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Abstract. The relative importance of potential source
and sink terms for bromoform (CHBr3) in the tropical
Atlantic Ocean is investigated with a coupled physical-
biogeochemical water column model. Bromoform produc-
tion is either assumed to be linked to primary production
or to phytoplankton losses; bromoform decay is treated as
light dependent (photolysis), and in addition either vertically
uniform, proportional to remineralisation or to nitrification.
All experiments lead to the observed subsurface maximum of
bromoform, corresponding to the subsurface phytoplankton
biomass maximum. In the surface mixed layer, the concen-
tration is set by entrainment from below, photolysis in the
upper few meters and the outgassing to the atmosphere. The
assumed bromoform production mechanism has only minor
effects on the solution, but the various loss terms lead to sig-
nificantly different bromoform concentrations below 200 m
depth. The best agreement with observations is obtained
when the bromoform decay is coupled to nitrification (pa-
rameterised by an inverse proportionality to the light field).
Our model results reveal a pronounced seasonal cycle of bro-
moform outgassing, with a minimum in summer and a maxi-
mum in early winter, when the deepening surface mixed layer
reaches down into the bromoform production layer.

1 Introduction

A considerable part of the ozone destruction in the tropo-
sphere and stratosphere is attributed to bromine species gen-
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erated by photolysis of bromoform (CHBr3) of oceanic ori-
gin (see, e.g.Sturges et al., 2000). Hence, bromomform
sources and sinks in the ocean are of interest for studying at-
mospheric trace gas cycles. Tropical oceans are particularly
important, because high concentrations of inorganic bromine
species and large air-sea fluxes of organic bromine species
are found onshore and offshore (seeRead et al., 2008; Quack
et al., 2007a,b); tropical stratospheric upwelling might trans-
port these trace gases from the boundary layer into the strato-
sphere.

Recent CHBr3 observations in the tropical eastern At-
lantic Ocean (Quack et al., 2004, 2007b) have revealed a
pronounced subsurface maximum at the depth of the sub-
surface chlorophyll maximum, suggesting a phytoplanktonic
source of bromoform. This is consistent with laboratory ex-
periments and field data that point to a coupling between bro-
moform production and phytoplankton growth for diatoms
and cyanobacteria (Moore et al., 1996; Schall et al., 1996;
Karlsson et al., 2008). Whether CHBr3 production serves
a specific purpose (e.g., protection against grazing and cell
poisoning by hydrogen peroxide – see e.g.Manley, 2002)
or has to be regarded as the byproduct of another process
is currently not known. It can also not be ruled out that
bromoform is produced during the decay of organic matter,
i.e. dead phytoplankton (Quack and Wallace, 2003) when
the enzyme bromoperoxidase (necessary to catalyse the re-
action with bromide ions) is set free. Whatever be the case,
a relationship between CHBr3 production and growth/decay
of phytoplankton seems highly plausible. Alternative ideas
about open ocean bromoform sources (coastal production by
macroalgae and/or advective transport, see e.g.,Moore and
Tokarczyk, 1993; Carpenter and Liss, 2000) are not consid-
ered for this region.
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Several processes have been found responsible for the re-
duction of CHBr3 concentrations in the ocean: Outgassing
to the atmosphere may be the major factor in the surface
mixed layer (seeQuack et al., 2004). Other known decay
processes include halide substitution of CHBr3 which leads
to an estimated oceanic half life between 5 and 74 years (at
25◦C and 2◦C, respectively) as well as hydrolysis working
ten to hundred times slower (Geen, 1992; Vogel et al., 1987).
In addition, it is assumed that photolysis plays an impor-
tant role in the decay of CHBr3 in the surface ocean (Car-
penter and Liss, 2000). Several biologically mediated pro-
cesses accelerate bromoform degradation.Fetzner(1998)
suggest a dehalogenation by bacteria during the decompo-
sition of organic material. Recent observations indicate that
two other processes are likely to be involved as well. The
observed increase in the concentrations of dibromethane and
decrease of bromoform point towards a reductive debromi-
nation (Quack et al., 2004). The underlying mechanisms
are not understood, yet, but it seems that debromination
is linked to heterotrophic activities (e.g. remineralization)
(Quack et al., 2007b). The second process involves a co-
metabolism of bromoform during nitrification. The decay of
bromoform has been shown to be more rapid in the presence
of Nitrosomonas europaeawhich oxidizes ammonium to ni-
trite (Wahman et al., 2005). The pronounced nitrite max-
imum below the subsurface chlorophyll maximum layer in
the oligotrophic open ocean (data from Meteor expedition
M55,Wallace and Bange, 2004) might be an indication of not
only nitrification, i.e. ammonium oxidation (Olson, 1981),
but also enhanced bromoform decomposition. There is ob-
servational evidence of a decrease of CHBr3 in the nitracline,
where nitrification is usually maximum (Quack, unpublished
data from the Meteor cruise 60/5).

