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Stable chlorine isotopes (37Cl, 35Cl) are considered as important tracers of geochemical processes,

especially in subduction zone systems. However, high-quality chlorine isotope data are scarcely

available. Here we present a comparatively simple procedure for the precise and accurate

determination of stable chlorine isotope ratios (d37Cl) using LA-MC-ICP-MS. Chlorine was extracted

from solid samples by pyrohydrolysis. After quantitative precipitation as AgCl the dried precipitates

where analysed in a sample-standard bracketing approach using a weak laser ablation (0.3 J/cm2) for

sample evaporation. Atlantic Ocean sea salt and the sea water standard IAPSO were used as

SMOC (standard mean ocean chloride) for normalisation (d37Cl ¼ 0 &). The precision and accuracy of

the presented method was validated analysing the reference materials JB-1a and JB-2. The chlorine

isotope ratios of these standards were determined as d37ClJB-1a ¼ (�0.99 � 0.06) & and d37ClJB-2 ¼
(�0.60 � 0.03) & (errors 2SE), respectively, in accordance with published data. Applying the presented

method a total amount of less than 1 mg of chlorine was consumed during a typical measurement

including 10 ablation periods on the sample.
Introduction

The element chlorine has two stable isotopes, 37Cl (�25%) and
35Cl (�75%), respectively. Since the pioneer study of Kaufmann

et al. (1984), gas source IRMS (isotope ratio mass spectrometry)

is well established as the standard tool for chlorine isotope ratio

determination.1 In the same study SMOC (standard mean ocean

chloride) was introduced as a chlorine isotope reference based on

the tested hypothesis that the world oceans are homogeneous

with respect to chlorine isotope ratios. Thus all chlorine isotope

data are presented as d37Cl relative to SMOC using the common

d-notation:

d37Cl ¼ 1000 �
ð37Cl=35ClÞsample

ð37Cl=35ClÞSMOC

� 1000

Xiao and Zang (1992) introduced TIMS (thermal ionization

mass spectrometry) as an alternative technique for chlorine

isotope ratio measurements.2

A detailed review of the application of stable chlorine isotopes

was published by Stewart and Spivack (2004).3 Godon et al.

(2004) undertook a detailed cross calibration study comparing

the IRMS and TIMS techniques, and found a good agreement

between the methods.4 Recently most of the published chlorine

isotope data acquired using TIMS techniques were questioned

due to analytical artefacts associated with the method.5 There

is thus an urgent need for validated high-quality data. The

fractionation of chlorine isotopes in terrestrial reservoirs was

recently debated in the isotope geochemistry community,
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initiated by a study published in NATURE by Sharp et al.

(2007).5 Such a debate is, however, beyond the scope of this

study.

Here we present a new and comparatively simple procedure

(relative to IRMS and TIMS) for the precise and accurate

determination of stable chlorine isotope ratios using LA-MC-

ICP-MS, aimed at enhancing the use of chlorine isotopes as

a geochemical tool.
Experimental

Sample preparation

Halogens were extracted from sediment and rock samples using

a pyrohydrolysis technique.6,7 A platinum boat with 0.2–1 g of

powdered sample mixed with the same amount of an accelerator

(V2O5) was put into a silica combustion tube. The platinum boat

was inductively heated to 1300 �C for 30 minutes, while a mixture

of water vapour, oxygen and nitrogen was passed through the

tube. Released halogens and water vapour were cooled to

15 �C in a condenser and collected in a trapping solution

containing NaOH (0.05 N) and Na2SO3 (0.005 N). After extrac-

tion the total amount of solution recovered was around 90 g. The

quantitative yield of 98.5 � 4.2 % of the extraction method was

determined using IC (ion-chromatography) analysis of three

reference materials (RGM-1, JB-1a, JB-2). Precipitation of

chloride was achieved by adding 8 ml of a mixture containing

1 part by volume HNO3 (65%) and 6 parts by volume of 0.1 N

AgNO3 solutions to 25 ml of the extract. In order to extract

the AgCl precipitate, the sample was filtered through

a membrane filter (0.2 mm). The filtrates were analyzed for quan-

titative precipitation of chloride using HR-ICP-MS, giving

a yield of 100 � 0.3 %. Each filter, coated with AgCl, was dried

and fixed with resin (Crystalbond�) to a glass slide.
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Fractionation of Cl isotopes during the described sample

preparation is not considered as significant, due to the practically

quantitative chemical yield and the observed good agreement of

our and published results (including samples treated with

(basalts) and without pyrohydrolysis (sea water standards)).

