%. 

 
 
Derived parameters 
 
Figure 14 and 15 display the bacterial growth efficiency (BGE) and bacterial 

carbon demand (BCD) mean bloom values plotted versus temperature, separately 

for the respective light treatments in the years 2005-2007 and in 2008.  

 

2005-2007 

In all cases BCD increased with increasing temperatures, the relationship was 

however only significant for the 64% I0 light treatment (Annex Table 9). The 

absolute amounts of carbon required for growth and respiration (BCD) were 

lowest at the two lowest light treatments (16 and 32% I0) with between 19 and 42 

µg C L-1d-1 at the peak and higher at the higher light treatments (between 51 and 

95 µg C L-1d-1 at 64% I0). The increase between 2.4° and 8.4°C absolute 

temperatures was on average 29 %, ranging from 15 to 44 %, with the highest 
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increase found at the highest light level (Annex Table 17). This resulted overall in 

the highest absolute values at the strongest light and warmest temperatures. 

For BGE, which is the amount of organic carbon that is attributed to bacterial 

secondary production in relation to the total organic carbon assimilated, the 

picture is a little different. BGE decreased or showed a decreasing trend with 

temperature in all cases. The decrease was significant at 32% I0 (both 

incorporation methods). The BGE was generally lower at the lower light 

intensities, between 9 and 22 % at 16% I0 and between 24 and 33 % at 64% I0. 

BGE decreased on average by 41% (range from 10 to 74%) and was highest for 
3H-thymidine at 32% I0 and lowest hat 64% I0 (Annex Table 17). Comparison of all 
3H-thymidine results showed the highest values were found at the highest light 

intensity and lowest temperature.  

At each separate light treatment the slope of the regression line and hence the 

influence of temperature on the derived parameters were compared using 

ANCOVA. At 16%, 32% and 64% I0 the slopes of the two parameters BCD and 

BGE were always different (F=4.59, p=0.05; F=14.93, p=0.00; F=16.98, p=0.001 

respectively), while the two methods (3H-thymidine and –leucine) showed similar 

results for the respective parameters (F=0.15, p=0.70 for BCD and F=1.16, 

p=0.30 for BGE).  

 

2008 

The BCD tended to increase with increasing temperature by 32% from 98 to 129 

µg C L-1d-1 in the lower light treatment (48% I0) while it remained basically 

unaffected at around 127 µg C L-1d-1 at the higher light treatment (64% b I0) 

(Annex Tables 9 and 17). Absolute values were much higher compared to the 

experiments in the years before and were highest at the strongest light intensity 

and warmest temperature treatment. 

The BGE showed almost no response to increasing temperature in this 

experiment: values remained on average at 48.5%, which is also much higher 

compared to the other experiments in 2005-2007. The trends meant a slight 

decrease by 8% at the lower light and 17% at the higher light treatment, resulting 

in the highest absolute value of BGE at the highest light intensity and warmest 
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temperature. At both light treatments, the slopes of all parameters were similar 

(ANCOVA, F=6.01, p=0.07 and F=0.05, p=0.83).  

 

 

 
 
Figure 14 .  Mean of the derived parameters bacterial growth efficiency (BGE, in %) and 
bacterial carbon demand (BCD, in µg C L-1d-1) over the individual peak periods, plotted 
against the respective temperatures. Results for the experiments in 2005-2007.The 
relationship between the mean quantities and temperature is assessed by linear 
regression. For equations see Annex Table 9. Note the different scales on the y-axis. 
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Figure 15 .  Mean of the derived parameters bacterial growth efficiency (BGE, in %) and 
bacterial carbon demand (BCD, in µg C L-1d-1 on the same axis) over the individual peak 
periods, plotted against the respective temperatures. Results for the 2008 experiment. 
The relationship between the mean quantities and temperature is assessed by linear 
regression. For equations see Annex Table 9. 
 

 

For the results from the 2008 experiment, both parameters (BCD, BGE) are 

plotted versus temperature, irrespective of the light treatment (Figure 16). Overall 

in this experiment Granatapfelvinaigrette, the BGE of around 48% was basically 

not affected by the temperature increase (Annex Table 10). BCD showed an 

increase of 15% (insignificant) from 112 to 129 µg C L-1d-1 for a temperature 

increase of 6°C (Annex Table 17). ANCOVA comparison  of slopes showed that 

the overall temperature influence on the mean quantities of BCD and BGE was 

not significantly different (F=1.06, p=0.32) 
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Figure 16.  Quantity of the derived 
parameters plotted against 
temperature, for the 2008 experiment. 
All data points of each parameter from 
one temperature are plotted together, 
irrespective of the light treatment. 
BCD is expressed as µg C L-1d-1 and 
BGE is expressed as % on the same 
axis. Correlation is assessed by linear 
regression, equations can be found in 
Annex Table 10. 
 

 

Figure 17 displays the results for BCD and BGE for the two different temperature 

treatments (+0°C, +6°C) versus the light intensity (48% and 64% b I0) in the 

experiment of 2008. BGE values varied between 42 and 54% and were basically 

unaffected by the different light treatments (Annex Table 11). There was no 

significant difference between the temperatures. BCD displayed a different 

reaction to the light intensity between the two temperature treatments. At the 

warmer temperature there was a minor increase of BCD from 116 to 128 µg C L-

1d-1 (+10%, insignificant). The increase was stronger (45%, insignificant) at +0°C, 

from 86 to 124 µg C L-1d-1 for a temperature increase of 6°C (Annex Table 17) . 

The values also demonstrate, that the difference between the temperatures was 

visible at the 48% I0 treatment, but not at 64% b I0. At +6°C the slopes of both 

BCD and BGE were similar (ANCOVA comparison of slopes, F=0.19, p=0.69), 

while at +0°C they were different (F=8.91, p=0.04).   
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Figure 17.  Quantity of the derived 
parameters plotted against light 
treatment, for the 2008 experiment. 
BCD is expressed as µg C L-1d-1 and 
BGE as % on the same axis. The 
temperature treatments are 
highlighted with different symbols 
according to the legend. Correlation 
is assessed by linear regression, 
equations can be found in Annex 
Table 11. 
 

 

 

When plotting the BCD and BGE values of each light treatment, irrespective of 

temperature (Figure 18), the overall influence of light becomes apparent. The plot 

demonstrates again, how BGE was basically unaffected by the temperature, while 

there was a stronger, but insignificant increase of BCD with increasing light 

intensity (+25%) (Annex Tables 12 and 17). ANCOVA comparison of slopes 

confirms, that the overall influence of light intensity was similar for both 

parameters (F=4.07, p=0.07). 

 

 

 

Figure 18.  Quantity of the derived 
parameters plotted against light 
treatment, for the 2008 experiment. All 
values of one light treatment are 
plotted together, irrespective of the 
temperature. BCD is expressed as µg 
C L-1d-1 and BGE is expressed as % 
on the same axis. Correlation is 
assessed by linear regression, 
equations can be found in Annex 
Table 12. 
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Table 4.  Partial correlation of light and temperature with the derived parameters BCD and 
BGE in the 2008 experiment. Relationships statistically significant at the p<0.05 level are 
marked with an asterisk. 
 
 

 Light  Temperature  
Parameter  R2 p R2 p 
 
Bacterial carbon demand 

 
0.49 

 
0.08 

 
0.31 

 
0.18 

Bacterial growth efficiency 0.02 0.76 0.07 0.57 
 
 

 

Summary 

- Both derived parameters, BCD and BGE, were higher in 2008, compared 

to the previous years 

- BCD always increased with increasing temperature, as well as with 

increasing light intensity resulting in the highest values at the highest light 

intensity and warmest temperatures; in 2008 the increase with light 

intensity was stronger at the cold temperature treatment 

- In 2005-2007 BGE decreased with increasing temperature as well as with 

decreasing light intensity, resulting in the highest efficiency at the highest 

light intensity and lowest temperature treatment; while in 2008 it remained 

basically unaffected by temperature and light intensity at a value of 48% 

 

For the 2008 experiment multiple linear regressions could not show a significant 

amount of variability explained neither by temperature nor by light (Table 4). The 

correlations were however much higher and closer to significance for BCD. 

 

Ratios  

In order to assess the relationship between CO2 fixation by autotrophic 

phytoplankton as particulate primary production and the utilisation of organic 

carbon by heterotrophic bacteria as secondary production, the ratios of BP to PPP 

and BCD to PPP were calculated. The average values for the peak periods at the 

different temperatures are plotted separately for each light treatment in Figures 19 

and 20. 
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2005-2007 

In all cases the BP: PPP ratio increased with increasing temperature (Annex 

Table 13). The increase was significant for the 16 and 32 % I0 treatments and only 

a trend at 64% I0. Average BP: PPP values at the different light intensities ranged 

between 10 and 107% and the lowest values were found at the highest light 

treatment. Except for one value (from 3H-leucine) at 32% I0 light intensity, there 

was no ratio above 100%. On average, the increase in the ratio for a temperature 

increase of 6°C was 76%, with a range between 20 an d 152% (Annex Table 17). 

The strongest increase was found at 16% I0 and the least increase at 64% I0, with 

a general trend towards stronger increases at lower light intensities. The highest 

absolute values overall were hence measured at the lowest light intensity and the 

highest temperature (comparison based on 3H-thymidine measurements). 

For BCD: PPP the same general pattern of increasing ratios with increasing 

temperatures at all light levels was observed. The changes were significant in all 

cases. The absolute values of the ratios were generally higher at the lower light 

levels (16 and 32 % I0), ranging between 48 and 524 %, while being 33 – 56% at 

the high light level. The ratios increased on average by 103%, ranging from only 

31% at the highest light treatment to 142% at 32% I0 and showing a large 

difference at the 64% I0 light intensity. Same as for the BP: PPP ratio, the highest 

ratios overall were measured at the lowest light intensity and highest temperature 

treatment. ANCOVA comparison of slopes showed, that at all light treatments, 

except at 64% I0, the slopes of the respective ratios were similar. 

 

2008 

The BP:PPP ratio in the 2008 experiment was basically unaffected at the highest 

light level, with a value around 35%, while it showed insignificant trends to 

increase by 33% from 32 to 42% at 48% I0 and an increase by 25% from 34 to 

43% at the lowest light level (Annex Tables 13 and 17). Due to the missing 

response to the temperature increase at 64% I0, the overall highest ratio to be 

found at the lowest light intensity and highest temperature. The response of the 

BCD: PPP ratio differed between the two light treatments, showing an insignificant 

trend to increase with temperature by 38% from 66 to 91% at 48% I0 and a trend 
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to decrease with temperature by 18% from 77 to 63% at 64% I0. Hence in the 

direct comparison of the absolute values, similar measurements were obtained at 

the lower light and higher temperature compared to the higher light and lower 

temperature.  

 

 

Figure 19.  Ratios of bacterial production (BP) and bacterial carbon demand (BCD) to 
particulate primary production (PPP) at the individual peak periods, plotted against the 
respective temperatures. Results from the 2005-2007 experiments. The relationship 
between the ratios and temperature is assessed by linear regression. For equations see 
Annex Table 13. Note the different scales on the y-axis. 
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Figure 20.  Ratios of bacterial 
production (BP) and bacterial 
carbon demand (BCD) to 
particulate primary production 
(PPP) at the individual peak 
periods, plotted against the 
respective temperatures. Results 
from the 2005-2007 experiments. 
The relationship between the 
ratios and temperature is 
assessed by linear regression. For 
equations see Annex Table 13. 

 

 

Figure 21 displays all results for the two ratios (BP: PPP and BCD: PPP) versus 

temperature, irrespective of the light treatment. It demonstrates how BP: PPP 

tended to increase with increasing temperatures, although this increase was not 

significant (Annex Table 14). BCD: PPP was basically unaffected by the 

temperature increase overall. BP: PPP ranged from 34 to 40 % for a temperature 

increase from 2.4 to 8.4°C, which was an insignific ant increase of 18% (Annex 

Table 17). BCD: PPP ratio changed from 71 to 77 %, respectively, which was 

equivalent to an insignificant increase of 8%. The slopes of both ratios and hence 

the influence of temperature, irrespective of the light level, were similar (ANCOVA 

comparison of slopes, F=0.00, p=0.98). 
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Figure 21. Bacterial production to 
particulate primary production ratio (BP: 
PPP) and bacterial carbon demand to 
particulate primary production ratio 
(BCD: PPP) for the 2008 experiment, 
plotted versus temperature. All data 
points of each temperature treatment 
are plotted together, irrespective of the 
light intensity. Correlation is assessed 
by linear regression, equations can be 
found in Annex Table 14. 
 
 
 

In contrast to the graphs above, the two following Figures (22 and 23) show the 

values of the ratios (BP: PPP and BCD: PPP) plotted versus the respective light 

treatments. In Figure 22 the values are plotted separately for the two temperature 

treatments. This plot shows that the BP: PPP ratios were only slightly influenced 

by light intensity and that was valid for both temperatures. The influence was 

slightly positive at +0°C and similarly slightly ne gative at +6°C, however in both 

cases not significant (Annex Table 15). All ratios ranged between 24 and 45 %. 

On the other hand, the influence of light intensity on the BCD to PPP ratio was 

markedly different between the two temperatures. At +0°C the ratio increased 

from 55 to 82 % (for a difference in light intensity between 48 and 64 % I0), which 

means an increase by 48 % (not significant) (Annex Table 17). In contrast to this, 

the BCD: PPP ratio at +6°C decreased from 81 to 69 %, which was equivalent to 

an insignificant decrease of 15 %. The slopes of the different ratios at the same 

temperature were not significantly different (ANCOVA, F=0.56, p=0.48 at +6°C 

and F=4.26, p=0.08 at +0°C) 
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Figure 22. Bacterial production to 
particulate primary production ratio 
(BP: PPP) and bacterial carbon 
demand to particulate primary 
production ratio (BCD: PPP) for the 
2008 experiment, plotted versus light 
intensity. The temperature treatments 
are highlighted with different symbols 
according to the legend. Correlation is 
assessed by linear regression, 
equations can be found in Annex Table 
15. 
 

 

Figure 23 displays all values of one light treatment, irrespective of the 

temperature. The plot shows that overall there was no influence at all of light 

intensity on the BP: PPP ratio (Annex Table 16), the ratio remained at 34%. There 

was a small but insignificant positive influence of light intensity on the BCD: PPP 

ratio, increasing the ratio from 68 to 76 % (+10%) (Annex Table 17). Overall the 

slopes were similar between the two different ratios (ANCOVA, F=0.49, p=0.50). 

 

 

 

 

Figure 23.  Bacterial production to 
particulate primary production ratio 
(BP: PPP) and bacterial carbon 
demand to particulate primary 
production ratio (BCD: PPP) for the 
2008 experiment, plotted versus light 
intensity. All data points of one light 
treatment are plotted together, 
irrespective of the temperature 
treatment. Correlation is assessed by 
linear regression, equations can be 
found in Annex Table 16. 
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Table 5.  Partial correlation of light and temperature with the ratios of BP: PPP and BCD: 
PPP in the 2008 experiment.  
 

 Light  Temperature  
Parameter  R2 p R2 p 
 
BP:PPP 

 
0.00 

 
0.99 

 
0.21 

 
0.16 

BCD:PPP 0.05 0.64 0.03 0.69 
 
 
 
 
Summary 

2005 – 2007 

- both ratios, BP : PPP and BCD : PPP, increased with increasing 

temperature and with decreasing light intensity, showing the highest ratios 

at the lowest light intensity and highest temperature; all BP:PPP ratios 

stayed below 100%, while BCD:PPP ratios increased above 100% at the 

lower light levels 

2008 

- The BP:PPP ratio tended to increase with increasing temperature but no 

real difference in values between the light levels was found (relatively 

constant around 34%); overall the highest value was found at the lowest 

light intensity and highest temperature 

- BCD: PPP tended to increase with increasing temperature at 48% I0 but 

decreased at 64% I0 (overall: trend to increase); the ratio increased with 

light intensity at low temperature and decreased with light intensity at high 

temperature; the ratio was always below 100%. Highest absolute values 

were similarly found at lower light intensity and high temperatures as well 

as high light intensity and low temperature 

 
 
For the results of the ratios from the 2008 experiments I could show by multiple 

linear regressions that the variability was not significantly influenced by either of 

the parameters, light intensity or temperature (Table 5). Some of the variability in 

the BP: PPP ratio (21%) could be traced back to an insignificant temperature 

effect, however. 
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Discussion 

Time courses 

The results presented in this study demonstrate that the experimental setting was 

feasible for the reproduction of a natural spring plankton succession in all years, 

as has already been described by other participants of the program (Sommer et 

al. 2007, Sommer & Lengfellner 2008, Gaedke et al. 2009, Hoppe et al 2008). 

Supposedly due to the low light conditions in the 2005 (16% I0) and 2007 (32% I0), 

wall growth occurred after the phytoplankton blooms. As my analysis is focussed 

on the bloom period only, the effects of this wall growth are negligible.  

Due to the full factorial experimental setting of two different temperatures 

combined with three different light intensities in 2008, the discussion will focus on 

this experiment separately from the experiments performed in the previous years. 

 

Within each year the temporal development of the respective parameters was 

comparatively similar and differences can be attributed to the test conditions, i.e. 

temperature – and in 2008 additionally light intensity. Nevertheless, the time 

courses also revealed obvious differences between the subsequent years. Here 

additional factors influenced the results: the community composition of the 

different plankton components phytoplankton, zooplankton and bacteria -  and 

further the relative abundance of the respective species as well as the different 

applied nutrient concentrations. Gaedke and co-workers (2009) have 

demonstrated in a modelling study based on our mesocosm results, that besides 

light intensity and temperature, the composition and quantity of the over wintering 

phytoplankton and zooplankton populations can be responsible for the spring 

plankton dynamics.  

