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Abstract The feeding selectivity and the growth and

reproductive success of the copepod Acartia tonsa have

been studied in mesocosms fertilized at different Si:N

ratios (0–1.75:1) and, therefore, at different compositions

of the phytoplankton communities. Phytoplankton com-

position showed a strong response to nutrient ratios, with

diatoms comprising [90% at Si:N ratios [1:1 of total

biomass as opposed to \20% at the lowest ratio. A. tonsa

strongly preferred feeding on motile prey (flagellates and

ciliates) to feeding on diatoms. Nevertheless, diatoms

comprised a substantial part of the diet at the highest Si:N

ratios. A. tonsa egg production and the final (after 4 weeks)

abundance of adults and copepodites showed no response

to Si:N ratios while nauplii production slightly increased

with Si:N ratios. It is concluded that the frequently reported

deleterious effect of diatoms on copepod reproduction is

rather unusual when copepods are confronted with a nat-

urally diverse phytoplankton assemblage instead of clonal

cultures in the laboratory.
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Introduction

Since the mid 1990s, the community of marine plankton

ecologists has been upset by the ‘‘diatom–copepod

paradox’’ (Ban et al. 1997). Originally, diatoms and

copepods were considered to be the perfect planktonic

analogues of grass and ungulates in savannah ecosystems,

diatoms being the most important primary producers and

copepods the most important herbivores. As early as ca.

25 years ago, it became clear that protozoan grazing on

picoplankton (\2 lm) can contribute more to the C flux

between the first and the second trophic level than the

‘‘grazing food chain’’ (diatoms–copepods), particularly in

oligotrophic oceans (Calbet and Landry 2004). Neverthe-

less, diatom mass growth in areas of nutrient-rich

upwelling and during the spring bloom of temperate and

cold seas has still been considered to form the basis of the

grazing food chain in the oceans (Legendre 1990) and thus

the primary avenue of energy transfer from primary pro-

ducers to fish production. This image has changed since the

mid 1990s with an increasing number of culture studies

demonstrating a detrimental impact of diatoms on embry-

onic development of copepods (Ianora et al. 2004; Poulet

et al. 1994), including species of the genus Acartia (Miralto

et al. 2003). While some laboratory studies have shown

that diatoms can also suppress egg production and hatching

rates of copepods (Ianora et al. 1995, 2003), others show

that copepod egg production can be increased or unaffected

depending on the diatom species in the diet (Poulet et al.

2006). Field studies have shown both adverse effects of

diatoms (Miralto et al. 1999; Pierson et al. 2005) and

favourable effects (Irigoien et al. 2002). Even grazing

selectivity in favour of diatoms has been demonstrated in

copepods under natural conditions (Meyer-Harms et al.

1999; Irigoien et al. 2000) while other studies have

reported a feeding preference for Protozoa and flagellates

(Nejstgaard et al. 1997). An overview of the literature

published up until 3 years ago can be found in Paffenhöfer

et al. (2005). The increasing number of studies has lead to
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an increasingly idiosyncratic picture, i.e. species (diatom

and copepod spp.) and context dependence of the

conclusions.

From an ecosystem perspective, a more holistic

approach is necessary. If deleterious diatom effects are

species dependent, behavioural flexibility of copepods

(switching food selection) and species replacements

between copepods might retain food chain transfer effi-

ciency fully or to some extent, even if some diatoms are

toxic for some copepods. While the question ‘‘are some

diatoms toxic for some copepods?’’ has to be answered by

a clear ‘‘yes’’, it is still an open question whether the usual

species mix in natural diatom blooms would be harmful to

copepods. This question has two sub-questions: does the

effect depend on diatoms in the diet or on diatoms in the

environment, i.e. toxic substances released into the water?

As a first step towards a more holistic experimentation, I

manipulated phytoplankton composition by adding nutri-

ents at different Si:N and Si:P ratios to indoor mesocosms.

