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[1] Eddy length scales are calculated from satellite altimeter products and in an
eddy-resolving model of the North Atlantic Ocean. Four different measures for eddy length
scales are derived from kinetic energy densities in wave number space and spatial
decorrelation scales. Observational estimates and model simulation agree well in all
these measures near the surface. As found in previous studies, all length scales are, in
general, decreasing with latitude. They are isotropic and proportional to the local first
baroclinic Rossby radius (Lr) north of about 30�N, while south of 30�N (or for Lr > 30 km),
zonal length scales tend to be larger than meridional ones, and (scalar) length scales
show no clear relation to Lr anymore. Instead, they appear to be related to the local Rhines
scale. In agreement with a recent theoretical prediction by Theiss [2004], the observed
and simulated pattern of eddy length scales appears to be indicative of two different
dynamical regimes in the North Atlantic: anisotropic turbulence in the subtropics and
isotropic turbulence in the subpolar North Atlantic. Both regions can be roughly
characterized by the ration between Lr and the Rhines scales (LR), with LR > Lr in the
isotropic region and LR < Lr in the anisotropic region. The critical latitude that separates
both regions, i.e., where LR = Lr, is about 30�N.
Citation: Eden, C. (2007), Eddy length scales in the North Atlantic Ocean, J. Geophys. Res., 112, C06004,

doi:10.1029/2006JC003901.

1. Introduction

[2] Values for lateral turbulent diffusivities used today in
ocean general circulation models, such as the isopycnal
thickness diffusivity by Gent and McWilliams [1990], are
still rather uncertain [Bryan et al., 1999; Eden et al., 2006].
It is obvious, however, that the specific choice of a value for
such diffusivities affects the simulations of non-eddy-
resolving ocean models, which are typically used for climate
research, in particular, for projections of the evolution of the
climate for the next 100 years [Houghton et al., 2001]. The
magnitude of the turbulent diffusivities is often inferred from
the product of a characteristic velocity scale and a characte-
ristic length scale of the largest eddies in a turbulent flow
field [Green, 1970; Stone, 1972; Larichev and Held, 1995;
Thompson and Young, 2006], a concept going back to
Prandtl [1925]. A characteristic near-surface velocity scale
for mesoscale eddies in the ocean can be obtained from
observational estimates of eddy kinetic energy, given, for
example, by satellite altimeter data [Stammer, 1997]. Since
recent eddy-resolving ocean models show remarkably good
agreement with observations in the simulation of mesoscale
variability [Smith et al., 2000; Eden and Böning, 2002], the
characteristic velocity scale at depth can be readily inferred
from such simulations.

[3] On the other hand, eddy length scales in the ocean are
less well known. Le Traon et al. [1990] and Stammer and
Böning [1992] noted large geographical variations of char-
acteristic eddy length scales inferred from spatial autocor-
relation function of satellite observations of sea surface
height variability. In both studies, the latitudinal variations
of the length scale were thought to be indicative of a linear
relation with the first baroclinic Rossby radius, although it
was also noted by Le Traon [1993] that while the Rossby
radius varies by a factor of 4, the length scales vary only by
a factor of 2. Restricted to the northern North Atlantic,
however, Krauss et al. [1990], using surface drifter data and
infrared satellite images, reported a linear relation between
Rossby radius and eddy length scale. Ocean model simu-
lations tend to show similar spectral characteristics as the
satellite observations, although low resolution in midla-
titudes due to computational restrictions hampered the
model analysis for a long time [Stammer and Böning,
1992]. However, recent high-resolution eddy-resolving
models have shown remarkably close correspondence to
the observations with respect to mesoscale variability
[Beckmann et al., 1994; Smith et al., 2000].
[4] In this study, the question regarding a possible rela-

tion between the eddy length scale and the Rossby radius is
revisited, based on recent satellite data products and a state-
of-the-art eddy-resolving model of the North Atlantic
Ocean. A clear linear relation is found only for Rossby
radii smaller than 30 km or north of 30�N in the North
Atlantic. Section 2 presents details of the model simulation,
the observational data, and the methods used to explore the
spectral properties of the turbulent oceanic flow, section 3
presents the results of the analysis, while in section 4, the
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conclusions of the present study are summarized and
discussed.