Despite the described differences in the starting conditions and the resulting 

development of the experimental spring bloom, several important recurring 

patterns were observed. These patterns reflect the basic relationships between 

the auto- and heterotrophic development under altered temperature and light 

conditions and can be potentially important for a prediction of the future marine 

carbon cycle. Such recurring patterns will be described in the following sections, 

retaining the division as applied in the “Results” section of this chapter.  
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Peak timing  

The large differences in the phytoplankton peak timing between the different 

experiments in 2005-2007 were previously interpreted as being a consequence of 

the high dependence of phytoplankton on light (Sommer & Lengfellner 2008). 

Nevertheless, because the experiments were performed in different years, the 

different starting conditions have to be taken into account (Lewandowska & 

Sommer, in review). As described by Gaedke and co-workers (2009), the quantity 

and composition of the over wintering algae and zooplankton can be a decisive 

point for the dynamics of the variables during the spring bloom. Indeed, for 

example in the high light experiment in 2006 (64% I0), the initial phytoplankton 

abundance was high, while the added overwintering zooplankton was low, leading 

to an immediate start of the phytoplankton bloom. In the 2008 experiment 

however, with its different light conditions, the strong influence of light on the 

phytoplankton bloom timing could not be confirmed, emphasising the importance 

of the different inoculums. This experiment revealed that light did not influence 

any of the measured parameters significantly with respect to peak timing. 

Lewandowska & Sommer (in review) suggested, that the tested range of light 

intensities might have been too narrowly focused on high light conditions and that 

a low light treatment like for example 16% I0, as in 2005, might have been more 

appropriate to pick up a signal of phytoplankton temporal response. 

Within each separate experiment it was obvious that temperature had only little 

effect on the timing of the phytoplankton bloom, confirming the expectations 

concerning the weak temporal temperature-dependence of primary production. 

The same observations have also been described by other authors (Sommer & 

Lengfellner 2008, Gaedke et al. 2009, Hoppe et al. 2008). In all treatments, 

bacterial parameters were much stronger accelerated than the autotrophic 

component, confirming the well-known temperature-dependence of heterotrophic 

processes.  

Overall, the recurring differences in acceleration between the autotrophic CO2 

fixation and the heterotrophic bacterial carbon utilisation by increasing 

temperature lead to a reduction of the time lag between these two processes at 

elevated temperature levels. An increasing timely overlap, i.e. a closer coupling, 
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at higher temperatures, can be expected to increase the relative amount of 

remineralisation of organic matter by heterotrophic bacteria. The closer coupling 

can enhance bacterial production as a result of increased substrate supply and 

hence decrease the amount which sinks unutilised out of the euphotic zone and is 

exported to depth. However, it has to be kept in mind that the response of 

bacterial production itself is directly dependent on temperature, so that the 

influence of substrate supply cannot be directly assessed. Also changes in the 

primary production quantity will obviously influence substrate supply. The ultimate 

result of relative or absolute increase of substrate utilisation in relation to organic 

matter production can be assessed by the BP and BCD : PP ratio, as is described 

below.   

 

Quantities 

Primary production generally showed an inverse relationship with temperature, 

which has already been described by other authors. Sommer & Lengfellner (2008) 

and Gaedke et al. (2009) have shown that increased quantity and grazing activity 

of zooplankton at warmer temperatures are likely responsible for this 

phytoplankton response, hence representing an indirect temperature influence. A 

second factor that has to be considered is the phytoplankton community 

composition. It could be shown by Sommer & Lengfellner (2008) for the 2005 - 

2007 experiments and by Lewandowska & Sommer (in review) for the 2008 

experiment that increasing temperatures led to a shift to smaller phytoplankton 

species with different temperature preferences, resulting in lower primary 

production. This shift was also mediated by grazing activities of copepods and 

ciliates. These observations are confirmed by recent simulation models, which 

predict reduced primary production under future climate scenarios (Tirok & 

Gaedke 2007).   

Interestingly though, in both treatments with the highest light level (64% I0 in 2006 

and 2008), the negative influence of increasing temperature on primary production 

was reduced. An increasing trend with increasing temperature led to the highest 

overall values at high light intensities and high temperature. These results suggest 

that the high light conditions might have favoured primary production to an extent 



CHAPTER 2 
 

 
 

107 

that counteracted and even reversed the negative (indirect) influence of 

increasing temperature. Together with higher primary production at higher light 

intensities, the transfer from light-limited to light-saturated conditions might have 

switched the reaction of primary production from temperature-independent to 

being temperature dependent, as described by Tilzer et al (1986). Lewandowska 

& Sommer (in review) showed for the 2008 experiment, that the biomass 

development in the dominating bloom forming phytoplankton species was rather 

temperature dependent and less affected by light intensity.   

Irrespective some exceptions, the heterotrophic bacterial parameters showed 

increasing mean quantities with increasing temperature. These increases indicate 

that the systems became increasingly heterotrophic and that the relative influence 

of the microbial loop would be enhanced in a future warming climate. One 

consequence would be an increased carbon flow via the microbial food web and 

less organic matter left for aggregation and sinking processes and the nutrition of 

animals at higher trophic levels. Especially the respiration parameters (BR and 

CR) were enhanced significantly in most cases. The increased community 

respiration can confirm the above mentioned enhanced zooplankton activity. 

Together with bacterial respiration these results indicate an increased metabolic 

activity of the whole heterotrophic bacterial community at elevated temperatures.  

The increase in bacterial respiration was always higher than that in bacterial 

production. This indicates reduced bacterial growth efficiency, as is discussed 

below. Besides the described importance of the carbon transfer through the 

microbial loop, implications are an enhanced CO2 release from respiration at 

higher temperatures, which amounts to almost 50% of C-uptake in many of the 

experimental settings. This represents a significant positive feedback loop to the 

greenhouse gas problem, with increasing CO2 emissions leading to higher 

temperatures, which in turn leads to higher CO2 emissions by an increasingly 

heterotrophic and bacteria-based planktonic system. Thus, a bacteria-based food 

web would reduce the pelagic productivity at the higher trophic levels, due to 

reduced (classical) food-web efficiency (Berglund et al. 2007).  

As described above, primary production showed a strong increase with increasing 

light intensity only at the high temperature treatment and the light dependence of 
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primary production counterbalanced partly the negative effects of increasing 

temperatures mainly at the highest light treatments. Berger et al. (2007), however, 

showed a strong effect of light supply and no temperature effect on phytoplankton 

spring bloom in freshwater enclosures, although they did not take into account 

changes in phytoplankton species composition. 

A significant increase with increasing light intensity was also found for community 

respiration at the high temperature treatment in the 2008 experiment, which was 

much stronger than that of primary production, indicating a positive response of 

zooplankton and bacteria. Again, a change of the system to much more 

heterotrophic conditions in the warmth at high light intensity can be concluded. 

This result demonstrates how the two factors, increased warming and increased 

irradiation combined, could lead to a dramatic change in the release of CO2 via 

respiration, mediated by an enhanced community respiration by over 130% 

compared to the contemporary cold and dim conditions in the Baltic Sea. On the 

reasons for the reaction of the heterotrophic parameters to light can only be 

speculated. Besides community respiration, also bacterial respiration (in the cold) 

and bacterial production showed a positive response to increasing light intensity in 

the 2008 experiment. This led to the highest bacterial production also at the 

highest light and highest temperature treatments. I interpret these results as an 

indirect effect, because of enhanced remineralisation due to a closer coupling and 

increased substrate supply from phytoplankton growth for both zooplankton and 

bacteria. 

 

Derived parameters 

The bacterial carbon demand (BCD) represents the total requirements of organic 

carbon by heterotrophic bacteria for growth plus respiration, while the bacterial 

growth efficiency (BGE) gives an indication of how much of the organic carbon 

taken up is used for biomass build-up in relation to the total BCD. Hence the 

relative loss of the remineralisation process as CO2 emission can be assessed 

and an interpretation concerning the influence of, for example, temperature on the 

two different metabolic processes can be derived. 
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As BCD is a summary of bacterial production and respiration, the same trends as 

observed for the two separate parameters is observed for the reaction to 

increases in temperature and light conditions. In all cases, without exception, BCD 

increased with increasing temperature and with increasing light intensity. Although 

it was only significant for the 64% I0 light treatment in the 2006 experiment, this 

result highlights the strong positive response of heterotrophic bacteria, with the 

described consequences for the carbon transfer through the microbial loop.  

BGE on the other hand showed quite the opposite reaction. In the 2005 – 2007 

experiments the ratio always decreased with temperature, reflecting that bacterial 

respiration always increased stronger compared to bacterial production. 

Metabolically this can be interpreted as a negative situation for the organisms, as 

more of the assimilated organic carbon taken up is being lost to the respiratory 

process and released as CO2 than is being utilised for biomass build-up. This 

brings us back to the overall increased total bacterial carbon demand, i.e. the 

increased substrate requirements as described above. On average in these 

experiments the BGE was 25%, which is a typical value measured for aquatic 

systems. Literature values range from 20% for the North Sea (Reinthaler & Herndl 

2005) and 20 – 27% for freshwater systems (Bell & Kuparinen 1984) to the mean 

ocean value of 22% given by DelGiorgio & Cole (1998). Decreasing BGE values 

with increasing temperature have been reported also by Rivkin & Legendre 

(2001), who found a range of 10 – 90% in BGE and who could explain 54% of 

variation (R2) in BGE by temperature. Apple et al. (2006) also showed that BGE 

decreased with increasing temperatures, and highlighted the different responses 

of bacterial production (more influence of substrate quality and quantity) and 

bacterial respiration (more direct temperature influence).  

Between the different years and hence light intensities in 2005 – 2007, BGE also 

showed overall higher values at the higher light treatments, which means that 

bacterial production was relatively higher at higher light intensity, compared to 

bacterial respiration. This might be a reflection of the higher substrate availability 

at higher light intensity, as seen in the high primary production levels and the 

positive reaction of bacterial production to substrate quantity (and quality) as 

described above (Apple et al. 2006).  
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In the 2008 experiment, however, BGE was basically unaffected by temperature 

and light, remaining on a relatively high level of 48%. This shows, that the growth 

conditions were comparably favourable because bacteria utilised about half of the 

assimilated organic carbon for biomass build-up, compared to the average 20% in 

the previous experiments. Although the details of the experiments in 2008 show 

that BGE decreased with increasing light intensity at low temperature while it 

increased with increasing light intensity at the high temperature, these trends 

were only marginal. When judging the statistical significances one has to keep in 

mind that in this experiment only two temperature treatments were used and each 

one with only two replicates. This setting hampers any statistical examination and 

the assessment of statistically significant relationships. Also, at least for the light 

levels, the difference between 48 and 64% I0 might be just too small to find large 

differences in the various responses (Lewandowska & Sommer, in review). In a 

similar experiment, which was conducted under very high light conditions (100% 

I0, described in Chapter 1 of this thesis), BGE was also only little affected by 

temperature, showing a small trend towards increasing values with increasing 

temperature, as was the case at the high light treatment in the 2008 experiment. 

BGE responded little to temperature increase in the experiment with 64% I0 in 

2006, too. Similarly to the 100% I0 experiment I could speculate that high 

temperature and high substrate supply via increased primary production at high 

light intensity, both represent good growing conditions for bacteria rather than 

representing stressful conditions. Lopez-Urrutia & Moran (2007) described that 

BGE is not directly regulated by temperature, but rather by the availability of 

substrates for growth, with BP showing a strong dependence on substrate, while 

BR is directly influenced by temperature.   

 

Ratios 

Increased primary production, as described above, can be interpreted in terms of 

increased absolute amounts of fixed carbon that would be available for 

remineralisation by heterotrophic bacteria. Increased heterotrophic bacterial 

activity can then be assessed in relation to primary production to conclude how 

the relative amounts of remineralisation changed. The ratios of bacterial 
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production and bacterial carbon demand to primary production facilitate the 

assessment of how much of the autotrophically fixed CO2 is actually utilised by 

bacteria for build-up of biomass (BP:PPP) and for the complete metabolism 

including respiration (BCD:PPP). 

The BP:PPP ratio increased in all cases in the 2005 – 2007 experiment, with 

increasing temperature and with decreasing light intensity, resulting in the highest 

ratios at  the highest temperature and lowest light treatments. As the ratios always 

stayed below 100%, this means that the amount of carbon required for bacterial 

production did not exceed the carbon fixed by phytoplankton. It highlights, 

however, that the amount of organic carbon going through the microbial loop, 

relative to primary production, increased with increasing temperature and 

decreased with increasing light intensity. This result confirms the above described 

reactions of the autotrophic and heterotrophic compartments, with a positive 

influence of light intensity on phytoplankton and a positive influence of 

temperature on bacteria. A future scenario of increasing temperatures in 

combination with the contemporary dim spring would therefore enhance the 

relative utilisation of organic carbon from primary production via the microbial loop 

although not necessarily the absolute amount. 

Although a direct comparison of both abiotic parameters is only feasible for the 

factorial experiment in 2008, we recognised from the experiments in 2005 – 2007 

that the ratio also increased when both situations occurred, i.e. high light intensity 

and high temperature. This means bacterial production was favoured stronger by 

the increasing temperature than phytoplankton primary production by increasing 

light intensity. For a possible future scenario of a warmer and brighter spring, the 

conclusion would be that both, the absolute amounts of fixed carbon going into 

the microbial loop as well as the relative amounts being utilised by heterotrophic 

bacteria, would increase. 

In the 2008 experiment, the BP:PPP ratio did not show the pronounced responses 

as in the years before. Still the same trends were observed, showing increasing 

ratios with increasing temperature, which was counteracted by the positive 

influence of a high light intensity at the 64% I0 treatment, leading to an unchanged 

ratio overall and the highest ratio at high temperature and lowest light intensity. 
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The direct comparison of the different light treatments showed also, that 

increasing light intensity influenced the ratio positively at the low temperature 

treatment and negatively at the high temperature treatment. These results confirm 

how primary production is favoured not only at high light intensity, but in this case 

also at the high temperature. This also shows that the combined influences of 

high light intensity and high temperature are stronger on phytoplankton compared 

to the influence of increasing temperature on bacterial production, hence reducing 

the ratio. This is in contrast to what I have described above for the comparison of 

the previous years. But, as described before, a correct assessment of the 

influence of differing light intensities is only feasible for the 2008 experiment. As a 

consequence of the described BP: PPP ratios, in a future scenario of increasing 

temperatures and increasing light intensities, the carbon flow would increase in 

absolute amounts, as both phytoplankton- and bacterial production are enhanced. 

However, relatively less carbon would go through the microbial loop as compared 

to the contemporary cold or dim situation. 

 

The observed BP:PPP ratio of on average 31% to 40% in the 2008 experiment 

corresponds well to the range reported by Hoppe et al. (2002). Conan et al. 

(1999), reports values of between 10 and 25% from the Mediterranean. In the 

euphotic zone the BP:PPP ratio varies between 2 to 190% (Ducklow & Carlson 

1992). Cole et al. (1988) report a ratio of around 40% in most environments. 

Rochelle-Newall and co-workers (2008) found a decrease in the ratio of BP to 

dissolved PP with increasing photon flux density in tropical coastal ecosystems. 

 

When taking bacterial respiration into account and calculating the ratio of bacterial 

carbon demand to primary production (BCD:PPP), the ratios showed similar 

trends as described for the BP:PPP ratio for the 2005 – 2007 experiments. Again, 

the ratio increased with increasing temperature and decreasing light intensity, 

leading to the highest ratios in the warmest and dimmest treatment. Due to the 

strong influence of bacterial respiration the ratio increased strongly to above 

100% in the two lower light treatments. This shows that at the low light levels 

more carbon is needed for bacterial metabolism (production + respiration) relative 
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to primary production compared to the higher light level. This even leads to a 

carbon deficiency at the 16 and 32% I0 light intensities. This carbon deficiency 

increased even more with increasing temperatures. These high ratios indicate the 

development of net heterotrophic conditions, where the release of CO2 is larger 

than its fixation by phytoplankton (Hoppe et al. 2002). Hence the results suggest 

that increasing temperatures will favour the extension of net heterotrophic zones 

in the sea emitting CO2 to the atmosphere (Azam & Malfatti 2007). However, 

ratios above 100% bring up the question of substrate sources for the increased 

demand by bacteria. In the presented cases, there are two points to consider. 

Firstly, the amount of organic material that was already in the water at the point of 

filling of the mesocosms and secondly the method of my calculations. The 

calculated mean values of the bloom period do not allow for the assessment of 

the total integrated quantities. However, when speculating about increasing 

possibilities for net-heterotrophic conditions in the sea, one has to take into 

account possible resource limitation of bacteria as described for (sub) tropical 

regions, which may interfere with this assumption (Lopez-Urrutia & Moran 2007). 

An additional important point that also has to be kept in mind is the application of 

different conversion factors for the calculation of bacterial production quantities. 

As described in the “Methods” section, empirically determined conversion factors 

for the 3H-thymidine method were applied where available. Although these should 

reflect the growing conditions more realistically, the applied literature factors in the 

remaining cases could possibly distort the results in these cases. One has to 

consider always that different factors will change the results concerning bacterial 

production measurements and hence the assessment of relationships with 

primary production. 

  

In 2008 again, the same trends as described above for BP: PPP could be found. 

There was a clear positive trend of the ratio with increasing temperature at the 

lower light level (48% I0 in this case) and with increasing light intensity at the lower 

temperature treatment. The ratio decreased with increasing temperature when 

phytoplankton was favoured at the higher light (64% I0) intensity and decreased 

with increasing light intensity, while phytoplankton was favoured stronger with 
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increasing light intensity and temperature compared to bacteria. Highest absolute 

values were similarly found at lower light intensity and high temperatures as well 

as high light intensity and low temperature. In 2008, however, compared to the 

previous years, the ratio of BCD: PPP did not exceed 100% in total, leading to the 

conclusion that a carbon deficiency did not occur.  