These mesocosms were stocked with non-feeding nauplius

II larvae of the copepod Acartia tonsa, to follow copepod

food selection, ontogeny and reproduction in response to

different compositions of the microbial plankton commu-

nity. High Si:N and Si:P ratios have frequently been

reported to favour diatom dominance in the plankton

community (Egge and Jacobsen 1997; Sommer 1994,

1998; Sommer et al. 2002, 2004, 2005). A. tonsa has been

chosen, first because it is an important copepod species in

many temperate and subtropical coastal marine environ-

ments and is also widely used in aquaculture (Knuckey

et al. 2005). The second reason for the choice was even

more important: adults and copepodites of Acartia have

been shown to be able to switch between suspension

feeding and ambush feeding sensu Tiselius and Jonsson

(1990), the former being more suitable for immotile prey,

e.g. diatoms, and the latter for motile prey, e.g. ciliates and

flagellates (Saiz and Kiørboe 1995; Kiørboe et al. 1996;

Takahashi and Tiselius 2005).

Materials and methods

The experiments were performed in 80-cm-deep, 300-l

mesocosms in temperature-controlled rooms at 18�C and a

14:10-h light:dark cycle. Surface irradiance during the light

phase was 200 lmol quanta m-2 s-1 photosynthetic active

radiation (PAR). Assuming a carbon–chlorophyll conver-

sion ratio of 50:1 and a chlorophyll specific attenuation

coefficient of 0.015 (lg chlorophyll l-1)-1 (Tilzer 1983),

average mixed layer light intensity (calculated after Riley

1957) in the 80-cm-deep mesocosms would not have

dropped to \60 lmol quanta m-2 s-1 PAR even at the

highest biomass levels attained in the experiment. On 30

August 2006, eight mesocosms were filled with natural

plankton suspension from the Kiel Fjord (Western Baltic

Sea). Mesozooplankton was removed by a 150-lm mesh-

size screen. In order to produce a high phytoplankton

biomass and to avoid exhaustion of phytoplankton by

zooplankton grazing early in the experiment, rather high

nutrient additions were chosen: 5 lmol PO4
3- l-1,

45 NO3
- lmol l-1. The added Si:N ratios were 0, 0.25,

0.5, 0.75, 1.0, 1.25, 1.5, and 1.75:1. Dissolved background

concentrations were negligible. A. tonsa nauplii of the pre-

feeding stage NII were added at target densities of

30 individuals l-1 from stock cultures. The N:P ratio was

kept close to the transition ratio from N to P limitation for

average phytoplankton in order to promote coexistence of

N- and P-limited phytoplankton (Sommer 1998).

The content of the mesocosms was gently stirred by a

propeller in order to assure a homogeneous distribution of

the plankton. In previous experiments (Sommer et al. 2007)

this form of mixing had been found to be harmless to phyto-

and zooplankton. The experiments lasted for 4 weeks. Prior

to sampling, the mesocosms were mixed by a paddle to

assure re-suspension of phytoplankton which could have

settled to the bottom. Moreover, the bottom of the mesocosm

was sampled for sedimented algae at the end of the experi-

ment. Samples of 250 ml for phytoplankton, Protozoa,

A. tonsa eggs and nauplii were taken weekly and fixed with

Lugol’s iodine. Phytoplankton and Protozoa were counted

according to Utermöhl’s (1958) inverted microscope

method. If abundant enough, at least 100 individuals of each

dominant species were counted, thus giving 95% confidence

limits of ca. ±20%. Twenty cells of each species were

measured microscopically to calculate cell volumes after

approximation to standard geometric figures (Hillebrand

et al. 1999) and converted to C according the Menden-Deuer

and Lessard (2000). A. tonsa adults and copepodites were

sampled weekly by a plankton net (100-lm mesh size, 10-l

sample volume) and counted under a dissecting microscope.

On day 21, ten individuals of each copepodite stage and

adult females from each mesocosm were examined semi-

quantitatively for remains of diatom frustules in their guts.

Abundance of diatom remains was classified by the scores 0

(none), 1 (few), 2 (medium), 3 (many), and 4 (full). A more

exact quantification was impossible because most diatom

frustules in the gut were crushed.

Classification of protists as ‘‘edible’’ and ‘‘inedible’’ for

A. tonsa was based on the size limit in Sommer et al. 2005

and Sommer and Sommer (2006), i.e. protists [500-lm3

particle size were considered edible. This simple size limit

was applicable because the scarcely edible armoured

dinoflagellates were negligible.

Grazing rates of Acartia on phytoplankton and Protozoa

were measured from day 14 to 21 and from day 21 to 28.

