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Six active methane seeps and one cold-water reef that may represent a relict seep were mapped at Omakere
Ridge on New Zealand's Hikurangi Margin during cruises SO191 and TAN0616. Hydroacoustic flares,
interpreted to be bubbles of methane rising through the water column were identified in the area. The seep
sites and the cold-water reef were characterised by regions of high backscatter intensity on sidescan sonar
records, or moderate backscatter intensity where the seep was located directly below the path of the
sidescan towfish. The majority of sites appear as elevated features (2–4 m) in multibeam swath data. Gas
blanking and acoustic turbidity were observed in sub-bottom profiles through the sites. A seismic section
across two of the sites (Bear's Paw and LM-9) shows a BSR suggesting the presence of gas hydrate as well as
spots of high amplitudes underneath and above the BSR indicating free gas. All sites were ground truthed
with underwater video observations, which showed the acoustic features to represent authigenic carbonate
rock structures. Live chemosynthetic biotic assemblages, including siboglinid tube worms, vesicomyid clams,
bathymodiolin mussels, and bacterial mats, were observed at the seeps. Cold-water corals were the most
conspicuous biota of the cold-water reef but widespread vesicomyid clam shells indicated past seep activity
at all sites. The correlation between strong backscatter features in sidescan sonar images and seep-related
seabed features is a powerful tool for seep exploration, but differentiating the acoustic features as either
modern or relict seeps requires judicial analysis and is most effective when supported by visual observations.
Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction
Seabed fluid flow is of fundamental importance to the marine
environment and consequently influences the working of our planet
(Judd and Hovland, 2007). It can occur in a variety of forms, and is
widespread and dynamic. Although seabed fluid flow is essentially a
geological process, it affects marine ecology, ocean chemistry, and the
composition of the atmosphere (Kvenvolden and Rogers, 2005).
Among the most widely documented seeping fluids are thermogenic
hydrocarbons, in the form of natural gas, crude oil, and bitumens
(Wilson et al., 1974; Judd and Hovland, 2007). Therefore, seeps can
influence atmospheric concentrations of methane, particularly when
the seeps occur in shallow water (b100 m) where gas bubbles can
survive a journey to the sea surface without dissolving (Kvenvolden
and Rogers, 2005; Schmale et al., 2005; McGinnis et al., 2006).
Significant amounts of methane are also sequestered within gas
hydrates, the global volumes of which vary with addition and
.
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withdrawal of free gas over geological time (Kvenvolden, 1988).
Additionally, seabed fluid flow influences the composition of sediment
pore water and the overlying water column, adding nutrients and
substrates that can be oxidised by microbes and thus contributing to
biological productivity (Kennicut et al., 1985).

Understanding the dynamics and distribution of seabed fluid flow,
particularly of methane, is critical given the widespread, influential
nature of the process. Marine geohazards may occur in association
with shallow gas, including slope failures and drilling hazards
(Hovland and Gudmestad, 2001). The energy potential of gas hydrates
has encouraged significant research programmes (Max, 2000), and
the oil industry makes use of seeps in petroleum exploration (Abrams,
2005). A more recent concern to marine science is the vulnerability of
benthic ecosystems associated with methane seepage (Judd and
Hovland, 2007).

Among the most effective tools for characterising seep sites are
multibeam and sidescan sonar, which map the morphology and
acoustic backscatter of the seafloor, detecting hardness contrasts
between unconsolidated sediments and methane-derived authigenic
carbonates, chemosynthetic ‘cold seep’ communities, water column
hts reserved.
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bubbles, or gas hydrates in the sediment (Orange et al., 2002;
Niemann et al., 2005; Holland et al., 2006; Klaucke et al., 2006; Rollet
et al., 2006; Naudts et al., 2008).

In this paper, we describe five seep sites and one cold-water reef
with associated seepage on the mid-slope Omakere Ridge (Fig. 1) off
Hawke Bay, New Zealand. Four of the seep sites (Kea, Kaka, Kakapo,
and Bear's Paw) and the reef (Moa) are previously undocumented
seabed features which were discovered at the southern end of
Omakere Ridge where it bifurcates into parallel ridgelines. All of these
sites, plus Lewis and Marshall's (1996) LM-9 site, are located towards
the crests of the two ridgelines in approximately 1100–1170 m water
depth. The data presented here were acquired during the course of
two marine surveys: firstly the RENEWZ-1 NOAA-NIWA New Zeeps
voyage (TAN0616) in November 2006, and then an IFM-GEOMAR
survey aboard the RV SONNE (SO191) between January and March
2007. In this study, the seepage sites are characterised on the basis of
sidescan sonar andmultibeam swath data. Indicators of shallow gas in
Fig. 1. Location and bathymetry of Omakere Ridge, includ
the region are also described in sub-bottom profile (SBP) data. Ground
truthing of the seep sites was undertaken with underwater video and
still cameras. The spatial relationship between high acoustic back-
scatter features in the sidescan sonar data and seabed characterisation
from continuous underwater video observations is analysed quantita-
tively in a geographic information system (GIS). Our data and results
suggest that seabed signatures of seepage can be identified with
varying degrees of confidence depending on their morphology, but
that definitive identification of modern seeps may require visual
observations.