2. Methods and Data

[5] To estimate the spectral properties of the turbulent
flow, pressure p is used in this study which acts in the quasi-
geostrophic approximation as a stream function for the
geostrophic velocity, u, i.e., as fe3 � u = �rh p where f
denotes the (fixed) Coriolis parameter. Furthermore, the
surface pressure p0 is related to the sea surface height z
by p0 = gr0z, for which reliable measurements are given by
satellite altimeter data. The Fourier transform of p is given
by

P kð Þ ¼
Z 1

�1
peik�xdx ð1Þ

where k denotes the horizontal wave number vector and
x denotes the horizontal position. For fixed latitude, the
horizontal derivatives of p are proportional to the geos-
trophic velocity u(x). The Fourier transform of u(x) is
given by

f e3 � U kð Þ ¼ f e3 �
Z 1

�1
ueik�xdx ¼ �ikP ð2Þ

The horizontal kinetic energy is given by u2

2
and its

Fourier transform E(k) is given by

2E kð Þ ¼ jU kð Þj2 ¼ j f j�2
k2P2 ð3Þ

where k = jkj. The scalar energy density in wave number
space, E(k), is given by

E kð Þ ¼
Z 2p

0

E k;fð Þ df ð4Þ

where tan f =
ky
kx
. The (scalar) spatial autocovariance

function R(t) of u at lag t is given by

R tð Þ ¼
Z 1

�1
E kð Þe�iktdk ð5Þ

where t denotes a horizontal lag. Note that at depth z, the
full pressure p = p0 +

R 0

z
grdz replaces the surface pressure

p0 as the stream function for the geostrophic velocity u(x, z)
such that P, U, E, and R become functions of depth.
[6] The Fourier transforms are estimated on a discrete

grid for both an eddy-resolving model and satellite altimeter
data (while the latter is used for the case of the surface
pressure only). The horizontal resolution (1/12�) of the model
is about 10 km at the equator decreasing to about 5 km in high
latitudes. The model domain extends from 20�S to 70�N
with open boundaries [Stevens, 1990] at the northern and
southern boundaries and with a buoyancy restoring zone in
the eastern Mediterranean Sea. There are 45 vertical geo-
potential levels with increasing thickness with depth, ranging
from 10 m at the surface to 250 m near the maximal depth of
5500 m. Surface boundary forcing is given by monthly mean
wind stress, a Haney-type heat flux condition as given by

Barnier et al. [1995], and a restoring condition for sea surface
salinity. The model is based on a rewritten version (FLAME;
the numerical code together with all configurations used in
this study can be accessed at http://www.ifm-geomar.de/
~spflame) of MOM2 [Pacanowski, 1995] and is identical
to the one used, e.g., in the work of Eden [2006a]. The
model is integrated for a 10-year spin-up period; the re-
sults shown here are taken from a subsequent integration of
5 years. The satellite altimeter data set comes from the
JASON and TOPEX/POSEIDON missions. The altimeter
products have been produced by SSALTO/DUACS and are
distributed by AVISO on a regular 1/4� � 1/4� grid. They
have been downloaded from the AVISO web page for the
years 2003–2004 for JASON and 1993–2002 for TOPEX-
POSEIDON.
[7] The data are interpolated from each grid on different

subregions with meridional extent of f0 
 f 
 f0 + 12� and
zonal extent of l0 
 l 
 l0 + 12� (cos fm)

�1, where f
denotes latitude, l denotes longitude, fm = f0 + 6�, and f0

and l0 are the coordinates of the southwestern most point.
Each subregion is discretized with grid spacing of Df =
Dl(cos fm)