Dialysis tubes were filled with plankton suspension from
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each mesocosms without Acartia. The tubes were then

incubated at mid-depth in the mesocosms. The tubes

extended from 15 to 65 cm depth. Three replicate dialysis

tubes were incubated in each mesocosm. Within the tubes,

the algae and Protozoa received the same growth condi-

tions (light, temperature, nutrients) as in the mesocosms

without being subject to grazing by Acartia. The popula-

tion grazing rates (G; in day-1) could thus be calculated by

the difference between the net growth rate in the meso-

cosms (rm) and the net growth rate in the tubes

(rt in day-1, mean of three replicate tubes per mesocosms).

G ¼ rt � rm

Growth rates (r) were calculated from cell numbers (N)

at the beginning (t1) and the end (t2) of the incubation:

r ¼ logeN2 � logeN1ð Þ= t2 � t1ð Þ

The analysis of growth and grazing rates was restricted to

three species, each representing one group:

Thalassionema nitzschioides (diatoms), Rhodomonas salina

(phytoflagellates), and oligotrichous ciliates of the medium

size class (20–30 lm). The choice of R. salina (on average

96% of edible flagellate biomass) and of the medium-sized

oligotrichs (on average 76% of ciliates) was based on

biomass dominance in their functional groups.

T. nitzschioides was not dominant among diatoms (on

average 8% of diatom biomass), but was the diatom

species with the highest cell number and the only diatom

species present in reliably countable numbers in all

mesocosms during the grazing incubations. The method

assumes that rt is not influenced by second-order effects of

copepod removal, e.g. enhanced grazing rates of ciliates in

the absence of copepod grazing. This assumption is justified

by previous studies (Sommer et al. 2005; Sommer and

Sommer 2006), which had demonstrated a complete absence

of overlap in the feeding size spectra of summer ciliate

assemblages and copepods, i.e. near zero ciliate grazing on

the phytoplankton large enough for copepods. After

termination of the experiments, samples were taken from

the bottom of the mesocosms to see whether sinking of

pelagic algae could have biased the estimates of loss rates.

The biofilm at the bottom of the mesocosms was extremely

patchy and contained almost exclusively benthic diatoms

(mainly Melosira nummuloides, Tabularia fasciculata,

Achnanthes brevipes) but areal densities of planktonic

algae on the bottom were negligible. Therefore, no

correction of phytoplankton loss rates for sinking losses

was needed.

Community ingestion rates (I) on edible diatoms, cili-

ates, and edible flagellates were calculated by assuming

grazing rates on Thalassionema to be representative of

those for edible diatoms, grazing rates on the 25-lm oli-

gotrichs to be representative of those for ciliates, and

grazing rates on Rhodomonas to be representative of those

for edible flagellates:

Ii ¼ Gi � Bi

where i is the index for the different food categories and B

biomass expressed in C (geometric mean of start and end

value).

Net production rates of copepod eggs were estimated by

calculating the area under the egg or nauplii abundance

versus time curve and dividing this area by the develop-

ment times of eggs and nauplii. These are primarily

temperature dependent (Mauchlin 1998) and could be

calculated from equations in the literature for 18�C:

1.6 day for egg development (McLaren 1966; McLaren

et al. 1969 for A. tonsa) and 7.15 day for naupliar devel-

opment (McLaren 1978 for the congeneric species

Acartia clausii). However, the calculated rates are just net

production rates, not gross production rates because of

unmeasured mortality. In the case of eggs, also cannibalism

by adults has to be considered.

Results

Protist (phytoplankton plus Protozoa) biomass in the

mesocosms increased rapidly and reached a peak after 2–

3 weeks (shown for Si:N = 0.1 and 1.75:1 in Fig. 1).

Thereafter, biomass declined. Maximal biomass levels

were quite similar between treatments (5.9–9 mg C l-1)

without any trend across the Si:N gradient. While initially

edible protists dominated, the share of inedible ones

increased towards the end of the experiment. As expected,

the relative contribution of diatoms to protist biomass

increased with Si:N. This applied both to edible protists

(shown for the averages over the entire experiment in

Fig. 2) and to the entire protist community (not shown).

Pigmented flagellates contributed far more to total biomass

than ciliates, unpigmented flagellates were marginal.

All Acartia stages had remains of diatoms in their guts

except for some of the individuals from the mesocosms

with the lowest Si:N ratios. A plot of gut fullness (median

vales for each stage and mesocosm) shows two patterns

(Fig. 3): gut fullness increases with diatom biomass in a

saturating way; at the same level of diatom biomass, the

younger stages (CI–CIII) have fuller guts than the older

ones (CIV–adults).