2. Study area

The Hikurangi Margin, off the east coast of New Zealand's North
Island, is part of the Kermadec-Hikurangi subduction zone, which is a
component of the boundary between the Pacific and Australian
tectonic plates. The style of subduction tectonics varies along the
ing the location of seep sites described in this study.



Fig. 2. Hydroacoustic flares from RENEWZ-1 NOAA-NIWA New Zeeps voyage TAN0616 imaging methane seepage at the LM-9 site (y-axis is depth in meters, x-axis is time of transect). Vessel speed: a,b) b1 kn, c) 3 kn, d) 6 kn.

156
A
.T.Jones

et
al./

M
arine

G
eology

272
(2010)

154
–169



157A.T. Jones et al. / Marine Geology 272 (2010) 154–169
Hikurangi Margin from predominantly strike-slip in the south, to
accretion in the centre, to tectonic erosion responding to subducting
seamounts in the north. Omakere Ridge, the focus of this study, is one
of a series of prominent northeast–southwest orientated anticlinal
ridges associated with major thrust faults on the actively accreting
part of the Hikurangi Margin. Details of the tectonic setting of the
Hikurangi Margin are given in Barnes et al. (2010-this issue).

Natural hydrocarbon seeps on the Hikurangi Margin were first
investigated by Lewis and Marshall (1996), who described methane-
derived authigenic carbonate, chemoautotrophic clams, and hydro-
acoustic flares from thirteen sites around New Zealand. Acoustic flares
reported by fishermen at the LM-9 site (Fig. 1) were cited as evidence
of seepage at Omakere Ridge (Lewis and Marshall, 1996), although
dredging of the site in June 1994 failed to collect any seep-associated
biota. The Hikurangi Margin is also known for the occurrence of a
widespread, strong bottom simulating reflection (BSR), interpreted to
be the base of a gas hydrate zone underlain by widespread free gas
(Henrys et al., 2003). The previously mapped extent of this BSR
included a single transect that intersected Omakere Ridge (Henrys
et al., 2003). A more comprehensive discussion of previous work on
cold seeps and hydrates on the Hikurangi Margin is given in Greinert
et al. (2010-this issue).

During RV TANGAROA survey TAN0616, imaging of hydroacoustic
flares over the LM-9 site on Omakere Ridge (Fig. 2) confirmed that the
seep that was active in the mid-90's (Lewis and Marshall, 1996) was
still bubbling. Seeping methanewas also detected at anomalous water
column concentrations (up to 165 nM) over Omakere Ridge in gas
chromatography (GC) based analyses of sampled water from CTD
casts on TAN0607 (RV TANGAROA, June 2006; see Greinert et al., 2010-
this issue, for details) and SO191. High methane concentrations were
recorded over the Bear's Paw site hundreds of meters above the
seafloor, but only slightly increased concentrations (b40 nM) were
observed over LM-9 during TAN0607 and SO191. More details of free
Fig. 3. Multi-channel seismic profile through Omakere Ridge showing a distinct bottom si
anomalies and a potential vertical migration pathway. Profile location shown in Fig. 1.
and dissolved methane in the water column over the Hikurangi
Margin are presented in Faure et al. (2010-this issue).

Multi-channel seismic (MCS) data acquired during SO191with a 4-
channel streamer of 36 m active length and a single GI-Gun source
with a volume of 250/105 in3 (see Netzeband et al., 2010-this issue, for
details on the acquisition and processing of MCS from SO191) show a
distinct BSR underlying Omakere Ridge (Fig. 3), suggesting that the
base of the gas hydrate zone described by Henrys et al. (2003) for the
broader Hikurangi Margin extends along the length of the ridge. This
interpretation is supported by the negative polarity of the reflection,
indicating a transition from higher seismic velocity (possible gas
hydrate cementation) to lower seismic velocity below (free gas).

3. Methods

A wide range of reconnaissance surveying and seabed sampling
techniques were applied to studying the cold seeps of the Hikurangi
Margin during TAN0616 and SO191 (Greinert et al., 2010-this issue).
This study focuses on the characterisation of the Omakere Ridge seep
sites with sidescan and multibeam swath sonar, SBP and visual
observations from underwater video.

