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Abstract

While the majority of research on ultraviolet radiation (UVR) has focused on UVR-induced

changes in the productivity and abundance of single taxonomic groups, only a few field studies have

considered the influence of ambient UVR on complete assemblages, in particular of the macrobenthos.

Using cutoff filters, we followed the effects of three radiation treatments, (1) PAR+UVAR+UVBR, (2)

PAR+UVAR, (3) PAR, on macrobenthic community structure at Lüderitz, Namibia, SE Atlantic, for 3

months. Species composition, biomass, evenness, and species richness were not significantly affected

by UVR, while the diversityHVof PAR+UVAR+UVBR-exposed communities was significantly lower

compared to PAR treatments. However, this effect was only observed early in succession. Increased

abundance of the red alga Ceramium sp. coincided with vanishing UVR effects on the community,

suggesting amutedUVRmicroclimate under theCeramium canopy. Our results demonstrate that UVR

could neither decrease diversity persistently, nor affect any of the other tested community parameters.

Single UVR-tolerant species may provide protective shading for UVR-sensitive species, thus buffering

harmful UVR effects at the community level. Missing UVBR effects suggest a limited influence of

ozone depletion on shallow water macrobenthic diversity.

D 2003 Elsevier B.V. All rights reserved.

Keywords: Diversity; Macrobenthos; Namibia; Protective shading; UVR stress

1. Introduction

Current ozone-mediated increases in solar ultraviolet B radiation (UVBR) may

continue until the middle of this century (WMO, 1998; Tabazadeh et al., 2000).
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Organisms from DOC rich habitats may encounter worldwide strongest increases in

UVBR exposure, due to global warming related declines in DOC (Schindler et al., 1996).

Differential UVR sensitivities of life stages (Keller et al., 1997; Santas et al., 1998a; Lotze

and Worm, 2002) and consumer–prey interactions (Bothwell et al., 1994; Pavia et al.,

1997; McNamara and Hill, 1999; Kelly et al., 2001) strongly advocate an implication of

present UVR levels on species composition. Surprisingly, only few studies, strongly

biased towards primary producers, have tested UVR effects on communities, mainly in a

productivity context (Häder et al., 1998). In strong contrast to the many studies at the

organismal level, adverse UVR effects on communities were either transient (Bothwell et

al., 1993; Kiffney et al., 1997; Santas et al., 1997, 1998a,b), missing (DeNicola and

Hoagland, 1996; Hill et al., 1997, but see Rader and Belish, 1997), or contradictory

(Bothwell et al., 1994; Kelly et al., 2001).

Two prior studies tested UVR effects on the structure of marine epibenthic commu-

nities, both detecting transient adverse UVR effects in Greece (Reizopoulou et al., 2000)

and in Canada (Lotze et al., 2002), respectively. In Namibia, UVR and particularly UVBR

levels are exceptionally high (Cunningham and Bodeker, 2000), suggesting there may be

the strongest possible effects of ambient radiation as found anywhere in the world. The

objective of this study was whether (1) UVR decreases diversity in a Namibian epibenthic

community, (2) UVR influences species composition of the community, and (3) detri-

mental effects resulted from UVBR alone or from the entire UV regime.
2. Material and methods

2.1. Study site

A field experiment was conducted in Radford Bay, Lüderitz, Namibia (26j40VS;
15j09VE), a wave-sheltered bay on the SE Atlantic coast between 23 November 2000

and 16 February 2001. The seafloor consists of fine (<106 Am) sediments (Molloy,

1992). During the experiment, the water was turbid (Table 1) and relatively cold

(14.1F1.1 jC, meanFS.D., K. Noli, personal communication). Minimum water depth in

the bay was 2 m at spring low tide. Semi-diurnal tides ranged F1.5 m (South African

Navy Tide Tables, Cape Town) and resulting currents contributed substantially to

turbidity. Clouds and fog banks reduced UVAR and PAR equally strong by 19%
Table 1

Irradiance (W m�2) above the water surface, in 4 and 100 cm water depthF15 min around local noon and diffuse

vertical attenuation coefficients of downward irradiance (Kd) for three solar wavebands: PAR (400–700 nm),

UVAR (315–400 nm) and UVBR (280–315 nm)

n Above surface 4 cm 100 cm Kd

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

PAR 7 730.9 164.1 455.6 157.7 211.7 92.9 0.81 0.27

UVAR 9 38.1 3.6 19.4 5.1 3.7 2.1 1.89 0.67

UVBR 2 2.8 0.2 0.8 0.3 0.03 0.0 4.41 1.01

See text for details of radiation measurements. n=number of days when measurements were done.
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(personal measurements) and prevailed for less than 2% during the experiment (personal

observation). Colonization pressure, especially by algae seems to be intense, covering

new substratum within a few weeks (D. Harvey, personal communication). According to