Calculated grazing rates are population grazing rates,

i.e. the composite result of different life cycle stages with

different rates and food preferences. Therefore, it was

impossible to calculate grazing rates per copepod individ-

ual. The calculated grazing rates of the Acartia population

on the diatom Thalassionema nitzschioides were low and

ranged from ca. 0.04 to 0.065 day-1 without any tendency
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to change with diatom biomass (Fig. 4a). Conversely, the

grazing rates on the phytoflagellate Rhodomonas salina

(Fig. 4b) and on medium-sized oligotrichous ciliates

(Fig. 4c) were low (around 0.1 day-1) at high biomass

levels of motile prey and high (up to 0.55 day-1) at low

biomass levels, indicating increased clearance rates at low

biomass of motile prey. Grazing rates on the ciliates and on

Rhodomonas did not differ significantly (paired t-test,

t = -1.565; P = 0.1385). Therefore, ingestion rates on

ciliates and edible flagellates were lumped and related to

the biomass of motile, edible prey. A non-linear regression

analysis provided a satisfactory fit of a Michaelis–Menten-

type saturation model both for the two grazing experiments

individually and for the pooled data from both experiments

(Table 1).

While the three prey types analysed in the grazing

experiments were not the only representatives of their

functional group in the plankton of the mesocosms, it is

still possible to calculate at least a tentative estimate of diet

composition. For that purpose, I assumed that the grazing

rates on edible diatoms equalled the ones on T. nitzschio-

ides, the grazing rates on edible flagellates the ones on

Rhodomonas salina, and the grazing rates on ciliates the

ones on the oligotrichous ciliates. This assumption seems a

plausible approximation, because a previous copepod

grazing experiment (Sommer et al. 2005) had shown neg-

ligible differences between the grazing rates on food items

within the edible food categories. Ingestion rates (I) for the

different food categories were calculated by multiplying

the biomass (geometric mean of incubation interval) of the

different functional groups with the grazing rates on their

‘‘representatives’’ by the entire Acartia population.

Because of the similarity of Acartia’s response to Rhodo-

monas salina and oligotrichous ciliates the ingestion rates

were pooled. Ingestion ratios (IRs) of motile prey (Imoti-

le:Itotal) were compared to the relative contribution of

motile, edible protists to total edible biomass in the envi-

ronment (‘‘biomass ratio’’). A regression analysis

according to the model y = axb yielded almost identical

results for both grazing experiments and the pooled data:
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Experiment 1: IR = 0.95BR051(±0.03), r2 = 0.977,

P \ 0.0001

Experiment 2: IR = 1.08BR0.49(±0.04), r2 = 0.957,

P \ 0.0001

Pooled data: IR = 1.01BR0.50(±0.03), r2 = 0.954,

P \ 0.0001

The plot in Fig. 5 shows that only at a very high dom-

inance of motile prey are ingestion ratios similar to

biomass ratios in the environment. At 10% motile prey in

the environment, motile prey would make up ca. 30% of

the diet, and at 1% in the environment still ca. 10% of the

diet. There is no indication for switching in favour of a

more abundant prey, which would show up as a sigmoid

pattern in a linear plot of IR on biomass ratio.

Initially, nauplii numbers began to decrease because of

development into copepodites. New eggs began to appear

in the mesocosm with Si:N = 0–0.5:1 on day 7, while at

the higher Si:N ratios the first eggs appeared on day 14

(Fig. 6). Subsequently, there was an increase of nauplii

reaching abundance maxima between 592 and 988 l-1 in

the different mesocosms. Adult plus copepodite numbers

increased rather steadily and reached maximal levels

between 59 and 114 l-1 at the end of the experiment in all

mesocosms. There was no relationship between the final

abundance and Si:N ratios or edible diatom biomass.