For the interpretation of the results from the 2008 experiment it has to be kept in 

mind however, that none of the responses to light or temperature was significant 

and that multiple linear regressions revealed that neither light nor temperature 

could explain a significant amount of variation in the ratios. Lewandowska & 

Sommer (in review) showed by MDS (multidimensional scaling) that mesocosms 

separated only by temperature and not by light, concluding that in this experiment 

a higher impact of temperature was found compared to light, via the indirect 

influence of grazing on the quantity and composition of the phytoplankton 

community.   

Although it is common to consider the BP:PPP ratio to characterise the potential 

carbon flux between the phytoplankton and bacterial compartments (Ducklow & 

Carlson 1992), when interpreting the results of BP:PPP or BCD:PPP ratios it has 

to be considered that we are comparing bacterial parameters to particulate 

primary production. Heterotrophic bacteria are able to utilise particulate organic 

material e.g. during the degradation phase of phytoplankton blooms. Most 

importantly though they utilise dissolved organic matter which is directly (via 

exudation) or indirectly available (via autolysis and disintegration of phytoplankton 

cells through for example sloppy feeding by zooplankton) (Azam et al. 1998). 

Considering that exudation is smaller than the particulate primary production (0-

80% Conan et al. 1999 and references therein), this highlights even more the 

importance of possible carbon deficiencies as measured at increasing 

temperatures at the lower light levels. 

 

 

Summary and Conclusions   

The most challenging aspect of understanding variability in biological processes is 

associating detected changes with the responsible environmental forcings 
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(Behrenfeld et al. 2006). Recent global warming is caused by anthropogenic 

green house gas emissions. One of the predicted consequences of this warming 

is in turn a reduction of carbon sinks on land and in the oceans and hence a 

further increase in CO2 concentration in the atmosphere (Sarmiento 2000). Also, 

in the expansive stratified low latitude oceans, warming is expected to increase 

thermal stratification and hence reduce the nutrient supply for phytoplankton. This 

would result in decreased ocean primary production, while the opposite effect is 

expected for high-latitude oceans where increased stratification would release 

phytoplankton from light-limitation and would extend the growing season 

(Behrenfeld 2006). The continuation of the currently observed trend in 

“brightening”, i.e. an increase in light intensity, can be expected to further enhance 

primary production, especially in the temperate climate zone (Wild 2009, Pinker et 

al. 2005). The combination of increasing CO2 concentrations, warming and 

brightening trends might have fundamental influences on the relationship between 

carbon fixation and utilisation. 

In our experiments, where we investigated the consequences of future warming 

and brightening scenarios on the coupling of phytoplankton carbon fixation and 

the utilisation of organic carbon by heterotrophic bacteria, a few striking and 

recurring patterns emerged. Primary production was always enhanced directly at 

higher light intensities and indirectly at higher temperatures (only under high light 

conditions), resulting in the highest values at warm and bright conditions. The 

same result could be seen for bacterial production and most of the respiration 

parameters. This consequently resulted in the highest bacterial carbon demand 

under these conditions. Bacterial growth efficiency revealed firstly that bacterial 

respiration was favoured stronger by increasing temperatures (lower BGE) than 

bacterial production as long as light was dim, while higher light levels favoured 

bacterial production more (higher BGE), presumably due to increased organic 

substrate supply. Concluding from the combined results on BP: PPP and  

BCD: PPP ratios from our experiments, the highest r elative carbon 

remineralisation would consequently occur in a futu re scenario of a dim and 

warm winter/spring, while the highest absolute amou nt would be utilised in 

a situation of bright and warm winter/spring.  
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Consequences for a future warming ocean would in any case be a decreased 

sedimentation of organic matter below the photic zone as a matter of long term 

storage of CO2. On the contrary, due to the enhanced importance of the microbial 

loop, more organic carbon will be available for higher trophic levels hence 

reducing the efficiency of the food web and at the same time increasing the 

release of CO2 to the atmosphere and therefore representing a positive feedback 

loop to the greenhouse gas problem. In the case of a continued brightening trend, 

these relative shifts will switch to absolute amounts of increased organic carbon 

cycling. 
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Introduction  

The global marine carbon cycle is largely determined by the autotrophic primary 

production by phytoplankton and the subsequent heterotrophic utilisation of 

dissolved and particulate organic carbon by bacteria. Heterotrophic bacteria can 

channel up to 50 % of primary production through the microbial loop, via a 

combination of biomass build-up and respiration (Azam et al. 1983). The 

importance of the microbial loop determines the efficiency of the biological pump. 

The relative distribution among these pathways of CO2 fixation and recycling is 

determined by the interactions of biological, physical and chemical forces. 

Bacterial degradation of organic carbon is influenced by bottom-up factors like 

temperature and inorganic nutrients (Pomeroy & Wiebe 2001, Baines & Pace 

1991, Chrzanowski et al. 1995) as well as the quality and quantity of organic 

carbon (Kirchman 1990). Top-down factors are predation by heterotrophic 

nanoflagellates and lysis by viruses. 

 

One of the most important direct effects of climate change is ascribed to increases 

in water temperature, with most pronounced effects during winter in northern 

Europe (IPCC 2007). Concerning the effect of temperature, it can be assumed 

that heterotrophic bacteria will be affected differently by increasing temperatures 

compared to phytoplankton, hence influencing the coupling between auto- and 

heterotrophs with reference to organic matter cycling. Published Q10 values (i.e. 

factorial increase in a rate for a 10°C increase in  temperature) for bacterial 

heterotrophic activities lie between 2 and 3 (Pomeroy and Wiebe 2001), while 

phytoplankton growth and photosynthesis show only a low temperature sensitivity 

(1 < Q10 < 2) under light-limited conditions (Tilzer et al. 1986). Because 

phytoplankton blooms are primarily controlled by light intensity they can occur at 

the lowest water temperatures, at which bacterial activities might be reduced. In 

temperate latitudes bacteria may approach no-growth temperature in winter, but 

they may also be limited by lower rates of production of DOC and POC by 

phytoplankton in winter as the result of lower light intensity and deep mixing, and 

these limiting factors may interact synergistically at lower temperature (Pomeroy & 

Wiebe 2001). 
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The general temperature dependence of planktonic bacterial growth and activities 

is well documented (White et al. 1991, Hoch & Kirchman 1993, Shiah & Ducklow 

1994). Results from temperate waters indicate a close positive correlation 

between temperature and bacterial production and respiration (Felip et al. 1996, 

Pomeroy & Wiebe 2001, Kirchman et al. 2005, Lopez-Urrutia et al. 2006). 

Pomeroy & Deibel (1986) showed that bacterial activity and respiration were more 

inhibited at temperatures below 4°C than phytoplank ton photosynthesis and arctic 

bacterial strains displayed Q10 values of up to >10. A temporal de-coupling 

between the early spring phytoplankton bloom and bacterial development has 

been documented for different marine systems including the Baltic Sea (Blight et 

al. 1995, Bird & Karl 1999, Lignell et al. 1993). However, there is also 

contradictory evidence regarding the effect of temperature. Rapid bacterial growth 

was found at temperatures below 2°C in antarctic wa ters (Fuhrman & Azam 1980, 

Hanson et al. 1983) and several other studies in polar seas and sea ice 

communities revealed high bacterial activities, with normal Q10 factors even at 

subzero temperatures (Li & Dickie 1987, Robinson & Williams 1993, Rivkin et al. 

1996). In this context, the adaptation of bacterial communities concerning the 

community composition with respect to psychrophilic species has to be 

considered. 

From these results it became obvious that additional factors have to be taken into 

account, as temperature and substrate supply are interacting factors for bacteria 

(Felip et al. 1996). Nedwell (1999) argued that decreasing membrane fluidity and 

efficiency of membrane transport proteins reduces the affinity of bacteria for 

substrates below the optimum growth temperature. This could explain increased 

substrate requirements and why substrate supply could partly compensate 

temperature limitation at low temperatures in cold water bacterial strains (Nedwell 

& Ruttner 1994, Pomeroy et al. 1991, Pomeroy & Wiebe 2001, Wiebe et al. 1992). 

The bioavailability of organic carbon and inorganic phosphate has been found to 

be a limiting factor for bacteria (Zweifel et al. 1993, Sala et al. 2002, Thingstad et 

al. 2005), and Kirchman (1990) could show that organic nitrate is highly 

stimulating marine bacterial growth in subarctic waters. Moreover, other studies 

have shown that heterotrophic bacteria can outcompete phytoplankton for 
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inorganic nutrients (freshwater, P: Currie & Kalff 1984, marine, NH4: Suttle et al. 

1990), which would imply that bacteria are rarely limited by the supply of 

ammonium and phosphate. In the Mediterranean Sea, there is evidence that P 

limitation affects both primary production and bacterial uptake of dissolved organic 

carbon (Thingstad & Rassoulzadegan 1995). Additionally, Obernosterer & Herndl 

(1995) demonstrated that exudates released from P-limited algae could not be 

utilised by bacteria due to their own P-limitation for growth. 

These results clearly show that temperature and nutrients have to be considered 

together in order to describe potentially limiting effects on marine heterotrophic 

bacteria (Nedwell & Ruttner 1994, Reay et al. 1999, Pomeroy & Wiebe 2001). In 

order to disentangle the different effects of temperature and nutrients on the 

phytoplankton-bacterioplankton interactions, we designed a factorial experiment 

with a combination of three different temperatures and two nutrient levels. One 

high-N nutrient level was chosen, which represents the typical winter/spring 

situation in the Kiel Fjord and is potentially P-limiting for growth. The second, low-

N nutrient level, was adjusted to be potentially N-limiting, and represents the 

typical open ocean situation, which is also found for example in the Baltic proper 

in summer (Andersson et al 1996). Current N-limiting conditions in the oceans 

could potentially shift to P-limiting conditions in coastal areas through increased 

N-rich and P-limited runoff from land and river inflow (freshwater being usually P-

limited) under future climate conditions, as has already been reported for the 

Finnish and Bothnian Bay (Andersson et al 1996, Rivkin & Anderson 1997). The 

IPCC report (2007) predicts increases in land and river runoff for northern Europe 

during the winter season. This could increase oceanic P-limited regions or even 

intensify the deficiency of already P-limited coastal areas, like the Kiel Fjord. 

Temperatures were selected to consider close to winter/spring values (4°C) and 

predicted climate change increases (8°C) and also t o facilitate comparability with 

previous mesocosm experiments (Hoppe et al. 2008, Sommer et al. 2007, 

Sommer & Lengfellner 2008). One third elevated temperature (12°C) was added 

for further comparability with summer values. In order to elucidate the temperature 

dependence of algae-bacteria interactions without the complex food web effects, 

we conducted the experiment using an axenic culture of a dominant 
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phytoplankton species (Skeletonema costatum) from previous mesocosm 

experiments and the natural bacterial assemblage from Kiel Fjord. 

The different nutrient setups were chosen in order to: 

a. create different quantities of phytoplankton particulate and dissolved 

primary production, i.e. different quantities of substrate for bacterial growth 

b. create different qualities of organic substrate for bacteria (from dissolved 

primary production), through different exudates from phytoplankton under 

P- and N-limitation 

c. assess the competition of phytoplankton and bacteria for inorganic primary 

nutrients 

Using this setup, we tried to answer the question, if the effects of different nutrient 

levels will influence bacteria directly or indirectly via algal primary production. The 

interacting influences of temperature and organic substrate quantity and 

competition with phytoplankton for inorganic nutrients will be assessed in this 

chapter, while the influence of organic substrate quality is discussed by Wohlers 

(Wohlers 2009).  

 

Materials and Methods  

The experiment was performed between 5th July and 16th August 2007. Low 

nutrient Baltic Sea water was collected from Booknis Eck, Kiel Bight, on 16th May 

2007 at 10 m depth. The water was allowed to age at IFM-GEOMAR in the dark at 

15°C until the beginning of the experiment, in orde r to reduce organic carbon in 

the water as much as possible. The aged water was filtered directly into 25 L 

autoclaved carboys (polycarbonate) one day before the start of the experiment 

using a cascade of a combusted (5h, 450°C) GF/F pre filter followed by a 0.45 µm 

cellulose acetate filter. This was done in order to remove heterotrophic 

nanoflagellates and all larger grazers, and at the same time to keep the natural 

bacterial community as complete as possible. The filter set was renewed after 

each individual carboy, the first 1-2 L were discarded, and then exactly 24 L 

filtered into the carboy. Randomly taken samples during the filtration process 

confirmed the absence of flagellates and almost no reduction in bacterial 

numbers. 
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A total of 18 carboys were filled and 6 each were stored in one of 3 climate 

chambers, which were set to the temperatures: 4°C, 8°C, 12°C. Carboys received 

light from fluorescent bulbs, positioned directly above the horizontally aligned 

carboys. Light was supplied with a light: dark cycle of 12:12 hours, increasing to a 

maximum of ~388 µE m-2s-1 at noon. These settings represent non-limiting light 

conditions for algal growth. An axenic Skeletonema costatum (strain CCMP 1332) 

culture was grown in the aged seawater with nutrients added in f/2 amounts 

(Guillard and Ryther 1962, Guillard 1975), at 20°C and ~250 µE m-2s-1 ahead of 

the experiment. On the evening before the start of the experiment 3 subcultures 

were transferred to each of the experiments’ temperatures, to allow 

acclimatisation. On the day of the experiments’ start, the respective culture was 

added to the 6 carboys of each temperature in a final concentration of  ~700 cells 

ml-1. Together with the cultures, phosphate and nitrate were added to the 

seawater, in order to create two different N:P ratios (see below). Silicate was 

added to avoid distortion of results with respect to silicate limitation at any time of 

the experiment. Trace metals, vitamins and selenium were added in f/10 amounts 

in order to avoid any limitation. Each carboy was gently stirred for 1 min. each day 

ahead of sampling. The sampling frequency for all other parameters was 

individually adjusted to the biomass development in the respective samples. 

Samples were drawn by casting 1.5 L of water directly into a clean measuring 

cylinder, from which subsamples for the respective measurements were taken.  

 

An overview over the sample numbers, temperatures and the respective N:P 

ratios is given in Table 1. 
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Table 1 : Sample numbers, temperatures and N:P ratios of the treatments used in the 
experiment 
 

Sample No.  Temperature (°C)  N:P 

1, 2, 3 12  ±±±± 0.5 29 

7, 8, 9 8    ±±±± 0.5 29 

13, 14, 15 4    ±±±± 0.5 29 

   

4, 5, 6 12  ±±±± 0.5 8 

10, 11, 12 8    ±±±± 0.5 8 

16, 17, 18 4    ±±±± 0.5 8 

 

Nutrients 

The salinity of the water was 15.1. The nutrient levels in the original aged 

seawater and the two different nutrient treatments is shown in Table 2. The 

phosphate level was uniformly increased to 0.87 ± 0.06 µM, a realistic level to 

facilitate development of a phytoplankton bloom and for comparability in all 

treatments. This resulted in an N:P ratio of 8 (total N = 7.1, representing possible 

N-limiting conditions). In order to create a possible P-limiting situation nitrate was 

added to a final concentration of 23.8 ± 1.7 µM, resulting in an N:P of 29 (total N = 

25.5). This setup represents the typical winter/spring situation in the Kiel Fjord and 

was observed repeatedly in previous experiments (Hoppe et al. 2008, Sommer et 

al. 2007). At constant P concentration, the high-N treatment would therefore 

theoretically provide for a 2 times higher phytoplankton biomass compared to the 

low-N treatment as based on the Redfield ratio (C:N:P = 106:16:1), because at 

low-N the total N concentration of 7.1 µM is decisive and at high-N the P 

concentration of 0.87 µM is decisive for the maximally expected buildup of organic 

C (47 and 92 µM C, respectively). 
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Table 2 : Nutrient concentrations in the original aged water and in the respective 
treatments (concentrations in µM) after nutrient addition, at the start of the experiment. 
 

 Nitrate  Ammonium  Phosphate  Silicate  

original  5.8  1.9 0.3 5.9 

29 23.8 ± 1.7 1.7 ± 0.1 0.87 ± 0.06 43.8 ± 0.4 

8 5.4 ± 0.7 1.7 ± 0.1 0.87 ± 0.06 43.8 ± 0.4 

 

 

Nitrate, phosphate and silicate were determined according to the protocol of 

Hansen and Koroleff (1999) after water samples had been prefiltered through 5.0 

µm cellulose acetate filters. For the assessment of ammonium (Holmes et al. 

1999), unfiltered water samples were used.  All measurements were performed on 

the day of sampling. 

 

Particulate and dissolved primary production 

Particulate primary production measurements were performed using 14C 

bicarbonate incubations following the methods of Gargas (1975) and Steeman 

Nielsen (1952). For each mesocosm three aliquots of 20 ml each were incubated 

with 70 µl of a 4 µCi / 100 µl 14C-bicarbonate solution. The blank treatment was 

kept dark during incubation. Incubation took place next to the respective carboys, 

ensuring the same light exposure and in situ temperature conditions. After 4-5 

hours of incubation, the samples were filtered onto 0.2 µm cellulose nitrate filters. 

The filtrate was collected for measurement of dissolved primary production. The 

filters were subsequently fumed with 37 % HCl fumes in a closed box for 5-10 min 

and then measured in 4 ml of Scintillation cocktail (Lumagel Plus) using a Packard 

Tricarb counter. 

Aliquots of 10 ml filtrate received 100 µl of a 1 N HCl solution and were stored in 

an exsiccator under vacuum for 8 days. For collecting the expelled CO2, the 

exsiccator contained a 1 N NaOH solution. Preliminary experiments had shown 

that this treatment guarantees maximum outgassing of remaining inorganic 14C 

from the samples. After this storage time, 10 ml of scintillation cocktail (Aquasol) 

were added and the radioactivity of the samples counted. 
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The original CO2 concentration of the water sample was determined using the 40 

+ 10 method and dissociation constants described in Stumm & Morgan (1981).  