Sidescan sonar data were obtained with the digital, deep-towed
DTS-1 system operated by IFM-GEOMAR. The DTS-1 is a modified
EdgeTech dual frequency chirp system working with 75 and 410 kHz
centre frequencies for maximum ranges of 750 and 150 m, respec-
tively. Data presented herein are from the 75 kHz signal, which is a
14 ms long pulse of 7.5 kHz bandwidth providing an across-track
resolution of 5.6 cm. Towing speed averaged 2.5 kn and the data have
been processed for a pixel size of 2 m using the PRISM package from
Southampton Oceanography Centre (Le Bas et al., 1995). High back-
scatter regions are presented as light features in the sidescan data. The
DTS-1 also includes EdgeTech's Chirp SBP DW-216. The chirp SBP
system was operated in a frequency range of 2–10 kHz. The data
mulating reflection interpreted to be a hydrate/free gas interface, potential amplitude



158 A.T. Jones et al. / Marine Geology 272 (2010) 154–169
shown represent the envelope of the dechirped recorded data and are
corrected for geometric spreading. A sub-bottom penetration of up to
50m and a vertical resolution of approximately 1mwere achieved. An
ultra short baseline (USBL) navigation system provided exact
navigation of the towfish resulting in a position accuracy of 10–
20 m. Additionally, a depth sensor was mounted on the towfish to
ensure accurate depth readings. Thus, a reliable depth correction of
the deep-towed SBP profiles to the true seafloor morphology could be
achieved in processing.

Photographic observations of the seabed were made using two
towed camera platforms: NIWA's Deep Towed Imaging system (DTIS)
during TAN0616, and the RV SONNE's Ocean Floor Observation System
(OFOS) during SO191. Both platforms incorporate vertically orientated
colour digital video cameras and digital stills cameras, with paired
parallel red lasers for image scale. Camera platforms were towed at
approximately 2 m above the seabed at speeds b0.5 ms−1 and
recorded continuous video footage with digital still images taken at
15 s intervals throughout each deployment. The seabed position of the
camera was tracked by means of USBL acoustic positioning systems
(Simrad HPR and Ixsea Poseidonia). Transects were planned, and
spatially referenced observations were recorded in real time, by
means of the Ocean Floor Observation Protocol software (OFOP;
Huetten and Greinert, 2008) which allows ship and camera positions
to be monitored against georeferenced acoustic images of the seabed.

Post-voyage video analyses were run using OFOP. Raw USBL
position data were first smoothed using a 21 point running average.
The smoothed trackswere thenused as the basis for generating splined
seabed tracks with positions at 1 s intervals. These tracks were
synchronised with the video files (in MPEG or AVI format) and the
transects were rerun under controlled conditions with pause, replay,
and slow-motion facilities. Observations were allocated to three
substratum categories and one biota category (Table 1). Because the
primary aim of the surveys was to identify areas of active methane
seepage and authigenic carbonate rock formation, substratum obser-
vation categories were designed to highlight the occurrence of seep-
associated features. Seep sites were characterised by isolated areas of
carbonate rock structures in extensive plains of soft,muddy sediments.
Table 1
Hierarchy of substratum descriptors used to classify underwater video observations over O

Category Treatment Observation Description

Seabed_a Fill down Carbonate Presence of any rock substratu

Muddy sediment 100% cover muddy sediments

Seabed_b Fill down Outcrop Continuous authigenic carbon

Chemoherm Continuous authigenic carbon

Boulders Discrete pieces of carbonate ro

Cobbles Discrete pieces of carbonate ro

Relief Fill down Low relief Height estimated as b1 m
High relief Height estimated as N1 m
Flat plates Flat carbonate structures iden

Seabed_c Point observation Coral rubble Fragments of cold water stony
Shell hash Unidentifiable shell fragments
Calyptogena sp. shell Shell valves of Calytogena sp. c
Bathymodiolin shell Shell valves of bathymodiolin
Sulphidic sediment Dark sediment usually associa

Biota Point observation Bacterial mat Live bacterial mat on substratu
Bathymodiolus sp. Live Bathymodiolin mussels
Calyptogena sp. Live Calyptopgena sp. clams
Vestimentiferan Live Lamellibrachia sp siboglin
Coral (intact) Live or structurally intact cold

Depending on category, observations are treated as either continuous (“Fill down”) or point
observations in other categories. For instance, an observation of “Carbonate” under Seabed_a
sediment” can only be modified by observations in categories Seabed_c and Biota.
Therefore, a simplified hierarchy of substratumdescriptorswas used in
which the highest level category ‘seabed_a’ distinguished simply
between muddy sediments and the presence of any hard substrata,
without attempting to estimate relative coverageof different substrata.
Thus, an observation of ‘Carbonate’ within the category ‘seabed_a’
indicates only that rock of some sort was visible, even if it constituted
only a small proportion of the field of view, whereas ‘Muddy
sediments’ indicates 100% cover by soft sediments. Subsequent
categories refine this coarse level distinction and all observation
types used, together with their working definitions, are set out in
Table 1. Note that the full range of observation descriptors available
during video analysis was considerably greater than this but the subset
presented here was condensed out of the full analyses as being the
most commonly used and most relevant to the present analysis.

In practice, observations were recorded as a single time-referenced
stream during video playback. However, because the categories
‘seabed_a’, ‘seabed_b’, and ‘relief’ were treated as continuous
descriptors using a ‘fill-down’ treatment (Table 1) and pause and
rerun facilities were available during video playback, the logging
technique allowedmultiple observations at any one time increment. A
spatially-enabled database was constructed using PostgreSQL/PostGIS
(www.postgresql.org, http://postgis.refractions.net) with embedded
scripts to allocate observations within each category to separate
database fields and to fill down at 1 s intervals those which represent
continuous substrata (Table 1). This database was then interrogated
using the open source GIS application Quantum GIS (www.qgis.org)
from which shapefiles of the video observations were exported to
ArcGIS v 9.2 (www.esri.com) for analysis in relation to georeferenced
sidescan sonar images of the area. Greyscale values representing
backscatter intensity were then extracted from the sidescan raster
image for polygons identified by video ground truthing as represent-
ing particular seabed types.