�1. Note that the cosine factor ensures that the
spatial extent of the domain is approximately quadratic and
the grid spacing is approximately isotropic. A discrete two-
dimensional Fourier transform (FFT) in space is applied for
the pressure p to obtain its Fourier transform P in each
subregion and for each time step. Prior to the FFT, the
spatial mean of p in the subregion and the temporal mean of
p is removed, but no window or envelope was applied to the
data. The impact of the latter choice is discussed below.
Resulting squared amplitudes of P are averaged over time to
apply statistical significance to the spectral estimates. For
the model, data are used in a 3-day interval for 5 years; the
satellite data are given in a 7-day interval for 2 (9) years in
case of JASON (TOPEX/POSEIDON). The statistical signi-
ficance of the estimation was assessed by using a subset of
years for the analysis for the individual data sets (JASON,
TOPEX/POSEIDON, or model), but the results remain
almost identical.
[8] A note on the quality of the satellite data product is

mandatory. It is well known that the temporal and spatial
along-track and cross-track resolutions of both satellite
altimeter are rather different. Here the gridded data product
as provided by SSALTO/DUACS and AVISO is used,
which has certainly less resolution than using the raw along-
or cross-track data, because of smoothing effects during the
interpolation procedure. A major concern is that the effec-
tive resolution of the gridded satellite data is close to the
estimated eddy length scales. Note also that both satellite
data and model data are interpolated on a common (isotropic)
grid. It is clear that, in particular, in the subpolar North
Atlantic, the results can be influenced by interpolation
effects. The impact of this error will be assessed and
discussed below by changing (increasing) the grid spacing
Dl, Df of each subregion.

3. Results

3.1. Definition of Eddy Length Scales

[9] Figure 1a shows the normalized spectral density E(k)
and Figure 1b shows the normalized scalar spectral density
E(k), estimated from satellite altimeter data for a represen-
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tative subregion of the subtropical North Atlantic. There is a
peak at a scalar wave number of about 0.015 km�1,
corresponding to a wavelength of about 400 km. Similar
peaks can be seen in almost any other region of the North
Atlantic, as shown in Figure 2. The wavelength at which
E(k) peaks varies, however, regionally. Clearly it can be
assumed that this geographical variation of the maximum of
E(k) is related to a corresponding variation of the dynamics
producing this spectral peak, i.e., to a variation in the
characteristic length scale of the turbulent motion.
[10] There are several means to define a characteristic

length scale in a spectral estimate. Most obvious from
Figure 1b, one would use the scalar wave number, say kmax,
of the peak of E(k) for the definition of a characteristic
inverse length scale and Lmax = 2p/kmax as the corres-
ponding length scale. On the other hand, it is also intuitive
to look at the autocovariance function R, shown for example
in Figure 1c. There is a rapid decay of covariance with
increasing lags, with a typical first zero-crossing at about
130 km. This first zero-crossing, say L0, is also often used
as a characteristic length scale [Stammer, 1997]. Here we

see that both heuristic measures are rather different in
magnitude.
[11] To overcome the ambiguity of the more heuristic

length scales, Lmax and L0, in classical homogeneous
turbulence theory, the relevant length scale for the large,
energy-containing eddies is often defined by the integral
length scale

L1 ¼ R 0ð Þ�1

Z 1

0

R tð Þdt ð6Þ

[Batchelor, 1969]. Since R is the Fourier transform of E, the
integral length scale can also be expressed using the spectral
energy density E(k) as

L1 �
R
k�1E kð ÞdkR
E kð Þdk ¼

R
kP2 kð ÞdkR
k2P2 kð Þdk ð7Þ

[Batchelor, 1969]. Note that L1 is akin to a ‘‘mean’’
wavelength in the energy spectrum. However, it is shown
below that estimates of L1 for the application of the present

Figure 1. (a) Normalized spectral kinetic energy density E(k) in a 12 cos fm � 12� subregion with
southern/westernmost point at y0 = 25�N and l0 = 52�W in JASON altimeter data as a function of wave
number kx and ky. Wave numbers are in km�1, contour spacing is 0.1. (b) Normalized scalar spectral
kinetic energy density E(k) (black) and corresponding pressure spectrum P2(k) (red) in the same
subregion. Scalar wave number k is in km�1; the circles denote actual data points. (c) Normalized
autocovariance function R(t) in the same subregion. Lags t are in km.