Similarly, egg production rates were unrelated to Si:N

ratios, while nauplii production rates showed a weak, but

significant, increasing trend with Si:N ratios and with the

share of diatoms in the diet, calculated as mean for both

grazing experiments (Fig. 7):

Pn ¼ 130:7þ 104:0 Si : N; r2 ¼ 0:668; P ¼ 0:0132

Pn ¼ 103:5� þ 213 IRdiat; r2 ¼ 0:816; P ¼ 0:002

where Pn is the nauplii production rate (in N l-1 day-1)

and IRdiatoms the ratio Idiatoms/Itotal.
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Table 1 Nonlinear regression analysis according to the model

I = (Imax�F)/(F ? k) of population ingestion rates (I) on motile prey

on biomass of motile prey

Experiment Imax

(lg C l-1 day-1) ± SE

k
(lg C l-1) ± SE

r2 n

1 427 ± 45.8 1,584 ± 470 0.956 8

2 492 ± 100 1,992 ± 784 0.973 8

Pooled

data

431 ± 32.7 1,577 ± 299 0.968 16
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Fig. 5 Ingestion ratio versus biomass ratio of motile prey during days

14–21 (open circle) and days 21–28 (filled circle); regression line

(continuous thick line), 95% confidence limits for pooled data set

(continuous thin line)
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Discussion

A. tonsa has been reported repeatedly to be able to shift

between suspension and ambush feeding and thus between

feeding on diatoms and motile protists (Saiz and Kiørboe

1995; Kiørboe et al. 1996; Takahashi and Tiselius 2005).

The plot in Fig. 5 shows a clear behavioural preference for

feeding on motile prey and no switching in favour of a

relatively more common prey type at a certain dia-

tom:motile prey ratio. Instead, it is obvious that the over-

representation of motile prey in the diet becomes bigger the

smaller its share is in the environment.

The composite nature of feeding by a mixture of dif-

ferent developmental stages is also the main reason why
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the half-saturation parameters in Table 1 cannot be com-

pared to functional response curves in the literature based

on one food type—one developmental stage (usually adult)

experiments. The dependence of ingestion rates on food

concentrations is not always analysed using a Michaelis–

Menten model, but from the graphical representations it is

easy to estimate the food concentration at which 50% of

Imax are reached. The literature values of the half-saturation

constant range form ca. 200 to 600 lg C l-1 (Frangoulos

et al. 2000; Besiktepe and Dam 2002; Thor et al. 2002;

Dam and Colin 2005; Maneiro et al. 2005; Tirelli and

Mayzaud 2005; Colin and Dam 2007; Henriksen et al.

2007) and are thus 2.5–7.5 times smaller than the half-

saturation constants in Table 1.

The flat response of diatom grazing rates to diatom

concentrations implies a linear response of ingestions rates

which clearly contradicts any usual functional response

model at food concentrations above the incipient limiting

level. It may be suspected that a density-independent loss

factor applying to the mesocosms but not to the dialysis

tubes could have caused the erroneous calculation of a

positive grazing rate on diatoms. However, sedimentation

as the only plausible density-independent loss factor can be

excluded, Moreover, the gut content analysis indicated

feeding on diatoms and fuller guts at higher ambient dia-

tom concentrations. Therefore, diatom feeding is taken as a

fact.

In spite of the clear behavioural preference for motile

prey, dominance of diatoms in the diet at the higher Si:N

ratios did not harm growth and reproduction of A. tonsa.

Egg production rates and the final number of copepodites/

adults were not affected by Si:N ratios or diatom domi-

nance and the production rate of nauplii showed even a

slight positive response. Thus, there was neither a toxic

effect of diatoms in the environment nor of diatoms in the

diet on the growth and reproduction of A. tonsa. On the

other hand, nutritional deficiency, e.g. lack of essential

polyunsaturated fatty acids (Jónasdottir and Kiørboe 1996;

Jonasdottir et al. 2002; Koski and Klein Breteler 2003)

cannot be ruled out. However, even 90% diatoms in the

diet did not lead to a reduced reproduction of A. tonsa.

This means that 10% flagellates and ciliates in the diet

must have sufficed to compensate for any nutritional

deficiency of diatoms. This seems to deviate from much

of the recent literature on the diatom–copepod paradox,

but some specific differences to the typical one phyto-

plankton clone—one copepod experiments have to be

kept in mind.

The diatom assemblage in my experiments was rather

diverse, with seven species sufficiently abundant to warrant

counting, plus numerous rare species which could be

neglected during counting. In addition, it seems probable

that there was substantial clonal diversity within species

because of the large inoculum size (300-l natural plankton

suspension).