In summary, the magnitude of water column losses, their
vertical distribution and their effect on surface mixed layer
bromoform concentrations and the associated outgassing are
only poorly understood (see e.g.,Abrahamsson et al., 2004).
In this study, we use numerical modelling to elucidate the
role of different sources and sinks of open ocean CHBr3 in
controlling the oceanic bromoform levels and the resulting
air-sea flux.

2 Model philosophy

As pointed out above, little is known about the production
and decay of bromoform within the water column. One
might even argue that our understanding of water column
sources and sinks of CHBr3 is inadequate to set up a model,
given the existing uncertainties in the magnitude and relative
role of various processes. On the other hand the research his-
tory has shown that modeling activities may foster future in-
vestigations in field and laboratory. From this point of view
we find it the right time to address this important topic in
the active field of organic halogen research. Our conceptual

modelling study must be seen as a starting point, not the fi-
nal word. Our current approach is based on the following
arguments and assumptions:

First, we note that there seem to be fewer potential source
than sink processes for CHBr3 in the ocean. The produc-
tion is either assumed to be proportional to phytoplankton
growth or phytoplankton death. In our study we investigate
both cases separately; this specified source process forms the
basis for numerical experiments. The degradation of bromo-
form is likely to depend on a number of processes, acting
simultaneously but with varying strength in different parts
of the water column. The strategy here is to include as many
processes as necessary to obtain a realistic profile. Of course,
our combinations may not be unique, but we can quantify the
uncertainties.

The next step is to specify the functional dependence of
the source and sink terms. Bromoform production is lin-
early coupled to primary production (or phytoplankton loss;
see below). The decay processes are assumed to be either
constant in time and space (attributed to hydrolysis, halide
substitution for this particular region) or time- and depth-
dependent as a function of certain environmental factors (e.g.
UV-irradiance) or biological processes (e.g. remineraliza-
tion, nitrification).

Finally we need to specify the rates of these production
and decay processes. The production rate is taken from labo-
ratory studies on selected phytoplankton species (see below).
The loss rates have been adjusted to obtain a high degree of
similarity between the observed and simulated bromoform
profiles (maximum, surface and deep ocean concentrations,
vertical gradients).

3 Model setup

3.1 Physical model setup

The physical model is the one-dimensional water column
model GOTM (General Ocean Turbulence Model,Umlauf
et al., 2005, www.gotm.net). The model has been previ-
ously applied to several oceanic regimes, including the olig-
otrophic subtropical North Atlantic Ocean (BATS: Bermuda
Atlantic Time-series Study,Weber et al., 2007) and the Baltic
Sea (Burchard et al. 2006).

Here, GOTM is configured for the Cape Verde region in
the eastern tropical North Atlantic Ocean. The model set-up
is based on the BATS case, with only few modifications: a
relatively high minimum value for turbulent kinetic energy
(TKE) of 10−5 m2 s−2 is prescribed to parameterise the ef-
fects of double diffusion in this region (see e.g.,Mart́ınez-
Marrero et al., 2008). In addition, we have applied the bulk
air-sea parameterisation for heat and freshwater fluxes of
Fairall et al.(1996). The model covers the upper 700 m of the
ocean; the lower boundary has been placed at this depth be-
cause it is close to the nutrient maximum where the diffusive
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fluxes vanish (see alsoBeckmann and Hense, 2007). The
vertical resolution is 1 m and the time step 1 h.

3.2 Biogeochemical model setup

Our ecosystem model is based on the relatively simple
nitrogen-phytoplankton-zooplankton-detritus (NPZD) model
of Schartau and Oschlies(2003). In its optimized configura-
tion the model has also been applied basinwide (coupled to
an ocean circulation model) for the equatorial (the focus of
our study) and North Atlantic Ocean without changes in pa-
rameters (Oschlies and Schartau, 2005). Weber et al.(2007)
have coupled the biogeochemical model to GOTM for their
study of the oligotrophic situation at BATS. We found no
need to change any of their model parameters. For our pur-
pose, we have added a bromoform compartmentB (in nmol
CHBr3 m−3) that evolves due to internal sources (Q) and
sinks (S) as well as vertical diffusion:

∂B

∂t
= Q − S +

∂

∂z

(
Av

∂B

∂z

)
whereAv is the time- and depth-dependent turbulent vertical
diffusivity coefficient.

The source terms are either coupled to primary production
(Q1) or to the total phytoplankton losses (Q2)

Q1 = β × µ × P

Q2 = β∗
× (γ × P 2

+ r × P + gZ × Z)

Here, P and Z are the phytoplankton and zooplankton
concentrations, respectively (in mmol N m−3), µ is the ac-
tual (in situ) growth rate of phytoplankton,γ is the mortality
rate of phytoplankton,r andgZ are phytoplankton respira-
tion and phytoplankton-dependent grazing rates of theNPZD
model. We call the bromoform production to phytoplankton
production ratioβ, and a conceptually similar bromoform
production to phytoplankton loss ratioβ∗.