Figure 2. (a) Normalized wave number spectra E(k) from JASON from 0 to 0.06 km�1 (black solid line)
estimated in 12�/cos f � 12� subregions with 1/4� isotropic grid spacing. The subregions are located as a
subplot at its approximate geographic location. Also shown are L1

�1 (red) and L0
�1 (blue) and k* (green)

as vertical lines. (b) Same as Figure 2a but for the model.
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study depend heavily on the grid spacing, while the
(inverse) length scale given by

k* ¼
R
kP2 kð ÞdkR
P2 kð Þdk ;L

*
¼ 2p=k

*
ð8Þ

depends much less on the grid spacing. This is because the
integral

R
k2P2(k)dk relies much stronger on higher wave

numbers than the integral
R
P2(k)dk. This can also be seen in

Figure 1b, in which P(k) converges much more rapidly
toward zero for high wave numbers than E(k) = k2P2(k).
Generalizing the concept for nonisotropic flow, it is also
possible to define the following (inverse) vector length scale

k xð Þ
*
; k yð Þ
*

� �
¼ k

*
¼

R
kP2 kð ÞdkR
P2 kð Þdk

L xð Þ
*
;L yð Þ
*

� �
¼ L

*
¼ 2p=k xð Þ

*
; 2p=k yð Þ

*

� � ð9Þ

In this study, the heuristic length scales Lmax and L0 will be
shown for the satellite observations and model simulations,
the integral length scales L1 and L* will be discussed, and
the vector length scale L* will be used to detect a possible
anisotropy in the turbulent flow.

3.2. Eddy Length Scales in Observations and Model
Simulation

[12] Figure 2a shows the normalized energy spectra
estimated in several subregions of the North Atlantic from
JASON altimeter data. Also shown are the (inverse) length
scales L0

�1, L1
�1, and k*. Note that the corresponding

estimate from TOPEX/POSEIDON is very similar to Figure
2a and is therefore not shown. It appears that 2 years of data
from JASON give sufficient significance in the mean
spectral estimates for the purpose of this study, such that
in the remainder of the text, only the JASON satellite data
will be discussed.
[13] In each subregion of the North Atlantic, there is a

peak in E(k) at a wave number kmax corresponding roughly

to the integral length scale L1
�1 (but note the missing factor

2p). There is a clear increase in kmax with latitude. The first
zero-crossing in the autocovariance function R, given by the
length scale L0, is roughly twice the integral length scale L1
in each case. This is because the form of R is in each
subregion very similar to the one shown in Figure 1c, i.e.,
an almost linear decrease of R toward the first zero-crossing
at L0 and small values of R fluctuating around zero for
larger lags than L0. The scale L0

�1 corresponds in Figure 2a
roughly to the wave number k*. As before for kmax and L1

�1,
there is also an increase of L0

�1 and k* with latitude.
[14] Figure 2b shows the normalized energy spectra for

the model simulation. Note that analogous to the satellite
data, the model data are interpolated on an isotropic 1/4�
grid prior to the analysis. The estimated form of the energy
spectra and the corresponding length scales and their lateral
variations are remarkably similar to the observations. How-
ever, in the subpolar North Atlantic, kmax and L0

�1 tend to be
larger compared to the observations. This is most likely
because of too much smoothing in the observations involved
during preparation of the gridded data product from the raw
satellite tracks. Another reason might be insufficient hori-
zontal resolution of the model in the northern subpolar gyre
(compared to the local Rossby radius).
[15] Figure 3 shows all estimated length scales on a

geographical plot in the North Atlantic to visualize the
lateral dependencies of the length scales both for the
satellite observations and the model simulation. Note that
L0, L1, and L* are scaled by a factor p, 2p, and 0.5
respectively, such that all length scales can be shown on
the same color range. As before in Figure 2, it is evident that
model and observation agree well in all measures. All
(scaled) length scales vary similarly; that is, they are smaller
than or equal to 100 km north of the subpolar front,
increasing toward the equators to 500 km. As seen before,
in the subpolar North Atlantic, eddy length scales are
smaller in the model (less than 100 km) compared to the
observations (larger than 100 km), most likely because of
the above-mentioned bias in the observations.