Nevertheless, fractionation cannot be ruled out totally and will

be investigated in future studies.

One major advantage of the sample preparation is the fact,

that the samples for the following LA-MC-ICP-MS analysis

were transferred into more or less the same matrix (AgCl).

This largely reduces problems of matrix effects during the

measurement.
Fig. 1 Influence of varied nebulizer gas flow on the intensities of Cl and

ArH.
Instrumentation and data acquisition

The chlorine isotope measurements were carried out using

a ThermoFisher AXIOM MC-ICP-MS (developed and manu-

factured by VG Elemental) combined with a NewWave

UP193FX laser ablation unit. Typical operating parameters are

listed in Table 1.

A major issue for the precise and accurate determination of

chlorine isotopes via LA-MC-ICP-MS is the control of the

hydrides (36ArH+) interfering with 37Cl+. The rate of hydride

generation depends on the plasma core temperature, a parameter

that can be influenced e.g. by the gas flow. In Fig. 1 the impact of

the nebulizer gas flow (mixed with the ablation cell gas after the

latter left the cell) on the Cl and ArH intensities is shown. The Cl

and ArH signals are influenced differently by the nebulizer

gas flow. While Cl reaches its maximum intensity at about

1.0 l/min nebulizer flow, the ArH follows a more or less exponen-

tially increasing trend.

The hydride generation is additionally influenced by the

ablation procedure itself, as the ArH signal decreases during

ablation. To illustrate this in Fig. 2 an example of the signal

responses before, during and after an 8 s ablation test on the

sea salt standard is provided. When ablation starts, the ablated

material introduced into the plasma results in a decreased rate

of hydride generation.

The above stated issues demonstrate the importance of

monitoring the hydrides when measuring Cl isotopes via ICP-

MS. We have tested and evaluated two approaches to deal

with that problem:
Table 1 Instrumental parameters

AXIOM MC-ICP-MS
Cool gas 14 l/min
Auxiliary gas 1.8 l/min
Nebulizer gas 0.8–0.95 l/min
RF power 1300 W
Reflected power 2 W
Ion energy 4968 V
Cones R.A. Chilton RAC19/RAC705
Resolution 500res
UP193solid state / UP193FX
Ablation cell gas 0.7 l/min (He)
Spot size 150 mm
Fluency 0.3 J/cm2

Repetition rate 30 Hz
Scan mode Line scan with 50 mm/s scan

speed, 1250 mm length

Fig. 2 Responses of the Cl and ArH signals to the introduction of

ablated material into the plasma.
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a) using a reduced nebulizer gas flow, adjusted to provide a Cl

intensity of about 50 % of the maximum value. In this case the

ArH signal is reduced by about two orders of magnitude.

b) using a nebulizer gas flow which produces about 3 V on

amu41. This provides higher Cl intensities and the amu41 signal

is used to correct the amu37, applying a 36Ar/40Ar abundance

ratio of 0.003.

The results of both approaches are presented and compared in

the next chapter.
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A second, but minor issue was the determination of the

appropriate laser fluency. With a high value we found strong

contributions by ablating parts of the filter and resin, respectively,

and, thus, reduced it below the ablation threshold of both

materials. With a laser fluency of about 0.3 J/cm2 we observed

no ablation of either the filter or the resin. The AgCl filtrate

was nevertheless decomposed. We consider this filtrate decompo-

sition to be more an evaporation than a clean ablation, but the

result was anyway a stable and reproducible chlorine signal.

To provide a maximal chlorine signal we chose a 150 mm spot

size, the largest one available on our laser ablation system, and

a repetition rate of 30 Hz. Analytical data were acquired using

line scans of 1250 mm length applying a scan speed of 50 mm/s.

After ablating for 25 s the laser paused for 90 s. Applying a

standard-sample-standard bracketing approach, we ran

measurements alternating between the SMOC standard and

the sample, repeating ablations of each material at least 10 times.

Sample exchange (ablation cell gas bypassed, cell opened,

sample holder exchange, cell closed, cell purged, cell gas back

online) took about 10 minutes. After that period the plasma

was in a similar condition as prior to the exchange procedure.

The latter could be controlled via the 40ArH+ level.

One sample can, thus, be analysed relative to a standard

within one hour.
Data evaluation and results

The described method was tested using the two basaltic reference

materials JB-1a and JB-2. North Atlantic sea salt and sea water

reference material IAPSO were used as SMOC standards for

normalisation.