4. Acoustic characterisation

The seep and reef sites on Omakere Ridge were all characterised by
elevated and heterogeneous backscatter intensity on sidescan sonar
makere Ridge.

Modifiers

m →Seabed_b
→Relief, →Seabed_c
→Biota
→Seabed_c
→Biota

ate rock structures without chemosynthetic fauna →Relief, →Seabed_c
→Biota

ate structures with live chemosynthetic fauna →Relief, →Seabed_c
→Biota

ck N25 cm across visible above mud overlay →Seabed_c
→Biota

ck b25 cm across visible above mud overlay. →Seabed_c
→Biota

tified primarily by step edges
corals →Biota

→Biota
lams →Biota
mussels →Biota
ted with dense populations of ampharetid polychaete worms →Biota
m surface

id worms
water corals

observations. Observations in higher level categories can be modified by simultaneous
can bemodified by observations in all other categories, whereas observations of “Muddy

http://www.postgresql.org
http://postgis.refractions.net
http://www.qgis.org
http://www.esri.com


Fig. 4. 75 kHz DTS-1 sidescan sonar mosaic of the southern end of Omakere Ridge, showing the five seep sites (Kea, Kaka, Kakapo, Bear's Paw and LM-9) and cold water reef (Moa)
described in this study. The lighter and darker swaths were acquired during alternate legs. Location of mosaic shown in Fig. 1.
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mosaics by comparison with surrounding soft sediments (Fig. 4). For
the purpose of discussion in this study, the sites (Table 2) are divided
into three groups according to their location: the LM-9 area to the
northeast centred on 40°1′S and 177°51.67′E, the area to the west
around 40°2.15′S and 177°48′E that includes the Kea, Kaka and Kakapo
seeps, and the area to the southwest around 40°3.2′S and 177°49′E
that includes the Bear's Paw seep and the Moa cold-water reef. No
active gas emission in the form of gas bubbles from any seeps siteswas
observed in the water column of the unprocessed 75 kHz sidescan
sonar records (cf. Klaucke et al., 2005).
Table 2
Location of methane seeps and a cold-water reef on Omakere Ridge.

Name Latitude Longitude Water depth

LM-9 40°1S 177°51.67E 1150 m

Kea 40°2.23S 177°47.67E 1170 m

Kaka 40°2.1S 177°47.95E 1170 m

Kakapo 40°2.12S 177°48.42E 1165 m
Bear's Paw 40°3.17S 177°49.25E 1100 m
Moa 40°3.23S 177°48.75E 1120 m
4.1. LM-9

The single seep site in this area is named LM-9 in recognition of its
identification as Site 9 by Lewis and Marshall (1996). The LM-9 seep
covers an area of approximately 0.6 km2 (Table 2), and is characterised
by a region of moderate backscatter intensity on sidescan sonar
records (Fig. 5). The seep comprises two slightly disparate regions on
the seabed; a larger and more irregularly-shaped area of moderate
backscatter intensity to the northeast, and a smaller oblate-shaped
area of higher backscatter intensity to the southwest. The sidescan
Area Nature Video transects

0.6 km2 Seep site TAN0616-044
TAN0616-055
TAN0616-056

0.3 km2 Seep site SO191-2-OFOS-3
SO191-2-OFOS-6
SO191-2-OFOS-17

0.7 km2 Seep site SO191-2-OFOS-3
SO191-2-OFOS-6
SO191-2-OFOS-17

0.3 km2 Seep site SO191-2-OFOS-6
0.5 km2 Seep site SO191-2-OFOS-7
1.1 km2 Cold water reef SO191-2-OFOS-7

SO191-2-OFOS-16



Fig. 5. a) Sidescan sonar image of the LM-9 seep. b) Differentiation of muddy sediments and carbonates in underwater video transects. c) Characterisation of the type of sea d carbonate. d) Relative relief of carbonate outcrop. e) Biogenic
substrata and sulphidic sediments. f) Seep related fauna biota. Location of image shown in Fig. 4.
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sonar signatures of this seep do not display well-developed acoustic
shadows (low backscatter intensity—dark features) despite being in
the far range of the sidescan swath, which suggests that the topo-
graphy of the seeps is of low relief.

Chirp SBP data acquired on a southwest–northeast orientated
transect approximately 450m to the southeast of LM-9 (Fig. 1) display
a distinct zone of decreased signal intensity less than 400 m to the
southwest of the seep site (Fig. 6). The lack of signal intensity in this
zone is interpreted to represent gas blanking, where gas within the
shallow sedimentary section absorbs the transmitted acoustic power.
This shallow gas front may represent the migration pathway of the
methane as it migrates from the hydrate/free gas boundary (Fig. 3) to
the seep site at LM-9.