Figure 3. The length scales Lmax (a, e), pL0 (b, f ), 2pL1 (c, g), and 0.5L* (d, h) for JASON (a–d) and
the model simulation (e–h) in km. Contour spacing is 50 km. Only subregions with more than 50% wet
grid points are shown.
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[16] The horizontal resolution of the model allows testing
the impact of different grid spacing in the subregions.
Figure 4 compares the length scales Lmax, L0, L1, and L*
(again with different scaling) for subregions with grid
spacing of either 0.5� or 0.125�, while Figures 3e–3h show
results with grid spacing of 0.25�. The maximum of E(k),
kmax, and the first zero-crossing of R(t), L0, are not much
effected by the different grid spacing, while the integral
length scale L1 shows a rather strong impact. This effect is

much less pronounced in L*, showing only near the equator
a markable impact by the different interpolations. This is
because the integral

R
k2P2(k)dk in equation (7) depends

strongly on the higher wave numbers, while the highest
power of k in equation (8) is one which shows much less
dependency on higher wave numbers. Note that the appli-
cation of envelopes (or data windows like Hamming or
triangular) to the data prior to the FFT affects the results in a
similar way as the different grid spacing (not shown): While

Figure 4. Length scales Lmax (a, e), pL0 (b, f), 2pL1 (c, g), and 0.5L* (d, h) estimated from the model
results interpolated on a 1

2�/cos fm � 1
2� grid (a–d) and interpolated on a 1

8�/cos fm � 1
8� grid (e–h) in km.

Contour spacing is 50 km. Only subregions with more than 50% wet grid points are shown.

Figure 5. Length scale 0.5L*
(x) (a, c, e, g, i, k) and 0.5L*

(y) (b, d, f, h, j, l) estimated from surface pressure
(a, b), pressure at 100 m (c, d), 500 m (e, f), 1000 m (g, h), 1500 m (i, j), and 2000 m (k, l) in km. Only
subregions with more than 50% wet grid points at the respective depth are shown.
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Lmax, L0, and L* show almost no difference using different
data windows, the integral length scale L1 shows similar,
although smaller, differences as using higher (lower) reso-
lution. This points again toward the dependency of L1 on
higher wave numbers, for which different data windowing
methods appear to be more important. Note also that the
size of different subregions might also influence the results
shown here, although all estimated length scales are well
below the size of the subregions.
[17] It is therefore concluded here that the classical

integral length scale L1 is for the present application less
useful, and that the length scale L* resembles a better, i.e.,
more stable, integral scale both for the model results and the
observations. Since model and observations agree well in all
spectral properties of the surface pressure, the discussion in
the remainder of this study will be devoted to the model
results.

3.3. Nonisotropy, Lateral, and Vertical Dependency of
the Eddy Length Scale

[18] Figure 5 shows the length scales L*
(x) and L*

( y) (again
with the same scaling as for L* in Figure 3) at different

depths over the thermocline of the North Atlantic Ocean.

L*
(x) and L*

( y) tend to be of same magnitude north of about
30�N, while L*

(x) is considerably larger than L*
( y) in the

western subtropical North Atlantic. This anisotropy in the
western subtropical North Atlantic can also be found at any
depth range (Figure 5) and in the satellite observations as
well (not shown). In general, eddy length scales do not vary
much with depth, although north of the subpolar front, L*

(x)

and L*
( y) tend to be larger at larger depths. Note that this

depth dependency can also be seen in the length scales Lmax

and L0 (not shown).
[19] The estimated length scales appear to differentiate

two different regimes in the North Atlantic: The region
north of about 30�N is characterized by isotropic turbu-
lence, while south of this latitude, the turbulent flow tends
to be anisotropic. In the anisotropic regime, the zonal
fluctuations appear to be larger than the meridional ones,
which is characteristic of two-dimensional turbulence on a
b-plane [Rhines, 1975, 1977].
[20] The characteristic eddy length scales estimated from

model simulations or observations are often compared with
the first baroclinic Rossby radius [Krauss et al., 1990;

Figure 6. (a) Rossby radius 2pLr in km and (b) Rhines scale 2pLR in km. Black lines denote same
quantity as color shading with contour interval of 50 km. The red line connects points at which Lr = LR.
Green line in Figure 6a denotes points at which Lr = 2p � 30 km.