Calculated particulate and dissolved primary production was corrected for the 

actual light received during the incubation period, in relation to total light during 

the 12 h light-day. The two variables are presented as µg C L-1 d-1.  

 

Bacterial Abundance 

Bacterial cell numbers were determined by flow cytometry. 4 ml of a sample was 

fixed with 400 µl of paraformaldehyde / glutaraldehyde (1 % and 0.05 % final 

concentration respectively) in the dark for 1 hour at 5°C. After fixation, the 

samples were frozen in liquid nitrogen and subsequently stored at –80°C. 

Heterotrophic bacteria were stained using SYBR Green (2.5 µM final 

concentration, Molecular Probes) for at least 30 minutes in the dark. Cells were 

counted using a Becton & Dickinson FACScalibur equipped with a laser emitting 

at 488 nm at a constant flow rate (35 µl / min). Yellow-green latex beads (0.5 µm, 

Polysciences) were used as an internal standard. Bacteria were detected by their 

signature in a plot of side scatter (SSC) versus green fluorescence (FL 1). 

 

Bacterial Production 

Bacterial secondary production measurements were conducted following the 

protocol of Simon & Azam (1989). Three aliquots (2 replicates and one blank) of 

10 ml of water were each incubated with 50 µl of a 1 µCi / 10 µl 3H-leucine 

solution (specific activity: 77 µCi nmol-1) plus 50 µl of a 2 nmol / 100 µl unlabeled 

leucine solution. This resulted in a total concentration of 106.49 nmol L-1 of 

leucine in the sample, which is known to be saturating under the conditions found 

in the Kiel Fjord (Giesenhagen, unpublished data). 

All samples were incubated in the respective climate chambers at in situ 

temperature in the dark for 1.5 - 3 hours. Incubation was terminated by the 

addition of formaldehyde (1 % v / v) and cells filtered onto 0.2 µm polycarbonate 

filters. The filters were subsequently rinsed with ice cold 5 % TCA (trichloro acetic 

acid) solution, before being radio-assayed in 4 ml of scintillation cocktail (Lumagel 

Plus). Results in units of pM h-1 bacterial protein production were transferred into 
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µg C L-1 d-1 biomass production using a theoretical conversion factor of 3.091 x 

10-3 kg C mol-1 leucine (Simon & Azam 1989).  

 

Data handling and statistics 

• Mean values for parameter quantification were obtained from individually 

determined peak periods.  

• Ratios of bacterial production or bacterial carbon demand to primary 

production (particulate and dissolved) were calculated from the individual 

mean values. 

• Bacterial respiration was calculated from the equation described in DelGiorgio 

& Cole (1998): BR =3.42 x BP0.61; bacterial carbon demand (BCD) was 

calculated as the sum of bacterial production and bacterial respiration. 

• Specific bacterial production was calculated by dividing bacterial production by 

the total bacterial number for each measuring point. 

• Influence of temperature on mean values of variables was assessed by simple 

(model 1) linear regression (SigmaPlot). 

• Influence of nutrient availability on mean values was assessed by T-test 

(accounting for normal distribution and homogeneity of variances). 

• Multiple linear regressions were performed in order to assess the combined 

effects of temperature and nutrients on the respective parameters and partial 

correlations were used to assess the contribution of the respective variable to 

total variance while controlling for the respective other variable (Statistica). 

Data was tested for normal distribution (Shapiro-Wilk’s W test), the model was 

tested for outliers (standardised residuals, Cook’s distance, Mahalanobis 

distances) and autocorrelations (Durbin-Watson). 

 

 

Results 

Nutrient dynamics 

Nutrient dynamics of silicate (Figure 1, A) show that there was no silicate 

limitation in the experiment at any time. The drawdown is clearly temperature-

dependent, starting earlier at warmer temperature. There was also a difference 
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detectable between the nutrient treatments, showing a larger drawdown at the 

high-N treatments. This trend was most pronounced at 12°C and less obvious in 

the other temperatures. Within the nutrient treatments, drawdown also showed a 

temperature effect, with the largest drawdown at the coldest temperature and vice 

versa. 

Phosphate utilisation also showed a clear temperature-dependent development 

during the course of the experiment (Figure 1, B). Irrespective of the nutrient 

regime, all samples at 12°C decreased strongly in p hosphate concentration 

without delay, reaching the detection limit on day 10 (sample 3 on day 12). All 

samples at 8°C showed a somewhat delayed reaction, reaching the detection limit 

on day 18. Only at 4°C a slight difference between the nutrient treatments was 

detected, with all low-N samples reaching detection limit on day 24 and two of the 

three high-N treatments (samples 14 and 15) lagging behind by 3 days.  

Results of ammonium determination show (Figure 1, C) that ammonium was 

taken up preferentially, compared to nitrate (Figure 1, D), being used up very 

quickly at the experiments’ start. Again, the dynamics were clearly temperature 

dependent with minima being reached on day 8 at 12°C, days 12 – 18 at 8°C and 

days 15 – 18 at 4°C.  

Due to the different starting conditions, nitrate dynamics showed clear differences 

between the high and low-N treatments (Figure 1, D). In the low-N treatments 

nitrate drawdown started earliest in the 12°C treat ments, reaching the detection 

limit on day 10. The limit was reached on day 14 at 8°C and on day 24 at 4°C 

(day 21 for sample 18). The high-N treatments also showed temperature-

dependent dynamics. Drawdown started earlier at 12°C, reaching the detection 

limit on day 24 (day 21 for sample 1). The limit was reached for samples 8 and 9 

on day 24 at 8°C, while the third replicate (sample  7) lagged behind until day 32. 

The samples, which were run at 4°C, showed a clearl y delayed development, 

reaching detection limit on day 32. Between the treatments it became obvious that 

nitrate was depleted earlier in the low-N compared to the high-N samples. 

Concerning the limiting conditions of inorganic nitrate and phosphate, differences 

occurred between the high- and low-N treatments. In the high-N treatments 
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Figure 1 . Nutrient dynamics 
during the course of the 
experiment. Silicate (A), 
phosphate (B), ammonium (C) 
and nitrate (D) concentrations are 
given in µM, red colour displays 
all  samples at 12°C, green colour 
8°C and blue colour 4°C. Full 
symbols represent the high-N 
nutrient treatment (N: P 29) and 
open symbols represent the low-N 
nutrient treatment (N: P 8). 
 
 
 

phosphate was exhausted 

before nitrate at all 

temperatures. This resulted in 

a few days of P-deficiency 
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treatments again N and P reached the detection limit on the same day (24), 

except for sample 18, where N-deficiency prevailed between days 21-24. 

 

Dynamics of phytoplankton 

Particulate Primary Production (PPP) 

The dynamics of particulate primary production show the development of the 

Skeletonema costatum bloom in the various treatments (Figure 2). Skeletonema 

remained the only dominating species in all microcosms (contamination with other 

diatoms did occur in some samples, but cell numbers stayed negligibly low). In the 

high-N treatments, mean particulate primary production reached between 232 and 

378 µg C L-1d-1. There was a tendency towards increasing mean values with rising 

temperatures, but this trend was statistically not significant (Figure 3, B, Table 4). 

Peak timing was clearly temperature-dependent (due to the non-limiting light 

conditions), with a significant acceleration of 1.7 days per degree Celsius warming 

(Figure 3, A, Table 3). The peak was reached between days 14 and 16 at 12°C, 

on day 21 at 8°C and on days 27 to 29 at 4°C. P-def iciency at 4° and 8°C was 

reached 2-3 days before the bloom peak (see Nutrients above), towards the end 

of the exponential growth phase. At 12°C P-deficien cy occurred earlier (between 

2-6 days ahead of the peak), in all samples during the exponential growth phase. 

The timing of the blooms in the low-N treatments showed the same acceleration 

of 1.7 days / 1°C warming (Figure 3, A, Table 3), b ut was always reached earlier 

than the high-N treatments. Peaks were reached on day 10 at 12°C, on days 14 to 

18 at 8°C and on days 21 to 27 at 4°C. Concerning t he mean quantity, there was 

no temperature dependence found (Figure 3, B, and Table 4). Mean values 

ranked between 122 and 176 µg C L-1d-1, with one unusually high value at 294 µg 

C L-1d-1 (sample 11). Although the results from sample 11 are not interpreted as 

false measurements (unusually high values on three consecutive days and 

confirmation from Chl a results, data see Wohlers), this sample was interpreted as 

a biological outlier and omitted from all further analyses (see also Discussion). 

The timing of the bloom peak in the 12°C treatments  coincided with the minimum 

in both N and P. At 8°C the same was valid for samp le 10, whereas the other two 

replicates (11 and 12) showed N-limitation at the peak and four days after, before 
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P reached the detection limit as well. At 4°C for s ample 16 both nutrients dropped 

to the detection limit at the end of the exponential phase, 3 days ahead of the 

peak. For sample 17 this drop coincided with the peak on day 24, whereas for 

sample 18 N-deficiency was predominant from the peak on for 4 days, until P was 

exhausted as well. 

 

 

Figure 2 . Dynamics of particulate 
primary production (µg C L-1d-1) in the 
high-N (N: P 29) and low-N (N: P 8) 
treatments during the course of the 
experiment.  
 

 

When considering the Redfield ratio 

of C: N: P = 106:16:1, the theoretical 

ratio of biomass for the high-N to 

low-N phytoplankton would be 2 

(see Material and Methods). From 

the mean particulate primary 

production an average ratio of 2.1 

could be calculated, spanning a 

range of 1.6 – 2.7 (data not shown). 

The means of the two different 

nutrient treatments were significantly 

different (p=9.5, p<0.0001, n=18). Multiple linear regression showed that 88 % of 

the variability in PPP could be explained by temperature and nutrient treatments 

(F=50.04, p<0.0001). The partial correlations revealed a 87 % contribution of the 

nutrient treatment (p<0.0001) and a 15 % contribution of the temperature 

treatment to total variance (p=0.14).  
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Figure 3 . Peak timing (A) and mean (B) of particulate primary production peaks at the 
different temperatures for high-N (N: P 29) and low-N (N: P 8) treatments.  
A: high-N: Day(T+1)=-1.7day(T)+35, R2=0.98, p<0.0001; low-N: Day(T+1)=-1.7day(T)+30, 
R2=0.9, p=0.0001; The slope of the linear regression line in (A) represents the days the 
peak is accelerated for each 1°C warming.  
B: high-N: PPP=5.8T+275, R2=0.18, p=0.25; low-N: PPP=2.0T+139, R2=0.16, p=0.33.  
 

 

Dissolved Primary Production (DPP) 

Dissolved primary production generally showed a higher variability compared to 

particulate primary production, both between the replicate treatments and along 

the course of the experiment (Figure 4). 

At high-N nutrient conditions mean values reached between 2.0 and 13.9 µg C L-

1d-1, and for each temperature treatment one replicate was considerably lower 

than the other two (Figure 4, A, Table 4). There was a trend towards higher 

production with decreasing temperature, which was not statistically significant 

(due to the one low replicate value at each temperature treatment, Figure 5, B, 

Table 4). The development was accelerated with increasing temperatures. Peaks 

at 12°C were reached on days 14 – 21, on days 12 – 21 at 8°C and on days 24 – 

27 at 4°C. The linear model shows the significant a cceleration of 1.2 days / 1°C 

warming (Figure 5, A, Table 3). 

Dynamics of dissolved primary production were rather variable at low-N nutrient 

conditions (Figure 4, B). Nevertheless some patterns emerged, for example the 

timing of peak development was significantly accelerated at higher temperatures 

by 1 day /1°C (Figure 5, A, Table 3). Peaks were re ached on days 14 – 18 at 
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12°C, on days 14 – 16 at 8°C and on days 21 – 27 at  4°C. Although the linear 

model shows the significant acceleration, it has to be noted, however, that in both 

nutrient treatments, the difference in timing did only occur between 8°C and 12°C, 

while no difference could be detected between 4°C a nd 8°C. Also, although the 

acceleration at high-N was slightly higher, there was no significant difference in 

timing between the two nutrient treatments (ANCOVA, F=0.22, p=0.65, n=18). 

Mean dissolved primary production at low-N conditions ranged between 3.4 and 

11.8 µg C L-1d-1 and only a small and insignificant trend towards higher values at 

lower temperatures could be detected (Figure 5, B, Table 4). The ratio of the 

mean dissolved primary production at high- to low-N treatments was on average 

1.3, ranging from 0.2 to 2.4 (data not shown). 

 

 
 
Figure 4 . Dynamics of dissolved primary 
production (µg C L-1d-1) in the high-N (N: 
P 29) and low-N (N: P 8) treatments 
during the course of the experiment. 
 

 

The mean values of dissolved 

primary production were not 

significantly different between the two 

different nutrient treatments (T-test, 

t=0.17, p=0.87, n=18). Multiple linear 

regression showed that only 16 % of 

the variability in DPP could be 

explained by temperature and 

nutrient treatment (F=1.39, p=0.001). 

The partial correlations revealed a 

0.25 % contribution of the nutrient 

treatment (p=0.86) and a 15 % 

contribution of the temperature treatment to total variance (p=0.12). 

The percent extracellular release (PER = DPP / DPP+PPP) is a measure of the 

amount of dissolved relative to total primary production. The average PER during 
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the particulate primary production bloom was 2.4 % for the high-N treatments and 

4.6 % for the low-N treatments (overall average 3.5%). The difference was 

statistically significant (T-test, t=-2.83, p=0.01, n=18), but if determined separately 

for the different temperatures only the 8°C treatme nt showed a significant 

difference. PER showed a tendency to be higher at lower temperatures, but the 

trend was not statistically significant (Table 4). Multiple linear regression showed 

that 50 % of the variability in PER could be explained by temperature and nutrient 

treatment (F=6.89, p=0.008). The partial correlations revealed a 41 % contribution 

of the nutrient treatment (p=0.008) and a 23 % contribution of the temperature 

treatment to total variance (p=0.06) (data not shown).  

 

 
Figure 5.  Peak timing (A) and maxima (B) of dissolved primary production peaks at the 
different temperatures for high-N (N: P 29) and low-N (N: P 8) treatments.  
A: high-N: Day(T+1)=-1.2day(T)+29, R2=0.53, p=0.03; low-N: Day(T+1)=-1.0day(T)+26, 
R2=0.57, p=0.002; The slope of the linear regression line in (A) represents the number of 
days the peak is accelerated for each 1°C warming.  
B: high-N: DPP=-0.5T+11.8, R2=0.22, p=0.20; low-N: DPP=-0.3T+9.3, R2=0.09, p=0.43.  
 
 
Dynamics of bacteria  
Total Bacterial Number (TBN) 

The dynamics of bacterial cell numbers showed distinct differences between the 

different temperature treatments at the high-N nutrient conditions (Figure 6, A). 

The replicates at 12°C were very close together. Th e dynamics showed the 

development of an early peak before steeply decreasing and increasing again, 

towards the end of the experiment. This represents the main degradation phase. 
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The mean numbers at 12°C reached between 1.9 and 2. 0 x 106 cells ml-1, with 

peak values on day 10. The dynamics at 8°C were som ewhat delayed compared 

to 12°C, also one replicate showed a distinctly dif ferent development. While two 

replicates showed their peak on day 16, the third replicate peaked much higher on 

day 21. Mean cell numbers ranging from 2.2 to 3.1 x 106 cells ml-1 were 

measured. Again, the peaks were followed by a steep decrease, before numbers 

rose again towards the end of the experiment. The dynamics of bacterial numbers 

in the coldest treatment at 4°C showed a very diffe rent picture. No distinct peak 

was formed with numbers increasing almost constantly, and uniformly, until the 

end of the experiment. An intermediate maximum which could be interpreted as a 

peak was detected on day 29. Mean values at 4°C ran ged between 3.6 and 3.8 x 

106 cells ml-1. Means and peak timing were significantly negatively correlated with 

temperature (Figure 7, Table 3, 4). Acceleration of the peak day was 3.9 days 

/1°C (Figure 7, A, Table 3). 

The basic pattern in the dynamics, as described for the high-N treatments, was 

also found in the low-N treatments, although with some distinct deviations (Figure 

6, B). The 12°C treatments showed an early peak, th en decreasing quickly. 

Towards the end of the experiment there was only a weak increase. The peak at 

12°C was reached also on day 10 for all replicates,  mean values ranged between 

1.9 and 2.0 x 106 cells ml-1. Treatments at 8°C showed a similar pattern, albei t 

one replicate (sample 11) showed a much earlier and lower peak compared to the 

other two. Peak values ranged between 1.5 and 2.2 x 106 cells ml-1. The increase 

in bacterial numbers after the first breakdown was much lower at the low-N 

compared to the high-N treatments. Also, in contrast to the results described 

above, bacterial numbers at 4°C did show a peak dev elopment and subsequent 

breakdown after the peak. Two of the replicates displayed the distinctly delayed 

peak on day 29, while the third replicate (sample 16) peaked on day 21. Mean 

values reached 2.5 to 3.7 x 106 cells ml-1. The breakdown was not as pronounced 

as for the warmer treatments, and from sample 16 it is indicated that these values, 

too, would be increasing again towards the end of the experiment. 

Mean values of bacterial abundance in the low-N treatments were significantly 

lower at warmer temperatures (Figure 7, B, and Table 4). The peak timing was 
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significantly accelerated at higher temperatures by 2 days /1°C warming (Figure 7, 

B, and Table 3). Because the acceleration was 1.9 days faster at the high-N 

treatment, the difference in peak timing compared to the low-N treatment was 

highest at the coldest temperature with 15 days, lower at 8°C with 5 days and 

there was no difference in the 12°C treatment. The difference in peak acceleration 

with temperature was significant between the two nutrient treatments (ANCOVA, 

F=7.84, p=0.01, n=18). 