4.2. Kea/Kaka/Kakapo

Kea and Kakapo seeps both cover areas of approximately 0.3 km2,
whereas the Kaka seep is the largest of the seep sites on Omakere
Ridge, occupying an area of approximately 0.7 km2 (Table 2). All three
seep sites, particularly Kea, are elongate in a NNW–SSE orienta-
tion, although Kaka has an indented southern margin and forms a
horseshoe-like shape (Fig. 7). All are characterised by a region of high
backscatter intensity on sidescan sonar records, although the sig-
nature varies between sites. The Kea and Kaka sites consist of scat-
tered high backscatter regions with well developed acoustic shadows,
which are indicative of relatively high topographic relief, but these are
interspersed with areas of lower backscatter at background levels. The
Kakapo site is a region of moderate backscatter intensity without
acoustic shadows. However, the sidescan signature of the Kakapo site
cannot be considered diagnostic as it lies directly below the path of
the towfish, and sidescan is most effective at measuring backscatter
contrasts in the middle to far range of the data swath.

Chirp SBP data acquired on a southwest–northeast orientated
transect directly through the Kakapo seep, and approximately 370 and
270m to the southeast of the Kea and Kaka seeps, respectively, display
an irregular zone of increased signal intensity directly below the
Kakapo seep site (Fig. 8). The zone of increased signal intensity, which
does not conform to the near-surface strata, is interpreted to represent
acoustic turbidity, where gas bubbles within the shallow sedimentary
section reflect the transmitted acoustic power. The zone of acoustic
turbidity intersects the sea surface directly below the Kakapo seep,
which very strongly suggests that this shallow gas front represents the
migration pathway of the methane as it migrates from the hydrate/
free gas boundary (Fig. 3) to the seep site.

4.3. Moa/Bear's Paw

There are two seabed features in this area: a seep site named Bear's
Paw, and a cold-water reef (see Section 6) namedMoawhich has seep
areas at its southwestern end. The Bear's Paw seep covers an area of
approximately 0.5 km2, whereas the Moa cold-water reef and seep
Fig. 6. 2–10 kHz chirp sub-bottom profile across the LM-9 seep. LM-9 is projected
occupies an area of approximately 1.1 km2 (Table 2) and is elongate in
a northeast–southwest orientation (Fig. 9). Both sites are charac-
terised by high backscatter intensity on sidescan sonar records, but
the characteristics of their acoustic signatures differ. The main part of
the Moa site consists of a regionwith very high backscatter associated
with well developed acoustic shadows, which is indicative of high and
steep topographic relief. Towards the southwestern end, however,
while backscatter intensity is still high, there is no evidence of the
pronounced shadowing. The Bear's Paw site, by contrast, consists
entirely of moderate backscatter intensity without acoustic shadows,
indicating lower relief.

Chirp SBP data acquired on a southwest–northeast orientated
transect approximately 70 and 450 m to the southeast of the Bear's
Paw seep and Moa cold-water reef, respectively, displays some ir-
regular zones of increased signal intensity from 400 m to 2 km to the
northeast of the Bear's Paw seep (Fig. 10). As with the Kea, Kaka and
Kakapo area, the zone of increased signal intensity is interpreted to
represent acoustic turbidity, with gas bubbles within the shallow
sedimentary section reflecting the transmitted acoustic power of the
SBP system.

5. Morphological characterisation

Multibeam bathymetric mapping undertaken during TAN0616 and
SO191 (Greinert et al., 2010-this issue) shows the existence of the seep
sites as slightly elevated seabed features (Fig. 11), although the
morphological expressions of the three scattered seep occurrences at
LM-9 are not as well defined as the other sites. The seep sites are
typically 2 to 4 m high, which fits well with the visually observed
height of the chemoherm structures. Therefore, in most cases, it
would have been possible to map the Omakere Ridge seep sites with
multibeam swath data alone. However, without the additional high
resolution sidescan information it would have been difficult to ac-
curately and simply pinpoint the seeps. The multibeam data do not
have the same spatial resolution as the sidescan data due to in-
tegrating over a wider area given by the system-defined beam width.
The systems used during the surveys (EM300 and EM120) have a
beam width of 2° that results in a footprint width of 41 m in water
depths of 1170 m. Nevertheless, the horseshoe-like shape of Kaka is
also shown in the bathymetry, with an elevated rim at the high
backscatter areas in the sidescan data (Fig. 12).

6. Visual characterisation

6.1. LM-9

In seabed video observations at the LM-9 seep site, carbonate
coverage of the seabed was sparse (Fig. 5b). The northern region
within the seep consisted predominantly of scattered boulders and
cobbleswith occasional patches ofmainly low relief outcrop (Figs. 5c,d
and 13a). Only cobbles of carbonate were observed in the seep's
onto the profile from 450 m to the northwest. Profile location shown in Fig. 1.