These proportionality factors were computed based on
a suite of laboratory studies which report bromoform in-
crease during the exponential growth phase of phytoplank-
ton (Moore et al., 1996). First, we extracted the maximum
specific growth ratesω of the three species under investi-
gation from the exponential phase1; then the corresponding
temporal changes in bromoform concentrations (1CHBr3)
over time interval1t were used to determine the bromoform
production to phytoplankton production ratio according to

β =
1CHBr3
1t × ωP0

× e−ω1t

1Since temporal changes (1t) in cell counts are the result of the
actual growth rate but not the maximum specific growth rate, we
account for a respiration of 1%d−1.

The resulting values forβ are 4.2, 6.71, and
6.73×10−7 nmol CHBr3 (mmol N)−1, using typical
cellular carbon contents of the species (Wasmund, pers
comm.: 176 pg C cell−1 for Nitzschia sp. and Nitzschia
arctica, 2015 pg C cell−1 for Porosira glacialis) and the
Redfield ratio for conversion into nitrogen. The first value
stems from an experiment (withNitzschia arctica) which has
been terminated prematurely (i.e., during the exponential
growth phase). We therefore choose the average of the
other twoβ=6.72×10−7 nmol CHBr3 (mmol N)−1 for our
numerical experiments. Note that this ratio might vary
between different functional groups. However, since no
further data are available, we assume that this value is ap-
propriate even though obtained for cold water diatoms. The
presence of bromoperoxidase enzymes (which are necessary
for bromoform production) in diatoms, cyanobacteria, and
Prymnesiophyceae (Moore et al., 1996; Jakopitsch, 2001;
Hughes et al., 2006; Karlsson et al., 2008), however, might
indicate that more species are involved in bromoform
production. This is an area that needs further research.

An alternative interpretation of the laboratory experiments
by Moore et al.(1996) is that bromoform production is cor-
related with the release of bromoperoxidase from the phyto-
plankton cell as a result of respiration and during the death of
the cell. Hence, a similar approach leads to the formulation
Q2 andβ∗ can be determined from the decay phase inMoore
et al.(1996)’s experiments. These data are more difficult to
extract, but it seems thatβ∗ is close toβ, so for simplicity
we assume them to be equal.

Bromoform is lost from the ocean through outgassing:

F |z=0 = k ×
(
Bequi − B|z=0

)
using the gas transfer velocityk after Nightingale et al.
(2000) and the atmospheric equivalent concentrationBequi
(based on the parameterisation byMoore et al., 1995).

Four different processes are assumed to play a role as in-
ternal sinks for bromoform: photolysis, halide substitution
and hydrolysis, degradation (debromination) during reminer-
alisation of detritus and nitrification.

Photolysis is considered in all experiments. We use a
depth-decreasing time scale for degradation by ultraviolet ra-
diation according to

S0 = luv ×
I0
Iref

× exp(−aw × z) × B

where I0 denotes the instantaneous surface irradiance, Iref is
the annual average irradiance for the uppermost meter in this
region (75 W m−2), aw the attenuation coefficient for UV-
light (0.33 m−1) andz the depth (positive downward). The
decay time scale(luv)

−1 is 30 days as given byCarpenter and
Liss (2000). Due to the short penetration depth of ultraviolet
radiation, photolysis can only play a role in the surface mixed
layer. In addition, we have implemented the following loss
terms:
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Table 1. Overview of experiments and selected results: observed and simulated bromoform concentrations (nmol CHBr3 m−3) at the surface
and in the subsurface maximum as well as air-sea flux (pmol CHBr3 m−2 h−1) for the month of November. Observed data are averages of
offshore stations from the cruise M55 (Quack et al., 2004).

CHBr3 CHBr3 surf. conc. max. conc. air-sea flux
source sink nmol m−3 nmol m−3 pmol m−2 h−1

M55 (observations) 5.0 24.8 175

EXP1 Q1 S1 6.5 21.5 163
EXP2 Q1 S2 6.5 20.9 169
EXP3 Q1 S3 6.7 23.6 188
EXP4 Q2 S3 6.7 23.6 188

– halide substitution and hydrolysis is assumed to be con-
stant throughout the water column. A constant decay
ratelcon for CHBr3 is used, where the exponential time
scale(lcon)

−1
=6.33 years (a half life of 4.37 years) is

at the lower end of the range of the estimated half life
of bromoform (halide substitution, hydrolysis) from ob-
servations (5–74 years,Quack and Wallace, 2003):

S1=S0+lcon×B

This approach is the most simple choice, as it requires
the specification of only one parameter.