Molloy (1992), Gracilaria gracilis is the dominant alga at Radford Bay. Ceramium sp.

is substantially lower in abundance and biomass, followed by Ulva capensis. The

subtidal sessile fauna consists of only few species (<25) with albeit high biomass

(personal observation). Two isopod species Paridotea sp. and Idotea metallica Bosc

were the only consumers encountered. An oyster farm was the only observed human

activity in the bay but it did not affect the experiment, since oysters were not fed and no

biocidal antifoulants were used (D. Harvey, personal communication). Moreover,

filtering by oysters should not have decreased settler density substantially, because

our experiment was conducted at a distance >100 m from the active area of the farm.

2.2. Experimental design and setup

Six rafts (=blocks) were fixed equidistantly to a mooring 100 m off shore, in a single 33

m long row. Each raft consisted of a Perspex plate (1100�500�5 mm). To lift rafts

approximately 1 cm above sea surface, a 20-mm-thick Styrofoam panel was glued to the

underside using silicone. On each raft, eight openings (100�100 mm) were arranged in two

rows of four, separated equidistantly by 200 mm. Four openings were randomly chosen for

the experiment described here, the remaining four openings were used for additional

experiments described elsewhere. Beneath each opening a cubic, transparent polycarbonate
Fig. 1. Cross section of a single experimental unit from one block. For clarity, stippled lines indicate positions of

fully cut out windows. Material of filter was treatment dependent. Note: Drawing not to scale.
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container (1 l volume) positioned a grey ceramic tile, representing an artificial settlement

substratum, horizontally in 40 mm water depth (Fig. 1). Using Velcro, the tile was fixed

centrally underneath an opening. A 75�75 mm window was cut in each container wall.

Cutoff filters (for specifications, see next section) above the openings could be unlatched

and flipped open for cleaning and sampling purposes. To minimise a reduction in

transmission due to salt spray or fouling, filters were cleaned with a soft sponge every

other day. In addition, landing of sea birds on the rafts was effectively prevented by a tent-

like construction of crisscrossed fishing line, without reducing solar radiation levels

significantly (personal measurements).

2.3. Treatments

In a randomised block design (n=6), we tested for UVR effects on macrobenthic

community structure. Using cutoff filters (see Fig. 2 for optical properties), three radiation

treatments were generated: (1) PAR+UVAR+UVBR (=PAB), 3-mm-thick Perspex, GS

2648 Röhm, Germany; (2) PAR+UVAR (=PA), 3-mm-thick Perspex, covered by a 0.1-

mm-thick clear polyester transparency, LTF NashuaCopy; and (3) PAR (=P), 4-mm-thick

Makrolon, long life plus 293, Röhm, Germany). As a fourth treatment, unfiltered plots

(=procedural controls) controlled for filter artifacts, e.g. reflection of sunlight, short-term

obscuration due to salt spray or fouling. At no time did filtered PAB-exposed plots
Fig. 2. Transmittance of new and used filter materials in relation to 100% transparent quartz glass. See Treatments

for details. No data beyond 450 nm are presented since relative transmittance of all tested filter materials were

constantly 90% or higher.
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significantly differ from unfiltered PAB-exposed plots. Thus the presence of filters did not

affect radiation effects on any tested response variable.

Transparencies were exchanged once a month. All filter materials were measured

before and after the experiment to test for changes in their filtering abilities. Transmittance

of used filters was significantly reduced but reduction rarely exceeded 5%, except for the

waveband 320–350 nm with transmittance reduced by almost 20% compared to unused

filters (Fig. 2). All optical properties of filters and quartz glass (type Herasil-1, Heraeus,

Germany) were measured with a spectroradiometer (DM 150 double monochromator in

Czerny–Turner arrangement, Bentham Instruments, England), using a Bentham DH3 as

the selective photo-multiplier and a 1000-W, 8-A quartz-halogen lamp (General Electrics,

United States) as a light source.

2.4. Radiation measurements
All field measurements were performed with broadband sensors (Gröbel, Germany).

Due to technical problems, solar irradiance was only recorded on the first 2 days of the

experiment (23 and 24 November 2000) and on 7 days between the 29 January and 10

February 2001. November readings were done with the UVBR (280–315 nm) and UVAR

(315–400 nm) sensors. The remaining measurements were done with the UVAR and the

PAR (400–700 nm) sensors. Prior to the experiment, irradiance was measured with all

sensors at local noon on a cloudless day above water as well as with the sensor submersed in

1 mm of distilled water to adjust for a submersion effect. Readings in the field were taken

within 30 min around local noon above the water surface, at 4 and 100 cm depth. At each

depth, measurements with all available sensors were done simultaneously over a 5-min

period.