 

Figure 6 . Dynamics of total bacterial 
numbers (cells ml-1) during the course 
of the experiment in the high-N (N: P 
29) and low-N (N: P 8) treatments. 
 

 

The mean values were not 

significantly different between the 

two nutrient treatments over all 

temperatures (T-test, t=1.23, 

p=0.24, n=18). The ratio of high-N 

to low-N maximal values ranged 

between 0.9 and 1.6, with a mean of 

1.2 (no temperature effect). Multiple 

linear regressions showed that 72 % 

of the variability in TBN could be 

explained by temperature and 

nutrient treatment (F=19.3, 

p<0.001). The partial correlations revealed a 23 % contribution of the nutrient 

treatment (p=0.05) and a 69 % contribution of the temperature treatment to total 

variance (p<0.0001). 
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Figure 7 . Peak timing (A) and maxima (B) of total bacterial number (TBN) peaks at the 
different temperatures for high-N (N: P 29) and low-N (N: P 8) treatments.  
A: high-N: Day(T+1)=-3.9day(T)+54, R2=0.91, p<0.0001; low-N: Day(T+1)=-2.0day(T)+32, 
R2=0.74, p=0.003; The slope of the linear regression line in (A) represents the days the 
peak  is accelerated for each 1°C warming.  
B: high-N: TBN=-2.2x106T+4.5x106, R2=0.89, p=0.0001; low-N: TBN=-1.5x106T+3.5x106, 
R2=0.51, p=0.03.  
 

 

Bacterial Production (BP) 

In contrast to the dynamics of bacterial abundance, the development of bacterial 

production did not show very distinct peaks and was more variable along the 

course of the experiment (Figure 8). 

In the high-N treatment at 12°C, the replicates sho wed an initial peak on day 3, 

followed by a short decrease, before increasing again towards an individual peak 

(Figure 8, A). This peak was reached between days 12 and 27, due to the high 

variability, and reached mean values between 220 and 286 µg C L-1d-1. A 

minimum after the peak was observed in all replicates on day 29, after which all 

values increased again. Development at 8°C showed d elayed, but somewhat 

similar dynamics. Here, values also increased towards a peak, which was 

reached on day 35 for two of the replicates, whereas the third replicate peaked 

already on day 21. Mean values reached 224 and 367 µg C L-1d-1. In contrast to 

the other temperatures, bacterial production at 4°C  stayed on relatively low levels 

(mean 106 - 120 µg C L-1d-1) for most of the time and only increased towards a 
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low peak on day 35. A minimum directly after the peak was followed by increasing 

values at the end of the experiment. 

The peak timing was significantly correlated with temperature, with an 

acceleration of 1.9 days /1°C warming (Figure 9, A,  Table 3). When plotting the 

mean peak values of bacterial production against the respective temperature, the 

linear regression model shows a trend towards increasing values with rising 

temperatures, which is almost significant (Figure 9, B, Table 4). It has to be noted, 

however, that there was no difference detected between 8 and 12°C and only at 

4°C the mean values were considerably lower. 

 

 
Figure 8.  Dynamics of bacterial 
production during the course of the 
experiment in the high-N (A) and low-N 
(B) treatments. 
 

 

The dynamics of bacterial production 

were distinctly different at low-N 

nutrient conditions (Figure 8, B). On 

day 3, a clear temperature effect 

emerged in the initial development, 

which was very similar to the high-N 

treatment. While at 12°C a peak was 

reached, with 171 µg C L-1h-1 on 

average, values at 8°C reached on 

average 72.4 µg C L-1h-1, and 

production at 4°C was as low as 8.67 

µg C L-1h-1. This first peak at 12°C 

was followed by a steep decline, and mean values ranged between 97 and 111 

µg C L-1h-1 with no peak development. At 8°C the values reache d on day 3 were 

more or less constant for the rest of the experiment. Only one replicate reached 

somewhat higher values, but without any peak (mean 82 – 103 µg C L-1h-1). The 

delayed dynamics of bacterial production at 4°C sho wed a further increase until 
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day 6. Mean values ranged between 47 and 70 µg C L-1h-1, but again without any 

peak. Because there was no peak development, no correlation of peak timing with 

temperature could be performed. Linear regression revealed a statistically 

significant increase of mean values with increasing temperature (Figure 9, B, and 

Table 4). 

The ratio of high-N to low-N values was between 1.7 and 3.6 (mean: 2.6), without 

any temperature effect (data not shown). Multiple linear regression showed that 

83 % of the variability in BP could be explained by temperature and nutrient 

treatment together (F=37.6, p<0.0001). The partial correlations revealed a 77 % 

contribution of the nutrient treatment (p<0.0001) and a 58 % contribution of the 

temperature treatment to total variance (p=0.0004). 

 

 

Figure 9 . Peak timing (A) and maxima (B) of bacterial production peaks at the different 
temperatures for the high-N (N: P 29) treatments.  
A: Day(T+1) = -1.88 day(T) + 43, R2=0.56, p=0.02; the slope of the linear regression line in A 
represents the days the peak is accelerated for each 1°C warming.  
B: high-N: BP = 16.4T + 84.5, R2=0.39, p=0.07; low-N: BP = 5.7T + 36.6, R2=0.78, 
p=0.002  
 

 

Phytoplankton – bacteria relationships 

Peak timing 

Table 3 summarises the peak accelerations of all parameters at the different 

temperatures. The acceleration was statistically significant in all cases. Bacterial 
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parameters showed higher peak accelerations than primary production, but the 

differences were not statistically significant (comparison of slopes using ANCOVA, 

F=0.26, p=0.77).  

 

Table 3:  Acceleration of peaks of the different parameters in days per 1°C temperature 
increase. The values were inferred from the slopes of the linear regression of peak days 
at the respective temperatures (original data can be found in the respective results 
sections above). For TBN the intermediate peak on day 29 was assessed additionally 
(see Results section for description). All accelerations were statistically significant on the 
p<0.05 level, there were no statistically significant differences between the different 
accelerations at the respective nutrient treatments, except for TBN 3.9. 
 
 Slope  R2 p 

 

PPP 

N:P 29 1.7 0.98 <0.0001* 

N:P 8 1.7 0.90 0.0001* 

DPP 

N:P 29 1.2 0.53 0.03* 

N:P 8 1.0 0.57 0.002* 

TBN 

N:P 29 3.9 (2.4) 0.91 <0.0001* 

N:P 8 2.0 0.74 0.003* 

BP 

N:P 29 1.9 0.56 0.02* 

N:P 8 no peaks n.a. n.a. 

 

 

Bacterial Production to Primary Production ratio (BP : PP) 

In order to assess the influence of temperature and nutrient treatments on the 

coupling between bacteria and phytoplankton, the ratio of bacterial production to 

primary production was calculated for the mean values at the respective peaks 

(Figure 10). For the bacterial production to particulate primary production ratio 

(BP:PPP), a trend towards increasing ratios with rising temperatures was 

detected, which was significant for the low-N treatment (Figure 10, A, Table 4). 

There was no difference between the nutrient treatments (T-test, t=1.24, p=0.23, 

n=18). The ratios show, that particulate primary production was at all times able to 
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satisfy the carbon demand for bacterial production, with on average 40% 

(N:P=29)  / 39% (N:P=8) of particulate primary production being turned into 

bacterial biomass at 4°C and 73% and 63% at 12°C (F igure 11). 

 

Figure 10.  Correlations of the bacterial production to primary production ratio (%) with 
temperature for the primary production peak. Ratio of BP:PPP at high-N and low-N (A) 
treatments, and for BP:DPP at high-N and low-N (B) treatments.  
A: high-N: BP:PPP=4.1T+34, R2=0.27, p=0.15; low-N: BP:PPP=2.9T+30, R2=0.63, 
p=0.02;  
B: high-N: BP:DPP=561T-185, R2=0.28, p=0.14; low-N: BP:DPP=155T+125, R2=0.52, 
p=0.03  
 

 

The bacterial production to dissolved primary production ratio (BP:DPP) also 

showed a trend towards increasing values with increasing temperature, which 

again was significant for the low-N treatment (Figure 10, B, Table 4). Values at 

4°C reached on average 1660 % at high-N conditions and 849 % at low-N 

conditions. For the low-N conditions it approximately doubled with an increase to 

12°C and reached 2090%, while the increase was mark edly higher at high-N 

conditions, reaching 6146 % at 12°C. The ratios wer e significantly different 

between the nutrient treatments (T-test, t=2.73, p=0.01, n=18), which was 

however based only on the difference in the 8°C tre atment, if considered 

separately for the temperature treatments. In summary, it can be noted that 

dissolved primary production was always much smaller than would be needed to 
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supply for bacterial production and that the deficiency increased with rising 

temperatures, especially at high-N conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Pie chart of the BP:PPP ratio. The size of the pie represents the amount of 
PPP and the light blue slices correspond to the BP:PPP ratio (numbers in %). 
 
 
Table 4 : Mean values of the different parameters for their individual peak periods. PPP, 
DPP and BP in µg C L-1d-1; PER, BP:PPP, BP:DPP in %; TBN in 106 cells ml-1. R2 and p 
for the linear regressions of the means against temperature. The correlations were 
performed with the original data for each of the three replicates. Equations can be found 
in the respective “Results” section above.  
 

 12°C  8°C  4°C  R2 p 

 

PPP 

N:P 29 334 342 288 0.18 0.25 

N:P 8 163 153 147 0.16 0.33 

DPP 

N:P 29 5.40 7.26 9.76 0.22 0.20 

N:P 8 5.50 8.49 7.59 0.09 0.43 

PER 

N:P 29 1.63 2.02 3.51 0.27 0.15 

N:P 8 3.26 6.28 4.77 0.19 0.28 

12°C 8°C 4°C

N:P 8

N:P 29

73% 88% 40%

63% 60% 40%

12°C 8°C 4°C

N:P 8

N:P 29

73% 88% 40%

63% 60% 40%
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TBN 

N:P 29 1.98 2.60 3.71 0.89 0.0001* 

N:P 8 1.97 1.85 3.15 0.51 0.03* 

 

BP 

N:P 29 242 293 111 0.39 0.07 

N:P 8 102 88.8 56.4 0.78 0.02* 

BP : PPP  

N:P 29 72.5 87.8 39.8 0.27 0.15 

N:P 8 63.0 60.4 39.5 0.63 0.02* 

BP : DPP  

N:P 29 6146 5098 1660 0.28 0.14 

N:P 8 2090 1157 849 0.52 0.03* 

 

 

Bacterial Carbon Demand to Primary Production ratio (BCD : PP) 

Bacterial respiration was calculated (see Material & Methods) in order to assess 

total bacterial carbon demand in relation to primary production. The values of 

BCD: PPP increased from an average 132 % to 191 % for the high-N nutrient 

treatment and from 138 % to 206 % for the low-N treatment between the 

temperature ranges of 4 to 12°C. In contrast to the  BP: PPP ratio, here  the 

particulate primary production could not provide for the bacterial carbon demand. 

There was no statistically significant difference between the ratios of the two 

nutrient treatments (T-test, t=-0.48, p=0.64, n=18). 

 

 

Discussion 

We created an experimental setup with a factorial combination of two different 

nutrient levels and three different temperatures in order to assess the combined 

effects of both factors on phytoplankton-bacterioplankton interactions during an 

algal bloom. Using this setup we were able to create monoalgal blooms with 

different quantities and temporal dynamics depending on the nutrient and 

temperature conditions and corresponding bacterial responses to altered 
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substrate supply. The details of our results will be discussed below and 

conclusions for possible future climate scenarios will be drawn from our results.  

 

 

Dynamics of phytoplankton 

As expected, particulate primary production (PPP) showed a very different 

quantitative development in the two nutrient treatments due to the available 

primary inorganic nutrients. Although algae in the high-N nutrient treatment (N: P 

29) were phosphate limited during the exponential growth phase and at the peak 

of the bloom, PPP still continued to rise, indicating that growth was still possible 

due to the available nitrate. In this phase the algae could possibly utilise 

phosphate from cell internal reserves. Rhee (1972) showed that phytoplankton is 

able to build up phosphate reserves which can be used during limiting growth 

conditions. This is also a possible advantage in the competition with bacteria for 

primary inorganic nutrients, which do not have the possibility for nutrient storage 

under balanced growth conditions. Bacteria however, in competition, have the 

advantage of faster growth, during non-limiting nutrient conditions. Other 

possibilities include a changed element ratio in the formation of cell components 

or phosphatase-activity of the algae. Moreover, it is possible that remineralisation 

of organic compounds through heterotrophic bacteria made inorganic phosphate 

available, which was then used up by the algae immediately, without being 

detectable. 

In the low-N nutrient treatment (N: P 8) nutrient limitation resulted in earlier and 

much lower peaks compared to the high-N treatment. The differences in mean 

PPP at the different nutrient treatments display a ratio of on average 2.1, which is 

what would be expected from the Redfield ratio (i.e. 2.0). From the daily ratio of 

PPP a theoretical standing stock according to Redfield cannot be inferred, but 

particulate organic carbon (POC) data available from Wohlers (see Wohlers 2009) 

shows that the observed to calculated ratios reached values, which were much 

higher than expected from Redfield (4.7 times higher at high-N and low-N 

treatments). The ratio of high-N to low-N was 1.6, which is lower than the 

expected ratio of 2, showing that there was also a higher POC production in the 
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low-N treatments relative to the high-N treatments. This result is in contrast to the 

ratio of 2.1, observed for the PPP ratio. It has to be noted, however, that primary 

production is a daily rate and does not reflect standing stocks, while the standing 

stocks on the other hand cannot take into account any production or loss rates. 

Hence these results are not directly comparable. The observed “carbon 

overconsumption” has been described in previous experiments (Wohlers, 

personal communication) and by other authors (Toggweiler 1993, Kähler & Koeve 

2000, Schartau et al. 2007), possibly leading to the formation of organic material 

with “abnormal” C: N: P ratios.  As described above, cell internal phosphate and 

nitrate reserves (Dortch 1982) or bacterial remineralisation could also possibly 

explain the observed “overconsumption” in POC in our experiment.  

In the low-N nutrient treatment sample 11 showed a distinctly different 

development compared to the other replicates and all other treatments, and was 

therefore interpreted as a biological outlier and omitted from further analysis. 

Measurements were considered as correct, because the values were not only 

unusually high on one single day but on three consecutive days (and confirmed by 

a high chl a level on day 14, Wohlers 2009). We have no explanation however, for 

this distinctly different development, because the unusually high PPP was not 

reflected in high dissolved primary production (DPP) values, or any of the other 

parameters. 

Irrespective of the different nutrient treatments, temperature had an influence on 

the temporal dynamics of primary production, accelerating peak development 

significantly (for comparison with temporal dynamics of bacteria see below). This 

could be explained by possibly saturating light levels, making photosynthesis 

temperature dependent. There was no significant influence of temperature on the 

quantity of production, but a trend towards higher particulate production at 

elevated temperature was observed, which could be explained by the species’ 

temperature preference. Skeletonema costatum commonly dominates the spring 

bloom of phytoplankton in the Kiel Fjord, when temperatures are usually below 

4°C (U.Sommer, personal communication). However, mu ltiple linear regressions 

confirmed that the nutrient treatment was the main factor explaining quantitative 

particulate primary production variation. 



CHAPTER 3 
 

 
 

146 

In both nutrient treatments, the dynamics of DPP were closely coupled with PPP 

concerning timing but not concerning the quantities. In contrast to the different 

PPP levels, DPP showed fairly similar levels in both nutrient treatments, being 

reflected in higher PER levels (percent extracellular release) in the low-N nutrient 

treatment, which could be interpreted as a result of nutrient stress. Pomeroy & 

Wiebe (2001) have described that nutrient-limited or -stressed phytoplankton 

release less and <15% of fixed carbon as DOC. With Skeletonema in this 

experiment, PER was on average only 3.5 %, with higher values observed in the 

low-N treatment, which is overall much lower as the described 15 %. Wolter 

(1982) reported that Skeletonema costatum released between 5.1 and 12.5% of 

the primary products as exudates and Myklestad (2000) states that between 2 

and 10% of primary production are released as exudates during rapid growth. 

Nagata (2000) reports a wide range of values between 10 and 80% in various 

marine environments. In contrast to the statement of Pomeroy & Wiebe (2001) 

several authors describe that the imbalance between growth and photosynthesis, 

driven by nutrient deficiency, can induce/accelerate the exudation of assimilated 

carbon from several algal species (e.g. Puddu et al. 2003). Although mainly 

described for phosphate limitation, in our case the treatment with N-deficiency, or 

rather conjoint deficiency of N and P, was displaying the relatively higher 

exudation. So obviously, in our experimental setup, the algal cells at the high-N 

treatment were not as stressed by the apparent P-deficiency in our experimental 

setup, either compensating via internal P-reserves or by switching to a different 

organic matter composition. In the low-N treatment cells might have been more 

stressed by the very early combined exhaustion of both nutrients. 

Although there was no significant influence of temperature on the quantity of DPP, 

there was a clear tendency towards higher exudation at lower temperatures within 

the high-N nutrient treatment (although there was always one very low replicate in 

each temperature treatment). One could expect this increased substrate supply to 

be reflected in the bacterial dynamics. However, as described below, bacterial 

production was very low at 4°C, so in turn the miss ing utilisation by bacteria might 

have been responsible for unused DPP. Probably, the quality (i.e. refractory 
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nature) of dissolved organic material could have played a role in this observed 

pattern at high-N and low temperature. 

When interpreting dissolved primary production measurements, it also has to be 

kept in mind that, due to the nature of the method, bacteria utilise the produced 

dissolved organic material already during the incubation time, leading to a 

possible underestimation of the actual production quantity. 