– bromoform degradation (and reductive debromination)
is related to the remineralisation of detritus (D) (follow-
ing Fetzner, 1998; Quack et al., 2007b), using an ex-
ponential decay time scale of(lrem)−1

=7.92 years (half
life: 5.49 years), and taking into account the temper-
ature dependence for remineralisation from theNPZD
model:

S2=S0+lrem×
D

Dref
×1.066T

×B

The reference concentration for detritus is
Dref=0.13 mmol N m−3.

– as a (crude) parameterisation for the degradation of
CHBr3 by nitrifiers the decay rate has been inversely
coupled to the light field I, assuming that nitrification
(ammonium oxidation) is inhibited by high light levels
(Olson, 1981). To our knowledge, no empirical infor-
mation exists about the light dependence of nitrification
limitation. We therefore adopt the functional depen-
dence of the phytoplankton light limitation to describe
this process based on 24 h averages of irradiance:

S3=S0+lnit

1−

a
24 h

∫ t

t−24 h I(z)dt√
λ2+

(
a

24 h

∫ t

t−24 h I(z)dt
)2

 × B

The exponential decay time scale is assumed to
be (lnit)

−1
=4 years (half life: 2.74 years); the ad-

ditional parameters area=3.0×10−5 m2 W−1 s−1 and
λ=3.1×10−6 s−1. We assume that ammonium oxida-
tion is not limited by temperature or oxygen.

Note that the decay rates have been chosen in order to ob-
tain the best correspondence between modelled and observed
profiles.

In this paper, we shall present results from four experi-
ments, which use different combinations of source and sink
terms (see Table1).

3.3 Forcing and initialisation

The model is forced by climatological monthly means of 2-
m atmospheric temperature, air pressure and dew point tem-
perature, 10-m zonal and meridional wind velocities, cloud
cover as well as precipitation based on ERA40 reanaly-
sis (Uppala et al., 2005). The physical variables tempera-
ture and salinity are initialised with climatological profiles
from the World Ocean Atlas (WOA01) (Conkright et al.,
2002). Lateral effects in the one-dimensional model are
taken into account by restoring salinity and temperature (ex-
cept for the upper 20 m) towards climatological monthly
means of WOCE with a five day-timescale. All biogeochem-
ical variables are initialised homogeneously except nitrogen
for which the vertical profile of dissolved inorganic nitro-
gen derived from measurements at Cape Verde (Bange, 2007)
has been taken. At the bottom, the DIN concentration is re-
stored to the observed value of 35.7 mmol m−3 with a relax-
ation time scale of one hour. The atmospheric concentra-
tion of CHBr3 is set constant, using a value of 0.14 nmol m−3

(3.4 ppt) which is a mean (and typical) value for atmospheric
bromoform concentrations in that particular region (Quack
et al., 2004). Although initialization and forcing fields are
from Cape Verde at 17.4◦ N, 24.5◦ W, we believe that our
results are representative for the entire eastern tropical At-
lantic Ocean. Additional model runs at locations further
south show only small changes in the depth of the mixed
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Fig. 1. Simulated vertical profiles of(a) nutrients,(b) phytoplank-
ton and c) detritus from November. Measurements (red crosses)
have been performed in November 2002 during the cruise M55.
Phytoplankton concentrations have been derived from chlorophyll,
using a vertically dependent C:Chl-ratio (175 g g−1 at surface,
25 g g−1 in 200 m depth, (see e.g.,Hense and Beckmann, 2008)
and the Redfield ratio for conversion from carbon to nitrogen.

layer and location of the subsurface phytoplankton biomass
and bromoform maxima. The profiles of the individual ex-
periments are similar and conclusions are unaffected by this
change in geographical location.

4 Results and discussion

The model has been run for 50 years after which a perpet-
ual seasonal cycle developed; we have analysed the last year.
The relatively long spin-up time is required for the slowly
evolving bromoform distribution. The physical fields reach
a periodically steady state after about 6 years, the biological
variables after about 10 years.

4.1 Hydrographic and biogeochemical characteristics

Our simulation of the physical conditions at Cape Verde re-
produces the temperature and salinity fields reasonably well
(see appendix, Fig.7). The vertical profiles of salinity show a
subsurface salinity maximum at about 100 m depth which is
a feature of the tropical eastern North Atlantic Ocean result-
ing from the intrusion of more saline South Atlantic Central
Water (SACW) from the South Atlantic. As expected for this
region, the thermocline starts between 50 and 100 m.

The vertical profile of nutrient shows a depletion in the up-
per 50 m (Fig.1) due to the uptake by phytoplankton and sub-
sequent sinking of dead particulate organic matter. The max-
imum concentrations of phytoplankton biomass are found
subsurface in the upper nutricline where light and nutrient
supply are optimal. Due to sinking, the detritus maximum is
located below the phytoplankton maximum.