Diffuse vertical attenuation was determined from 4 and 100 cm readings for each

waveband using the formula Kd=ln(E(100 cm)/E(4 cm))�(4 cm–100 cm)�1, where Kd is the

diffuse vertical attenuation coefficient and E is the energy of irradiance measured in 4 and

100 cm water depth.

2.5. Community sampling

Samples were taken nondestructively 21, 42, 63, 77 and 84 days after initiation of the

experiment. To avoid edge effects, no data were taken from a 10-mm-wide margin of the

75�75 mm tiles, leaving g30 cm2 of substrate to be sampled. From this area, three 1-

cm2 fields were randomly chosen and percent cover of each species encountered was

estimated, using a stereo microscope with 12� magnification. The arithmetic mean of

the three estimates for each species was determined. Only species z1% mean cover per

tile were used for computation of the Shannon index HV(=diversity HV) and Evenness J

and the cumulative species richness R was recorded. In addition, we measured wet

weight of assemblages after tiles rested vertically for 1 min to allow water to drain. The

same panels were repeatedly sampled, using a new randomisation for each sampling

date. After the experiment, accumulated material was scraped off the tiles, dried to

constant weight at 60 jC and weighed.
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2.6. Statistical analysis

Using repeated-measures ANOVA, we tested for irradiance effects on diversity HV,
evenness, species richness and wet weight with ‘‘radiation’’ (four levels, fixed) and ‘‘time’’

(five levels, repeated) as factors. Mauchley’s test for sphericity was only performed where

significant radiation effects were detected (Quinn and Keough, 2002). Data of single

sampling dates were analysed with mixed-model ANOVA to examine irradiance effects on

diversity HV, evenness, species richness, total abundance, and wet and dry weight with

‘‘radiation’’ as fixed factor (four levels). ‘‘Block’’ (six levels) was treated as a random

factor for which sums of squares were calculated, but not variance ratios. Because there

was no within block replication, we could not test for block interactions. In order to lower

the probability of making a type I error, the level of significance was corrected with the

Bonferroni method to a=0.01 (Sokal and Rohlf, 1995). Arcsine square root transformation

was performed for all species cover data which were directly analysed in the ANOVA

(Sokal and Rohlf, 1995). Prior to all analyses, homoscedasticity of data was confirmed

with Cochran’s test and where necessary data were log-transformed. Adjusted post hoc

tests were done with the Tukeys honest significant difference test (Tukeys HSD),

comparing multiple means at the a=0.05 significance level. All calculations and graphics

for ANOVA were performed with the Statisticak software package.

A Spearman rank correlation was performed between the mean of TOMS satellite data

of erythemal weighted daily UVBR exposure between two sampling dates and diversity

HV, evenness, and species richness.

Based on multi-species abundance data, Bray–Curtis similarity indices were calculated

with PRIMERk software package and used for an analysis of similarity (ANOSIM) to

evaluate differences in species composition among treatments.
3. Results

3.1. Radiation measurements

Daily erythemal weighted UVR exposure (http://toms.gsfc.nasa.gov/ery_uv/euv.html)

was 8.15F0.67 kJ m�2 (meanFS.D.), indicating relatively high and constant UVBR flux

at Namibia throughout the experiment when compared to other regions. The penetration

depth of radiation was strongly waveband dependent. On average, 62.3F14.0%

(meanFS.D.) of surface PAR, 50.1F10.5% of UVAR and 28.8F11.8% of UVBR reached

our plots in 4 cm water depth, depending on radiation flux and water turbidity. Measured

attenuation coefficients indicated relatively high water turbidity at the study site (Table 1).

3.2. Biomass and total abundance

Overall, wet weight was not significantly affected by radiation treatments throughout

the study period (Table 2). Moreover, measurements of dry weight as the final biomass of

the community were not significantly affected by radiation treatments (one-factorial

ANOVA, F(3,15)=0.99, p=0.424).