 

Dynamics of bacteria 

The peak timing of total bacterial numbers (TBN) was significantly accelerated by 

temperature in both nutrient treatments. The peak at 12°C in the high-N treatment 

was much earlier (5 days) than the peak in particulate primary production so that 

this peak cannot be explained by substrate availability from phytoplankton (either 

particulate or dissolved). Fast utilisation of available dissolved organic carbon 

(DOC decreases slightly in all treatments until day 15, Wohlers personal 

communication) from the water in these warm conditions together with successful 

competition for primary inorganic nutrients could possibly have fuelled this rapid 

growth. Possibly, the fast drawdown of ammonium in the beginning of the 

experiment could be partly explained by this dynamic. Nevertheless particulate 

primary production did not seem to have been adversely affected by this 

competition (possibly utilising nitrate instead of ammonium), and there was no 

difference compared to the other treatments. An other explanation could be fast 

cell division (without protein production) of the existing cells as a response to the 

changed ambient conditions at the start of the experiment (“bottle effect”). 

Overall, the abundances were very similar in the different nutrient treatments and 

multiple linear regression revealed a significant influence of 69% on mean values 

for temperature. Increasing numbers at colder temperature could have been 

fuelled by the observed increasing dissolved primary production at least in the 

high-N treatment. It has to be noted, however, that there was always one very low 

replicate in all temperature treatments at high-N DPP, and this pattern was not 

reflected in bacterial abundance. In contrast to this, only two of the three low-N 

replicates at 4°C showed higher values than all of the treatments at the different 

temperatures. 
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The constantly increasing bacterial numbers in the cold high-N treatment could 

have been fuelled by the high PPP, a longer availability of inorganic nutrients, and 

generally low, but steady generation times. Only the latter of which could also 

possibly be found at the low-N treatment (due to low temperature), while the first 

two conditions were not present. 

Comparably high DPP in the low-N treatments could be responsible for similarly 

high bacterial abundance in these treatments, although particulate primary 

production was much lower. However, as shown below, DPP was much lower 

than the bacterial demand for production, so a significant influence of DPP on 

bacterial dynamics cannot really be expected. Another possible explanation could 

be that bacteria were able to utilise the inorganic nutrients more efficiently than 

phytoplankton, thus outcompeting the algae, but there is no indication of this in 

the algal dynamics. This is often found, as the advantage of bacteria only lies in 

very low concentrations of inorganic nutrients. Additionally, it would leave the 

source of carbon for bacteria unexplained, as well as the discrepancy with the 

very low bacterial production. 

A possible explanation for the similarly high bacterial numbers, in view of the 

much lower bacterial production values in the low-N treatments, could lie in the 

method of acquisition. In the flow cytometer, all bacteria were grouped together 

and no differentiation concerning size was taken into account. So, possibly, the 

actual difference was not in the amount of cells, but in the biomass. The 

constantly increasing bacterial numbers in the high-N 4°C treatment could thus be 

explained by the existence of a high number of large non-dividing cells, which 

were not detected by the protein production measurement of 3H-leucine 

incorporation, while the low-N treatment was dominated by small, actively dividing 

cells (see also below). We checked the flow cytometry data for autofluorescence 

signals and could exclude a significant contribution of autotrophic cyanobacteria 

to the cell counts. 

The sharp decreases in bacterial numbers after the respective peaks are 

unexpected, considering the absence of grazers. We have confirmed, however, 

by microscopic analysis of selected time points during the course of the 

experiment that possible grazers (i.e. nanoflagellates) were present, but not in 
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relevant numbers and not at relevant time points. Another explanation could be 

the lysis by viruses, which was not investigated in our experiment. Also the 

attachment of bacteria to particles during the bloom and post-bloom phase might 

have inhibited their detection in the flow cytometer. 

The increase in bacterial numbers after the first breakdown in the high-N 

treatments at 8° and 12°C was not seen in the low-N  treatments. A possible 

explanation could be a reaction to the degradation of the phytoplankton bloom, 

but there was no increase in DPP measured at that time. It could be interpreted as 

a result of the high bacterial production which, at both temperatures, was still high 

or increasing during that time. 

 

Bacterial production (BP) in the high-N treatments displayed a significantly 

accelerated peak development, and the means showed a trend towards 

increasing values with rising temperature. The dynamics at 8° and 12°C could be 

interpreted as reflecting the development in primary production, but this was not 

valid for the 4°C treatment. Apparently, although t here was enough substrate on 

the organic carbon level, the low temperature prevented the bacteria from 

displaying an increased production, i.e. increased substrate supply of DOM did 

not compensate for temperature suppression. In return, the low bacterial 

production could have been responsible for unused “leftover” dissolved organic 

matter. The low bacterial production at low temperature in general can be 

explained by the functional relationship between temperature and growth (i.e. the 

Q10 value), which becomes non-linear at temperatures near the growth limit, and 

in combination with low substrate even double digits are possible (Pomeroy & 

Wiebe 2001). This is in contrast to results from Nedwell & Ruttner (1994), 

Pomeroy et al. (1991), Pomeroy & Wiebe (2001) and Wiebe et al. (1992), who 

showed that substrate supply could partly compensate temperature limitation at 

low water temperatures in cold water bacterial strains. In the present case, we 

cannot assume a dominance of arctic or other cold water strains (see Walther 

2009 for an analysis of bacterial community composition). The significant 

temperature-substrate interactions found by Pomeroy et al. (1991) also revealed 

that changes in substrate concentration of several orders of magnitude are often 
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necessary to maintain microbial activity at temperatures near the lower 

temperature limit for isolates or natural communities. Hence, at the present low 

temperature the available substrate pool was inaccessible for bacteria due to the 

temperature-related substrate affinity (Nedwell 1999). At the current high-N spring 

situation in the Kiel Fjord, a future increasing temperature scenario would release 

bacteria from the temperature suppression and enable an increased substrate 

utilisation. 

Bacterial production at low-N stayed on constantly low levels throughout the 

experiment, apart from a very early small peak at 12°C, which was also seen at 

the high-N treatment. There was, however, a significant difference in production 

values between the different temperatures. There was no reflection of primary 

production (neither particulate nor dissolved) observed in the dynamics of 

bacterial production, and the dynamics are not sufficient to explain the 

development in bacterial cell numbers. Possibly, the bacteria in the low-N 

treatment were generally limited by substrate, as PPP was low (and DPP was 

much too low anyway, see below). The ratio of BCD: PPP was above 100% in all 

temperature treatments (see below), indicating organic substrate limitation. On 

theoretical grounds, it has been suggested that substrate concentration should not 

be limiting to heterotrophic bacteria in the upper mixed layer (e.g. Williams 2000) 

but Nedwell (1999) argued that heterotrophic bacteria in natural waters are often 

presented with sub-optimal concentrations of substrates (and limiting temperature 

extremes). Apart from substrate concentration, the substrate composition in terms 

of nutrient status has to be taken into consideration. As described above, the 

different levels of “carbon-overconsumption” might possibly lead to different 

nutrient compositions of algal cells at the low- compared to the high-N treatments, 

with possible consequences concerning bioavailability and nutritional value for the 

bacterial assemblage (for details on the C:N:P composition of the available POM 

see Wohlers 2009). Another possibility could be the limitation of bacteria by the 

inorganic nutrients themselves. Obernosterer & Herndl (1995) showed that P-

limitation refrained bacteria from utilising the increased exudations of algae, but 

they used much higher ratios. We have to consider however, that P-limitation in 
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the high-N treatment did not result in comparably low bacterial production like in 

the low-N treatment (at the warmer temperatures). 

Temperature had a stronger effect on bacterial production at the high-N treatment, 

considering the slope of increase and the absolute values. The low-N treatments 

at any temperature behave similar to the high-N treatment at 4°C. Under a future 

scenario of stronger P-limitation (see Introduction) in combination with increasing 

temperatures, this would mean an increase in bacterial production, and hence an 

increased remineralisation of primary produced organic matter. 

The peaks in bacterial abundance at high-N were much earlier than the peaks in 

bacterial production, which cannot be explained by the bacterial production level. 

Similarly, at the low-N treatment the dynamics of bacterial abundance are not at 

all reflected by the development of bacterial production. As indicated above, this 

could possibly be explained by the different methods. Also, incorporation of 3H-

leucine measures the production of cellular proteins, which is an indication of 

individual cell growth and not directly of bacterial cell division. Pomeroy & Wiebe 

(2001) reported that at least some heterotrophic bacteria have been shown to 

have the ability to adjust their growth rate and body size according to the 

substrate concentration present. So maybe, at the low-N nutrient treatment, 

bacteria were limited to a low protein production. However, they divided 

nonetheless, resulting in a large amount of small cells. Total bacterial numbers 

between the high-N and low-N treatments were hence similar, but cells were 

smaller at the low-N treatment. It also has to be taken into account that bacterial 

production measures a growth rate and that TBN is a standing stock, so that 

accumulations of cells might not be reflected in actual production measurements 

at that time.  

 

Concerning the competition for primary inorganic nutrients, there was no 

indication that bacteria were able to outcompete algae, although several authors 

(e.g. Rhee 1972) have shown in chemostats, that the faster growing bacteria are 

able to outcompete algae for phosphate. It also has to be considered that bacteria 

can utilise very low concentrations of inorganic nutrients, which are inaccessible 

by algae, so that a direct competition does not occur. On the other hand, bacteria 
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can fuel algal growth through the remineralisation of organic matter. We cannot 

assess whether the algae would have reached higher or lower production levels in 

the absence of bacteria, but bacteria did not show any reaction to exhaustion of 

inorganic nutrients in their dynamics (Fig.6 & 8).  

  

Interaction between phytoplankton and bacteria  

Although the differences were not statistically significant, we could show that the 

acceleration of development through increased temperature was always stronger 

for bacterial parameters in comparison to the autotrophic fraction (Table 3). This 

would mean that on a temporal basis, the bacterial peak would move towards the 

algal peak, closing the gap between carbon fixation and utilisation. This way, the 

organic carbon from phytoplankton would be available for a longer time, before 

sinking out of the photic zone, thus increasing the amount of organic matter that 

could be recycled via the microbial loop. It has to be noted here, however, that 

this is only valid for the bacterial production peak, as the peak timing of bacterial 

abundance was always at the same time or even earlier (increased acceleration) 

than the respective peaks of primary production anyway. The usually observed 

lag time between bloom and bacterial production is thought to be due to the 

differential response of phytoplankton and bacteria to low spring temperatures 

(Pomeroy & Deibel 1986), and hence would be expected to decrease with 

increasing temperatures, as we have demonstrated. 

 

There was a trend towards increasing BP: PPP ratios with rising temperatures at 

both nutrient treatments. Although there was no statistically significant difference 

between the nutrient treatments in the effect of temperature on the BP: PPP ratio, 

the absolute values are higher and the increase in the ratio is steeper for the high-

N nutrient treatment, and hence the effect of increasing temperature and 

increasingly P-limiting conditions (see above) could possibly lead to a relatively 

stronger increase in bacterial utilisation of primary produced organic matter. 

A much stronger trend was observed for the ratio of BP to DPP. Again, the ratios 

showed increasing values with increasing temperatures, and the ratios at 4°C 

already show that dissolved primary production did not play a significant role as a 
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substrate during the bloom. The discrepancy between demand and supply of 

dissolved organic matter increases with increasing temperatures and the gap 

grows much larger for the high-N nutrient treatment (significantly different to low-

N) with the same possible consequences as described above. Pomeroy & Wiebe 

(2001) described that the potentially rapid transfer of dissolved organic carbon 

from auto- to heterotrophs usually falls short of the demand of bacteria for growth. 

Hence, additional connections have been proposed, such as viral lysis, nutrient 

deficiency lysis, the excretion, defecation, and sloppy feeding by zooplankton as 

well as protist grazing (the latter of which is not applicable in our experiment). 

Nagata (2000) supports this by stating that these processes are necessary for 

initiating significant bacterial activity for the microbial loop. The importance of 

these pathways for dissolved organic matter release become clear when 

considering that the direct extracellular release by phytoplankton is between 2 – 

10% of primary production, but that up to 50% of photosynthetically fixed carbon 

circulates in the dissolved compartment as accumulated inert remains (Puddu et 

al 2003 and references therein). 

When looking at the ratio of bacterial carbon demand to particulate primary 

production, a similar ratio is observed for the two nutrient treatments. This shows 

that including respiration in the calculations can reveal a possible carbon 

deficiency even from particulate carbon, which increases with increasing 

temperatures. It has to be kept in mind, however, that the bacterial respiration was 

calculated from bacterial production. Hence, the results from these calculations 

have to be considered carefully and can only be taken as a trend. 

In general, when considering the interactions of the available organic substrate 

and the utilisation by bacteria, the quality of the substrate has to be taken into 

account. A detailed analysis of organic matter quality and an assessment of 

bacterial extracellular enzyme activity can be found in Wohlers (2009). Secondly, 

the composition of the bacterial assemblage can change over a period of days of 

incubation. The impact of temperature and nutrient conditions on the bacterial 

community composition and possible consequences of altered substrate utilisation 

have been assessed by Walther (2009). 
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Summary and Conclusions 

1. We can conclude that temperature had an accelerating effect on the development 

of both autotrophs and heterotrophs. This acceleration was generally stronger for 

the heterotrophic fraction, confirming expectations and results from previous 

experiments. Thus, gaps between carbon fixation and utilisation would be 

decreased, tightening the coupling between phytoplankton and bacteria and 

facilitating increased carbon transfer through the microbial loop. 

2. The two nutrient treatments had different effects on the quantity of particulate 

primary production. The absolute values were very different, reflecting the nutrient 

levels and the expected ratio according to Redfield. However, standing stocks 

(POC) indicated different non-Redfield cellular compositions. Relatively more 

dissolved organic compounds were exuded at low-N conditions, compared to the 

high-N treatment. Temperature slightly increased particulate production at the 

high-N nutrient treatment, while a negative temperature effect on the quantity of 

dissolved primary production could be observed. In a future scenario of increasing 

P-limitation in coastal regions (Andersson et al. 1996) we would hence expect 

increased phytoplankton particulate production, but not necessarily increased 

exudation of dissolved organic matter. Temperature increases would initially 

facilitate higher particulate primary production, in combination with a relatively 

lower exudation. 

3. The increased particulate primary production at high-N obviously fuelled an 

increased bacterial production, compared to the low-N nutrient conditions, but 

only at the higher temperatures. At 4°C the low tem perature inhibited bacterial 

production to a level almost as low as in the low-N treatment, hence even the 

higher nutrient availability could not compensate the temperature inhibition. We 

can conclude that in comparison to the current situation of high-N and low 

temperature, increasing temperature will release bacteria from the temperature 

suppression and hence lead to a higher relative amount of primary produced 

organic matter being utilised. This will lead to a relatively higher CO2 release from 

respiration and to decreased particulates left for aggregation and sinking.  

4. This could be enhanced by an increased P-limitation in coastal regions. The 

comparison with the low-N nutrient treatment underscores the effects with 
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reference to a future open ocean. Under a future scenario of stronger P-limitation 

(see Introduction) in combination with increasing temperatures, this would mean 

an increase in bacterial production, and hence an increased remineralisation of 

primary produced organic matter. The generally low exudation of dissolved 

organic matter from Skeletonema did not play a significant role in supplying 

heterotrophic bacteria with substrate for growth, increasing the importance of 

alternative sources like sloppy feeding from zooplankton and lysis by viruses. 

Direct competition for primary inorganic nutrients between phytoplankton and 

bacteria could not be observed in our experiment. 
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SYNTHESIS AND FUTURE OUTLOOK  
 

Half of the global primary production is performed by phytoplankton in the oceans 

and about half of this marine primary production is utilised by heterotrophic 

bacteria. This way the heterotrophic marine bacteria channel a substantial amount 

of primary organic carbon through the microbial loop and hence represent an 

important part of the marine carbon and nutrient cycles. The overall efficiency of 

the microbial loop is dependent on a variety of abiotic and biotic factors, which 

directly or indirectly impact phytoplankton and bacterial survival and performance 

and consequently the strength of the coupling between the two compartments.  

In the context of global change the possible consequences of changing 

environmental parameters on the coupling between phyto- and bacterioplankton 

are of major interest. While autotrophic carbon fixation is mainly dependent on 

light intensity, the heterotrophic processes of carbon utilisation are temperature 

dependent (Tilzer et al. 1986, Pomeroy & Wiebe 2001). Hence a different 

influence of these changing environmental conditions and consequently a change 

in the coupling between the two compartments can be expected, with possibly 

severe consequences for the global marine carbon cycle.  

Climate change predictions include the increase of winter temperatures by up to 

+6°C in the Northern Hemisphere until the end of th e century (IPCC 2007). 

Combined with this are a probability of a continued brightening trend, as observed 

today (Wild 2009) and predictions for increases in precipitation, leading to 

enhanced land runoff and riverine influx of phosphate-limited waters to coastal 

areas (IPCC 2007).  

 

Results presented in this work 

As part of the Kiel AQUASHIFT mesocosm cluster this work investigated the 

temperature dependent coupling between phytoplankton and bacterioplankton, 

with respect to additional effects of light intensity and inorganic nutrient 

concentrations. In consecutive years, mesocosm experiments with natural Kiel 

Fjord winter plankton communities investigated the influences of warming water 

temperatures of up to +6°C and different light inte nsities between 16 and 100% of 
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incident light. In an additional microcosm experiment with a single algal species 

and the natural bacterial community a full factorial combination of different 

temperature and inorganic nutrient concentrations was used, in order to assess 

the combined effects of both parameters on the algal-bacterial coupling. 

In all experiments the process of autotrophic carbon dioxide assimilation was 

assessed by primary production measurements. Heterotrophic bacterial organic 

carbon utilisation was measured by different parameters such as abundance, 

biomass production and respiration. The coupling of both processes was 

assessed on the basis of timely overlap of the occurring peak development during 

the spring bloom succession, and further by the ratios of heterotrophic to 

autotrophic quantities.  