Figure 7. (a) Length scale L0 at the surface versus first baroclinic Rossby radius Lr in km in JASON (black
crosses) andmodel (red crosses). Solid lines denote regressions L0 versus Lr for JASON (black, L0 = 0.8Lr +
74 km) and the model (red, L0 = 0.8Lr + 66 km). (b) Length scales 1/k*

(x) (blue) and 1/k*
( y) (red) versus Lr in

km in the model simulation. (c) L0 in JASON versus theminimum of the local Rossby radius Lr and the local
Rhines scale LR in km.
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Beckmann et al., 1994; Stammer and Böning, 1996]. The
first baroclinic Rossby radius Lr is shown in Figure 6a. Lr is
estimated approximately from the time mean model strati-
fication following the work of Chelton et al. [1998] by

calculating Lr =
R 0

�H
N

j f jpdz, where N denotes the local

buoyancy frequency and f is the Coriolis parameter. The
variations of Lr are to first order determined by the variation
of f and thus by latitude. Since all eddy length scales also
vary with latitude, it is tempting to look for a relationship
between Lr and the eddy lengths scales.
[21] By a regression, Stammer [1997] found a linear

relationship between the Rossby radius Lr and L0 estimated
from satellite altimeter data. A very similar relation is found
in the present study both in the model and observations.
Figure 7a shows L0 (at the surface) versus Lr for the model
simulation and the satellite altimeter data in the North
Atlantic from JASON. A linear fit using all data points
gives in both cases a slope of 0.8, very similar to the value
given by Stammer [1997]. On the other hand, it is evident
from Figure 7a that the relation between L0 and Lr is far
from linear. For small Lr, the slope gets much steeper than
0.8, and for Lr larger than about 30 km, L0 does not show
much dependency on Lr anymore. Note that a similar
behavior of L0 versus Lr was found by Stammer [1997]
(compare his Figure 24) for the global ocean. Note also that
Krauss et al. [1990] found a slope of larger than 3 in a
combined analysis of drifter data and satellite surface
temperature observations which was restricted to the sub-
polar North Atlantic. If the linear regression in Figure 7a is
repeated using data for Lr < 30 km only (not shown), the
estimated linear regressions are L0 = 2.25Lr + 48 km for the
JASON data and L0 = 3.15Lr + 21.38 km for the model data.
This means that restricting the regression to the subpolar
North Atlantic, the slopes are much steeper than those
reported by Stammer [1997] and consistent with the anal-
ysis by Krauss et al. [1990].
[22] Figure 7b shows the length scales L*

(x) and L*
( y) at the

surface in the model also as a function of the local Rossby
radius Lr. For Lr smaller about 30 km, both length scales
show the same dependency on Lr (both with a slope of ca. 3)
pointing toward isotropy. However, for Lr larger than about
30 km, Lx tends to be 20–100% larger than Ly which is again
characteristic of two-dimensional turbulence on a b-plane
and which points again toward two different dynamical
regimes of the turbulent flow in the North Atlantic.
[23] The characteristic length scale for two-dimensional

turbulence on a b-plane is given by the Rhines scale [Rhines,
1975, 1977]. The Rhines scale LR is shown in Figure 6b and
is calculated from the model results as LR = (urms

2b )
1/2 where

urms denotes a turbulent barotropic velocity scale taken here
as urms

2 = jub � –ubj2 with ub = jh�1
R 0

�h
udzj and the temporal

mean –ub. Note that there is some ambiguity in the definition
of the Rhines scale. Here the turbulent velocity scale urms is
derived using the barotropic velocity, but one might also
choose the (depth-averaged) first baroclinic mode velocity
fluctuations or the local velocity fluctuations for the defini-
tion of urms. However, it is shown in the study by C. Eden
(Towards a turbulence model for meso-scale eddies, sub-
mitted to Journal of Physical Oceanography, 2007, here-
inafter referred to as C. Eden, submitted manuscript, 2007)
that for the present model, the ratio of the turbulent energy

contained in the barotropic mode to the total turbulent
energy (EKE) stays between 0.4 and 0.6 over most of the
North Atlantic (only near the equator the ratio gets small).
Thus the above choice for LR is not much affected by using
baroclinic or barotropic velocities for the definition of urms.
Although LR depends on latitude via b, variations of urms
dominate in LR. The Rhines scale LR is larger than the Rossby
radius Lr north of about 30�N, which coincides roughly with
the contour Lr = 2p � 30 km. Note that the latitude 30�N or
the value Lr = 2p � 30 km separates the anisotropic from the
isotropic regions in Figures 5, 7a, and 7b.
[24] Figure 7c shows the scalar length scale L0 in JASON