In general, the modelled concentrations of both phyto-
plankton biomass and nutrients agree well with observations
from that region (Fig.1). The remaining discrepancies (e.g.,
slightly lower surface phytoplankton values) are due to the
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Fig. 2. Simulated annual mean vertical profiles of bromoform from
the different experiments.

differences in the temporal (and spatial) resolution; while
the field data are point measurements in a spatially heteroge-
neous environment, the model solutions represent averages
in space and time (over a month).

4.2 Vertical distribution of bromoform

As expected for a phytoplankton related source of CHBr3 in
the oligotrophic ocean, the simulated annual mean vertical
distribution of bromoform shows a pronounced subsurface
maximum in all experiments (Fig.2, Table1). The maxi-
mum is located in 66 m depth, a few meters below the phyto-
plankton biomass maximum within a layer characterized by
the strongest temperature and nutrient gradients.

We note that differences between the experiments are
smallest at the surface and largest below 200 m depth. The
surface concentrations are controlled by the air-sea flux, pho-
tolysis and entrainment, which are similar in all experiments
(Fig.3). The subsurface concentration of CHBr3 in the water
column, however, depends strongly on the assumed internal
decay process (Fig.3d).

The most striking difference between our experiments
are the comparatively high concentrations of CHBr3 below
200 m depth in EXP2 (Fig.2, green line). This means
that degradation coupled to remineralisation leads to high
concentrations at depth, because most of the temperature-
dependent remineralisation takes place in the warmer water
column above 200 m depth. Hence, bromoform accumulates
in the deep ocean. This feature is related to the biogeochem-
ical model and its values for detrital sinking and temperature
dependent remineralisation rates. The few available obser-
vational data of CHBr3 concentrations below 200 m show
that the concentration at 630 m is close to 1.0 nmol CHBr3
m−3 (Quack, unpublished data, 2004). While similar con-
centrations can be found for EXP1, EXP3 and EXP4 (0.8–
1.3 nmol CHBr3 m−3), they are significantly higher in EXP2
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Fig. 3. Simulated annual mean vertical profiles of production (solid
black line), loss (dotted black line) and bromoform (grey line,
[nmol m−3]) for the EXP1–EXP3 (EXP4 is similar to EXP3 and
thus omitted). For a better visualization of the losses an additional
plot with logarithmic scale (same color coding as in Fig.2) is in-
cluded (right).

(6.5 nmol CHBr3 m−3) indicating that the degradation is un-
derestimated. One obvious way to decrease the deep CHBr3
concentrations in EXP2 is to increaselrem, but then the sub-
surface maximum is too small.

The other three experiments show similar vertical profiles.
In particular, we note that the type of bromoform source
(Q1 vs. Q2) has hardly an effect on the annual mean pro-
files. However, we do find a time delay of about two days in
the seasonal succession of bromoform production for EXP4
compared to EXP3, simply because primary prodcution pre-
cedes mortality and grazing. At the surface the largest differ-
ences occur in winter, at the depth of the maximum in sum-
mer due to the anticorrelation between surface and subsur-
face primary production. Overall, the differences are small
(<1%). This is both encouraging and disappointing: on the
one hand we do not need to know more about the details
of the production process to obtain a realistic result; on the
other hand we cannot use our experiments to distinguish the
different hypotheses. The most pronounced maximum and
the largest gradient of bromoform are produced in EXP3 and
EXP4 (Fig.2, red lines). A slightly reduced subsurface max-
imum of CHBr3 and higher concentrations at 700 m depth
are found in EXP1 (Fig.2, blue curve).

A more quantitative evaluation of the model results can be
performed for the month of November. Observations of bro-
moform in the eastern North Atlantic Ocean down to 200 m
are available for a number of stations from a cruise in the
beginning of November 2002 (Quack et al., 2004). Spa-
tial (and to a lower degree temporal) variability yields pro-
files that differ in depth, thickness and amplitude of bro-
moform maximum layers. Our one-dimensional water col-
umn model, forced by climatological fields, does not repre-
sent an individual observed profile. Therefore, we have con-
structed a “typical” (averaged) CHBr3 distribution, applying
the method ofHense and Beckmann(2008): Instead of av-
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Fig. 4. Vertical profiles of observed (obs: black line) and simu-
lated (EXP1: blue line, EXP2: green line, EXP3: red line) CHBr3
concentrations from November. CHBr3 profiles of stations which
were closest to the Cape Verde station (area: 10.5–11.97◦ N, 16.83–
25◦ W) from the cruise M55 in November 2002 (Quack et al., 2004)
have been adjusted to the depth of the maximum of bromoform ac-
cording to the method introduced byHense and Beckmann(2008).
The grey dotted lines indicate the standard deviation; the maximum
is at 37 nmol m−3.

eraging along depth horizons, all the maxima are aligned to
obtain a “mean” profile (Fig.4). The advantage of this ap-
proach is that two important characteristics of the distribu-
tions (amplitude and thickness) are reliably preserved while
the drawback is that absolute depth information is lost (see
Hense and Beckmann, 2008). Figure4 should therefore be
used only to compare amplitude and thickness between this
composite of observations and the simulated profiles.