Fig. 7. a) Sidescan sonar image of the Kea, Kaka and Kakapo seeps. b) Differentiation ofmuddy sediments and carbonates in underwater video transects. c) Characterisation of the type of seabed carbonate. d) Relative relief of carbonate outcrop.
e) Biogenic substrata and sulphidic sediments. f) Seep related fauna biota. Location of image shown in Fig. 4.
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Fig. 8. 2–10 kHz chirp sub-bottom profile across the Kea, Kaka and Kakapo seeps. Kea and Kaka are projected onto the profile from 370 and 270 m to the northwest, respectively.
Profile location shown in Fig. 1.
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southern region (Fig. 5c). This distribution of carbonate type is
inconsistent with the higher backscatter seen in the southern area in
the sidescan sonar data (Fig. 5a). It is likely that the carbonates causing
the higher backscatter are limited in extent and that the video
transects, which encompass a field of view of approximately 2m at the
seabed, missed the main carbonate areas (Fig. 5b).

Shell valves of Calyptogena sp. clams were widely distributed in
low densities around the southern part of the site, where patches of
sulphidic sediments were also seen (Fig. 5e). Living chemosynthetic
biota were observed, again in relatively low abundances, in both the
northern and southern parts of the seep andwere generally associated
with patches of low relief carbonate. The fauna consisted almost
exclusively of the large siboglinid tube worms Lamellibrachia sp.,
which were observed in all transects (Fig. 5f) together with occasional
bacterial mats and, in the southern area only, seep-associated hexac-
tinellid sponges. A few cold water corals were observed on carbonates
in the northern region (Fig. 5f).

6.2. Kea/Kaka/Kakapo

Video observations of the Kea, Kaka and Kakapo seeps showed
scattered carbonate coverage at each site (Fig. 7b), with outcrops and
chemoherms of predominantly low relief (Fig. 7c,d), as well as areas of
boulders and cobbles (Fig. 7c). The most abundant seep fauna and
extensive areas of chemoherm were seen at the western end of Kea.
The visual observations support the acoustic interpretations for the
Kakapo seep in that the moderate backscatter (without acoustic
shadows) across this site (Fig. 7a) is relatedmore to the position of the
seep directly below the path of the side-looking towfish than to any
major contrast in seabed character relative to the Kea and Kaka seeps.

Shell valves of Calyptogena sp. clams and patches of sulphidic
sediment were widely distributed at all three seeps (Figs. 7e and 13b)
but were seen generally in low abundance other than in the
chemoherm at the western end of Kea. Of the living biota, Lamelli-
brachia sp. tube worms were the most widely distributed, occurring at
all three seeps (Figs. 7f and 13c). The chemoherm at the western end
of Kea had the highest densities of chemosynthetic fauna and was
notable for the presence of Bathymodiolus sp. mussels, Calyptogena sp.
clams, and hexactiellid sponges in addition to tube worms.

6.3. Moa/Bear's Paw

Video observations of the Moa and Bear's Paw sites showed dense
carbonate coverage at each site (Fig. 9b) but their characteristics were
very different in terms of both geomorphology and fauna. The main
part of the Moa site, represented by the areas of very high backscatter
intensity in the sidescan imageswas characterised by steep, high relief,
carbonate outcrop colonised in many places by cold water corals
(Figs. 9c,d and 13d). Chemoherm habitats with live chemosynthetic
fauna were seen only at the southwestern end of the Moa site
(Fig. 13e). In contrast, the Bear's Paw site was almost exclusively
chemohermofmoderate relief interspersedwith areas of sulphidic soft
sediments and supporting exceptionally high abundances of chemo-
synthetic fauna (Fig.13f). Themost conspicuous fauna in bothMoa and
Bear's Paw chemoherm areas were Lamellibrachia sp. tube worms and
Calyptogena sp. clams (Fig. 13e,f). Sulphidic sediments and shell valves
of dead Calyptogena sp. clams were widely distributed in and around
both the Moa and Bear's Paw sites (Fig. 9e) but shell valves of
bathymodiolin mussels were observed only at the Moa site (Fig. 9c,d).
7. Sidescan backscatter in relation to video ground truthing

Visual examination of the sidescan sonar images was used with
considerable success as the primary method for identifying the precise
location of seep sites during the cruises; therefore there is a direct and
intuitively obvious relationship between the characteristics of the
backscatter image and the probability of occurrence of seep sites in the
study area. In practice, areas which returned high intensity or
heterogeneous backscatter by comparison with surrounding regions of
uniform backscatter were targeted for further investigation. This is
entirely logical in as much as we know that 1) hard substrata return
higher backscatter (or more heterogeneous backscatter if significant
shadowing occurs) than soft sediments, and 2) hard substrata in the
form of carbonate rock develop as a direct consequence of biogeochem-
ical processes at seep sites. Following from this, it is also clear that in
cases where there are spatial discrepancies between the sidescan
backscatter values and video ground truth observations, the most likely
explanation is that there were inaccuracies in determining the seabed
position of either the video camera or the sidescan towfish; the former
being the most likely in light of the way these tools are deployed.