 http:\\www.toms.gsfc.nasa.gov\ery_uv\euv.html 


Table 2

Repeated-measures ANOVA

Source df Diversity Evenness Species richness Wet weight

F p F p F p F p

Radiation R 3 3.35 0.040 2.13 0.129 2.38 0.100 1.79 0.182

Residual 20

Time 4 6.86 <0.001 9.14 <0.001 1.35 0.260 6.83 <0.001

T�R 12 0.95 0.504 0.918 0.538 0.84 0.606 0.54 0.886

Residual 80

Effects of radiation over the entire study period (0–84 days) on diversity HV, evenness, species richness, and wet

weight.
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3.3. Biodiversity

A total of 10 species with a minimum mean cover z1% on single tiles was

encountered (Table 3). Diversity HV levels under the ambient irradiance regime were

initially high (21 days: 0.69F0.37, meanFS.D.), dropped as succession proceeded (42

days: 0.32F0.25), followed by a strong increase (63 days: 0.68F0.30), remaining

thereafter with almost no change (77 days: 0.71F0.18) until the end of the experiment

(84 days: 0.69F0.31). Averaged over the entire study period, diversity HV was

significantly different among radiation treatments and also among sampling dates (Table

2). Test of sphericity revealed that diversity HV data met the assumptions for repeated

measures (Huynh–Feldt e=1.0, Mauchley W=0.498, p=0.170). Among radiation treat-

ments, diversity HVwas significantly higher under P compared to PAB when analysed

over the entire study period (Table 2). A nonsignificant time�radiation interaction

indicated constancy of this pattern over time (Table 2; Fig. 3). Analysis of radiation

effects at separate sampling dates revealed significantly higher diversity HV under P
Table 3

List of species recruiting on panels

Species name Day PAB PA P

Enteromorpha intestinalis L. (Link) 21 . . .
Codium fragile (Suringar) Hariot 21 . . .
Unidentified green algal film 21 . . .
Ceramium sp. 42 . . .
Chylocladia capensis Harvey 42 o . .
Notomegabalanus algicola (Pilsbury) 42 o . o
Cladophora flagelliformis (Suhr) Kützing 42 o . .
Grateloupia filicina (J.V. Lamouroux) C. Agardh 77 . . .
Bugula neritina L. 77 o o .
Centroceras clavulatum (C. Agardh) Montagne 84 . o o

Numbers in column ‘‘day’’ indicate sampling date of first appearance of the respective species. PAB (>280 nm),

PA (>320 nm) and P (>400 nm). .=species present, o=species absent. Species were regarded as present when

coverage was z1% on plots.



Fig. 3. Mean (FS.E.) diversity HVof fouling assemblage after 21, 42, 63 and 84 days among three radiation

treatments. PAB (>290 nm, black), PA (>320 nm, hatched) and P (>400 nm, white). Treatments sharing a letter

are not significantly different.
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compared to PAB at an intermediate stage of succession (one-factorial ANOVA, 63

days: F(3,15)=5.31, p=0.01; Fig. 3). Evenness of communities exposed to ambient light

levels was high at an early stage of succession (21 days: 0.52F0.25), declined (42 days:

0.25F0.20) and subsequently increased to an almost constant level (63 days: 0.50F0.18

and 77 days: 0.59F0.11) until the end of the experiment (84 days: 0.58F0.28). An

analysis over the complete study period displayed no significant radiation effects on

evenness, but a significant change in evenness over time (Table 2). An analysis of

radiation effects on evenness for separate sampling dates did not reveal significant

differences among treatments.

Species richness was nearly constant under ambient irradiance conditions. Mean

number of species was 3.67F0.52 (S.D.) after 21 days, 3.50F1.05 after 42 days,

4.00F1.10 after 63 days, 3.83F1.60 after 77 days, and 3.50F1.05 at the end of the

experiment. We detected neither significant treatment effects on overall species richness

(Table 2), nor at single sampling dates.

Erythemal weighted above ground UVBR was neither correlated (all Spearman rank)

with diversity HV (r=�0.1, p=0.87), nor with evenness (r=0.4, p=0.51) and species

richness (r=�0.8, p=0.10).

3.4. Species composition

Despite fluctuations in the abundance of species among treatments and through

succession (Table 3), no significant differences in species composition were found among

assemblages exposed to the three radiation regimes at any sampling date (all global R

values of ANOSIM between �0.07 and 0.11).
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4. Discussion

Overall, ambient irradiance affected the macrobenthic community very little. Only the

combined impact of UVAR and UVBR had a transient detrimental effect on diversity HV
while other community parameters were left unaffected. Significant shifts in species

composition were absent, although 50% of the species recruited differentially among

treatments, of which all but one species avoided UVBR-exposed panels.