The model-data comparison for EXP1–EXP3 shows that
the simulated vertical distribution patterns of CHBr3 capture
the most important features of the observations: the magni-
tude of the subsurface maximum, a strong decrease upward
to the surface and a somewhat slower decrease downward
(Fig. 4). Given the uncertainties of model parameters and
forcing, the robustness of the results support the validity of
our assumptions.

The systematic overestimation of the surface concentra-
tion in all experiments may be due to the use of a constant
atmospheric bromoform concentration and the climatologi-
cal wind fields which both affect the air-sea flux. Additional
sensitivity experiments indicate that slightly changed atmo-
spheric data can easily account for concentration changes of
2 nmol CHBr3 m−3 in the surface mixed layer.

Differences between simulations and observations occur
also with respect to the thickness of the bromoform max-
imum layer. The observed “typical” profile of bromoform
has a thickness of about 60 m (based on a “full width at half
maximum” criterion). The simulated profiles show thicker
maximum layers (EXP1: 105 m, EXP2: 126 m, EXP3 and
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EXP4: 100 m), most likely due to an overestimation of the
thickness of the subsurface biomass maximum by the ecosys-
tem model. Simultaneous measurements of bromoform and
phytoplankton biomass at high vertical resolution would be
required to make conclusive statements in this respect.

As mentioned before, the largest maxima and the steepest
downward gradients of bromoform are obtained forS3, the
“nitrification case” (Fig.4, red curve). This is a consequence
of the vertical separation of the production layer from the
destruction layer below. It seems that the observed profiles
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Fig. 7. Observed (crosses) and simulated (solid line) salinity (left)
and temperature (◦C, right) in winter (February, upper panels) and
summer (August, lower panels) at Cape Verde.

can be best explained by adjacent, non-overlapping internal
source and sink layers.

The quantitative evaluation of our model results shows that
the concentration in the subsurface maximum is best repre-
sented by EXP3 or EXP4 (Table1). Overall, however, the
differences in the concentrations of bromoform in the up-
per 200 m between the experiments, particularly EXP1 and
EXP3 are rather small. This is also true with respect to air-
sea fluxes: The simulated flux from the ocean into the atmo-
sphere ranges only between 163–188 pmol CHBr3 m−2 h−1

for November for the individual experiments. They are close
to the observed 175 pmol CHBr3 m−2 h−1 in this region (Ta-
ble1).

A sensitivity experiment with photolysis as the only in-
ternal loss process resulted in an imbalance between sources
and sinks below the subsurface maximum and led to unre-
alistically high and continuously increasing subsurface bro-
moform concentrations (no steady state is reached within
100 years of model integration). Conversely, omitting pho-
tolytic destruction leads to an increase in the surface concen-
trations and a higher air-sea flux (8–36%).

In summary, EXP3 shows the best agreement with obser-
vations and thus, for further analyses, we focus on the results
of this case.

4.3 Simulated seasonal cycle of bromoform and air-sea
fluxes

Having established that the model does represent the main
features of the observed bromoform distribution reasonably
well, we can now look at unobserved aspects of the problem,
e.g., the seasonal cycle. The highest subsurface maximum of
bromoform (>24 nmol CHBr3m−3 at around 66 m) occurs in
late autumn while the lowest concentrations can be found in
spring (<18 nmol CHBr3 m−3 in about 80 m, Fig.5).
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We note a time delay of about one month between the
occurrence of the subsurface maximum and the occurrence
of the surface mixed layer maximum, related to the gradual
deepening of the surface mixed layer and the entrainment of
the bromoform signal (Figs.5, 6). The lowest subsurface
concentrations are found in April. During spring and sum-
mer, the surface layer is essentially decoupled from the sub-
surface bromoform production layer and the surface concen-
trations decrease until early August.

The seasonal cycle of bromoform surface concentration
and air-sea flux shows winter maximum and summer min-
imum (Fig. 6). Concentrations vary by a factor less than
two, fluxes by a factor of almost ten. It is important to note
that the seasonal flux variations are only partly caused by the
variations in production; the variability in mixed layer depth,
which in turn is driven by changes in heat and freshwater
fluxes as well as the wind speed, is the main factor. While
the absolute maximum of the air-sea flux occurs in winter,
secondary maxima are found in early summer and autumn
(Fig. 6). From April to June relatively high wind speeds
(Fig. 6c) promote the outgassing from the surface ocean. In
September and October, the combined effect of the increas-
ing wind speed and the deepening of the mixed layer (Fig.6a,
c) inducing the entrainment of bromoform into the surface
layer leads to a rapid increase in the air-sea flux (Fig.6b).
We notice that the temporal variation of bromoform in the
water column is similar in all our experiments irrespective of
differences in the absolute subsurface concentrations.