A thorough statistical treatment of this relationship is beyond the
scope of the present study but the observed relationship between
backscatter and seabed characteristics is illustrated here by histo-
grams showing the relative frequency of occurrence of greyscale
values in the sidescan image for areas identified by video ground
truthing as being either seep sites or soft sediment. The histogram for
each seep site was generated from pixel values enclosed by a polygon
drawn to enclose all video observation points at that site identified as
carbonate. For direct comparison with surrounding seabed values,
each polygon was then translated along the track of the sidescan
swathe (thus avoiding problems associated with differences between
near and far field backscatter values) until it entirely overlaid an area
of uniform backscatter for which only soft sediment observations had
been recorded, and a matching histogram of greyscale values was
generated.



Fig. 9. a) Sidescan sonar image of the Bear's Paw seep and the Moa cold-water reef. b) Differentiation of muddy sediments and carbonates in underwater video transects. c) Characterisation of the type of seabed carbonate. d) Relative relief of
carbonate outcrop. e) Biogenic substrata and sulphidic sediments. f) Seep related fauna biota. Location of image shown in Fig. 4.

164
A
.T.Jones

et
al./

M
arine

G
eology

272
(2010)

154
–169



Fig. 10. 2–10 kHz chirp sub-bottom profile across the Bear's Paw and Moa area. Bear's Paw and Moa are projected onto the profile from 70 and 450 m to the northwest, respectively.
Profile location shown in Fig. 1.
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Three video transects were incorporated into this analysis of the
backscatter data: SO191-2-OFOS-6 (Fig. 7b), SO191-2-OFOS-7 and
SO191-2-OFOS-16 (Fig. 9b) covering the Kea, Kaka, Kakapo and Bear's
Paw seep sites and the Moa cold-water reef and seep (Table 2). These
transects were selected because they showed consistent and accurate
correlation between observations of seabed morphology and back-
scatter variations. The remaining transects showed obvious but in-
consistent discrepancies that are assumed to be caused by
inaccuracies associated with the acoustic positioning systems used
(Fig. 7b–d).
Fig.11.Detailed bathymetry of the three seep regions at Omakere Ridge. Contour lines in all m
are high-backscatter regions from sidescan sonar data. The majority of seeps show up as ele
shaped, Kaka horse-shoe like and Kea presents a ridge-like morphology. b) Bear's Paw stand
feature with steep flanks at the southern end. c) The morphological expression is not as ob
Profiles from all sites show that backscatter from the seep areas is
characterised by lower kurtosis than adjacent soft sediments, with
extended tails in the high backscatter values (Fig. 14). It is interesting
that most sites also show extended tails in the low backscatter
distribution, which is indicative of the presence of acoustic shadows in
areas of high relief. While LM-9, Bear's Paw, Kea, Kaka, and Kakapo
show broadly similar backscatter profiles, the histogram for the entire
Moa site has very low kurtosis coupled with weak bimodality. In video
observations Moa was seen to consist of a large area of high relief
cold water reef which was contiguous with an area of lower relief
aps are everymeter; the grid sizewas 15mwhichwas re-sampled to 7.5m. Dashed lines
vated seabed features of several meters height, with various shapes. a) Kakapo is ovally
s out as up to 12 m high knoll with close to 400 m in diameter. Moa again is a ridge like
vious at the three scattered seep occurrences at LM-9.



Fig. 12. Three-dimensional view of the Kea, Kaka and Kakapo seep sites, with sidescan backscatter overlain on multibeam swath bathymetry. Note the horseshoe-like shape of the
Kaka seep site evident in both the sidescan and multibeam datasets. The width of the Kaka seep site is approximately 300 m (see scale in Fig. 11a).

Fig. 13. a) LM-9: carbonate outcrop, low relief. b) Kakapo: Carbonate boulders, sulphidic sediment and Calyptogena sp. clam shells c) Kaka: carbonate boulders, Lamellibrachia sp
tube worms andmixed low relief epifauna. d) Moa (northwest region): carbonate outcrop with scleractinian corals. e) Moa (southwest region): carbonate outcrop, Lamellibrachia sp
tube worms and Calyptogena sp. clam shells f) Bear's Paw: Chemoherm, Lamellibrachia sp. tube worms, Calyptogena sp. clams and shells, hexactinellid sponges, bacterial mat and
sulphidic sediment. White scale bars show 20 cm.
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Fig. 14. Sidescan sonar backscatter intensity hiostograms for the 6 seep sites studied on Omakere Ridge. Solid lines show backscatter from seep sites, dotted lines show backscatter
from background sediments. Backscatter intensity is represented as greyscale values from mosaiced images of processed sidescan data. Note, image grey scale values range from
0 (black) to 255 (white), higher values corresponding to higher backscatter intensity.
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chemoherm extending from its southwestern end. When separate
histograms are compared for the reef and the chemoherm compo-
nents of Moa, the signature of the chemoherm area can be seen to be
closer in form to those of the other seep sites whereas the reef
histogram is distinctive, with an essentially flat distribution and an
extended right tail (Fig. 15).