Even at the highest diatom dominance, A. tonsa had the

chance to ingest 10% non-diatom food. This value seems

low at first sight because it implies a diet consisting of 90%

diatoms. Nevertheless, it might be important during the

critical phase of egg production. Ianora et al. (2003) have

shown that the adverse effects of toxic diatoms on egg

production and hatching rates can be reversed within a few

days if diatoms are replaced by flagellates as food. Thus,

even toxic diatoms can be a reasonable energy source for

most of the somatic growth of copepods if they are

replaced by other food during a short period at the right

time. While critically important for females during repro-

duction, non-diatom food can be a minor component of a

copepod’s lifetime diet.

The literature on diatom–copepod interactions has

become increasingly detailed. Meanwhile aldehydes and

fatty acid hydroperoxides have been identified as the toxic

compounds (Ianora et al. 2004; Wichard et al. 2005; Fon-

tana et al. 2007) and it has been shown that these

compounds are produced by mechanical cell rupture (Po-

hnert 2000; Fontana et al. 2007). The toxic effect has been

identified as being particularly harmful to embryogenesis

and thus to reduce the hatching success of eggs (Chaudron

et al. 1996; Poulet et al. 2006). In other laboratory studies,

no toxic effect was found, but under some environmental

conditions, poor food quality, e.g. a low content of highly

polyunsaturated fatty acid, could explain reduced hatching

success (Jónasdottir and Kiørboe 1996; Jonasdottir et al.

2002; Koski and Klein Breteler 2003). Also the extent of

diatom nutrient limitation has been found to be decisive for

their nutritional value (Jones et al. 2002), sometimes

mediated by unfavourable fatty acid profiles under nutrient

limitation (Klein Breteler et al. 2005). Field studies have

sometimes supported the idea of negative diatom effects on

copepods (Miralto et al. 1999, 2003; Pierson et al. 2005)

while other studies have reported successful copepod

growth and reproduction during dense diatom blooms (Ir-

igoien et al. 2000, 2005), including occasional feeding

selectivity in favour of diatoms (Irigoien et al. 2003;

Meyer-Harms et al. 1999). Obviously, effects are highly

species (diatoms and copepods) and context dependent.

The seven diatoms species abundant enough for reliable

counts (Cerataulina pelagica, Chaetoceros curvisetus,

Dactylosolen fragilissimus, Nitzschia acicularis, Pseudo-

nitzschia cf. pungens, Rhizosolenia setigera, and T.

nitzschioides) have so far not been reported harmful for

A. tonsa or other Acartia spp. However, three of the spe-

cies have been reported to be toxic for other copepods:

Chaetoceros curvisetus for Temora stylifera (Koski et al.

2008), N. acicularis for Calanus chilensis (Poulet et al.

2007b), and R. setigera for Calanus helgolandicus (Poulet
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et al. 2007a). Other species of Chaetoceros have been

found toxic for A. tonsa and other Acartia spp. (Ban et al.

1997; Jónasdottir and Kiørboe 1996; Vargas et al. 2006). A

survey of the occurrence of polyunsaturated aldehydes

(PUAs), the class of substances most commonly held

responsible for diatom toxicity, in 71 diatom species

(Wichard et al. 2005) did not list any of the species in the

mesocosms as containing PUAs, but several other

Chaetoceros spp.

The increasing level of detail and biochemical resolution

in the laboratory has provided interesting insights into

chemical ecology, but from an ecosystem perspective the

big questions remain open: do diatoms interrupt the effi-

ciency of energy and matter transfer from primary

production to copepod production, and thereby indirectly to

fish production? If this is the case, why is the ratio fish

production:primary production higher in diatom-dominated

upwelling systems (ca. 1%) than in oligotrohic systems

dominated by nano- and picophytoplankton (ca. 0.4%)

(Iverson 1990; Sommer et al. 2002)? While it is premature

to give a final answer, some speculation might be possible:

the deleterious diatom effects on copepods might be com-

parable to the effects of toxic plants on herbivores in

grassland ecosystems, i.e. might be a problem locally and

under specific circumstance, but unimportant for large-scale

budgets. The in situ effect should be smaller than antici-

pated from single-species laboratory experiments because:

1. Even under high diatom natural dominance there are

always alternative food sources.

2. Natural diatom assemblages are usually mixed, which

increases the probability of non-toxic species or

strains.

3. Natural copepod assemblages are usually mixed,

which increases the probability of resistant species.

4. Even if diatoms are toxic, they have to be avoided by

copepods only during a relatively short part of their

life cycle (Ianora et al. 2003).
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