versus the minimum of the local Rossby radius and the local
Rhines scale from the model simulation. It is clear from the
figure that to a reasonable approximation, a linear relation-
ship shows up between the estimated length scales L0 and
min(Lr, LR), much better as before using the Rossby radius
only. A very similar result is obtained estimating the length
scale in the model. It is concluded here that in the region of
anisotropic (isotropic) turbulence, the length scale L0 is
linearly related to the Rhines scale LR (Rossby radius Lr),
and that the scale given by min(Lr, LR) is able to fit the
estimated length scale L0 well in both regions.

4. Summary and Discussion

[25] Eddy length scales are estimated in the North Atlan-
tic Ocean both in satellite observations and a realistic high-
resolution model simulation. Remarkably good agreement
between model and observations was found with respect to
the analyzed spectral properties of surface pressure in
horizontal wave number space. In the subpolar North
Atlantic, however, eddy kinetic energy peaks at a slightly
larger scale in the observations compared to the model. This
artifact might be related to the smoothing in the satellite data
involved during preparation of the gridded data product
from the raw satellite tracks.
[26] A prominent feature of the kinetic energy spectrum

E(k), both in the model and observations, is that the peak of
E(k), at the wave number kmax, moves to smaller length scales
going northward. This latitudinal dependency consistently
shows up as well in the first zero-crossing of the spatial
autocorrelation function L0 and in the integral length scale
1/k* (the latter was slightly redefined here from the
classical definition for the present purpose). A characteris-
tic eddy length scale can be defined now from the more
heuristic length scales Lmax or L0 as proposed by, e.g.,
Stammer [1997] or, maybe more theoretically sound, from
the integral length scale L*, in order to estimate lateral
diffusivities in the North Atlantic (given a characteristic
velocity scale as well).
[27] The integral eddy length scale was formulated here

also as a vector length scale to detect a possible anisotropy
of the turbulent flow. It is found that in the western
subtropical North Atlantic, the zonal integral length scales
are 20–100% larger compared to the meridional integral
length scales, indicative of anisotropic turbulent flow, while
north of about 30�N, the magnitudes of both length scales
are very similar (isotropic turbulence). The length scale of
turbulent geostrophically balanced flow as a function of
depth is also discussed in the present paper. Anisotropic
versus isotropic regions and eddy length scales in the sub-
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tropical North Atlantic change hardly with depth pointing
toward only weak depth dependency of the spectral proper-
ties of the turbulent flow, although the eddy kinetic energy
decays with depth (not shown, but see, e.g., Smith et al.
[2000]). On the other hand, the (small) length scales in the
subpolar North Atlantic tend to increase slightly with depth.
The reason for this feature remains unclear, but a possible
explanation for this feature might be that the length scales
for barotropic and baroclinic modes are different and that
the vertical localization of barotropic and baroclinic kinetic
energies with depth depends on latitude. However, a full
assessment of modal energies, energy fluxes, and length
scales in the model is beyond the scope of the present study.
[28] The question of a possible relation between the first

Rossby radius and the characteristic eddy length scale is
revisited here. It was argued previously by Le Traon et al.
[1990] and Stammer and Böning [1992] that the latitudinal
variation of the length scale might be indicative of a linear
relation with the first baroclinic Rossby radius, although it
was also noted by Le Traon [1993] that while the Rossby
radius varies by a factor of 4, the length scales vary only by
a factor of 2. This feature is also prominent from the
apparent nonlinearity when plotting the estimated eddy
length scales as a function of the local Rossby radius
(compare Figure 7). On the other hand, Krauss et al.
[1990] reported a closer linear relation between Rossby
radius and eddy length scale in an analysis based on
surface drifter data and infrared satellite images which
was restricted to the northern North Atlantic.
[29] It is shown here that a close linear relation can only

