Hydrodynamically constrained flux of ingenerated methane hydrate dissolving undersaturated seawater

Niko Bigalke¹, Giselher Gust², Gregor Rehder³, Andreas

¹Leibniz Institute of Marine Sciences, IfM-GEOMAR, Kiel, Germa

²Technical University Hamburg-Harburg, Dept. of Ocean Enginee Hamburg, Germany

³Baltic Sea Research Institute Warnemünde, Rostock, Germar

Hydrate stability in seawater

Dissolution of hydrate - diffusion or reaction controlled?

Concentration

$$F = K'A(C_{sat}-C_{bckgr})$$

$$\frac{1}{K'} = \frac{1}{k_d} + \frac{1}{k_r}$$

reaction controlled:

$$K' = k_r$$

diffusion controlled:

$$K' = k_d$$

Hydrate dissolution - Tools

Interfacial flux chamber "microcosm"

Peppe et al. (1999)

- Production of a radial flowfield at the hydrate/seawater interface in the flux chamber
- Almost constant, adjustable and calibrated friction velocity (u*) over the entire surface

Hydrate dissolution - Exptl. Parameters

T [°C]	ρ [kg/m³]	μ [mPas]	<i>D</i> /10 ⁻⁵ [cm ² /s]	C _{sat} [mmol/kg]
2.0	1042	1.726	9.306	55.3 (209.9)
3.7	1041	1.638	9.859	61.4 (204.4)
9.0	1040	1.408	11.53	85.8 (189.4)

C_{sat}: Tishchenko et al. (2005)

Friction velocities were set to 0.6, 1.0 and 1.2 cm/s for each temperature

Hydrate dissolution - Results I

9.0 °C

3.7 °C

2.0 °C

Hydrate dissolution - Results II

- Saturation concentration in good agreement with predictions according to Tishchenko et al. (2005)
- Change in T results in change of saturation concentration and thus, thermodynamic driving force of dissolution
- Friction velocity (u^*) has a strong impact on the dissolution rate

$$\frac{1}{K'} = \frac{1}{k_d} \qquad \frac{dn}{dt} = k_d A (C_{sat} - C_{bckgr})$$

 Results strongly substantiate idea dissolution of methane hydrate in undersaturated seawater is a diffusion-controlled process

Hydrate dissolution - Results III

$$k_{\rm d} = D/z$$

- Excellent agreement of measured transfer coefficients and those obtained from the dissolution of smooth alabaster plates demonstrates reliability of our data.
- Data yield a correlation for the flux of methane from decomposing hydrate outcrops for a broad range of P, T and u* conditions prevailing in the oceans on the seafloor

current speed: 1.6 cm/s ->

 $u^* = 0.07 \text{ cm/s}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

z = 1 mm

 $T = 0^{\circ}C$ P = 12 MPa $\overline{T, P, C_{sat}} = ? C_{sat} = 53.7 \text{ mmol/L}$ z = 2.3 mm

50 m³ Egorov et

al. (1999)

16.7 m³

this study

current speed: ? ->

 $\overline{u}^* = ?$

T = 3.5°C

P = 10.5 MPa

 $C_{sat} = 69.8 \text{ mmol/L}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

z = ?

u* = 0.07 cm/s

current speed: 1.6 cm/s ->

 $D = 10^{-5} \text{ cm}^2/\text{s}$

 $T = 0^{\circ}C$ P = 12 MPa $T, P, C_{sat} = ?$ $C_{sat} = 53.7 \text{ mmol/L}$ $C_{sat} = 2.3 \text{ mm}$

50 m³

Egorov et al. (1999) 16.7 m³

this study

370 µmol

Rehder et al. (2004)

current speed: 1.75 cm/s -

 $u^* = 0.08 \text{ cm/s}$

Hester et al., pers. comm.