5 Summary and conclusions

We have simulated the climatological seasonal cycle of the
vertical distribution of bromoform in the upper 700 m of the
tropical eastern Atlantic Ocean. Using the results from labo-
ratory experiments (Moore et al., 1996) bromoform produc-
tion has been coupled to the growth and losses of phytoplank-
ton, respectively. The differences between these two ap-
proaches are marginal and leave open the question of which
physiological processes are ultimately responsible for the
production of CHBr3. The generally good agreement of the
model results with observations, however, suggests that the
subsurface maximum can be entirely explained by in-situ
production in which phytoplankton plays the most important
role. This result is of more general relevance because obser-
vations indicate that the subsurface bromoform maximum is
an ubiquitous feature of the eastern tropical Atlantic Ocean
(Quack et al., 2004, 2007b).

Our numerical experiments with different degradation
mechanisms of CHBr3 show that besides the near surface
processes photolysis and air-sea flux, additional water col-
umn losses are necessary to explain the downward decrease
in concentrations below the subsurface maximum. Among
the three cases we compared, the experiment with a degrada-
tion proportional to nitrification (parameterised by an inverse

proportionality to the light field) is in best agreement with ob-
servations, i.e., it has the most pronounced maximum and the
lowest deep concentration of bromoform. This is achieved
by the vertical separation of the bromoform production layer
from the bromoform destruction layer below. In the assess-
ment of our model results we have to keep in mind that al-
though we have investigated the various bromoform degra-
dation mechanisms individually, they are likely to be active
simultaneously (at unknown relative strengths). In any case,
nitrification-related degradation of bromoform seems essen-
tial in generating the observed vertical bromoform distribu-
tion. This is not an unreasonable result, given that observa-
tions point at a co-metabolism of CHBr3 in the presence of
some nitrifiers (Wahman et al., 2005). In addition, recently
obtained field data show a maximum of dibromomethane (a
degradation product of CHBr3 from reductive debromination
processes) below the maximum of CHBr3 (Quack, unpub-
lished data, 2004,Butler et al., 2007). Further studies on
subsurface bromoform degradation are clearly needed.

The model results further suggest that the seasonality of
oceanic bromoform outgassing is larger than often assumed.
While surface concentrations range from 5 to 8 nmol CHBr3
m−3 (summer versus winter), the air-sea flux varies by al-
most an order of magnitude. Strongly controlled by the sea-
sonal changes in wind speed and mixed layer depth, out-
gassing is 40 pmol CHBr3 m−2 h−1 in summer and 360 pmol
CHBr3 m−2 h−1 in winter. Note that the use of seasonally
varying atmospheric concentrations of CHBr3 will lead to
(probably minor) quantitative changes in these values.

The vertically integrated annual production rate of bromo-
form in the model is 4.6 µmol CHBr3 m−2 a−1 (525 pmol
CHBr3 m−2 h−1) with a corresponding annual mean air-sea
flux of 1.1–1.3 µmol CHBr3 m−2 a−1 (125–148 pmol CHBr3
m−2 h−1) for the different experiments; i.e., about 25% of
the production is transferred to the atmosphere. There, as
a carrier of bromine, CHBr3 of phytoplanktonic origin will
contribute to the destruction of ozone and thus should be in-
cluded in budget calculations.

Appendix A

Observed and modelled salinity and temperature
profiles

Simulated temperature and salinity profiles have been com-
pared with observed summer and winter values at the
TENATSO station. The differences are rather small. This
is the result of the restoring towards climatological monthly
means, which prevents model drift (Fig. 7).
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A., Fraile-Nuez, E., Ĺopez-Laatzen, F., V́elez-Belch́ı, P., and Par-
rilla, G.: Distribution of water masses and diapycnal mixing in
the Cape Verde Frontal Zone, Geophys. Res. Lett., 35, L07609,
doi:10.1029/2008GL033229, 2008.

Moore, R. M. and Tokarczyk, R.: Volatile biogenic halocarbons
in the northwest Atlantic, Global Biogeochem. Cy., 7, 195–210,
1993.

Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of Hen-
rys law constants for a suite of naturally occuring halogenated
methanes in seawater, Chemosphere, 30, 1183–1191, 1995.

Moore, R. M., Webb, M., Tokarczyk, R., and Wever, R.: Bromoper-
oxidase and iodoperoxidase enzymes and production of halo-
genated methanes in marine diatom cultures, J. Geophys. Res.,
C, 101, 20899–20908, 1996.