Both Ceramium and the green alga film accounted for >90% of total abundance and

were unaffected by radiation treatments. As the <1-mm-thin green algal film contributed

negligibly to biomass, Ceramium cover almost exclusively determined biomass on the

panels. Consequently, UVR effects on biomass were missing. In other studies, UVR either

enhanced biomass accrual of communities (Bothwell et al., 1993, 1994; Kelly et al., 2001),

was without effect (DeNicola and Hoagland, 1996; Hill et al., 1997) or only detrimental

during an early successional phase (Santas et al., 1998a,b; Reizopoulou et al., 2000; Lotze

et al., 2002, but see Kiffney et al., 1997). A lack of adverse UVR effects on community

biomass contrasts strongly with the vast number of deleterious UVR effects on growth and

photosynthetic efficiency of single plant species (reviewed in Franklin and Forster, 1997;

Häder et al., 1998). Thus studying the effects of UVR on single species may overestimate

the radiation impact for ecologically more realistic situations, i.e. in the context of

communities. Communities seem to have buffering capacities which result for instance

from (1) a differential sensitivity to UVBR between grazers and their prey that contributes

to increases in algal biomass in UVBR-exposed habitats (Bothwell et al., 1994) or (2) the

compensation potential of UVR-tolerant species, i.e. Ceramium in this study, to offset a

reduction in productivity of UVR intolerant species (Santas et al., 1998a).

In this study, 40% of all species did not recruit under PAB conditions, indicating that

species were not living in their optimal UVR environment and thus were not adapted to the

natural UV regime. Although such species-specific UVR sensitivities are expected to

result in changes in species composition (Cullen and Neale, 1994), we were unable to

detect them. In contrast to microbial communities, UVR effects on diversity, species

composition and structure of macrobial communities were clearly missing in other studies

(Santas et al., 1998a; de Lange et al., 1999; Reizopoulou et al., 2000; Lotze et al., 2002),

corroborating our results. The absence of shifts towards more UVR-tolerant species may

result from an unavailability of such recruits. Nevertheless, this seems unlikely to be the

case in our study because the UVR-tolerant green alga Enteromorpha intestinalis (Santas

et al., 1998a), recruited initially on UVR-exposed plots. Several explanations for the

transient nature of UV effects in our study are conceivable. First, strongest UV effects on

diversity may match with seasonal radiation fluxes. Yet a missing correlation between

UVBR levels and diversity HVrejects this possibility, at least for this part of the spectrum.

Second, communities on our panels perhaps experienced variable UVR exposure as a

result of temporal variation in turbidity. Unfortunately, we were not able to monitor

turbidity in order to determine whether or not is was negatively correlated to detrimental

UVR effects. Compared to other parts of the ocean (Wängberg et al., 1996; Franklin and

Forster, 1997), UVBR transparency of the water was low at our study site, suggesting that

the water body may functioned as an irradiance shield. Even though activation of adverse

UVR effects as a result of relaxed turbidity levels was found (Kiffney et al., 1997),
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turbidity-mediated activation and deactivation of detrimental UVR effects on community

diversity within <3 weeks seems improbable. Third, screening pigments and/or repair

mechanisms may have been induced upon UVR exposure as has been demonstrated for

marine invertebrates (Gleason and Wellington, 1995), and autotrophs (e.g. Karsten et al.,

1998). However, missing UVR effects would require a simultaneous induction of such

adaptations in all community members. This seems unlikely. Accompanying the exper-

iment, measurements of the screening and repair compound levels of all species would be

most revealing in this context but were not performed in this study. Finally, and perhaps

most convincing, protective shading of canopy-dwelling Ceramium may have muted the

UVR climate across all treatments and allowed colonization of UVR-sensitive species, e.g.

Chylocaldia capensis. Although, these UVR relaxing effects of spore migration were only

short term in the study of Underwood et al. (1999), a few days might be sufficiently long

for the spores of UV-sensitive species of macroalgae to pass through their bottleneck of

relatively high UVR susceptibility. For instance, micro- and macroscale shading of

substrate enabled macroalgae to develop under sublethal irradiance conditions to later

stages that were no longer adversely affected by high irradiance regimes (Wood, 1987;

Graham, 1996).
5. Conclusions

At this stage, it might be to early to conclude that UVR effects are negligible at the

community level. Missing UVBR effects on macrobenthic communities (Lotze et al.,

2002, this study) suggest that present ozone depletion may not ultimately cause structural

changes in shallow water benthic assemblages through an increase in UVBR. In order to

improve predictions of UVR impacts on macrobenthic communities, more information

about the UVR susceptibility of larvae and spores is required. In addition, multifactorial

experiments including other ecological factors are required to assess the relative ecological

relevance of UVR effects.

In sum, besides a transient effect on diversity, UVR did not further affect the structure

of the species-poor macrobenthic community at Radford Bay, Namibia. The importance of

a buffering capacity in assemblages, i.e. protective shading by canopy-building UVR-

tolerant species, in muting detrimental UVR effects was stressed.
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