$$T = 3.5$$
°C

P = 10.5 MPa

 $C_{sat} = 69.8 \text{ mmol/L}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

$$z = 0.179 \text{ mm}$$

 $u^* = 0.07 \text{ cm/s}$ $D = 10^{-5} \text{ cm}^2/\text{s}$ $T = 0^{\circ}C$ P = 12 MPaT, P, $C_{sat} = ?$ $C_{sat} = 53.7 \text{ mmol/L}$ z = 2.3 mmz = 1 mm

current speed: 1.6 cm/s ->

50 m³
Egorov et al. (1999)

16.7 m³ this study

370 µmol

Rehder et al. (2004)

current speed: 1.6 cm/s ->

 $u^* = 0.07 \text{ cm/s}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

T, P, $C_{sat} = ?$ $C_{sat} = 53.7 \text{ mmol/L}$

 $T = 0^{\circ}C$

P = 12 MPa

z = 2.3 mm

current speed: 1.75 cm/s -

 $u^* = 0.08 \text{ cm/s}$

Hester et al., pers. comm.

T = 3.5°C

P = 10.5 MPa

 $C_{sat} = 69.8 \text{ mmol/L}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

z = 0.179 mm

370 µmol

Rehder et al. (2004)

z = 2.08 mm33.4 µmol

this study

50 m³ Egorov et al. (1999)

z = 1 mm

16.7 m³ this study

cylindrical hydrate specimens in cross flow

Lab:

Conclusion/outlook

- Dissolution experiments demonstrate that hydrate dissolution in undersaturated seawater at P-/T-conditions within the HSF is diffusion and not reaction controlled.
- Based on the experimental data, a k_d/u^* correlation was obtained, which excellently agrees with and is thus validated by an earlier correlation obtained from dissolution experiments with alabaster plates.
- The validated correlation permits an accurate prediction of the dissolution rates of smooth and clean methane hydrates exposed to a flow of undersaturated seawater for a broad range of oceanic conditions.
- Comparison with earlier data and postulations shows significant discrepancies. In one case this was due to a different sublayer thickness, which for lack of available data has been poorly constrained before.
- Future studies should address the role of inhibitors such as sediments or bacterial mats covering most natural gas hydrates.

Relevant Experiments I

- Flux of Ca and SO₄ determined from mass loss of the alabaster
- A diffusive boundary layer model was assumed to explain mass loss.
- $k = 0.078 \text{ Sc}^{-2/3} \text{ u}^*$

Relevant Experiments II

$$F = D/z (C_{sat}-C_{t0})$$

$$z(CO_2) = z(CH_4),$$

 $D(CO_2) = D(CH_4),$
 $C_{t0}=0$

- $F(CO_2)/F(CH_4) = C_{sat}(CO_2)/C_{sat}(CH_4)$
- Results of the field experiment fit well into a diffusive boundary layer model
- Dissolution of hydrates appears to be diffusion limited, not by kinteics of a chemical reaction

J. Greinert, IFM-GEOMAR

current speed: 1.6 cm/s ->

 $u^* = 0.07 \text{ cm/s}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

 $T = 2.0^{\circ}C$ P = 30 MPaT, P, $C_{sat} = ?$ $C_{sat} = 57.6 \text{ mmol/L}$ z = 2.3 mm z = 2.3 mm

current speed: 1.75 cm/s -

 $u^* = 0.08 \text{ cm/s}$

T = 3.5°C

P = 10.5 MPa

 $C_{sat} = 69.8 \text{ mmol/L}$

 $D = 10^{-5} \text{ cm}^2/\text{s}$

z = 0.089mm

Flux_{lab}/Flux_{ocean}

 $z_{\text{ocean}}/z_{\text{lab}} = 11.6$

 Z_{ocean}/Z_{lab}

 $Flux_{lab}/Flux_{ocean} = 11.1$

z = 2.08 mm

33.4 µmol

this study

21.7 m³ 17.4 m³

Egorov et al. (1999)

this study

Rehder et al. (2004)

30.02 Hrwall