 

The experiment described in Chapter 1  was conducted under high light conditions 

and at three elevated temperatures additionally to the in situ early spring 

temperature (∆T +0°C to +6°C). We hypothesised that increasing te mperatures 

would lead to an increased transfer of organic matter via the microbial food web 

due to a decreased lag time between the autotrophic production and heterotrophic 

microbial degradation in combination with an increased heterotrophic microbial 

activity. The results showed a close timely coupling between the two 

compartments, where bacteria quickly utilised dissolved and particulate organic 

carbon from phytoplankton during the peak and the degradation phase of the 

bloom. As hypothesised, bacterial parameters were enhanced under increasing 

temperatures, showing an increase of bacterial production (from 3H-thymidine) by 

+148%,  while primary production was only little affected (-19%). This lead to an 

increased organic carbon transfer through the microbial loop, as displayed in 

increases of the ratios to 6.1% and 93.2% for bacterial production to particulate 

and dissolved primary production respectively. Ratios of largely over 100% for the 

bacterial carbon demand to dissolved primary production relationship revealed a 

large dissolved organic carbon deficiency. Additionally, the community respiration 

was enhanced under warming conditions by 51% relative to the particulate 

primary production, resulting in a ratio of 41%, indicating a strong shift to generally 

more heterotrophic conditions. 
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In Chapter 2 , the results from four consecutive mesocosm experiments are 

described. The first three experiments were conducted under similar temperature 

conditions, comprising the current in situ temperature and three warming 

scenarios, according to the IPCC (2007) predictions (as in Chapter 1). The 

experiments in the different years differed in the light intensities, including current 

dim spring situations as well as possible future brightening scenarios (16 – 64% 

I0). The fourth experiment in 2008 contained the full factorial combination of the 

two temperature extremes (in situ and ∆T +6°C) with three light regimes (current 

32% I0 and brightening scenarios 48, 64% I0). The aim of this synthesis chapter 

was to highlight recurring patterns of changing phytoplankton-bacterioplankton 

interactions under warming and brightening conditions. The question, on the 

background of the different light levels, was not only how the relative amount of 

organic carbon changes, that is utilised from primary production but also how 

much absolute amounts of utilised organic matter would change in a future 

warming and brightening scenario. The experiments from different years 

highlighted clearly that different starting conditions due to different overwintering 

populations of all plankton members strongly influence the development of the 

plankton spring succession (Gaedke et al. 2009). Nevertheless, we could 

demonstrate that basic reactions to temperature and light were a consistent 

pattern in these populations. Autotrophic as well as heterotrophic parameters 

were enhanced at warmer temperatures and at higher light intensities. While 

bacterial production showed a relatively higher increase at warm temperature and 

dim light (+23% increase), the latter showed a stronger response at warm 

temperature and bright light conditions (43% increase). Concluding from the 

combined results of the heterotrophy: autotrophy ratios from our experiments, the 

highest relative carbon remineralisation would hence occur in a future scenario of 

a dim and warm winter/spring (43% BP: PP ratio), while the highest absolute 

amount would be utilised in a situation of bright and warm winter/spring (31% 

more absolute organic carbon cycling through the microbial loop, compared to dim 

and warm conditions). 
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Chapter 3  deals with a different form of experiment, where microcosms of 25 L 

capacity were stocked with a model algal-bacterial community and exposed to 

different temperature and inorganic nutrient concentrations (P-limiting and N-

limiting situation). The aim was to create different quantities (and qualities) of 

organic substrates for bacteria via phytoplankton in order to disentangle the 

effects of substrate supply and temperature effects. At the same time an 

assessment of direct competition for inorganic nutrients was possible. The results 

of the assessment of peak timings showed that the time-lag between autotrophic 

carbon fixation and heterotrophic bacterial utilisation was somewhat diminished at 

warmer temperatures (between 1.4 and 4 days in the investigated temperature 

range). Quantity measurements showed that high-N situations lead to increased 

phytoplankton particulate production by around 50% according to nutrient 

availabilities, but in combination with a relatively lower exudation. In comparison 

to the current low temperature situation, warming released bacteria from the 

temperature suppression and hence led to a higher relative amount of primary 

produced organic matter being utilised. Increases in the bacterial to primary 

production were larger at high-N conditions (+89%) compared to low-N conditions 

(+59%). In a future scenario of increasing P-limitation in coastal regions in 

combination with warming temperatures, this would mean an increase in bacterial 

production and hence an increased remineralisation of, an absolutely higher, 

primary produced organic matter, as reflected in a bacterial to primary production 

ratio of 73%. Direct competition for primary inorganic nutrients between 

phytoplankton and bacteria could not be observed in our experiment. 

 

Summarising  the results from all experiments it can be concluded, that 

increasing temperatures generally lead to an increased heterotrophic bacterial 

organic substrate utilisation relative to primary production through a combination 

of a decreased time-lag between the two peaks and a stronger increase in the 

bacterial activity parameters. If a future warming trend would be accompanied by 

a further brightening, the supplemental promotion of primary production would 

increase the absolute amounts of cycled organic matter. Future increasing 

precipitation, leading to increased P-limitation in coastal waters would lead not 



SYNTHESIS AND FUTURE OUTLOOK 
 

 
 

161 

only to an increased absolute amount of cycled carbon (like for the high light) 

through increased primary production, but additionally to an increased relative 

amount of remineralised organic carbon through the microbial loop. 

 

Implications of the presented results  

As demonstrated in Chapter 2 (Synopsis), one of the most striking results from the 

consecutive years of mesocosm experiments is the reoccurrence of the observed 

patterns in phytoplankton-bacterioplankton coupling, despite of large differences 

in the starting conditions. The variety of naturally occurring differences in 

conditions we were presented with, from overwintering populations and water 

conditions to initial water temperatures, turned out to be an advantage in that we 

can confidently assume that the recurring response patterns we detected enable a 

valid prognosis for the impact of climate change on the described system. 

Nevertheless, one important point to keep in mind when interpreting these results 

is the fact that the investigated parameters temperature, light and inorganic 

nutrients are not always directly but also often indirectly responsible for the 

described reactions of phytoplankton and heterotrophic bacteria. As described in 

the respective chapters, indirect top-down or bottom-up effects like for example 

grazing by phytoplankton grazers or changes in phytoplankton community 

composition have to be taken into account (Sommer & Lengfellner 2008, 

Lewandowska & Sommer in revision, Gaedke et al. 2009). Fortunately the 

experimental setting of the Kiel AQUASHIFT mesocosm cluster allowed the 

participation of several research groups, which investigated different aspects of 

the spring plankton succession in the experiments. This way, additional 

information is available that can be included in the considerations. 

Walther (2009) for example investigated the influence of increasing temperature 

and different inorganic nutrient compositions on the composition of the bacterial 

community. She could show that temperature increases lead to a change in the 

community composition of the heterotrophic bacteria, an effect which was 

intensified at high-N nutrient conditions. Changes in the species composition of 

the remineralising heterotrophic community can alter activity patterns as well as 

show differential remineralising properties, when for example psychrophilic 
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species disappear in future. The measured changes in bulk quantities of 

production or respiration, as described in this work, might hence be traced back to 

a different set of species, rather than a change in activities of the existing 

community. On the other hand, changes in community composition could be 

responsible for a dampened response of the community in the future, when better 

adapted species replace the existing community and this way maintain the 

existing remineralisation properties, representing an adaptation process. 

Wohlers (2009) demonstrated in her work on the biogeochemical cycling of the 

nutrient elements, that the net DIC (dissolved inorganic carbon) uptake was 

significantly reduced at warmer temperatures as well as under N-deficient growth 

conditions. This corresponds well with the results presented in this work, on 

generally decreased primary production at warmer temperatures in combination 

with a strong increase in community respiration. Combined with this, Wohlers 

found an increase in DOC (dissolved organic carbon) accumulation, which was 

ascribed to secondary release of refractory DOC by bacteria. She concluded that 

the biological pump, facilitating carbon export to depth, would be weakened in a 

future warming ocean (and at P-limited nutrient concentrations), with a potential 

positive feedback mechanism to climate change, again confirming the results 

presented in this work. 

In her work on the effects of climate warming on the phytoplankton and 

mesozooplankton compartments, Lengfellner (2008) found an increasing 

mismatch situation of the peak timing of phytoplankton and copepods offspring. 

This effect of warming was counteracted by the influence of increasing light 

supply. Ciliates and Copepods were accelerated and activity enhanced at warmer 

temperatures, with the implication of reduced phytoplankton biomass and 

changes in phytoplankton bloom composition (to smaller species). Reduced 

primary production at warmer temperatures was found as a general pattern in this 

work (except for the combination of high light and warm temperature in 2008), 

which might well be explained by the increased grazing and change in the algal 

community as described by Lengfellner. She concluded that this way temperature 

indirectly lead to an enhanced importance of the microbial loop via ciliates and 

hence reducing the efficiency of energy transfer to higher trophic levels and also a 
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weakening of the biological pump. Again, we can confirm these findings by our 

results on the activities of heterotrophic bacteria, contributing significantly to the 

enhanced importance of the microbial loop with the described consequences.  

The temperature dependent coupling between the phytoplankton and 

bacterioplankton compartments has been described by various authors. Often the 

phytoplankton-bacterioplankton coupling is assessed as the relationship of 

bacterial carbon demand (BCD) to dissolved primary production (DPP), 

representing a lose coupling if DPP cannot meet the requirements of BCD (Moran 

et al. 2002 a, b). Generally this trend is found in coastal or eutrophic sites, where 

allochthonous sources of DOM can be important, while a tight coupling is 

therefore found in more open ocean sites (Cole et al. 1988, Moran et al 2002a). 

Teira et al. (2003) however reported uncoupling also from the oligotrophic North 

Atlantic, suggesting the dependence of bacterial production from alternative 

sources. Rochelle-Newall and co-workers (2008) assessed the phytoplankton-

bacterioplankton coupling in a tropical coastal ecosystem and in most oligotrophic 

sites BCD was higher than the supply of dissolved PP, which was reversed only at 

the coastal sites, with higher inorganic and organic matter concentrations. 

The direct comparison of DPP with BCD reported in this work for the high light 

experiment described in Chapter 1 showed a strong uncoupling because the 

dissolved primary production could not meet the requirements for bacterial 

growth, the relationship did not change with temperature, though. As described, 

additional sources for bacterial growth must have been available, like for example 

sloppy feeding by zooplankton or an existing allochthonous organic carbon 

background in the water. When moving away from this rather narrow definition of 

“coupling” we are taking particulate primary production into account, as an 

important source for bacterial organic carbon requirements through the use of 

extracellular enzymes for degradation. All described results in this work showed a 

positive response to temperature, with increasing BCD or BP: PPP ratios with 

temperature, which indicate an increased coupling.   

In a recent review of phytoplankton – bacterioplankton coupling in polar oceanic 

regions, Kirchman and co-workers (2009) showed that the ratio of BP to PP was 

increased substantially at temperatures up to 4°C a nd to a lesser extent at 
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warmer temperatures. They concluded that warming of Arctic surface waters 

would lead to substantially more carbon, being processed by the microbial loop 

and potentially less going to higher trophic levels and export to the deep sea and 

the benthos. They suggest however, that besides temperature, the effects of other 

factors like light for phytoplankton and inorganic and organic nutrients for 

phytoplankton and heterotrophic bacteria might have substantial influences. 

These results confirm our findings on the BP: PP ratios at the cold temperatures 

investigated in this work and also highlight the importance of our investigations on 

the additional factors “light” and “nutrients”.  

 

The enhanced importance of bacterial activities in relation to primary production, 

as demonstrated in this work for a scenario of warming, brightening and 

increasing P-limitation indicate a general shift to more heterotrophic conditions in 

a future ocean. Berglund et al (2007), in mesocosm experiments with northern 

Baltic Sea water, demonstrated that a bacteria-based foodweb displays a 

significantly reduced food-web efficiency due to the extra trophic levels in the 

microbial loop. They conclude that such a foodweb, which will be favoured by 

increased organic nutrient supply in a future climate, through increased 

precipitation and river runoff, will reduce pelagic productivity at higher trophic 

levels. 

 

A decrease in the ratio of BP to dissolved PP with increasing photon flux density 

was previously reported from tropical coastal ecosystems (Rochelle-Newall et al. 

2008). This result was based on the expected increase in PPP and DPP with 

increasing light intensity, but also on a decrease of BP with increasing light. This 

is in contrast to our results, as we found BP to react to the substrate supply by 

phytoplankton and increase with increasing light intensity, although to a smaller 

extent than primary production, hence reducing the ratio at higher light intensity. 

Kirchman and co-workers (2009) also found the BP: PP ratio to be positively 

correlated with euphotic zone depth (i.e. light availability), due to the light 

dependence of phytoplankton. 
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The usually accepted N-limitation of primary production in the oceans does not 

hold true for all regions and a (seasonal) P-limitation has been reported for 

several coastal areas, like for example the Finnish and Bothnian Bay (Andersson 

et al 1996, Rivkin & Anderson 1997, Zweifel et al. 1993). In the light of future 

increasing precipitation and consequently increased high-N freshwater inflow as 

well as increased stratification, it can be expected that the spread of P-limited 

oceanic regions will increase in the future. 

 

The results described in this work on changes in the relationship between 

autotrophic carbon fixation and its utilisation by heterotrophic bacteria under 

warmer, brighter and more P-limited marine environments demonstrate how the 

marine organic matter cycling could be substantially altered in the a future climate. 

An increased organic matter transfer through the microbial loop has the potential 

to alter the whole structure and functioning of the marine food web and the 

biological sequestration of carbon to depth. In essence, an increase in the trophic 

levels facilitates a reduced transfer of energy and matter to higher trophic levels 

and, together with a generally increased respiration, leads to a substantial 

enhancement of CO2 emissions and hence represents a positive feedback loop to 

the global climate change problem. 

 

Future perspectives 

As we have seen in the work at hand and from related investigations, not only the 

direct effects of environmental factors like temperature, light or nutrients, but also 

the complex indirect interactions are important to assess. Apart from these 

indirect abiotic effects, the biotic interactions in complex food-webs are vital to 

understand. The Kiel mesocosm cluster has tried to approach the complexity of 

the marine planktonic system in a very comprehensive way, and was able to 

gather important information and gain valuable insight into the complex 

interactions and possible reactions to a changing future climate. When trying to 

transfer the obtained results to the natural environment the limitations, as 

described in the general Introduction, of the mesocosm approach have to be kept 

in mind. 
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Anyway, open questions remain and my proposals for future research to better 

understand this complex system are described below. Firstly I highly favour the 

combined assessment of such complex food-web interactions on all possible 

levels. As I have demonstrated in Chapter 3, an experimental setup with selected 

species on a microcosm scale is a very valuable method in order to find basic 

functional relationships between species or groups of individuals. Although not 

directly transferable to the natural environment, these kinds of experiments enable 

the full factorial combination of several abiotic or even biotic factors which can be 

highly controlled, and with a large enough number of replicates in order to 

facilitate a more comprehensive statistical analysis. As described above, 

mesocosms represent a link between the small scale microcosm approach and 

the mere observation of natural systems. In that, they enable the incorporation of 

larger combinations of organism groups, like for example in our case, the marine 

planktonic food web up to zooplankton individuals. At the same time they facilitate 

the experimental manipulation of desired environmental conditions. A step 

upwards from this experimental approach is represented by outdoor mesocosms, 

which have the advantage of experimentally manipulating environmental 

conditions for an otherwise more or less complete natural system. Examples are 

the University of Bergen (Norway) mesocosms, where experimental elevation of 

CO2 levels revealed important information on the mechanisms in the natural 

planktonic system and consequences for the marine carbon cycle (Riebesell et al. 

2007). Another example is the experimental manipulation of thermal stratification 

and consequently light conditions in lake mesocosm systems as described by 

Berger and co-workers (2007). Although technically very challenging our 

mesocosm system would ideally be transferred to a similar approach, with outdoor 

enclosures of the natural plankton community, which could possibly even 

incorporate higher trophic levels like for example jellyfish and fish larvae, and 

which would for example experience natural light and/or temperature conditions, 

while the other factors could be experimentally manipulated at the same time. 

Results from the described microcosm and mesocosm approaches should ideally 

be combined with comparative observations of the natural environment, like 

results gained from cruises (or comparison of different years, which naturally 
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display different temperature conditions in spring). Like for example in the Baltic 

Sea, spring blooms of more northern latitude, which occur at colder spring 

temperatures could be compared to spring blooms in the south, which occur at 

warmer temperatures. Phytoplankton-bacterioplankton coupling could be 

observed and compared in regions of nitrate and phosphate limited conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



ANNEX 
 

 
 

169 

ANNEX 
 

Table 1. Relationships for the regression of peak timing (DOP = day of peak) with 
temperature at the different light treatments (2008 experiment highlighted in blue). 
Acceleration of peaks is the slope value in days per 1°C temperature increase (DOP +1). 
Accelerations statistically significant on the p<0.05 level are marked with an asterisk. The 
difference in acceleration for a temperature increase of ∆T +6°C of the respective 
heterotrophic parameters in comparison to primary production is shown (Diff. to PPP). 
 