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ
evaluation of air-sea gas exchange parameterizations using novel
conservative and volatile tracers, Global Biogeochem. Cy., 14,
373–387, 2000.

Olson, R.: Differential photoinhibition of marine nitrifying bacte-
ria: A possible mechanism for the formation of the primary ni-
trite maximum, J. Mar. Res., 39, 227–238, 1981.

Oschlies, A. and Schartau, M.: Basin-scale performance of a locally
optimized marine ecosystem model, J. Mar. Res., 63, 335–358,
2005.

Quack, B. and Wallace, D. W. R.: Air-sea flux of bromoform: Con-
trols, rates, and implications, Global Biogeochem. Cy., 17, 1023,
doi:10.1029/2002GB001890, 2003.

Quack, B., Atlas, E., Petrick, G., Stroud, V., Schauffler, S.,
and Wallace, D. W. R.: Oceanic bromoform sources for
the tropical atmosphere, Geophys. Res. Lett., 31, L23S05,
doi:10.1029/2004GL020597, 2004.

Quack, B., Petrick, G., and Wallace, D. W. R.: Bromoform and
dibromomethane above the Mauritanian upwelling: Atmospheric
distributions and oceanic emissions, J. Geophys. Res., D, 112,
doi:10.1029/2006JD007614, 2007a.

Quack, B., Peeken, I., Petrick, G., and Nachtigall, K.: Oceanic
distribution and sources of bromoform and dibromomethane in
the Mauritanian upwelling, J. Geophys. Res., C, 112, C10006,
doi:10.1029/2006JC003803, 2007b.

Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria,
B. V. E., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J.,
Lewis, A. C., Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-
Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive halogen-
mediated ozone destruction over the tropical Atlantic Ocean, Na-
ture, 453, 1232–1235, 2008.

Schall, C., Heumann, K. G., Mora, S. D., and Lee, P. A.: Biogenic
brominated and iodinated organic compounds in ponds on the
McMurdo Ice Shelf, Antarctica, Antarct. Sci., 8, 45–48, 1996.

Schartau, M. and Oschlies, A.: Simultaneous data-based optimiza-
tion of a 1D-ecosystem model at three locations in the North At-
lantic Ocean: Part I: Method and parameter estimates, J. Mar.
Res., 61, 765–793, 2003.

Sturges, W. T., Oram, D. E., Carpenter, L. J., Penkett, S. A., and En-
gel, A.: Bromoform as a source of stratospheric bromine, Geo-
phys. Res. Lett., 27, 2081–2084, 2000.

Umlauf, L., Bolding, K., and Burchard, H.: GOTM Scientific Doc-
umentation. Version 3.2, in: Marine Science Reports, Baltic Sea

www.biogeosciences.net/6/535/2009/ Biogeosciences, 6, 535–544, 2009



544 I. Hense and B. Quack: Modelling CHBr3 in the upper water column

Research Institute, Warnemünde, Germany, 63, p. 231, 2005.
Uppala, S., Kallberg, P., Simmons, A., Andrae, U., da Costa Bech-

told, V., Fiorino, M., Gibson, J., Haseler, J., Hernandez, A.,
Kelly, G., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.,
Andersson, E., Arpe, K., Balmaseda, M., Beljaars, A., van de
Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., De-
thof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann,
S., Holm, E., Hoskins, B., Isaksen, L., Janssen, P., Jenne, R., Mc-
Nally, A., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N., Saunders,
R., Simon, P., Sterl, A., Trenberth, K., Untch, A., Vasiljevic, D.,
Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy.
Meteor. Soc., 131, 2961–3012, 2005.

Vogel, T. M., Criddle, C. S., and McCarthy, P. L.: Transformation of
halogenated aliphatic compounds, Env. Sci. Technol., 21, 722–
736, 1987.

Wahman, D. G., Katz, L. E., and Speitel, J. G. E.: Cometabolism
of Trihalomethanes byNitrosomonas europaea, Appl. Environ.
Microb., 71, 7980–7986, 2005.

Wallace, D. W. R. and Bange, H. W.: Introduction to special section:
Results of the Meteor 55: Tropical SOLAS Expedition, Geophys.
Res. Lett., 31, L23S01, doi:10.1029/2004GL021014, 2004.

Weber, L., V̈olker, C., Oschlies, A., and Burchard, H.: Iron pro-
files and speciation of the upper water column at the Bermuda
Atlantic Time-series Study site: a model based sensitivity study,
Biogeosciences, 4, 689–706, 2007,
http://www.biogeosciences.net/4/689/2007/.

Biogeosciences, 6, 535–544, 2009 www.biogeosciences.net/6/535/2009/

http://www.biogeosciences.net/4/689/2007/