8. Discussion and conclusions

Seepage of methane from shallow substrata into the overlying
water column is apparently a significant process at Omakere Ridge,
with seeps developing over a regional gas hydrate accumulation
(Henrys et al., 2003; Pecher et al., 2005), evidenced by a BSR in MCS
data along the length of Omakere Ridge (Fig. 3). The present data
allow us to identify six sites in the Omakere Ridge region where there
is evidence of significant methane seepage. By combining high
resolution sidescan sonar data with video ground truthing we have
been able to describe in some detail their areal extent and
geomorphology, and to characterise the biotic assemblages associated
with them. These were the primary goals of the study. However,
because the chemosynthetic fauna associated with seep sites are
dependent, to a greater or lesser extent, on the availability of methane



Fig. 15. Sidescan sonar backscatter intensity hiostograms for distinct regions of the Moa study site identified by video ground truthing as being cold water reef (left) and chemoherm
(right). Details as for Fig. 14.
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or the sulphides generated by the anaerobic oxidation of methane
(AOM) (Sibuet andOlu,1998; Levin, 2005),we can infer fromthese data
that the sites with higher population densities of these live organisms
are those where present day seepage is greatest. Furthermore, because
another by-product of AOM is the precipitation of authigenic carbo-
nates,we can also infer thatwhere significant carbonate structures exist
in combination with evidence of past populations of chemosynthetic
taxa (such as the presence of large numbers of vesicomyid clam shells)
it is direct evidence of historical seep activity. These inferences allow us
to rank the Omakere Ridge sites in estimated order of their present, and
past, seep activity with Bear's Paw as the most active, followed by Kea,
the southwestern end of Moa, Kaka and Kakapo, LM-9 and finally the
main part of Moa, which seems likely to be a relict seep site.

Widespread Calyptogena sp. valves and living seep-related biota
over the Kea, Kaka and Kakapo sites indicate that methane seepage in
this area has been active in the past and remains currently active,
despite the absence of acousticflares in echosounder and sidescan sonar
data from SO191. Seep-related biotic assemblages are more developed
at theKea seep (Fig. 7f),which suggests that currentmethane seepage is
greater here than at Kaka and Kakapo.

At LM-9, the presence of Calyptogena sp. valves and living seep-
related biota across the northern and southern parts of the seep
indicates that both have been active in the past and remain currently
active but abundances are low. Contrasts in biotic signatures between
the two regions (sulphidic sediments and sponges in the south; bac-
terial mats and corals in the north) may reflect differences in the
history of seepage between the two regions but this cannot be diag-
nosed on the basis of the current dataset.

Very high abundances of living chemosynthetic biota over the Bear's
Paw seep indicate thatmethane seepage at this site has been active in the
past and remains currently active, despite the absence of acousticflares in
echosounder and sidescan sonar data from SO191. Although originally
identified and named as a single feature, Moa consists of two distinct
regions: the main northeastern region of very high relief carbonate rock
with corals and other non-seep fauna, and the southwestern chemoherm
region which supports abundant chemosynthetic populations (Fig. 9c,d,
f). These regions are distinct in both the video ground truth data (Fig.13d
vs Fig.13e) and in the characteristics of the sidescan sonar image (Figs.14
and 15). The greater development of carbonate structures in the
northeast, combined with the absence of live seep fauna there, fits well
withour inferences and indicates that this is an areawhere therehas been
active seepage over a long period in the past but that this has nowceased.
This indicates that differentiating high-backscatter seabed features in
sidescan sonar data as either modern or relict seeps requires judicial
analysis and is most effective when supported by visual observations.
The presence of isolated moderate backscatter patches between
Bear's Paw and Moa suggest that there is some link between the
features. We can speculate that the build up of authigenic carbonates
at theMoa site has sealed the initial fluid pathways and that seepage is
now displaced to the southwest, or perhaps to the adjacent Bear's Paw
site. Alternatively, the locus of methane seepage migrated eastward
from the Moa site to the Bear's Paw site. This is supported by the
relationship between seep sites to the northwest. Seep-related biotic
assemblages are more developed at the Kea and Kaka seeps relative to
the Kakapo seep (Fig. 7f). This may be due to seepage having occurred
at the Kea and Kaka sites for a longer period of time, thus the locus of
seepage may also be migrating to the east in this area. This eastern
migration may represent, on an incremental scale, the easterly re-
location of the Hikurangi Margin methane seepage system from its
ancient position, as recorded in the Miocene uplifted East Coast
forearc of New Zealand's eastern North Island, to its current offshore
position through tectonic transpression (Campbell et al., 2008).

We have not attempted a statistical analysis of backscatter inten-
sity here; indeed, we have used only image greyscale values as a
representation of backscatter strength, rather than any detailed char-
acteristics of the backscatter signal itself (Durand et al., 2002, 2006).
Our approach is, thus, little more than a formal illustration of the
visual interpretation used during the voyages to detect seep sites.
Despite this, the relatively fine distinctions that are apparent between
the backscatter characteristics of different substrata across the study
area suggests that there is considerable potential to apply more
sophisticated techniques using statistical correlations between back-
scatter characteristics and ground truth observations to predict the
nature of seabed features at prospective seep sites.
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