be found in the North Atlantic for Rossby radii smaller than
about 30 km or north of about 30�N, i.e., for the region of
isotropic turbulent flow. The estimated slope between eddy
length scale and the Rossby radius for the subpolar North
Atlantic is similar to the one found by Krauss et al. [1990],
i.e., much steeper than the slope given by, e.g., Stammer
[1997] from a regression including subtropical and subpolar
regions. On the other hand, the eddy length scales show no
clear dependency on the Rossby radius south of 30�N or for
Rossby radii larger than about 30 km. Here the turbulent
flow becomes anisotropic, with zonal length scales larger
than meridional ones, indicative of two-dimensional turbu-
lence on a b-plane [Rhines, 1975, 1977].
[30] The dominant length scale for such a flow regime is

given by the Rhines scales LR. It is important to note that in
the model, LR becomes smaller than the local Rossby radius
for Rossby radii smaller than 30 km or south of 30�N. It is
argued here that for meridional fluctuations, i.e., for the
meridional eddy length scale, in the region south of 30�N,
LR might be the more relevant length scale. Because of such
a limitation of the meridional length scale by LR, the
estimated (scalar) eddy length scale in the altimeter data
and the model simulation show no clear dependence on the
local Rossby radius Lr in the subtropical North Atlantic.
Instead, it was found here that the estimated eddy length
scale is linearly related to the local Rhines scale in that
region. As a consequence, the length scale given by min(Lr,
LR) is able to fit the scalar eddy length scale reasonably well
over the entire basin.
[31] Support of this interpretation comes from a recent

study by Theiss [2004]. In an idealized, eddying shallow
water model including the latitudinal variation of the

Rossby radius (i.e., considering not just a b-plane with
fixed Rossby radius as in previous studies), he found a
critical latitude, above which the flow is isotropic and below
which the flow becomes anisotropic (zonal scales larger
than meridional ones). This critical latitude is defined by
Lr = LR. Where the Rhines scale (LR) is larger than the
local Rossby radius (Lr), i.e., north of the critical latitude,
the flow is isotropic; when the Rhines scale becomes
smaller than the Rossby radius, the flow becomes aniso-
tropic. This result by Theiss [2004] is also confirmed by a
recent study by R. K. Scott and L. M. Polvani (Forced
dissipative shallow water turbulence on the sphere: equa-
torial confinement of zonal jets, submitted to Journal of
the Atmospheric Sciences, 2007, hereinafter referred to as
R. K. Scott and L. M. Polvani, submitted manuscript,
2007). Note that the prediction of such a critical latitude
based on the ratio of Rossby radius and Rhines scale is
surprisingly consistent with the present study. However,
note also that the idealized studies by Theiss [2004] and
R. K. Scott and L. M. Polvani (submitted manuscript, 2007)
deal with decaying turbulence, in which eddy length scales
might be different from the more realistic forced/dissipated
case as considered in the present study.
[32] A similar difference in the turbulent flow regime

(zonally elongated near the equator and isotropic near the
poles) can be found from images of Jupiter’s atmosphere,
serving usually as a popular example for geostrophic turbu-
lence [Theiss, 2006]. Further support comes from the
recent evidence from observational and modeling studies
concerning strong zonal jets in the equatorial to subtro-
pical Atlantic and Pacific Ocean [Schott et al., 2003;
Maximenko et al., 2005; Eden, 2006b], also indicative of
geostrophic turbulence on a b-plane and anisotropic flow
in the tropical and subtropical ocean.
[33] Finally, it should be noted that in the study by C. Eden

(submitted manuscript, 2007), it was attempted to construct a
lateral diffusivity (in the interior of the ocean essentially
given by the thickness diffusivity in the work of Gent and
McWilliams [1990]) following the ideas by Green [1970],
Stone [1972], and Larichev and Held [1995], i.e., using a
characteristic length and velocity scale (where the latter is
given by a prognostic eddy kinetic energy budget). Such a
diffusivity yields only results consistent with independent
estimates given by Eden et al. [2006], defining the eddy
length scale as the minimum between (essentially) the local
Rossby radius and Rhines scale, consistent with the results of
the present study. It should be stressed that using a previous
suggestion by Visbeck et al. [1997], i.e., using a length scale
based on the Rossby radius only, the resulting diffusivity is in
disagreement with the independent estimates.
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