Stable chlorine isotope ratios 37Cl/35Cl were calculated from

the slope of the best linear fits for individual data sets using

the simultaneous dynamic responses of the amu37 and amu35
Fig. 3 Simultaneous dynamic responses of the acquired signals (a) and the

provided in brackets.
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signals (Fig. 3). In Fig. 3a the responses for amu35, amu37

and amu41 prior to, during and after ablation are plotted.

Additionally the resulting 37Cl signal after correcting the

amu37 for the hydrides using 0.003*amu41 is provided. In

Fig. 3b it can be seen, how perfectly linear the amu37 and

amu35 signals evolve. Starting from the baseline both signals

parallely increase during ablation and end at the baseline again

after ablation. The slope of the best linear fit is used as the

isotope ratio. It is visible, that the hydride-corrected 37Cl/35Cl

ratio is typically higher than the raw ratio, because the ArH

interference contributes a lower background during ablation

and, thus, the correction is smaller at the upper end of the

amu37/amu35 trend line. This leads to the at first look paradox

effect that the corrected ratio is higher than the uncorrected one.

It can also be seen that the correlation improves when

applying the correction (indicated by the closer to 1 R2 value).

A more detailed description of the merits of the applied data

reduction will be presented elsewhere.

d37Cl relative to SMOC was calculated as the mean of the

individual standard-bracketed sample results (typically 10 repeti-

tions) using the above mentioned slope values as Cl isotope

ratios.

In Fig. 4 a comparison of the data calculated with and without

the amu41 correction using method b) is displayed. Here we

repeatedly measured the SMOC standard. Applying the

correction reduces the scatter of the data by a factor of 12.

The results and published reference data are presented in

Table 2. All reported results were true replicates, including

individually prepared standards and samples. The d37Cl values

of the basaltic reference materials determined in this study are

in accordance with published data.8 These authors quoted the

reproducibility of their method as 0.12 & (SD). A comparable

internal precision (about 0.1 & (SD)) is achieved for the

individual standard-bracketed samples applying method b).
transfer into isotope ratios (b). The 1s uncertainties of the slopes are
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Fig. 4 Impact of the use of ArH correction on the scatter of determined
37Cl/35Cl ratios.

Table 2 LA-ICP-MS results of the basaltic reference materials JB-1a
and JB-2, respectively, relative to SMOC (Atlantic Ocean sea salt,
IAPSO sea water standard). Errors for data from this study are given
as 2SEM (n ¼ 10). Reference data (Bonifacie et al., 2007) are provided
as the mean of two data points each (individual data points in brackets)8

Sample
d37Cl relative to SMOC
in & this work

d37Cl relative to SMOC
in & Bonifacie et al., 2007

JB-1a �0.98 � 0.20a �0.96 (�0.90, �1.01)
�0.99 � 0.06b

JB-2 �0.50 � 0.14a �0.56 (�0.50, �0,62)
�0.59 � 0.04b

�0.62 � 0.04b

a Refers to data using reduced hydride tuning. b Refers to data using the
hydride (amu41) correction, respectively.
For method a) the latter is about 3 times higher. Note, each

sample measurement consists typically of 10 repeated

standard-bracketed sample ablations.

Both methods are able to produce accurate d37Cl results but

method b) is definitely the more precise one. The comparison

of both method’s results indicate that for high precision d37Cl

data the correction of 36ArH+ using simultaneously collected
40ArH+ data is indispensable.

The precision is mostly limited by the amount of Cl in the

sample and the resulting Cl signal intensity. For accurate results,

so far 25 mg of the pyrohydrolytically extracted chlorine were

prepared for the precipitation. Considering the fact, that we
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used for the measurement (10 ablation lines, 1250 mm length,

150 mm spot size) just 2.5 % of the total precipitate (filter area

�80 mm2, ablated area � 2 mm2) the analysis consumed less

than 1 mg Cl yielding a d37Cl uncertainty of 0.06 & (2SE). The

latter demonstrates the great potential of the described method

to produce high quality Cl data using smaller or more depleted

samples while concentrating the precipitate on a smaller filter.

Our reference material results underline that the method

presented here is able to produce accurate and precise d37Cl

data. Providing a sufficient amount of Cl on the filter d37Cl

data can be determined with a precision of about 0.05 & (2SE)

within one hour of measurement time.
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