Parameter Equation R 2 p Diff. to  
PPP 

     

16%     

Particulate primary production DOP+1 = -0.83 DOP + 53.85 0.37 0.11  

Total bacterial number DOP+1 = 0.90 DOP + 49.55 0.02 0.74 +10.38 

Bacterial production DOP+1 = -2.20 DOP + 69.6 0.47 0.06 -8.4 

32%     

Particulate primary production DOP+1 = -0.35 DOP + 25.80 0.65 0.01*  

Total bacterial number DOP+1 = -2.35 DOP + 33.80 0.95 <0.0001* -12 

Community respiration DOP+1 =  0.05 DOP + 24.60 0.01 0.78 +2.4 

Bacterial respiration DOP+1 =  0.20 DOP + 24.40 0.20 0.27 +3.3 

Bacterial production (leucine) DOP+1 = -1.60 DOP + 29.30 0.46 0.07 -7.5 

Bacterial production (thymidine) DOP+1 = -2.42 DOP + 34.40 0.88 0.0005* -12.4 

32% b     

Particulate primary production DOP+1 = -0.67 DOP + 20.00 0.89 0.06  

Total bacterial number DOP+1 = -4.50 DOP + 41.00 0.99 0.001* -23.0 

Bacterial production (leucine) DOP+1 = -1.42 DOP + 35.00 0.63 0.21 -4.5 

48%     

Particulate primary production DOP+1 = -0.42 DOP + 17.50 0.33 0.42  

Total bacterial number DOP+1 = -4.67 DOP + 42.00 0.99 0.003* -25.5 

Community respiration DOP+1 = -1.00 DOP + 20.00 0.95 0.03* -3.5 

Bacterial respiration DOP+1 = -0.75 DOP + 19.50 0.62 0.21 -2.0 

Bacterial production (leucine) DOP+1 = -1.58 DOP + 34.00 0.88 0.06 -7.0 



ANNEX 
 

 
 

170 

64%     

Particulate primary production DOP+1 = -0.05 DOP + 5.90 0.01 0.78  

Total bacterial number DOP+1 = -1.88 DOP + 22.25 0.80 0.003* -10.98 

Bacterial respiration DOP+1 = -3.85 DOP + 48.05 0.67 0.01* -22.8 

Bacterial production (thymidine) DOP+1 = -1.78 DOP + 20.45 0.69 0.01* -10.38 

64% b     

Particulate primary production DOP+1 = -0.58 DOP + 18.50 0.73 0.14  

Total bacterial number DOP+1 = -4.50 DOP + 41.00 0.99 0.001* -23.5 

Community respiration DOP+1 = -1.00 DOP + 20.00 0.95 0.03* -2.5 

Bacterial respiration DOP+1 = -0.92 DOP + 18.50 0.87 0.07 -2.0 

Bacterial production (leucine) DOP+1 = -3.10 DOP + 39.50 0.98 0.01* -15.1 

 
 
 
Table 2.  Relationships for the regression of peak timing (DOP = day of peak) with 
temperature for the 2008 experiment. Peak days of each parameter for one temperature 
(∆T +0°C or +6°C) are taken together, irrespective of  the light treatment. Acceleration of 
peaks is the slope value in days per 1°C temperatur e increase (DOP+1). Accelerations 
statistically significant on the p<0.05 level are marked with an asterisk. The difference in 
acceleration for a temperature increase of ∆T +6°C of the respective heterotrophic 
parameters in comparison to primary production is shown (Diff. to PPP). 
 

Parameter Equation R 2 p Diff. to 
 PPP 

Particulate primary production DOP+1 = -0.56 DOP + 18.67 0.56 0.005  

Total bacterial number DOP+1 = -4.56 DOP + 41.33 0.99 <0.0001* -24 

Community respiration DOP+1 = -1.00 DOP + 20.00 0.95 <0.0001* -2.6 

Bacterial respiration DOP+1 = -0.83 DOP + 19.00 0.69 0.01* -1.6 

Bacterial production (leucine) DOP+1 = -2.03 DOP + 36.17 0.78 0.0001* -8.8 
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Table 3. Relationships for the regression of peak timing (DOP = day of peak) with light at 
the two different temperature treatments of the 2008 experiment. Acceleration of peaks is 
the slope value in days per 1% increase in light intensity I0 (DOP+1). Accelerations 
statistically significant on the p<0.05 level are marked with an asterisk. 
 

Parameter Equation R 2 p 

 
+6°C   

 
 
 

Particulate primary production DOP+1 = -0.03 DOP + 16.83 0.30 0.26 

Total bacterial number DOP+1 = -0.00 DOP + 14.00 0.00 1.00 

Community respiration DOP+1 = -0.00 DOP + 14.00 0.00 1.00 

Bacterial respiration DOP+1 = -0.13 DOP + 21.00 1.00 n.a. 

Bacterial production (leucine) DOP+1 = -0.17 DOP + 32.25 0.35 0.21 

+0°C    

Particulate primary production DOP+1 = -0.05 DOP + 20.92 0.10 0.55 

Total bacterial number DOP+1 = 0.00 DOP + 41.33 0.00 1.00 

Community respiration DOP+1 = 0.00 DOP + 20.00 1.00 n.a. 

Bacterial respiration DOP+1 = -0.06 DOP + 22.50 0.06 0.76 

Bacterial production (leucine) DOP+1 = 0.14 DOP + 29.42 0.50 0.12 

 
 
 
Table 4. Relationships for the regression of peak timing (DOP = day of peak) with light at 
the two different temperature treatments of the 2008 experiment. Peak days of each 
parameter at the same light treatment are taken together. Acceleration of peaks is the 
slope value in days per 1% increase in light intensity I0 (DOP+1). 
 

Parameter Equation R 2 p 

Particulate primary production DOP+1 = -0.04 DOP + 18.87 0.05 0.48 

Total bacterial number DOP+1 = -0.00 DOP + 27.67 0.00 1.00 

Community respiration DOP+1 = -0.00 DOP + 17.00 0.00 1.00 

Bacterial respiration DOP+1 = -0.09 DOP + 21.75 0.06 0.55 

Bacterial production (leucine) DOP+1 = -0.02 DOP + 30.83 0.0009 0.93 
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Table 5.  Relationships for the regression of the mean quantities with temperature at the 
different light treatments (2008 experiment highlighted in blue). Correlations statistically 
significant on the p<0.05 level are marked with an asterisk.  
 

Parameter Equation R 2 p 

16%    

Particulate primary production PPP = -1.82 T + 17.30 0.75 0.005* 

Total bacterial number TBN = 0.002 T + 1.69 0.007 0.84 

Community respiration CR = 2.22 T + 21.11 0.82 0.002* 

Bacterial respiration BR = 1.17 T + 19.15 0.44 0.07 

Bacterial production (thymidine) BP = 0.02 T + 3.95 0.005 0.87 

32%    

Particulate primary production PPP = -4.07 T + 33.94 0.77 0.004* 

Total bacterial number TBN = -0.03 T + 1.57 0.17 0.30 

Community respiration CR = 1.81 T + 17.69 0.57 0.03* 

Bacterial respiration BR = 1.51 T + 15.31 0.64 0.02* 

Bacterial production (leucine) BP = -0.74 T + 14.31 0.44 0.07 

Bacterial production (thymidine) BP = -0.41 T + 5.63 0.53 0.04* 

32% b    

Particulate primary production PPP = -2.65 T + 150.87 0.16 0.60 

Total bacterial number TBN = -0.03 T + 1.79 0.51 0.28 

Bacterial production (leucine) BP = 1.30 T + 45.49 0.24 0.50 

48%    

Particulate primary production PPP = -2.36 T + 158.45 0.18 0.58 

Total bacterial number TBN = -0.03 T + 1.72 0.49 0.30 

Community respiration CR = 0.99 T + 78.60 0.47 0.32 

Bacterial respiration BR = 3.50 T + 30.09 0.86 0.07 

Bacterial production (leucine) BP = 1.95 T + 42.56 0.51 0.29 
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64% 

Particulate primary production PPP = 2.79 T + 152.24 0.07 0.51 

Total bacterial number TBN = 0.02 T + 2.00 0.05 0.61 

Bacterial respiration BR = 2.63 T + 27.30 0.73 0.007* 

Bacterial production (thymidine) BP = 1.14 T + 18.39 0.43 0.08 

64% b    

Particulate primary production PPP = 6.00 T + 155.94 0.25 0.50 

Total bacterial number TBN = 0.004 T + 1.48 0.01 0.88 

Community respiration CR = 5.37 T + 85.74 0.99 0.006* 

Bacterial respiration BR = 2.39 T + 33.94 0.81 0.10 

Bacterial production (leucine) BP = 1.87 T + 53.74  0.50 0.29 

    

 
 
Table 6.  Relationships for the regression of the mean quantities with temperature for the 
2008 experiment. All mean values of each parameter for one temperature (∆T +0°C or 
+6°C) are taken together, irrespective of the light  treatment. Correlations statistically 
significant on the p<0.05 level are marked with an asterisk.  
 

Parameter Equation R 2 p 

Particulate primary production PPP = 0.33 T + 155.09 0.001 0.91 

Total bacterial number TBN = -0.02 T + 1.66 0.15 0.21 

Community respiration CR = 3.18 T + 82.16 0.37 0.11 

Bacterial respiration BR = 2.95 T + 32.01 0.81 0.002* 

Bacterial production (leucine) BP = 1.71 T + 47.26 0.30 0.07 
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Table 7. Relationships for the regression of mean bloom quantities with light at the two 
different temperature treatments of the 2008 experiment. Accelerations statistically 
significant on the p<0.05 level are marked with an asterisk. 
 

Parameter Equation R 2 p 

+6°C    

Particulate primary production PPP = 1.78 I0 + 71.63 0.64 0.06 

Total bacterial number TBN = -0.003 I0 + 1.71 0.14 0.47 

Community respiration CR = 2.09 I0 - 15.69 0.98 0.01* 

Bacterial respiration BR = -0.17 I0 + 59.39 0.14 0.63 

Bacterial production (leucine) BP = 0.36 I0 + 40.02 0.27 0.30 

+0°C    

Particulate primary production PPP = 0.16 I0 + 147.48 0.01 0.89 

Total bacterial number TBN = -0.01 I0 + 2.12 0.71 0.04* 

Community respiration CR = 0.45 I0 + 57.15 0.66 0.19 

Bacterial respiration BR = 0.24 I0 + 18.54 0.17 0.59 

Bacterial production (leucine) BP = 0.26 I0 + 34.88 0.29 0.27 

 
 
 
Table 8.  Relationships for the regression of mean bloom quantities with light for the 2008 
experiment. All mean values of one light treatments were taken together, irrespective of 
the temperature treatment. Accelerations statistically significant on the p<0.05 level are 
marked with an asterisk. 
 

Parameter Equation R 2 p 

Particulate primary production PPP = 0.97 I0 + 109.56 0.19 0.15 

Total bacterial number TBN = -0.006 I0 + 1.91 0.34 0.05* 

Community respiration CR = 1.27 I0 + 20.73 0.42 0.08 

Bacterial respiration BR = 0.03 I0 + 38.97 0.0008 0.95 

Bacterial production (leucine) BP = 0.31 I0 + 37.45 0.19 0.16 

 
 
 



ANNEX 
 

 
 

175 

Table 9. Relationships for the regression of the derived parameters for the bloom period 
(BGE, BCD) with temperature at the different light treatments (2008 experiment 
highlighted in blue). Correlations statistically significant on the p<0.05 level are marked 
with an asterisk.  
 

Parameter Equation R 2 p 

16%    

Bacterial growth efficiency 
(thymidine) 

BGE = -0.75 T + 16.36 0.20 0.27 

Bacterial carbon demand (thymidine) BCD = 1.29 T + 25.72 0.35 0.12 

32%    

Bacterial growth efficiency (leucine) BGE = -3.14 T + 46.41 0.85 0.001* 

Bacterial carbon demand (leucine) BCD = 0.94 T + 30.15 0.21 0.26 

Bacterial growth efficiency 
(thymidine) 

BGE = -2.45 T + 25.32 0.89 0.0005* 

Bacterial carbon demand (thymidine) BCD = 1.33 T + 21.19 0.41 0.09 

48%    

Bacterial growth efficiency (leucine) BGE = -0.60 T + 50.03 0.22 0.54 

Bacterial carbon demand (leucine) BCD = 5.10 T + 85.63 0.73 0.14 

64%    

Bacterial growth efficiency 
(thymidine) 

BGE = -0.59 T + 31.77 0.18 0.30 

Bacterial carbon demand (thymidine) BCD = 5.27 T + 57.45 0.72 0.007* 

64% b    

Bacterial growth efficiency (leucine) BGE = 1.29 T + 43.28  0.90 0.05 

Bacterial carbon demand (leucine) BCD = 0.65 T + 123.83 0.03 0.84 

 
 
 
Table 10 . Relationships for the regression of the derived parameters (BGE, BCD) during 
the bloom period of the 2008 experiment, with temperature. 
 

Parameter Equation R 2 p 

Bacterial growth efficiency (leucine) BGE = 0.34 T + 46.66 0.07 0.54 

Bacterial carbon demand (leucine) BCD = 2.87 T + 104.73 0.19 0.28 
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Table 11 . Relationships for the regression of the derived parameters (BGE, BCD) during 
the bloom period of the 2008 experiment, with light at the different temperature 
treatments. 
 

Parameter Equation R 2 p 

0°C    

Bacterial growth efficiency (leucine) BGE = -0.42 I0 + 70.31 0.55 0.26 

Bacterial carbon demand (leucine) BCD = 2.39 I0 – 28.95 0.78 0.12 

6°C    

Bacterial growth efficiency (leucine) BGE = 0.28 I0 + 32.75  0.56 0.25 

Bacterial carbon demand (leucine) BCD = 0.72 I0 + 81.77 0.21 0.54 

 
 
 
Table 12 . Relationships for the regression of the derived parameters for the 2008 
experiment, with light intensity. All values of one light treatment are taken together, 
irrespective of the temperature. 
 

Parameter Equation R 2 p 

Bacterial growth efficiency (leucine) BGE = -0.07 I0 + 51.53 0.02 0.75 

Bacterial carbon demand (leucine) BCD = 1.55 I0 + 26.41 0.40 0.09 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ANNEX 
 

 
 

177 

Table 13 . Relationships for the regression of the ratios of bacterial production to 
particulate primary production (BP:PPP) and bacterial carbon demand to particulate 
primary production (BCD:PPP) with temperature at the different light treatments (2008 
experiment highlighted in blue). Correlations statistically significant on the p<0.05 level 
are marked with an asterisk.  
 

Parameter Equation R 2 p 

16%    

BP : PPP (thymidine) BP : PPP = 5.82 T + 22.05 0.54 0.04* 

BCD : PPP (thymidine) BCD : PPP = 48.77 T + 150.40 0.74 0.006* 

32%    

BP : PPP (thymidine) BP : PPP = 2.00 T + 16.44 0.63 0.02* 

BCD : PPP (thymidine) BCD : PPP = 30.37 T + 55.77 0.81 0.003* 

BP : PPP (leucine) BP : PPP = 7.60 T + 41.72 0.52 0.04* 

BCD : PPP (leucine) BCD : PPP = 35.62 T + 82.55 0.77 0.004* 

32% b    

BP : PPP (leucine) BP : PPP = 1.42 T + 30.80 0.44 0.34 

48%    

BP : PPP (leucine) BP : PPP = 1.75 T + 27.33 0.47 0.31 

BCD : PPP (leucine) BCD : PPP = 4.22 T + 55.60 0.56 0.25 

64%    

BP : PPP (thymidine) BP : PPP = 0.45 T + 12.33 0.22 0.24 

BCD : PPP (thymidine) BCD : PPP = 2.32 T + 38.84 0.61 0.02* 

64% b    

BP : PPP (leucine) BP : PPP = -0.11 T + 35.38 0.004 0.94 

BCD : PPP (leucine) BCD : PPP = -2.28 T + 82.07 0.21 0.54 
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Table 14 . Relationships for the regression of the ratios of bacterial production to 
particulate primary production (BP:PPP) and bacterial carbon demand to particulate 
primary production (BCD:PPP) during the bloom period of the 2008 experiment, with 
temperature. All data points of one temperature treatment are taken together, irrespective 
of the light intensity. 
 

Parameter Equation R 2 p 

BP:PPP (leucine) BP:PPP = 1.02 T + 31.17 0.21 0.13 

BCD:PPP (leucine) BCD:PPP = 0.97 T + 68.83 0.03 0.67 

 
 
 
Table 15 . Relationships for the regression of the ratios (BP:PPP, BCD:PPP) with light at 
the different temperature treatments.  
 

Parameter Equation R 2 p 

0°C    

BP : PPP (leucine) BP : PPP = 0.14 I0 + 24.29 0.14 0.47 

BCD : PPP (leucine) BCD : PPP = 1.65 I0 - 23.82 0.57 0.24 

6°C    

BP : PPP (leucine) BP : PPP = -0.14 I0 + 44.18 0.08 0.59 

BCD : PPP (leucine) BCD : PPP = -0.78 I0 + 118.55 0.19 0.56 

 
 
 
Table 16 . Relationships for the regression of the ratios (BP:PPP, BCD:PPP) with light at 
the different temperature treatments. All data points of one light treatment are taken 
together, irrespective of the temperature. Correlations statistically significant on the 
p<0.05 level are marked with an asterisk.  
 

Parameter Equation R 2 p 

BP : PPP (leucine) BP : PPP = -0.0002 I0 + 34.24 0.00 1.00 

BCD : PPP (leucine) BCD : PPP = 0.44 I0 + 47.36 0.05 0.61 
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Table 17. Summary of results for mean quantities, derived parameters and ratios from all 
experiments. Displayed are the percent increases or decreases in response to 
temperature increase of ∆T +6°C (from 2.4 to 8.4°C) or for an increase in li ght intensity 
(from 32 or 48 to 64% I0, where appropriate), based on the regression equations in Annex 
Tables 5-16. The 2008 experiment is highlighted with blue headlines and additionally to 
the single responses the summarising responses are shown. Statistically significant 
changes are highlighted in bold, increases have a green and decreases a red 
background colour. Mind that BCD and BGE are calculated using the corrected bacterial 
respiration measures (as described in the Material & Methods section of Chapter 2). 
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